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This paper considers dynamic coverage control for non-holonomic agents along with col-
lision avoidance guarantees. The novelties of the approach rely on the consideration of
anisotropic sensing, which is realized via conic sensing footprints and sensing (coverage)
functions for each agent, and on a novel form of avoidance functions. The considered
sensing functions encode field-of-view and range constraints, and also the degradation
of effective sensing close to the boundaries of the sensing footprint. Thus, the proposed
approach is suitable for surveillance applications where each agent is assigned with the
task to gather enough information, such as video streaming in an obstacle environment.
The efficacy of the approach is demonstrated through simulation results.
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1. INTRODUCTION
Mobile sensor and robotic networks have been of major research
interest during the past decade, in part due to their usefulness in
applications ranging from surveillance and monitoring, to situa-
tional awareness, to tasks involving industrial and domestic robots
(e.g., for painting, floor cleaning, lawn mowing). A mobile sen-
sor or robotic network is typically realized as a group of agents,
which are characterized by local sensing capabilities and which
need to collaborate to achieve a global objective, often addressed
as coverage.

Coverage is typically classified into static coverage control and
dynamic coverage control. The static coverage control problem
mainly addresses the optimal placement of sensors to cover a
region and reduces to finding control laws, which deploy mobile
sensing agents to the centroids of Voronoi cells in a Voronoi
partitioning of a given domain (Cortes et al., 2004; Cheng and
Savkin, 2010; Ferrari et al., 2010; Schwager et al., 2011; Zhong
and Cassandras, 2011). On the contrary, the term dynamic cov-
erage control has traditionally been used to describe problems
where a group of mobile sensing agents is deployed to search an
area sufficiently well over time, see, for instance, Hokayem et al.
(2007), Hussein and Stipanovic (2007), Atinç et al. (2013), and
Stipanovic et al. (2013) and the references therein. The main con-
cept, which realizes sufficient (or effective) coverage, is a parameter
C*, which is associated with the amount of time that a sensing
agent should spend on every point of the area. One common
thread in earlier work on dynamic coverage is the consideration of
isotropic sensing for each agent, which is realized as a bell-shaped
sensing function over a circular sensing footprint. Nevertheless,
although this model is suitable for agents carrying sensors such
as laser range finders, it is not pertinent for agents with onboard
cameras.

This paper is in part motivated by surveillance applications
where vision is the main means of sensing and information gather-
ing and addresses dynamic coverage for multiple non-holonomic
agents along with collision avoidance guarantees. We extend our
earlier work (Stipanovic et al., 2013) by considering a new dynamic
coverage and avoidance control design, which can be implemented
in a decentralized fashion. The main difference here is the consid-
eration of (i) anisotropic sensing, realized via conic sensing foot-
prints and conic sensing (coverage) functions for each agent, and
(ii) a novel form of avoidance functions. The considered sensing
functions encode field-of-view and range constraints, and further-
more the degradation of effective sensing close to the boundaries
of the sensing footprint. In this spirit, the proposed control design
is suitable for surveillance tasks, where a group of robots is assigned
with the task to gather enough information about an environment
(such as video streaming or snapshots) locally, while avoiding col-
lisions. More specifically, the considered scenario in this paper
addresses the case of non-holonomic robots, each one carrying a
forward-looking camera of limited angle-of-view and a rear prox-
imity sensor, such as a laser scanner. Each robot is thus capable
of detecting objects both in the forward and the backward look-
ing direction, and more specifically, objects lying within the finite
conic sensing footprints dictated by the available sensor limita-
tions. The dynamic coverage control is defined as ensuring that
each point of a domain of interest is sensed by the forward-looking
sensing footprint of at least one agent (that is, the same point may
be sensed by more than one agent) for a sufficient amount of time.
A coverage error function encoding this objective is defined for
each agent, and control laws, which guarantee that this error is dri-
ven to zero, are designed. The local encoding of coverage capability
through the adopted error function implies that agents may stop
moving before the entire domain has been sufficiently covered. For
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Panagou et al. Dynamic coverage using anisotropic sensing

this reason, a supervisory logic is additionally implemented; this
is realized as the exchange of information among agents regard-
ing their individually covered areas, so that at least one agent has
knowledge of the entire coverage map, and the selection of way-
points in the uncovered area toward, which the agents are forced
to move after their individual coverage errors have become arbi-
trarily close to zero. The implementation for the supervisory logic
is based on Atinç et al. (2013) and further refined to the conic
sensing and coverage models considered here. Avoidance is con-
sidered only pairwise in this paper, and is implemented through
novel avoidance functions, which are compatible with the available
conic sensing footprints. Extending this encoding to multi-robot
avoidance control is currently ongoing work.

The consideration of anisotropic sensors for coverage control
problems has been also considered in Gusrialdi et al. (2008a,b),
Laventall and Cortes (2008), and Hexsel et al. (2013); however,
these contributions refer to static coverage problems, i.e., to agents
covering areas in a deployment sense, and therefore are not rele-
vant to the dynamic coverage formulation presented here. To the
best of our knowledge, the most relevant work to this paper is
Franco et al. (2012), which addresses vision-based dynamic cover-
age for mobile robots. Yet, the current paper differs in the sensing
modeling, which is realized via a novel form of conical functions, as
well as in the proposed coverage and avoidance control strategies,
which here are based on novel coverage and avoidance functions.

A shorter version of this paper appeared in Panagou et al.
(2014). The current version includes the complete technical analy-
sis on the considered control design, which is omitted in the con-
ference version in the interest of space, and additionally presents
a way of addressing the “global” coverage objective via a supervi-
sory logic, which eliminates the limitations of the “local” dynamic
coverage control design. The difference between global and local
coverage will become clear in later sections.

The paper is organized as follows: Section 2.1 describes the sys-
tem modeling along with the sensing constraints and functions.
Sections 2.2 and 2.3 include the novel formulations regarding the
(local) coverage and collision avoidance control, while the tech-
nical analysis on the proposed control strategies is presented in
Section 2.3.3. Simulation results are reported in Section 3, along
with a way of addressing the global coverage objective. Section 4
summarizes our results and thoughts on future research, followed
by some pertinent acknowledgments.

2. MATERIALS AND METHODS
2.1. PROBLEM FORMULATION
Consider a group of N mobile agents, whose motion is governed
by unicycle kinematics:ẋi

ẏi

θ̇i

 =
cos θi 0

sin θi 0
0 1

[ui

ωi

]
, (1)

where i∈{1, . . ., N }, pi= [xi yi]T is the position vector and θ i is
the orientation of an agent i (w.r.t) a global coordinate frame G,
and ui, ωi are the linear and angular velocities of agent i, respec-

tively (w.r.t), the body frame Bi . Denote qi = [pT
i θi]

T
the state

vector of agent i.

FIGURE 1 |The forward-looking sensing footprint S i for agent i .

Each agent is assumed to be equipped with a fixed onboard
camera of limited angle-of-view and furthermore to be able to
detect objects, which lie within a limited region (w.r.t) the forward-
looking direction. The limited sensing region of agent i is realized
as a circular sector Si of angle 2αi and radius Ri, where Ri> 0,
αi ∈ (0, π /2) (Figure 1).

