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Inspiration for artificial biologically inspired computing is often drawn from neural systems.
This article shows how to analyze neural systems using information theory with the aim of
obtaining constraints that help to identify the algorithms run by neural systems and the infor-
mation they represent. Algorithms and representations identified this way may then guide
the design of biologically inspired computing systems. The material covered includes the
necessary introduction to information theory and to the estimation of information-theoretic
quantities from neural recordings. We then show how to analyze the information encoded
in a system about its environment, and also discuss recent methodological developments
on the question of how much information each agent carries about the environment either
uniquely or redundantly or synergistically together with others. Last, we introduce the
framework of local information dynamics, where information processing is partitioned into
component processes of information storage, transfer, and modification – locally in space
and time. We close by discussing example applications of these measures to neural data
and other complex systems.
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1. INTRODUCTION
Artificial computing systems are a pervasive phenomenon in
today’s life. While traditionally such systems were employed
to support humans in tasks that required mere number-
crunching, there is an increasing demand for systems that exhibit
autonomous, intelligent behavior in complex environments. These
complex environments often confront artificial systems with ill-
posed problems that have to be solved under constraints of
incomplete knowledge and limited resources. Tasks of this kind
are typically solved with ease by biological computing systems,
as these cannot afford the luxury to dismiss any problem that
happens to cross their path as “ill-posed.” Consequently, biolog-
ical systems have evolved algorithms to approximately solve such
problems – algorithms that are adapted to their limited resources
and that just yield “good enough” solutions, quickly. Algorithms
from biological systems may, therefore, serve as an inspiration for
artificial information processing systems to solve similar problems
under tight constraints of computational power, data availability,
and time.

One naive way to use this inspiration is to copy and incorpo-
rate as much detail as possible from the biological into the artificial
system, in the hope to also copy the emergent information pro-
cessing. However, already small errors in copying the parameters
of a system may compromise success. Therefore, it may be useful
to derive inspiration also in a more abstract way, which is directly
linked to the information processing carried out by a biological sys-
tem. But how can we gain insight into this information processing
without caring for its biological implementation?

The formal language to quantitatively describe and dissect
information processing – in any system – is provided by infor-
mation theory. For our particular question, we can exploit the fact
that information theory does not care about the nature of vari-
ables that enter the computation or information processing. Thus,
it is in principle possible to treat all relevant aspects of biological
computation, and of biologically inspired computing systems, in
one natural framework.

Here, we will begin with a review of information-theoretic pre-
liminaries (Section 2). Then we will systematically present how
to analyze biological computing systems, especially neural sys-
tems, using methods from information theory and discuss how
these information-theoretic results can inspire the design of arti-
ficial computing systems. Specifically, we focus on three types of
approaches to characterizing the information processing under-
taken in such systems and what this tells us about the algorithms
they implement. First, we show how to analyze the information
encoded in a system (responses) about its environment (stimuli)
in Section 3. Second, in Section 4, we describe recent advances in
quantifying how much information each response variable carries
about the stimuli either uniquely or redundantly or synergisti-
cally together with others. Third, in Section 5, we introduce the
framework of local information dynamics, which partitions infor-
mation processing into component processes of information stor-
age, transfer, and modification, and in particular measures these
processes locally in space and time. This information dynamics
approach is particularly useful in gaining insights into the infor-
mation processing of system components that are far removed
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from direct stimulation by the outer environment. We will close in
Section 6 by a brief review of studies where this information-
theoretic point of view has served the goal of characterizing
information processing in neural and other biological information
processing systems.

2. INFORMATION THEORY IN NEUROSCIENCE
2.1. INFORMATION-THEORETIC PRELIMINARIES
In this section, we introduce the necessary terminology, and nota-
tion, and define basic information-theoretic quantities that later
analyses build on. Experts in information theory may proceed
immediately to Section 2.2, which discusses the use of information
theory in neuroscience.

2.1.1. Terminology and notation
To analyze neural systems and biologically inspired computing
systems (BICS) alike, and to show how the analysis of one can
inspire the design of the other, we have to establish a common
terminology. Neural systems and BICS have the common prop-
erty that they are composed of various smaller parts that interact.
These parts will be called agents in general, but we will also refer to
them as neurons or brain areas where appropriate. The collection
of all agents will be referred to as the system.

We define that an agent X in a system produces an observed
time series {x1,. . ., xt,. . ., xN}, which is sampled at time intervals
∆. For simplicity, we choose ∆= 1, and index our measurements
by t ∈ {1...N } ⊆ N. The time series is understood as a realization
of a random process X. The random processes are a collection of
random variables (RVs) Xt, sorted by an integer index (t ). Each RV
Xt, at a specific time t, is described by the set of all its J possible out-
comes AXt = {a1, . . . aj . . . aJ }, and their associated probabilities
pXt (xt = aj). Since the probabilities of an outcome pXt (xt = aj)

may change with t in non-stationary random processes, we indi-
cate the RV the probabilities belong to by subscript: pXt (·). In
sum, the physical agent X is conceptualized as a random process
X, composed of a collection of RVs Xt, which produce realiza-
tions xt, according to the probability distributions pXt (xt ). When
referring to more than one agent, the notation is generalized to
X ,Y ,Z , . . . . An overview of the complete notation can be found
in Table 1.