Furthermore, each agent is assumed to have a rear proximity
sensor, whose sensing footprint S ′i is for simplicity modeled as the
symmetric circular sector of Si (w.r.t) the yBi body-fixed axis of
agent i. In that respect, each agent i is able to detect objects lying
within a limited range in the backward direction as well. The role
of the rear proximity sensor is to ensure that each agent i is able to
detect and avoid objects (obstacles and other agents j 6= i) when
forced to move backwards.

2.1.1. Modeling of conic sensing footprints
Consider the functions cki: R3

→ R defined as:

c1i (t ) = R2
i − (x̃i − xi (t ))

2
−
(
ỹi − yi (t )

)2
, (2a)

c2i (t ) = αi − φi (t ) , (2b)

c3i (t ) = αi + φi (t ) , (2c)

where k ∈ {1, 2, 3}, p̃ = [x̃ ỹ]
T

is the position vector of a point

on R2, pi(t )= [xi(t ) yi(t )]T is the position vector, and θ i(t ) is
the orientation of agent i at time instant t, and

φi (t ) = atan2
(
ỹi − yi (t ) , x̃i − xi (t )

)
− θi (t ) (3)

is the angle of a point p̃ ∈ R2 (w.r.t) the body frame Bi of agent i
at time instant t. The region of the state space where all functions
equation (2) take non-negative values encode a circular sector
S i of radius Ri and angle 2αi centered at pi(t ). This circular
sector models the forward-looking sensing footprint for agent i
(Figure 1). For simplicity, in the sequel, we assume that all agents
have the same sensing capabilities, i.e., that Ri=R, αi=α.

Let us now note that the barrier function:

Bi =
1

max {0, c1i}
+

1

max {0, c2i}
+

1

max {0, c3i}
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Panagou et al. Dynamic coverage using anisotropic sensing

tends to +∞ as the k-th constraint cki→ 0+, i.e., as a point p̃ on
the interior of the set Si approaches the boundary ∂S i of S i. To
keep notation compact, denote max{0, cki}=Cki, k ∈ {1, 2, 3}, and
consider the function:

Si =
1

Bi
=

C1i C2i C3i

C2i C3i + C1i C3i + C1i C2i
, (4)

which is zero on the exterior of the sensing footprint S i, zero on
the boundary ∂S i except for at the points where any two of the
constraints cki are concurrently zero, and positive on the interior
of S i. Furthermore, equation (4) tends to zero as the k-th con-
straint cki→ 0+ (Figure 2). We define that the sensing function S i

is zero at the points where any two of the constraints are active at
the same time.

In this respect, the function Si can be used as a realistic model-
ing of the available sensing capability, in the sense that the quality
of sensing typically degrades as an object lies far from the camera
or close to the boundaries of the camera angle-of-view. In other
words, the function Si encodes that sensing of objects (or, in other
words, “seeing”) becomes less effective as these lie closer to the
boundaries of the sensing footprint S i of agent i.

Following our earlier work (Stipanovic et al., 2013), the sensing
function for the i-th agent is defined:

Qi
(
t , p̃
)
=

∫ t

0
Si
(
pi (τ ) , θi (τ ) , p̃

)
dτ . (5)

Let us also define the function h(w)= (max{0, w})3, so that its
first derivative reads: h′= dh/dw= 3(max{0, w})2, and its second
derivative reads: h′′= d2h/dw2

= 6(max{0, w}).

2.2. COVERAGE CONTROL
Given a compact region D, we are interested in deriving control
strategies, which guarantee that the agents cover (or search) the
whole region up to a satisfactory level. In other words, the term
satisfactory coverage denotes that each point p̃ of D should be

sensed by at least one agent for a sufficient amount of time. In
order to mathematically capture the notion of satisfactory cover-
age, we use a positive constant C*. The value of this constant is
chosen depending on how well we would like to search the area;
more specifically, larger values of C* are meant to force each agent
to spend more time sensing each point on the domain.

2.2.1. Coverage error function
The coverage error for the i-th agent is defined as:

ei (t ) =

∫
D

h
(
C?
− Qi

(
t , p̃
))

dp̃, (6)

where D is the compact region to be covered and C* is the posi-
tive constant realizing the satisfactory coverage level. A meaningful
choice of the value C* is to pick C*≥ t max Si, where t is the least
amount of time that an agent needs to spend on each point p̃ of
the domain D and max Si is the maximum value of the sensing
function equation (4). The time derivative of equation (6) reads:

ėi (t ) = −

∫
D

h′
(
C?
− Qi

(
t , p̃
))

Si
(
pi
(
t , p̃
)

, θi (t )
)

dp̃. (7)

Remark 1. In general, the derivative of the area integral

J (t ) =

∫∫
D(t )

f
(
t , x̃ , ỹ

)
dx̃dỹ

of a function f (t , x̃ , ỹ) over a compact region D(t ), which is
bounded by a closed curve C(t ), which is continuous and consists
of smooth arcs, is given as:

dJ (t )

dt
=

∫∫
D(t )

∂f
(
t , x̃ , ỹ

)
∂t

dx̃dỹ + I (t ) ,

FIGURE 2 |The considered sensing model Si(t ) for agent i, given by equation (9). The agent is positioned at pi = |−2−4|T and its orientation is θ i =π /3.
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where:

I (t ) =

∮
C(t )

f
(
t , x̃ , ỹ

) (∂ x̃

dt
dỹ −

∂ ỹ

dt
dx̃

)
,

with the integration performed along the counterclockwise direc-
tion. It can be shown that for the considered sensing function
Qi(t , x̃ , ỹ), which is exactly zero almost everywhere on the bound-
ary C(t ), the term I (t ) is zero. This justifies why the term involving
the line integral has been dropped in equation (7). The same holds
later on for the time derivative equation (9) of the modified error
function equation (8).

As discussed in Stipanovic et al. (2013), the use of equation
(7) as a candidate Lyapunov-like function for guaranteeing the
accomplishment of satisfactory coverage is not a good choice, in
the sense that this function may become zero when the Si(·) term
becomes zero, and this condition may occur, for instance, when
agent i leaves the domain D. Thus, the following modified error
function is utilized instead as a Lyapunov-like function:

êi (t ) = −

∫
D

h′
(
C?
− Qi

(
t , qi , p̃

)) (
S? − Si

(
pi
(
t , p̃
)

, θi (t )
))

dp̃,

(8)
where S*>N max Si a positive constant; this functional is negative
and vanishes when the term h′

(
C?
− Qi(t , qi , p̃)

)
becomes zero,

i.e., only when the satisfactory coverage level C* for a point p̃ ∈ D
has been achieved. The time derivative of equation (8) reads as in
equation (9),

˙̂e i (t ) = −

∫
D

(
− h′′

(
C?
− Qi

(
t , p̃
))

Si
(
pi
(
t , p̃
)

, θi (t )
)

×
(
S? − Si

(
pi
(
t , p̃
)

, θi (t )
))
− h′

(
C?
− Qi

(
t , p̃
))

×
d

dt

(
Si l
(
pi
(
t , p̃
)

, θi (t )
)))

dp̃

=

∫
D

(
h′′
(
C?
− Qi

(
t , p̃
))

Si
(
pi
(
t , p̃
)

, θi (t )
)

×
(
S? − Si

(
pi
(
t , p̃
)

, θi (t )
))
+ h′

(
C?
− Qi

(
t , p̃
))

×
d

dt

(
Si
(
pi
(
t , p̃
)

, θi (t )
)))

dp̃

=

∫
D

h′′
(
C?
− Qi

(
t , p̃
))

Si
(
pi
(
t , p̃
)

, θi (t )
)

×
(
S? − Si

(
pi
(
t , p̃
)

, θi (t )
))

dp̃

+

∫
D

h′
(
C?
− Qi

(
t , p̃
)) d

dt

(
Si
(
pi
(
t , p̃
)

, θi (t )
))

dp̃,

(9)

where :
d

dt
(Si(pi(t , p̃), θi(t ))) =

∂Si

∂xi
ẋi(t )+

∂Si

∂yi
ẏi(t )

+
∂Si

∂θi
θ̇i(t ) (1)

=

(
∂Si

∂xi
cos θi(t )+

∂Si

∂yi
sin θi(t )

)
ui(t )

+
∂Si

∂θi
ωi(t ).

and is further rewritten as:

˙̂e i (t ) = a0 (t )+ ui (t ) a1 (t )+ ωi (t ) a2 (t ) , (10)

where:

a0 (t ) =

∫
D

h′′
(
C?
− Qi

(
t , p̃
))

Si
(
pi
(
t , p̃
)

, θi (t )
)

×
(
S? − Si

(
pi
(
t , p̃
)

, θi (t )
))

dp̃,

a1 (t ) =

∫
D

h′
(
C?
− Qi

(
t , p̃
))

×

(
∂Si

∂xi
cos θi (t )+

∂Si

∂yi
sin θi (t )

)
dp̃,

a2 (t ) =

∫
D

h′
(
C?
− Qi

(
t , p̃
)) ∂Si

∂θi
dp̃.

As the functional equation (8) is non-positive, it follows that for
the error êi(t ) converging to zero, it suffices that its time derivative
˙̂e i(t ) is non-negative (Stipanovic et al., 2013).

Theorem 1. If agent i moves under the control law:

ucov
i = kcov

u

∫
D

h′
(
C?
− Qi

(
t , p̃
)) (∂Si

∂xi
cos θi +

∂Si

∂yi
sin θi

)
︸ ︷︷ ︸

µ(·)

dp̃,

(11a)

ωcov
i = kcov

ω

∫
D

h′
(
C?
− Qi

(
t , p̃
)) ∂Si

∂θi︸ ︷︷ ︸
ν(·)

dp̃, (11b)

where kcov
u , kcov

ω > 0, then the modified coverage error equation
(8) converges to zero. This in turn implies that the coverage error
ei(t ) defined by equation (6) converges to zero.

Proof . Under the control law equation (11), the time deriva-
tive equation (10) of the modified error function equation (8) is
non-negative; as explained earlier, this implies that equation (8) is
non-decreasing.

Denote int(S i) the interior of the set S i, ∂S i the bound-
ary of the set S i, S̄i = int(Si)

⋃
∂Si the closure of the set

S i, and ext(Si) = D\S̄i the exterior of the set S i. Since
D= int(S i)∪∂S i∪ext(S i), one has:∫

D

µ(·)dp̃ =

∫
∂Si

⋃
ext(Si )

µ(·)dp̃

+

∫
int(Si )

µ(·)dp̃

∂Si
∂xi
=
∂Si
∂yi
=0 on ∂Si

⋃
ext(Si )

⇒

∫
D

µ(·)dp̃ =

∫
int(Si )

µ(·)dp̃,
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∫
D

ν(·)dp̃ =

∫
∂Si

⋃
ext(Si )

ν(·)dp̃

+

∫
int(Si )

ν(·)dp̃

∂Si
∂θi
=0 on ∂Si

⋃
ext(Si )

⇒

∫
D

ν(·)dp̃ =

∫
int(Si )

ν(·)dp̃.

Thus, the control inputs equations (11a) and (11b) vanish on
the set

P =

p̃ ∈ int (Si) |


∫

int(Si )

µ (·) dp̃ = 0


⋂

∫
int(Si )

ν (·) dp̃ = 0


 ,

which further reads that the control inputs equations (11a) and
(11b) vanish on the set P =P1 ∪P2, where:

P1 =
{

p̃ ∈ int (Si) | h
′
(
C?
− Qi

(
t , p̃
))
= 0

}
,

P2 =

{
p̃ ∈ int (Si) |

(
∂Si

∂θi
= 0

)
⋂(

∂Si

∂xi
cos θi +

∂Si

∂yi
sin θi = 0

)}
.

The set P1 reads:

P1 =

{
p̃ ∈ int (Si) |

(
max

{
0, C?

− Qi
(
t , p̃
)})2
= 0

}
⇒ P1 =

{
p̃ ∈ int (Si) | Qi

(
t , p̃
)
≥ C?

}
.

This further reads that the control law equation (11) vanishes
on the set P1, which contains the points p̃ ∈ int(Si) for which the
effective coverage level C* has been reached, or equivalently that
the control law equation (11) vanishes when the coverage error
equation (6) becomes zero.

Remark 2. This physically means that agent i does not stop
moving (ucov

i (t ) 6= 0, ωi(t )
cov
6= 0) unless at some time t it holds

that all the points p̃ ∈ int(Si(t )), which are contained in the inte-
rior of the sensing footprint S i at time t have been effectively
covered.

Let us now consider the set P2. The first condition in P2

reduces to the set

Ai =
{

p̃ ∈ int (Si) | φi = 0
}

.

Furthermore, the concurrent satisfaction of the second condi-
tion reduces to the subset of Ai described as

Oi =

{
p̃ ∈ Ai |

∂Si

∂pi

[
cos θi

sin θi

]
= 0

}
,

where ∂Si
∂pi
=

[
∂Si
∂xi

∂Si
∂yi

]
. Geometrically, this condition describes

the set of points p̃ ∈ Ai where the gradient vector ∂Si/∂pi is orthog-
onal to the body-fixed axis xBi of agent i, or the set of points
p̃ ∈ alAi where ∂Si/∂pi= 0. Let us take the analytical expression
of the gradient vector ∂Si/∂pi evaluated at the points p̃ ∈ Ai , that

is, for φi= 0, which reads ∂Si
∂pi
|p̃∈Ai

= −
2( 2 c1i

α
+1
)2 (p̃ − pi)

T . This

implies that ∂Si/∂pi 6= 0 on the set Ai (recall that the point p̃ = pi

belongs to the boundary ∂S i, i.e., not the interior int(S i) of the
set S i), and furthermore that the gradient ∂Si/∂pi on Ai is co-
linear with, i.e., can not be orthogonal to, the body-fixed axis xBi .
Consequently, one has that Oi=∅, which implies that P2=∅,
hence P =P1. Thus, the control law equation (11) ensures that
the coverage error ei(t ) equation (6) converges to zero, which fur-
thermore reads that the agent does not stop moving before all the
points p̃ ∈ int(Si(t )) have been effectively covered. This completes
the proof.