2.1.2. Estimation of probability distributions for stationary and
non-stationary random processes

In general, the probability distributions of the Xt are unknown.
Since knowledge of these probability distributions is essential to
computing any information-theoretic measure, the probability
distributions have to be estimated from the observed realizations
of the RVs, xt. This is only possible if we have some form of repli-
cation of the processes we wish to analyze. From such replications,
the probabilities are estimated, for example, by counting relative
frequencies, or by density estimation (Kozachenko and Leonenko,
1987; Kraskov et al., 2004; Victor, 2005).

In general, the probability pXt (xt = aj) to obtain the j-th out-
come xt= aj at time t, has to be estimated from replications of
the processes at the same time point t, i.e., via an ensemble of
physical replications of the systems in question. These replications
can often be obtained in BICS via multiple simulation runs or

Table 1 | Notation.

X, Y, Z Agent in a system

X, Y, Z Random process

X, Y, Z or Xt, Yt, Zt Random variable (at time point t )

Whenever necessary, the index t is detailed as

t1, t2, . . ., tk

For stationary processes, the index t can be

omitted

x, y, z or xt, yt, zt Realization of the random variable (at time

point t )

aj Specific outcome of a random variable x

pXt (xt = aj ) Probability that Xt has a specific outcome aj

AXt = {a1, . . . aj , . . . aJ } Set of all possible outcomes of Xt

X(c), X (c)
t Cyclostationary process and cyclostationary

random variable

X(s ), X(s ) Stationary process and stationary random

variable

Xt, xt State space representation of X at t

X−t−u State space representation of X at t −u

The superscript minus serves as a reminder

That X−t−u is in the past of Xt

u Assumed interaction delay between two

processes

δ Physical or true interaction delay between two

processes

Si, Rj Random variables referring to stimuli (Si) or

responses (Rj)

R= {R1, R2} Joint variable (in this example of two responses)

H (X ) Entropy

H (X |Y ) Conditional entropy

h(x ) Information content

h(x |y ) Conditional information content

I(X : Y ) Mutual information

I(X : Y |Z ) Conditional mutual information

Note that the colon is used to separate the

random variables between which we compute I

i (x : y ) Local mutual information

i (x : y |z ) Local conditional mutual information

X, Y The comma is used to separate random

variables

X 1, X 2; Y 1, Y 2 The semicolon is used to separate sets of

random variables

even physical replications if the systems in question are very small
and/or simple. For complex physically embodied BICS and neural
systems, generating a sufficient number of replications of a process
is often impossible. Therefore, one either resorts to repetitions of
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parts of the process in time, to the generation of cyclostationary
processes, or even assumes stationarity. All three possibilities will
be discussed in the following.

2.1.2.1. General repetitions in time. If our random process
can be repeated in time, then the probability to obtain the value
xt= aj can be estimated from observations made at a sufficiently
large set M of time points t + k, where we know by design of
the experiment that the process repeated itself. That is, we know
that RVs X t+k at certain time points t + k have probability dis-
tributions identical to the distribution at t that is of interest
to us:

∀ t ∃M ⊆ N ∧M 6= ∅ : pXt (aj) = pXt+k (aj) ∀ t

+ k ∈M, aj ∈ AXt . (1)

If the set M of times t k that the process is repeated at is large
enough, we obtain a reliable estimate of pXt (·).

2.1.2.2. The cyclostationary case. Cyclostationarity can be
understood as a specific form of repeating parts of the random
process, where the repetitions occur after regular intervals T. For
cyclostationary processes X(c) we assume (Gardner, 1994; Gardner

et al., 2006) that there are RVs X (c)
t+nT at times t + nT that have the

same probability distribution as X (c)
t :

∃T ∈ N : pXt (aj) = pXt+nT (aj) ∀t , n ∈ N, t < T , aj ∈ AXt .
(2)

This condition guarantees that we can estimate the necessary

probability distributions pXt (·) of the RV X (c)
t by looking at other

RVs X (c)
t+nT of the process X(c).

2.1.2.3. Stationary processes. Finally, for stationary processes
X(s), we can substitute T in equation (2) by T = 1 and:

pXt (aj) = pXt+n (aj) ∀t , n ∈ N, aj ∈ AXt . (3)

In the stationary case, the probability distribution pXt (·) can
be estimated from the entire set of measured realizations xt. Thus,
we will drop the subscript index indicating the specific RV, i.e.,
pXt (·) = p(·), Xt=X and xt= x when the process is stationary,
and also when stationarity is irrelevant (e.g., when talking only
about a single RV).

2.1.3. Basic information theory
Based on the above definitions we now define the necessary basic
information-theoretic quantities. To put a focus on the often
neglected local information-theoretic quantities that will become
important later on, we will start with the Shannon information
content of a realization of a RV.

To this end, we assume a (potentially non-stationary) random
process X consisting of X1, X2, . . ., XN. The law of total probability
states that ∑

x1,x2,...,xN

p(x1, x2, . . . , xN ) = 1, (4)

and the product rule yields∑
x1

p(x1)
∑

x2,...,xN

p(x2, . . . , xN |x1) = 1 (5)

with ∑
x2,...,xN

p(x2, . . . , xN |x1) = 1. (6)

All realizations of the process starting with a specific x1 thus
together have probability mass

p(x1)
∑

x2,...,xN

p(x2, . . . , xN |x1) = p(x1), (7)

and occupy a fraction of p(x1)/1 in the original probability space.
Obtaining x1 can therefore be interpreted as informing us that the
full realization lies in this fraction of the space. Thus, the reduc-
tion in uncertainty, or the information gained from x1 must be a
function of 1/p(x1). To ensure that subsequent realizations from
independent RVs yield additive amounts of information, we take
the logarithm of this ratio to obtain the Shannon information con-
tent (Shannon, 1948) [also see MacKay (2003)], which measures
the information provided by a single realization x i of a RV Xi:

h(xi) = log
1

p(xi)
. (8)

Typically, we take log2 giving units in bits.
The average information content of a RV Xi is called the

entropy H :

H (Xi) =
∑

xi∈Axi

p(xi) log
1

p(xi)
. (9)

The information content of a specific realization x of X, given
we already know the outcome y of another variable Y, which is
not necessarily independent of X, is called conditional information
content :

h(x|y) = log
1

p(x|y)
(10)

Averaging this for all possible outcomes of X, given their prob-
abilities p(x |y) after the outcome y was observed and averaging
then over all possible outcomes y that occur with p(y), yields the
conditional entropy :

H (X |Y ) =
∑

y∈AY

p(y)
∑

x∈AX

p(x|y) log
1

p(x|y)

=

∑
x∈AX ,y∈AY

p(x , y) log
1

p(x|y)

(11)

The conditional entropy H (X |Y ) can be described from vari-
ous perspectives: H (X |Y ) is the average amount of information
that we get from making an observation of X after having already
made an observation of Y. In terms of uncertainties, H (X |Y ) is the
average remaining uncertainty in X once Y was observed. We can
also say H (X |Y ) is the information in X that can not be directly
obtained from Y.
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The conditional entropy can be used to derive the amount of
information directly shared between the two variables X, Y. This
is because the mutual information of two variables X, Y, I (X : Y ),
is the total average information in one variable [H (X)] minus the
average information in this variable that can not be obtained from
the other variable [H (X |Y )]. Hence, the mutual information (MI)
is defined as:

I (X : Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X) (12)

Similarly to conditional entropy, we can also define a condi-
tional mutual information between two variables X, Y, given the
value of a third variable Z is known:

I (X : Y |Z ) = H (X |Z )−H (X |Y , Z ) (13)

The above measures of mutual information are averages.
Although average values are used more often than their local-
ized counterparts, it is perfectly valid to inspect local values for MI
(like the information content h, above). This “localizability” was,
in fact, a requirement that both Shannon (1948) and Fano (1961)
postulated for proper information-theoretic measures, and there
is a growing trend in neuroscience (Lizier et al., 2011a) and in the
theory of distributed computation (Lizier, 2013, 2014a) to return
to local values. For the above measures of mutual information, the
localized forms are listed in the following.

The local mutual information i(x : y) is defined as:

i(x : y) = log
p(x , y)

p(x)p(y)
= log

p(x|y)

p(x)
(14)

while the local conditional mutual information is defined as:

i(x : y|z) = log
p(x|y , z)

p(x|z)
(15)

When we take the expected values of these local measures, we
obtain mutual and conditional mutual information. These mea-
sures are called local, because they allow one to quantify mutual
and conditional mutual information between single realizations.
Note, however, that the probabilities p(·) involved in equations
(14) and (15) are global in the sense that they are representative of
all possible outcomes. In other words, a valid probability distribu-
tion has to be estimated irrespective of whether we are interested in
average or local information measures. We also note that local MI
and local conditional MI may be negative, unlike their averaged
forms (Fano, 1961; Lizier, 2014a). This occurs for the local MI
where the measurement of one variable is misinformative about
the other variable, i.e., where the realization y lowers the proba-
bility p(x |y) below the initial probability p(x). This means that
the observer expected x less after observing y than before, but x
occurred nevertheless. Therefore, y was misinformative about x.

2.1.4. Estimating information-theoretic quantities from data
Before we advance to specific information-theoretic analyses of
neural data, it must be stressed that the estimation of information-
theoretic measures from finite data is a difficult task. The naive

estimation of probabilities by empirically observed frequencies,
followed by plugging of these probabilities into the above defi-
nitions almost inevitably leads to serious bias problems (Treves
and Panzeri, 1995; Victor, 2005; Panzeri et al., 2007a). This sit-
uation can be improved to some degree by using binless density
estimators (Kozachenko and Leonenko, 1987; Kraskov et al., 2004;
Victor, 2005). However, usually statistical testing against surrogate
data or empirical control data will be necessary to judge whether
a non-zero value of a measure indicates an effect or just the bias
[see, e.g., Lindner et al. (2011)].