Remark 3. The coverage error ei(t ) equation (6) encodes
whether agent i has effectively covered the area included in the
sensing footprint S i(t ) only, i.e., it does not provide any mea-
sure on whether the entire domain D has been effectively covered.
Furthermore, the control law equation (11) vanishes when all
the points p̃ ∈ int(Si(t )) have been effectively covered, which
means that the agent stops moving before the entire domain
D has necessarily been covered. Coverage of the entire area
requires the use of a supervisory logic, which is presented in
Section 3.

Remark 4. The control law equation (11) depends on the cur-

rent state qi(t ) =
[
pT

i (t ) θi(t )
]T

of each agent i, only. In other
words, it requires information, which is locally available to each
agent i, and as thus it can be implemented in a decentralized
fashion.

2.3. AVOIDANCE CONTROL
The safety requirement for the robotic network dictates that each
agent i should avoid collisions with any other agent j 6= i, where
i, j ∈ {1, . . ., N }, and with any physical static obstacles in the
domain D.

2.3.1. Avoidance functions
The avoidance control between agents i and j has been encoded in
Stipanovic et al. (2013) via functions of the form:

vij =

(
min

{
0,

(
xi − xj

)2
+
(
yi − yj

)2
− Rij

2(
xi − xj

)2
+
(
yi − yj

)2
− rij

2

})2

, (12)

where Rij> rij> 0. These functions’ development was motivated
by the concept of avoidance control, which was introduced and
further developed by Leitmann and Skowronski (1977, 1983), Leit-
mann (1980), Corless et al. (1987), and Corless and Leitmann
(1989). The function equation (12) encodes:

(i) a safety circular region of radius rij centered at the position

pi= [xi yi]T of agent i, in which agent j should never enter,
and
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Panagou et al. Dynamic coverage using anisotropic sensing

FIGURE 3 |The avoidance function Vij given by equation (13).

(ii) a detection circular region of radius Rij centered at pi=

[xi yi]T, which models the footprint of sensors such as omni
directional laser scanners or range finders.

In the sequel, it is considered that all agents have homogenous
detection and safety regions, i.e., Rij=R, rij= r,∀i, j ∈ {1, . . . , N }.
Define the vector pij := pi− pj and denote with ||·|| the standard
Euclidean norm. The function vij is zero for ||pij||>R, i.e., when
agent j lies out of the detection region of agent i, and tends to
+∞ as ||pij|| tends to r, i.e., as agent j tends to the safety region
of agent i. For reasons that will become clear later on, we consider
the scaled function:

Vij = 1− e−vij , (13)

so that Vij takes its values in the interval (0,1), see also
Figure 3.

The gradient
∂vij

∂qi
=

[
∂vij

∂xi

∂vij

∂yi

∂vij

∂θi

]
of equation (12) (w.r.t),

the state vector qi =
[
pT

i θi
]T

reads:

∂vij

∂qi
=



[
0 0 0

]
, if

∥∥pij
∥∥ ≥ R;

�ij

[
xij yij 0

]
, if r <

∥∥pij
∥∥ < R;

not defined, if
∥∥pij

∥∥ = r ;[
0 0 0

]
, elsewhere,

(14)

whereas the gradient
∂vij

∂qj
=

[
∂vij

∂xj

∂vij

∂yj

∂vij

∂θj

]
of equation (12)

(w.r.t), the state vector qj = [pT
j θj ]

T
reads:

∂vij

∂qj
=



[
0 0 0

]
, if

∥∥pij
∥∥ ≥ R;

−�ij

[
xij yij 0

]
, if r <

∥∥pij
∥∥ < R;

not defined, if
∥∥pij

∥∥ = r ;[
0 0 0

]
, elsewhere,

xij = xi − xj , yij = yi − yj , �ij =
4 (R2

−r2) (||pij ||
2
−R2)

(||pij ||
2−r2)

3 . Let us note

that:

∂vij

∂qi
= −

∂vij

∂qj
. (15)

2.3.2. Encoding collision avoidance
Avoiding collisions should be encoded in a way consistent with the
available sensing constraints. Each agent i is assumed to be capable
of detecting objects (static obstacles and other agents j 6= i), which
lie in its sensing area S i and therefore the motion of agent i should
be collision-free (w.r.t) any object lying within S i (Figure 4).

To this end, we not only need to encode that an agent i should
keep a safe distance ||pij||≥ r (w.r.t) an agent j 6= i but also to
encode that this requirement takes effect only for agents j lying in
the sensing area S i of agent i. Assume that an agent j has entered
the region S i. The active constraint function c3i: α−φij(t )= 0,
where

φij (t ) := atan2
(
yj (t )− yi (t ) , xj (t )− xi (t )

)
− θi (t ) ,
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Panagou et al. Dynamic coverage using anisotropic sensing

FIGURE 4 | An agent j is effectively sensed by agent i only when it
enters in the sensing area S i of agent i .

encodes that agent j lies on the boundary of S i at the time instant
t and becomes visible to agent i. A meaningful maneuvering for
agent i could be then to move so that agent j gets out of S i. We thus
consider the angle 0<β <α and penalize the position trajectories
pj(t )= [xj(t ) yj(t )]T of agent j from approaching the interior of
the setS i where the angle |φij(t )| has value less than β. To this end,
we take:

b2i (t ) = β − φij (t ) , b3i (t ) = β + φij (t ) ,

and, in a similar spirit to the definition of the avoidance function
equation (12), define the function:

wij =

(
min

{
0,
α − φij

β − φij
+
α + φij

β + φij

})2

. (16)

The function wij is: (i) zero for |φij|≥α i.e., on the exterior of
the set S i, (ii) positive when the second argument in the mini-
mum function gets negative values, i.e., for β < |φij|<α, and (iii)
tends to +∞ as |φij| tends to β. In this sense, it can be used as
a Lyapunov-like function encoding that the value of the angle
trajectories |φij(t )| should always remain greater than β.

The gradient
∂wij

∂qi
=

[
∂wij

∂xi

∂wij

∂yi

∂wij

∂θi

]
of equation (16) (w.r.t),

the state vector qi =
[
pT

i θi
]T

reads:

∂wij

∂qi
=



[
0 0 0

]
, if |φij | ≥ α;[

9ij

‖pij‖
2 yij −

9ij

‖pij‖
2 xij 9ij

]
, if β < ||φij | < α;

not defined, if ||φij | = β;[
0 0 0

]
, elsewhere,

(17)

whereas the gradient
∂wij

∂qj
=

[
∂wij

∂xj

∂wij

∂yj

∂wij

∂θj

]
of equation (12)

(w.r.t), the state vector qi =

[
pT

j θj

]T
reads:

∂wij

∂qj
=



[
0 0 0

]
, if |φij | ≥ α;[

−
9ij

‖pij‖
2 yij

9ij

‖pij‖
2 xij 0

]
, if β < |φij | < α;

not defined, if |φij | = β;[
0 0 0

]
, elsewhere,

where9ij = −
16 φij (αβ−β

2) (αβ−ϕij
2)

(β−ϕij )
3 (β+ϕij )

3 . Note that:

∂wij

∂pi
= −

∂wij

∂pj
. (18)

Again, we take the scaled function:

Wij = 1− e−wij , (19)

so that Wij takes its values in the interval (0,1), see Figure 5.
In order to combine equations (13) and (19) into a single

function that varies between zero and one, define:

Pij = Vij Wij , (20)

which vanishes when at least one of the functions in equation (13),
equation (19) vanishes, and varies in (0,1) anywhere else. However,
this function does not penalize system trajectories with |φij(t )<β|
from tending to ||pij||= r, or in simpler words, it does not encode
that agent i maintains a safe distance ||pij||> r (w.r.t) agent j when
|φij(t )<β|. For this reason, we consider the function:

σij =


0, if |φij | < β
|φij |−β

α−β
, if β ≤ |φij | ≤ α

1, if |φij | > α

(21)

and encode the transition between the functions Pij, Vij as:

Aij = σij Pij +
(
1− σij

)
Vij . (22)

This function now encodes that for |φij|<β one has σ ij= 0
and as thus Aij=Vij. This further reads that the term equation
(13) is active in this region of the state space, rendering the desir-
able avoidance objective. The function equation (22) is depicted
in Figure 6 for agent i positioned at pi= [0 0]T with θ i= 0.

The bump function equation (21) defines three regions in the
state space of agent i, in which the expression of equation (22)
reads:

Aij =


0, if σij = 1 (in R1)

σij Pij +
(
1− σij

)
Vij , if 0 ≤ σij ≤ 1 (in R2)

Vij , if σij = 0 (in R3) .

(23)

It can be easily verified after some algebraic calculations that:
∂σij

∂pi
= −

∂σij

∂pj
. Then, making use of equations (15) and (18), it
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Panagou et al. Dynamic coverage using anisotropic sensing

FIGURE 5 |The function Wij = 1− e−wij , given by equation (19).

FIGURE 6 |The avoidance function Aij given by equation (22).

is straightforward to verify that the following symmetry relation
between the gradient vectors of Aij (w.r.t), the position vectors pi

and pj holds everywhere:

∂Aij

∂pi
= −

∂Aij

∂pj
. (24)

Of course, the analytical expressions of ∂Aij/∂pi in each of the
three regions of the state space of agent i do not coincide, as it will
furthermore become evident in the next section.

Finally, note that the construction of a conical avoidance func-
tion for agent i (w.r.t) an agent j lying in the backward sensing
footprintS ′i follows exactly the same logic, with the difference that

Frontiers in Robotics and AI | Multi-Robot Systems March 2015 | Volume 2 | Article 3 | 8

http://www.frontiersin.org/Multi-Robot_Systems
http://www.frontiersin.org/Multi-Robot_Systems/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panagou et al. Dynamic coverage using anisotropic sensing

the angle φij takes values in the interval [π + θ i−α, π + θ i+α],
instead of the interval [θ i−α, θ i+α], and is omitted here in the
interest of space.

2.3.3. Control strategy for pairwise collision avoidance
The function Aij given by equation (23) serves as an encoding of
collision avoidance for agent i (w.r.t) agent j. Studying the evolu-
tion of its time derivative (w.r.t), the system trajectories may thus
offer a way of designing control strategies that realize the safety
of the overall multi-agent system. The time derivative of equation
(23) reads:

dAij

dt
=
∂Aij

∂pi

(
dpi

dt
−

dpj

dt

)
+
∂Aij

∂θi
ωi +

∂Aij

∂θj
ωj , (25)

where
∂Aij

∂qk
=

[
∂Aij

∂xk

∂Aij

∂yk

∂Aij

∂θk

]
, k ∈ {i, j}.

Theorem 2. Assuming pairwise interactions among agents,
collisions are avoided under the control strategy:

(ui ,ωi) =


(
ucov

i ,ωcov
i

)
, if σij = 1(

uav
i ,ωav

i

)
, if 0 < σij < 1(

uav
i ,ωcov

i

)
, if σij = 0

(26)

where (ucov
i ,ωcov

i ) is given by equation (11) and

uav
i = −ki , where ki >

3 kcov
u α(C?R)2

cosα
, (27a)

ωav
i = −

1∥∥pij
∥∥2

[
yij −xij

] (dpi

dt
−

dpj

dt

)
. (27b)

Proof . Let us study the evolution of the time derivative of
equation (23) in each region of the state space.

∂Aij

∂pi
= σij

∂
(
Vij Wij

)
∂pi

+
∂σij

∂pi

(
Vij Wij

)
+
(
1− σij

) ∂Vij

∂pi
−
∂aij

∂pi
Vij

= σij

(
Wij

∂Vij

∂pi
+ Vij

∂Wij

∂pi

)
+
∂σij

∂pi

(
Vij Wij

)
+
(
1− σij

) ∂Vij

∂pi
−
∂σij

∂pi
Vij

= σij

(
Wij e−vij

∂vij

∂pi
+ Vij e−wij

∂wij

∂pi

)
+
∂σij

∂pi
Vij
(
Wij − 1

)
+
(
1− σij

)
e−vij

∂vij

∂pi

= σij

(
Wij e−vij

∂vij

∂pi
+ Vij e−wij

∂wij

∂pi

)
−

1

(α − β)9ij

∂wij

∂pi
Vij
(
Wij − 1

)
+
(
1− σij

)
e−vij

∂vij

∂pi

=
∂vij

∂pi
e−vij

(
1+ σij

(
Wij − 1

))

+
∂wij

∂pi
Vij

(
σij e−wij −

1

(α − β)9ij

(
Wij − 1

))
=
∂vij

∂pi
e−vij

(
1− σij e−wij

)
+
∂wij

∂pi
Vij

(
σij e−wij +

1

(α − β)9ij
e−wij

)
=
∂vij

∂pi
e−vij

(
1− σij e−wij

)
+
∂wij

∂pi

(
1− e−vij

)
e−wij

(
σij +

1

(α − β)9ij

)
, (28a)

∂Aij

∂θi
= σij

(
Wij

∂Vij

∂θi
+ Vij

∂Wij

∂θi

)
+
∂σij

∂θi

(
Vij Wij

)
+
(
1− σij

) ∂Vij

∂θi
−
∂σij

∂θi
Vij

= σij Vij e−wij
∂wij

∂θi
+
∂σij

∂θi
Vij
(
Wij − 1

)
= σij Vij e−wij

∂wij

∂θi
−
∂σij

∂θi
Vij e−wij

= Vij e−wij

(
σij
∂wij

∂θi
−
∂σij

∂θi

)
= 9ij (1− e−vij ) e−wij

(
σij +

1

(α − β)9ij

)
, (28b)

∂Aij

∂θj
= 0. (28c)

2.3.4. Region R1

In this region, one has: σ ij= 1⇔ |φij|≥α. Then, out of equation
(23): Aij= 0. This implies that agent i does not take into account
the collision avoidance objective for any agent j 6= i which lies out
of the sensing area S i . The linear and angular velocity for agent i
may thus be dictated by the coverage control law equation (11).

2.3.5. Region R2

In this region, one has: 0<σ ij< 1⇔β < |φij|<α. Then out of
equation (23): Aij = σij Pij + (1− σij) Vij .