2.1.5. Signal representation and state space reconstruction
The random processes that we analyze in the agents of a computing
system usually have memory. This means that the RVs that form
the process are no longer independent, but depend on variables in
the past. In this setting, a proper description of the process requires
to look at the present and past RVs jointly. In general, if there is any
dependence between the Xt, we have to form the smallest collection
of variables Xt = (Xt , Xt1 , Xt2 , . . . , Xti , . . .) with ti < t that jointly
make Xt+1 conditionally independent of all Xtk with tk < min(ti),
i.e.,

p(xt+1, xtk |xt) = p(xt+1|xt)p(xtk |xt),

i.e. p(xt+1|xtk , xt) = p(xt+1|xt)

∀tk < min(ti),∀xt+1 ∈ AXt+1 ,∀xtk ∈ AXtk
,∀xt ∈ Axt

(16)

A realization xt of such a sufficient collection Xt of past
variables is called a state of the random process X at time t.

A sufficient collection of past variables, also called a delay
embedding vector, can always be reconstructed from scalar obser-
vations for low-dimensional deterministic systems, as shown by
Takens (1981). Unfortunately, most real world systems have high-
dimensional dynamics rather than being low-dimensional deter-
ministic. For these systems, it is not obvious that a delay embedding
similar to Taken’s approach would yield the desired results. In
fact, many systems require an infinite number of past random
variables when only a scalar observable of the high-dimensional
stochastic process is accessible (Ragwitz and Kantz, 2002). Never-
theless, the behavior of scalar observables of most of these systems
can be approximated well by a finite collection of such past vari-
ables for all practical purposes (Ragwitz and Kantz, 2002); in other
words, these systems can be approximated well by a finite order,
one-dimensional Markov-process according to equation (16).

Note that without proper state space reconstruction
information-theoretic analyses will almost inevitably miscount
information in the random process. Indeed, the importance of
state space reconstruction cannot be overstated; for example, a
failure to reconstruct states properly leads to false positive find-
ings and reversed directions of information transfer as shown in
Vicente et al. (2011); imperfect state space reconstruction is also
the cause of failure of transfer entropy analysis demonstrated in
Smirnov (2013); and has been shown to impede the otherwise clear
identification of coherent moving structures in cellular automata
as information transfer entities (Lizier et al., 2008c).

In the remainder of the text, we therefore assume proper state
space reconstruction. The resulting state space representations are
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indicated by bold case letters, i.e., Xt and xt refer to the state
variables of X.

2.2. WHY INFORMATION THEORY IN NEUROSCIENCE?
It is useful to organize our understanding of neural (and bio-
logically inspired) computing systems into three major levels,
originally proposed by Marr (1982), and to then see at which level
information theory provides insights:

• At the level of the task, the neural system or the BICS is trying to
solve (task level1) we ask what information processing problem
a neural system (or a part of it) tries to solve. Such problems
could, for example, be the detection of edges or objects in a
visual scene, or maintaining information about an object after
the object is no longer in the visual scene. It is important to
note that questions at the task level typically revolve around
entities that have a direct meaning to us, e.g., objects or specific
object properties used as stimulus categories, or operationally
defined states, or concepts such as attention or working mem-
ory. An example of an analysis carried out purely at this level
is the investigation of whether a person behaves as an optimal
Bayesian observer [see references in Knill and Pouget (2004)].
• At the algorithmic level, we ask what entities or quantities of

the task level are represented by the neural system and how the
system operates on these representations using algorithms. For
example, a neural system may represent either absolute lumi-
nance or changes of luminance of the visual input. An algorithm
operating on either of these representations may, for example,
then try to identify an object in the input that is causing the
luminance pattern either by a brute force comparison to all
luminance patterns ever seen (and stored by the neural system).
Alternatively, it may try to further transform the luminance rep-
resentation via filtering, etc., before inferring the object via a few
targeted comparisons.
• At the (biophysical) implementation level, we ask how the repre-

sentations and algorithms are implemented in neural systems.
Descriptions at this level are given in terms of the relationship
between various biophysical properties of the neural system
or its components, e.g., membrane currents or voltages, the
morphology of neurons, spike rates, chemical gradients, etc.
A typical study at this level might aim, for example, at repro-
ducing observed physical behavior of neural circuits, such as
gamma-frequency (>40 Hz) oscillations in local field poten-
tials by modeling the biophysical details of these circuits from
ground up (Markram, 2006).

This separation of levels of understanding served to resolve
important debates in neuroscience, but there is also growing
awareness of a specific shortcoming of this classic view: results
obtained by careful study at any of these levels do not con-
strain the possibilities at any other level [see the after-word
by Poggio in Marr (1982)]. For example, the task of win-
ning a game of Tic–Tac–Toe (task level) can be reached by
a brute force strategy (algorithmic level) that may be realized

1Called the “computational level” by Marr originally. This terminology, however,
collides with other meanings of computation used in this text.

in a mechanical computer (implementation level) (Dewdney,
1989). Alternatively, the very same task can be solved by flex-
ible rule use (algorithmic level) realized in biological brains
(implementation level) of young children (Crowley and Siegler,
1993).

As we will see, missing relationships between Marr’s levels
can be filled in by information theory: in Section 3, we show
how to link the task level and the implementation level by com-
puting various forms of mutual information between variables
at these two levels. These mutual informations can be further
decomposed into the contributions of each agent in a multi-
agent system, as well as information carried jointly. This will
be covered in Section 4. In Section 5, we use local information
measures to link neural activity at the implementation level to
components of information processing at the algorithmic level,
such as information storage, and transfer. This will be done per
agent and time step and thereby yields a sort of information the-
oretic “footprint” of the algorithm in space and time. To be clear,
such an analysis will only yield this “footprint” – not identify
the algorithm itself. Nevertheless, this footprint is a useful con-
straint when identifying algorithms in neural systems, because
various possible algorithms to solve a problem will clearly differ
with respect to this footprint. Section 4 covers current attempts
to define the concept of information modification. We close by
a short review of some example applications of information-
theoretic analyses of neural data, and describe how they relate
to Marr’s levels.

3. ANALYZING NEURAL CODING
3.1. NEURAL CODES FOR EXTERNAL STIMULI
As introduced above, information theory can serve to bridge the
gap between the task level, where we deal with properties of a
stimulus or task that bear a direct meaning to us, and the imple-
mentation level, where we recorded physical indices of neural
activity, such as action potentials. To this end, we use mutual
information [equation (13)] and derivatives thereof to answer
questions about neural systems like these:

1. Which (features of) neural responses (R) carry information
about which (features of) stimuli (S)?

2. How much does an observer of a specific neural response r, i.e.,
a receiving brain area, change its beliefs about the identity of
a stimulus s, from the initial belief p(s) to the posterior belief
p(s|r) after receiving the neural response r?

3. Which specific neural response r is particularly informative
about an unknown stimulus s from a certain set of stimuli?

4. Which stimulus s leads to responses that are informative about
this very stimulus, i.e., to responses that can “transmit” the
identity of the stimulus to downstream neurons?

The empirical answers to these questions bear important impli-
cations for the design of BICS. For example, the encoding of an
environment in a BICS may be modeled on that of a neural system
that successfully lives in the same environment. In the following
paragraphs, we will show how to answer the above questions 1–4
using information theory.
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3.1.1. Which neural responses (R) carry information about which
stimuli (S)?

This question can be easily answered by computing the mutual
information I (S : R) between stimulus identity and neural
responses. Despite its deceptive simplicity, computing this mutual
information can be very informative about neural codes. This is
because both the description of what constitutes a stimulus and
a response rely on what we consider to be their relevant features.
For example, presenting pictures of fruit as stimulus set, we could
compute the mutual information between neural responses and
the stimuli described as red versus green fruit or described as
apples versus pears. The resulting mutual information will differ
between these two descriptions of the stimulus set – allowing us
to see how the neural system partitions the stimuli. Likewise, we
could extract features Fi(r) of neural responses r, such as the time
of the first spike [e.g., Johansson and Birznieks (2004)], or the rel-
ative spike times (O’Keefe and Recce, 1993; Havenith et al., 2011).
Comparing the mutual information for two features I (S : F 1(R)),
I (S : F 2(R)) allows to identify the feature carrying most informa-
tion. This feature potentially is the one also read out internally
by other stages of the neural system. However, when investigating
individual stimulus or response features, one should also keep in
mind that several stimulus or response features might have to be
considered jointly as they could carry synergistic information (see
Section 4, below).

3.1.2. How much does an observer of a specific neural response r,
i.e., a receiving neuron or brain area, change its beliefs
about the identity of a stimulus s, from the prior belief p(s) to
the posterior belief p(s|r) after receiving the neural
response r?

This question is natural to ask in the setting of Bayesian brain
theories (Knill and Pouget, 2004). Since this question addresses a
quantity associated with a specific response (r), we have to decom-
pose the overall mutual information between the stimulus variable
and the response variable [I (S : R)] into more specific informa-
tion terms. As this question is about a difference in probability
distributions, before and after receiving r, it is naturally expressed
in terms of a Kullback–Leibler divergence between p(s) and p(s|r).
The resulting measure is called the specific surprise isp (DeWeese
and Meister, 1999):

isp(S : r) =
∑
s∈As

p(s|r) log
p(s|r)

p(s)
. (17)

It can be easily verified that I (S : R)=Σrp(r)isp(S : r). Hence
isp is a valid partition of the mutual information into more
specific, response dependent contributions. Similarly, we have
isp(S : r)=Σsp(s|r)i(s : r), giving the relationship between the
(fully) localized MI [equation (14)] and isp(S : r) as a par-
tially localized MI. As a Kullback–Leibler divergence, isp is always
positive or zero:

isp(S : r) ≥ 0 (18)