The analytical expression of the gradients involved in equation
(25) in this case is given by equation (28), where:

∂σij

∂pi
= −

1

(α − β)9ij

∂wij

∂pi
, (29a)

∂σij

∂θi
= −

1

(α − β)9ij

∂wij

∂θi
= −

1

α − β
. (29b)

Plugging equation (28) into equation (25) yields equation (30):

dAij

dt
=

(
e−vij

(
1− σij e

−wij
) ∂vij

∂pi
+ e−wij

(
1− e−vij

)
×

(
σij +

1

(α − β)9ij

)
∂wij

∂pi

)(
dpi

dt
−

dpj

dt

)
+9ij e−wij

(
1− e−vij

) (
σij +

1

(α − β)9ij

)
ωi
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Panagou et al. Dynamic coverage using anisotropic sensing

= e−vij
(
1− σij e

−wij
) ∂vij

∂pi

(
dpi

dt
−

dpj

dt

)
+9ij e−wij

(
1− e−vij

) (
σij +

1

(α − β)9ij

)
ωi

+

(
e−wij

(
1− e−vij

) (
σij +

1

(α − β)9ij

)
×

9ij∥∥pij
∥∥2

[
yij −xij

])(dpi

dt
−

dpj

dt

)
, (30)

while substituting the angular velocity equation (27b) of agent i
into equation (30) yields:

dAij

dt
= e−vij

(
1− σij e

−wij
) ∂vij

∂pi

(
dpi

dt
−

dpj

dt

)
(14)
= e−vij

(
1− σij e

−wij
)
�ij

×
[(

xi − xj
) (

yi − yj
)] (dpi

dt
−

dpj

dt

)
= −e−vij

(
1− σij e

−wij
) ∣∣�ij

∣∣
×

(
pij

T
[

cos θi

sin θi

]
ui − pij

T
[

cos θj

sin θj

]
uj

)
= −e−vij

(
1− σij e

−wij
) ∣∣�ij

∣∣
×

(
pij

T
[

cos θi

sin θi

]
ui + pji

T
[

cos θj

sin θj

]
uj

)
,

so that one finally has:

dAij

dt
= −e−vij

(
1− σij e

−wij
) ∣∣�ij

∣∣ pij
T
[

cos θi

sin θi

]
ui

− e−vij
(
1− σij e

−wij
) ∣∣�ij

∣∣ pji
T
[

cos θj

sin θj

]
uj , (31)

where pij= pi− pj, pji= pj− pi and�ij< 0.

In region R2, it always holds that: pij
T
[

cos θi
sin θi

]
< 0. Thus, if the

linear velocity ui of agent i is set as ui< 0, then the first term of
the time derivative equation (31) is negative.

Consider the velocity equation (27a) where ki> 0, and study
the effect of the second term in the evolution of the time deriv-
ative equation (31). Clearly, this depends on the orientation θ j

of agent j and its linear velocity uj. Let us consider the following
cases.

2.3.5.1. Agent i lies in the sensing area S j of agent j. Then, for
the same reasoning as for agent i, agent j realizes its own Lyapunov-
like avoidance function Aji, given by equation (22) after replacing
i with j and vice versa. The time derivative of this function, after
setting the angular velocity wj equal to:

ωj
av
= −

1∥∥pji
∥∥2

[
yji −xji

] (dpj

dt
−

dpi

dt

)
, (32)

ends up reading:

dAji

dt
= −e−vji

(
1− σjie

−wji
) ∣∣�ji

∣∣ pji
T
[

cos θj

sin θj

]
uj

+ ki e−vji
(
1− σjie

−wji
) ∣∣�ji

∣∣ pij
T
[

cos θi

sin θi

]
, (33)

where pji
T
[

cos θj

sin θj

]
< 0 and the second term in equation (33) is

non-positive.
Then setting the linear velocity for agent j equal to:

uj
av
= −kj , (34)

renders the first term in equation (33) negative. Note that the angu-
lar velocities equations (27b) and (32) coincide, which is consistent
with what one would expect from physical intuition; namely, that
for agents i and j facing each other, it is plausible to both rotate
either clockwise, or counterclockwise, to avoid collision.

2.3.5.2. Agent i does not lie in the sensing area S j of
agent j. This implies that agent j moves under the coverage con-
trol law ucov

j . The signum of the linear velocity ucov
j depends on

the signum of

(
∂Sj

∂pj

T [cos θj

sin θj

])
. Also, one has that:

∣∣∣ucov
j

∣∣∣ ≤ kcov
u 3

(
C?
)2 (

αR2) .

Let us go back to equation (31), which now reads:

dAij

dt
= −e−vij

(
1− σij e

−wij
) ∣∣�ij

∣∣
×

(∣∣∣∣pij
T
[

cos θi

sin θi

]∣∣∣∣ ki + pji
T
[

cos θj

sin θj

]
uj

cov
)

,

and consider the following cases:

(a) ucov
j > 0 1

2 and pji
T
[

cos θj

sin θj

]
≥ 0: then

dAij

dt ≤ 0, ensuring that

collision is avoided.

(b) ucov
j > 0 and pji

T
[

cos θj

sin θj

]
< 0: then a sufficient condition on

avoiding collision is to set:∣∣∣∣pij
T
[

cos θi

sin θi

]∣∣∣∣ ki >

∣∣∣∣pji
T
[

cos θj

sin θj

]∣∣∣∣ ucov
j .

Now note that:∣∣∣∣pji
T
[

cos θj

sin θj

]∣∣∣∣ ucov
j ≤

∥∥pji
∥∥ 3 kcov

u α
(
C?R

)2
,

which further reads that it suffices to choose the control gains
ki , kcov

u so that:∣∣∣∣pij
T
[

cos θi

sin θi

]∣∣∣∣ ki >
∥∥pji

∥∥ 3 kcov
u α

(
C?R

)2
.
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Furthermore, in this region of the state space one has that:

min
pj∈Si

(|pji
T
[

cos θi
sin θi

]
) = r cosα.1 Consequently, it suffices to pick

the avoidance control gain:

ki >
3 kcov

u α(C?R)2

cosα
. (35)

(c) ucov
j < 0 and pji

T
[

cos θj

sin θj

]
≥ 0: same as case (b).

(d) ucov
j < 0 and pji

T
[

cos θj

sin θj

]
< 0: same as case (a).

2.3.6. Region R3

In this region, one has: σ ij= 0⇔ |φij|≤β. Then out of equation
(22): Aij=Vij. Then:

dAij

dt
= −e−vij

∣∣�ij
∣∣ (pij

T
[

cos θi

sin θi

]
ui + pji

T
[

cos θj

sin θj

]
uj

)
.

This case reduces to equation (31) after setting σ ij= 0; thus, the
same analysis as in the previous case follows regarding the linear
velocity ui, which is set equal to uav

i equation (27a). The angular
velocity ωi is set equal to ωcov

i .
The angular velocity control law equation (27b) for agent i

requires information involving the state and control vectors of

agent j, through the effect of dpj/dt. Denote p?ij = [yij −xij ]
T

the

orthogonal vector to pij and consider the analytical expression of
equation (27b), which reads:

ωav
i = −

∣∣∣∣p?ij T
[

cos θi

sin θi

]∣∣∣∣ ki∥∥pij
∥∥2 −

p?ji
T
[

cos θj

sin θj

]
uj∥∥pij

∥∥2 . (36)

The first term of equation (36) depends on the state vector
of agent i only, and dictates that agent i should rotate clockwise
(recall that we are considering the case φij> 0), forcing thus the
sensing area S i away from agent j.