This simply indicates that any incoming response will either
update our beliefs (leading to a positive Kullback–Leibler diver-
gence) or not (in which case the Kullback–Leibler divergence

will be zero). From this it immediately follows that isp cannot
be additive: if of two subsequent responses r1, r2, the first leads us
to update our beliefs about s from p(s) to p(s|r), but the sec-
ond leads us to revert this update, i.e., p(s|r1, r2)= p(s) then
isp(S : r1, r2)= 0 6= isp(S : r1)+ isp(S : r2|r1). Loosely speaking,
a series of surprises and belief updates does not necessarily lead
to a better estimate. This fact has been largely overlooked in early
applications of this measure in neuroscience as pointed out by
DeWeese and Meister (1999). Some caution is therefore necessary
when interpreting results from the literature before 1999 that were
obtained using this particular partition of the mutual information.

3.1.3. Which specific neural response r is particularly informative
about an unknown stimulus from a certain set of stimuli?

This question asks how much the knowledge about r is worth in
terms of an uncertainty reduction about s, i.e., an information gain.
In contrast to the question about an update of our beliefs above,
we here ask whether this update increases or reduces uncertainty
about s. This question is naturally expressed in terms of condi-
tional entropies, comparing our uncertainty before the response,
H (S), with our uncertainty after receiving the specific response r,
H (S|r). The resulting difference is called the (response-) specific
information ir(S : r) (DeWeese and Meister, 1999):

ir (S : r) = H (S)−H (S|r), (19)

where H (S|r) =
∑

s p(s|r) log 1
p(s|r) . Again it is easily verified

that I (S : R)=Σrp(r)ir(S : r). However, here the individual con-
tributions, ir(S : r), are not necessarily positive. This is because a
response r can lead from a probability distribution p(s) with a low
entropy H (S) to some p(s|r) with a high entropy H (S|r). Accept-
ing such “negative information” terms makes the measure additive
for two subsequent responses:

ir (S : r1, r2) = ir (S : r1)+ ir (S : r2|r1). (20)

The negative contributions ir(S : r) can be interpreted as
responses r that are mis-informative in the sense of an increase
in uncertainty about the average outcome of S [compare the mis-
information on the fully local scale indicated by negative i(x : y);
see Section 2.1.3].

3.1.4. Which stimulus s leads to responses r that are informative
about the stimulus itself?

In other words, which stimulus is reliably associated to responses
that are relatively unique for this stimulus, so that we know about
the occurrence of this specific stimulus from the response unam-
biguously. Here, we ask about stimuli that are being encoded well
by the system, in the sense that they lead to responses that are
informative to a downstream observer. In this type of question, a
response is considered informative if it strongly reduces the uncer-
tainty about the stimulus, i.e., if it has a large ir(S : r). We then ask
how informative the responses for a given stimulus s are on aver-
age over all responses that the stimulus elicits with probabilities
p(r |s):

iSSI (s : R) =
∑

r∈Ar

p(r |s)ir (S : r). (21)
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FIGURE 1 | Stimulus specific surprise (isp) and stimulus specific
information (iSSI) of an orientation tuned model neuron under two
different noise regimes. (A) Tuning curve: mean firing rate (thick line), SD
(thin lines) versus stimulus orientation (Θ). Repeated in for (B,D) for clarity.
(B) The stimulus specific information iSSI (indicated as SSI) is maximal in
regions of high slope of the tuning curve for the low noise case; (D) for the
high noise case iSSI (indicated as SSI) is maximal at the peak of the tuning
curve. (C,E) The corresponding values of the stimulus specific surprise isp

and the relevant conditional probability distributions. Figure reproduced
from Butts and Goldman (2006). Creative Commons (CC BY) Attribution
License.

The resulting measure iSSI(s : R) is called the stimulus specific
information (SSI) (Butts, 2003). Again it can be verified easily that
I (S : R)=Σsp(s)iSSI(s : R), meaning that iSSI is another valid
partition of the mutual information. Just as the response specific
information terms that it is composed of, the stimulus specific
information can be negative (Butts, 2003).

The stimulus specific information has been used to investigate,
which stimuli are encoded well in neurons with a specific tun-
ing curve; it was demonstrated that the specific stimuli that were
encoded best changed with the noise level of the responses (Butts
and Goldman, 2006) (Figure 1). Results of this kind may, for exam-
ple, be important to consider in the design of BICS that will be
confronted with varying levels of noise in their environments.

3.2. IMPORTANCE OF THE STIMULUS SET AND RESPONSE FEATURES
It may not immediately be visible in the above equations, but
central quantities of the above treatment, such as H (S), H (S|r)
depend strongly on the choice of the stimulus set AS. For exam-
ple, if one chooses to study the human visual systems with a set of
“visual” stimuli in the far infrared end of the spectrum, I (S : R)

will most likely be very small and analysis futile (although done
properly, a zero value of iSSI(s : R) for all stimuli will correctly
point out that the human visual system does not care or code for
any of the infrared stimuli). Hence, characterizing a neural code
properly hinges to a large extent on an appropriate choice of stim-
uli. In this respect, it is safe to assume that a move from artificial
stimuli (such as gratings in visual neuroscience) to more natural
ones will alter our view of neural codes in the future. A simi-
lar argument holds for the response features that are selected for
analysis. If any feature is dropped or not measured at all this may
distort the information measures above. This may even happen, if
the dropped feature, say the exact spike time variable RST, seems
to carry no mutual information with the stimulus variable when
considered alone, i.e., I (S : RST)= 0. This is because there may still
be synergistic information that can only be recovered by looking at
other response variables jointly with RST. For example, it would be
possible in principle that neither spike time RST nor spike rate RSR

carry mutual information with the stimulus variable when con-
sidered individually, i.e., I (S : RST)= I (S : RSR)= 0. Still, when
considered jointly they may be informative: I (S : RST, RSR) > 0.
The problem of omitted response features is almost inevitable in
neuroscience, as the full sampling of all parts of a neural system
is typically impossible, and we have to work with sub-sampled
data. Considering only a subset of (response) variables may sys-
tematically alter the apparent dependency structure in the neural
system [see Priesemann et al. (2009) for an example]. Therefore,
the effects of subsampling should always be kept in mind when
interpreting results of studies on neural coding. For many cases,
however, it may in the future be possible to exploit regularities in
the system, such as the decay of connection density between neu-
rons, to model at least some missing parts of the overall response
activity [e.g., by maximum entropy models (Tkacik et al., 2010;
Granot-Atedgi et al., 2013; Priesemann et al., 2013b)].

4. INFORMATION IN ENSEMBLE CODING – PARTIAL
INFORMATION DECOMPOSITION

In neural systems, information is often encoded by ensembles of
agents – as evidenced by the success of various “brain reading”
and decoding techniques applied to multivariate neural data [e.g.,
Kriegeskorte et al. (2008)]. Knowing how this information in the
ensemble is distributed over the agents can inform the designer of
BICS about strategies to distribute the relevant information about
a problem over the available agents. These strategies determine
properties like the coding capacity of the system as well as its relia-
bility. For example, reliability can be increased by representing the
same information in multiple agents, making their information
redundant. In contrast, maximizing capacity would require taking
into account the full combinatorial possibilities of states of agents,
making their coding synergistic.

Here, we investigate the most basic ensemble of just two
agents to introduce the concepts of redundant, synergistic, and
unique information (Williams and Beer, 2010; Stramaglia et al.,
2012, 2014; Harder et al., 2013; Lizier et al., 2013; Barrett, 2014;
Bertschinger et al., 2014; Griffith and Koch, 2014; Griffith et al.,
2014; Timme et al., 2014), and note that encoding in larger ensem-
bles is still a field of active research. More specifically, we consider
an ensemble of two neurons and their responses {R1, R2}, after
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stimulation with stimuli s ∈AS= {s1, s2,. . .}, and try to answer
the following questions:

1. What information does Ri provide about S? This is the mutual
information I (S : Ri) between the responses of one neuron i
and the stimulus set.

2. What information does the joint variable R= {R1, R2} provide
about S? This is the mutual information I (S : R1, R2) between
the joint responses of the two neurons and the stimulus set.

3. What information does the joint variable R= {R1, R2} have
about S that we cannot get from observing both variables
R1, R2 separately? This information is called the synergy,
or complementary information, of {R1, R2} with respect to
S: CI (S : R1;R2).

4. What information does one of the variables, say R1, hold indi-
vidually about S that we can not obtain from any other variable
(R2 in our case)? This information is the unique information of
R1 about S : UI (S : R1\R2).

5. What information does one of the variables, again say R1, have
about S that we could also obtain by looking at the other
variable alone? This information is the redundant, or shared,
information of R1 and R2 about S: SI (S : R1;R2).

Interestingly, only questions 1 and 2 can be answered using
standard tools of information theory such as the mutual informa-
tion. In fact, the answers to the questions 3–5, i.e., the quantifica-
tion of unique, redundant and synergistic information, need new
mathematical concepts as will be shown below.

Before we present more details, we would like to illustrate the
above questions by a thought experiment where three visual neu-
rons are recorded simultaneously while being stimulated with a
set of four stimuli (Figure 2). For simplicity, we will later consider
the coding of these neurons with respect to questions 1–5 only in
two pairwise configurations: one configuration composed of two
neurons with almost identical receptive fields (RF 1, RF 2), another
configuration of two neurons with collinear but spatially displaced
receptive fields (RF 1, RF 3) (Figure 2A). These neurons are stim-
ulated with one of the following stimuli (Figure 2B): s1 does not
contain anything at the receptive fields of the three neurons, and
the neurons stay inactive; s2 is a short bar in the receptive fields of
neurons 1,2; s3 is a similar short bar, but over the receptive field
of neuron 3, instead of 1,2; s4 is a long bar covering all receptive
fields in the example.

To make things easy, let us encode responses that we get from
these three neurons (colored traces in Figure 2B) in binary form,
with a “1” simply indicating that there was a response in our
response window (boxes with activity traces in Figure 2).