Finally, we would like to explore conditions under which the
resulting maneuvering is sufficient for ensuring collision avoid-
ance but without the need for information exchange between agents
i and j, i.e., under the assumption that agent i does not sense or
measure the linear velocity uj and the orientation θ j of agent j and
vice versa. This may also be seen as a robustness feature in the
presence of communication failures.

To study the effect of the motion of agent j through uj and θ j

in equation (36), we consider the following two cases:

2.3.6.1. Agent i lies in the sensing area S j of agent j. Then,
equation (36) further reads:

ωav
i = −

∣∣∣∣p?ij T
[

cos θi

sin θi

]∣∣∣∣ ki∥∥pij
∥∥2 +

p?ji
T
[

cos θj

sin θj

]
kj∥∥pij

∥∥2 . (37)

1This inner product expresses the projection of the vector pij onto the xBi body-fixed
axis of agent i, while the value of this projection becomes minimum for agent j lying
on the boundary of the sensing region of agent i, i.e., when φij =α.

The signum of p∗ji
T
[

cos θj

sin θj

]
dictates the signum of the second

term. More specifically:

(a) If p∗ji
T
[

cos θj

sin θj

]
< 0 ⇔ φji > 0: the second term is then neg-

ative, and furthermore renders a clockwise rotation for agent
j. This condition (i.e., both agents rotating along the same
direction) has the effect of setting each one out of the sensing
area of the other. Consequently, the angular velocity ωav

i for
agent i can be taken out of equation (27b) with dpj/dt= 0.

(b) If p∗ji
T
[

cos θj

sin θj

]
> 0 ⇔ φji < 0: the second term is then posi-

tive, and furthermore renders a counterclockwise rotation for
agent j. We would like to make sure that the angular velocity
ωav

i remains negative, i.e., that agent i will keep rotating clock-
wise to set agent j out of the sensing area S i . This condition
reads:

kj max
pi∈Sj

(
p?ji

T
[

cos θj

sin θj

])
< ki min

pj∈Si

(∣∣∣∣p?ij T
[

cos θi

sin βi

]∣∣∣∣) . (38)

It is now easy to verify that: (i) The maximum value of

p∗ji
T
[

cos θi
sin θi

]
is achieved for agent i lying on the boundary of S j ,

where φji=−α. Thus, max
pi∈Sj

(p?ji
T
[

cos θj

sin θj

]
) = ||pij || sin α. (ii) The

minimum value of |p∗ij
T
[

cos θi
sin θi

]
| is achieved for agent j lying on a

point pj ∈S i such that φij=β; recall that we are studying the case

when β <φij<α. Thus, min
pj∈Si

(|p?ij
T
[

cos θi
sin θi

]
|) = ||pij || sin β.

Substituting these values in equation (38) further yields: kj sin
α < kj sin β. It is noteworthy that for ki= kj this inequality does
not hold since 0<β <α<π /2. This further means that we can
not get any guarantees on the signum of the angular velocity ωav

i ,
unless we assume that the agents somehow exchange information
on their control gains ki, kj (or their linear velocities ui, uj). Never-
theless, the condition equation (38) is quite conservative and only
sufficient, not necessary. Furthermore, it does hold when the rela-
tive position of the agents i, j is such that: |φji|<φij. The condition
for inter-agent collision avoidance is to ensure that ||pij||> r, which
is ensured through the linear control laws uav

i , uav
j .

2.3.6.2. Agent i does not lie in the sensing area S j of agent j.
This further implies that agent j moves under the coverage con-
trol law uj

cov . Then the problem reduces into guaranteeing that:
ki > |ucov

j |, which has been treated before.

3. RESULTS
The proposed control strategy equation (26), equation (11), equa-
tion (27) is evaluated through numerical simulations. We consider
a scenario of 5 agents with sensing capabilities realized as conical
sensing functions, which need to sufficiently explore a relatively
open area D populated with two circular static obstacles. The area
is a rectangle of dimension da= 25, the obstacles are positioned
at po1= [11 15]T, po2= [15 5]T, respectively, and are of radius
ro= 1. The satisfactory coverage level is set equal to C*= 0.7, and
this selection is guided based on the maximum value of the consid-
ered sensing function Si(·), which in this scenario is approximately
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0.2. The sensing and coverage parameters are R= 6, r= 3,α=π /6.
The agents know the positions and the geometry of the obstacles.
The agents have also the ability of broadcast information to other
agents regarding the areas they have individually covered, so that
at least one agent (called the supervisor) has access to the globally
covered area.

In Figures 7–9, dark blue stands for totally uncovered area
(i.e., zero time has been spent on these points of D by the agents
footprints), dark red stands for totally covered area (i.e., agents
footprints have stayed on these points of D for the satisfactory
amount of time encoded via C*), while color variations between
dark blue and dark red stand for partially covered area, i.e., for
points of D, which have been sensed by the agents footprints but
not for the satisfactory amount of time.

The coverage level at initial time t= 0 is zero. Figures 7 and 8
depict the evolution of the coverage level over time under the con-
trol strategy equation (26) up to the time when all agents’ coverage
errors equation (6) become very small, implying that the agents
have practically stop moving. The boundaries of the sensing foot-
prints are depicted with white lines. Focusing on the interior of
the sensing footprints during at simulation time t= 1, one may
notice that the color remains darker blue on the points closer to
the boundaries of the footprints, while it gets lighter blue on the
points closer to the centers of the footprints. This is consistent
with the definition of the sensing function equation (4) and the
coverage error equation (6) for each agent: recall that the sensing
function equation (4) takes lower values close to the boundary of
the sensing footprint, encoding that the sensor performance (“see-
ing”) is not good enough there, and higher values on the points in
the interior and far away from the boundary, encoding that sensing
performance is better there. Thus, more time is required to sense
the points close to the boundary of the sensing footprint up to
the satisfactory coverage level, and this is encoded via the coverage
error equation (6). For this reason, the points in the interior of the
sensing footprint but far away from its boundary turn red sooner
than those closer to the boundary. Note also that the agents’ cov-
erage errors equation (6) are exactly what sets them in motion via
their coverage control laws equation (11). In other words, as long
as the agents’ footprints touch points in D where the satisfactory
coverage encoded via C* has not been met, their control inputs
realized via equation (11) are non-zero and therefore the agents
keep moving toward zeroing their coverage errors.

In general, the area of the satisfactorily covered regions by
a given number of agents under the control law equation (11)
depends on the coverage (sensing) function equation (4), the para-
meter C*, the control law gains in equation (11), and the initial
conditions. As expected and explained in Section 2.2, the agents
may stop moving before the entire area D has necessarily been
covered up to the satisfactory level. Let us define the global cover-
age error E(t ) as the non-satisfactorily covered area at time t. In
the considered scenario, the agents stop moving before the global
coverage error E(t ) has converged to zero; more specifically, the
agents stop moving when almost 76% of the domain D has been
sufficiently covered at time t= 180, as illustrated via the evolution
of the (normalized) global coverage error E(t ) in Figure 10A.

A way to bypass this limitation is to additionally consider a
global coverage controller, implemented by a supervisor agent

who has an access to the coverage map of the environment, i.e., to
the global coverage error E(t ) at each time instant t, in the spirit
proposed in Atinç et al. (2013). We modify the strategy in Atinç
et al. (2013) to be compatible with the conic sensing footprints
considered here. More specifically, we implement the following
logic:

• If the normalized coverage error E(tk) is non-zero at some time
instant tk and its absolute rate of change, realized as the differ-
ence |E(tk)− E(tk−1)/tk− tk−1| drops below a predefined level,
then this physically means that the agents have driven their cov-
erage errors ei(t ) very close to zero. Thus, the supervisor agent
needs to select new waypoints within the uncovered areas toward
which the agents will move.

• The selection of waypoints is performed under the (heuristic)
formula suggested in Atinç et al. (2013), which provides the
closest point in the uncovered region of the domain D for each
one of the agents. This search for the closest uncovered point in
principle returns points, which lie on the boundaries between
covered and uncovered regions, see also Figure 9, the waypoints
depicted as black circles.

• The motion of the agents toward their waypoints can be guaran-
teed to be safe under the algorithms in our prior work (Panagou
et al., 2013); nevertheless, the motion of the agents toward their
waypoints is not simulated here.

• Once an agent has reached its assigned waypoint, it performs
an in place rotation so that its sensing footprint touches the
uncovered area and its coverage error defined by equation (6)
becomes non-zero. Note that this maneuvering was not neces-
sary in Atinç et al. (2013), as the sensing footprints considered
there are circular; however, it is essential when it comes to conic
sensing footprints. The agent switches to its coverage control
law equation (11) and starts moving toward driving its coverage
error equation (6) to zero.

• This process, i.e., switching between local and global cover-
age controllers, is repeated as many times as necessary, so that
the normalized coverage error E(t ) is forced to decrease and
eventually to converge to zero.

During the selection of waypoints, the supervisor agent makes
sure that waypoints close to physical obstacles or points, which
will result in agents approaching closer than the safe distance are
excluded. Note also that the shape of the uncovered areas can-
not be predicted a priori, as this would involve the computation
of the forward reachable sets of all agents for any possible ini-
tial condition, something which is impossible due to the curse
of dimensionality (or state explosion) even when only few agents
are concerned. However, given the aforementioned constraints, it
is not impossible that searching for the closest uncovered point
may not provide a feasible solution. Thus, the supervisor addi-
tionally monitors whether this search produces new waypoints for
the agents, otherwise it selects waypoints, which lie in the inte-
rior of the uncovered areas in a randomized way, i.e., does not
pick the closest uncovered points. This is the case at time t= 263 s,
where under this selection two of the agents are forced to move to
waypoints lying in the interior, not the boundary, of the uncov-
ered area. The evolution of the (normalized) global coverage error
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FIGURE 7 | Evolution of the coverage level under the proposed control strategy equation (26).
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FIGURE 8 | Evolution of the coverage level under the proposed control strategy equation (26).
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FIGURE 9 | Evolution of the coverage level after the supervisory logic on global coverage has been activated for the first time.
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A

B

FIGURE 10 |The evolution of the (normalized) global coverage error
E (t ) under (i) the proposed control strategy equation (26) (above) and
(ii) under the same strategy facilitated with the supervisory global
coverage controller, which takes action for the first time at time
t =180 (below). (A) Evolution of the global coverage error E (t ) w.r.t time
under the proposed control strategy equation (26). (B) Evolution of the
global coverage error E (t ) w.r.t time under the control strategy equation (26)
and the supervisory logic on the global coverage control. The global
coverage controller becomes active for the first time at time t=180 and
keeps getting active when the rate of change of the global coverage error
E (t ) becomes less than a given threshold.

E(t ) including the periods when the supervisory logic is active
is depicted in Figure 10B. The error E(t ) is decreasing, and the
switching between global and local coverage controllers can be
repeated as many times as necessary until it converges to zero.

The formalization of these set of rules within a suitable control
theoretic framework, e.g., by means of switched systems theory,
so that specific performance guarantees can be acquired for the
supervisory controller is beyond the scope of the current paper.
Addressing questions such as how an agent, or a group of agents,
can select waypoints in the uncovered areas in more efficient ways,
i.e., not merely selecting the closed uncovered point, but rather try

A

B

FIGURE 11 | Inter-agent distances and resulting agents’ paths under
the control strategy equation (26). (A) Evolution of the inter-agent
distances dij w.r.t time under the control strategy equation (26). (B) The
resulting paths under the control strategy equation (26).

to select points, which satisfy various objectives, such as minimiz-
ing the total number of switches between local and global coverage
controllers is ongoing work.

The evolution of inter-agent distances and agent-static obsta-
cle distances under the proposed control strategy equation (26),
i.e., before the supervisory logic takes action for the first time, is
depicted in Figure 11A. The effect of the collision avoiding maneu-
vers imposed when pertinent by equation (26) becomes evident
through the trajectories, which end up in the detection regions
of the agents’. The detection radius is illustrated in green, while
the avoidance radius, which encodes the minimum safe distance,
is illustrated in red. The distances remain always greater than the
avoidance radius, implying that the motion of the agents remains
collision-free. Again, it is important to stress out that this strategy
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is suitable for pairwise interactions only, and for this reason the
number of the agents and their initial conditions are chosen such
that agents are not congested. Finally, the resulting agents’ paths
under equation (26) are illustrated in Figure 11B. Initial positions
are depicted with dots, final positions are depicted with “x.” It is
worth noticing that some agents tend to travel larger distances
compared to others, compare for instance the blue path over the
green path. The reason is that the agent in green starts close to
the boundary of the domain D, and therefore as it starts rotating
toward zeroing its coverage error, its sensing footprint ends up
touching outside the domain D, where the coverage error is by
definition zero.

4. DISCUSSION
This paper presented a dynamic coverage control design for non-
holonomic vehicles along with collision avoidance guarantees. The
key difference compared to earlier similar work is the considera-
tion of anisotropic sensing, which is relevant to vision-based con-
trol and surveillance applications. More specifically, we extended
our earlier work (Panagou et al., 2013; Stipanovic et al., 2013)
by considering a new dynamic coverage and avoidance control
design, which can be implemented in a decentralizedfashion. The
main difference here is the consideration of (i) anisotropic sensing,
realized via conic sensing footprints and conic sensing (cover-
age) functions for each agent, and (ii) a novel form of avoidance
functions. The considered sensing functions encode field-of-view
and range constraints, and furthermore the degradation of effec-
tive sensing close to the boundaries of the sensing footprint. In
this spirit, the proposed control design is suitable for surveillance
tasks, where a group of robots is assigned with the task to gather
enough information about an environment (such as video stream-
ing or snapshots) locally, while avoiding collisions. The efficacy of
the proposed control strategies has been demonstrated through
numerical simulations for unicycle robots operating in a known
environment populated with static circular obstacles.

Current work focuses on the consideration of supervisory logics
to orchestrate efficient global coverage in a distributed sense along
with certain performance guarantees, as well as on the considera-
tion of agents with more complicated dynamics and constraints,
such as Dubins-like vehicles.
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