Classic information theory tells us that if we assume the stimuli
to be presented with equal probability

(
p(S = si) =

1
4 , i = 1, . . . 4

)
,

then the entropy of the stimulus set is H (S)= 2 (bit). Obviously,
none of the information terms above can be larger than these 2 bits.
We also see that each neuron shows activity (binary response= 1)
in half of the cases, yielding an entropy H (Rj)= 1 for the responses
of each neuron. The responses of the three neurons fully spec-
ify the stimulus, and therefore I (S : R1, R2, R3)= 2. To see the
mutual information between an individual neuron’s response and
the stimulus we may compute I (S : Ri)=H (S)−H (S|Ri). To do

this, we remember H (S)= 2 and use that the number of equiprob-
able outcomes for S drops by half after observing a single neuron
(e.g., after observing a response r1= 1 of neuron 1, two stimuli
remain possible sources of this response – s2 or s4). This gives
H (S|Ri)= 1, and I (S : Ri)= 1. Hence, each neuron provides 1 bit
of information about the stimulus when considered individually.
Already here, we see something curious – although each of the
three neurons has 1 bit about the stimulus, together they have only
2, not 3 bits. We can see the reason for this “vanishing bit” when
considering responses from pairs of neurons, especially the pair
{R1, R2}.

We now turn to questions 3–5, and ask about a decomposition
of the information in joint variables formed from pairs of neurons:

• To understand the concept of redundant (or shared) informa-
tion, consider the responses of neuron 1 and 2. These two
neurons show identical responses to the stimuli. Individually,
each of the neurons provides 1 bit of information about the
stimulus. Jointly, i.e., if we look at them together ({R1, R2}),
they still provide only 1 bit: I (S : R1, R2)= 1, not 2 bits. This is
because the information carried by their responses is redundant.
To see this, note that one cannot decide between stimuli s1 and
s3 if one gets the result (r1= 0, r2= 0), and similarly one cannot
not decide between stimuli s2 and s4 if one gets (r1= 1, r2= 1);
other combinations of responses do not occur here. We see that
neurons 1 and 2 have exactly the same information about the
stimulus, and a measure of redundant information should yield
the full 1 bit in this case2. We will later see this intuitive argu-
ment again as the“Self-Redundancy”axiom (Williams and Beer,
2010).
• To understand the concept of synergy, consider the responses

{R1, R3} from the second example pair (i.e., neurons 1,3), and
ask how much information they have about the presence of
exactly one short bar on the screen [i.e., s2 or s3, in contrast
to a long bar (S4) or no bar at all (s1)]. Mathematically, the
XOR function indicates whether a short bar is present or not,
N =XOR (R1, R2). For a neural implementation of the XOR
function, see Figure 2C. To examine synergy, we investigate
the mutual information between {R1, R3}, R1, R3, and N. The
individual mutual informations of each neuron R1, R3 with
the downstream neuron N are zero [I (N : Ri)= 0]. However,
the mutual information between these two neurons considered
jointly and the downstream neuron N equals 1 bit, because the
response of N is fully determined by its two inputs: I (N : R1,
R3)= 1. Thus, there is only synergistic information between R1

and R3 about N, in this example about the presence of a single
short bar.
• To understand the concept of unique information, consider only

the neurons 1, 3 and the two stimuli s1 and s3. (The reduced
stimulus set S′ is S′= {s1, s3}). It is trivial to see that neuron
1 does not respond to either stimulus, thus the mutual infor-
mation between neuron 1 and the reduced stimulus set is zero,

2Note that the fact that both neurons have the same amount of information (1 bit)
is not sufficient in general for redundancy, although it is in this special case, as 1 bit
is also the mutual information between the responses considered jointly and the
stimuli.
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FIGURE 2 | Redundant and synergistic neural coding.
(A) Receptive fields (RFs) of three neurons R1, R2, and R3. (B) Set of
four stimuli. (C) Circuit for synergistic coding. Responses of neurons
R1, R3 determine the response of neuron N via an XOR-function. In

the hidden circuit in between R1, R2, and N open circles denote
excitatory neurons, filled circles inhibitory neurons. Numbers in
circles are activation thresholds, signed numbers at connecting
arrows are synaptic weights.

I (S′ : R1)= 0. In contrast, the responses of neuron 3 are fully
informative about S′, I (S′ : R3)= 1. Clearly, R3 provides infor-
mation about the stimulus that is not present in R1. In this
example, neuron 3 has 1 bit of unique information about the
stimulus set S′.

We now introduce the mathematical framework of partial
information decomposition that formalizes the intuition in the
above examples. We consider a decomposition of the mutual infor-
mation between a set of two right hand side, or input, variables
R1, R2, and a left hand side variable, or output variable S, i.e.,
I (S : R1, R2). In general, for a decomposition of this mutual
information into unique, redundant, and synergistic information
to make sense, the total information from any one variable, e.g.,

I (S : R1), should be decomposable into the unique information
term UI (S : R1\R2) and the redundant, or shared, information
term SI (S : R1;R2) that both variables have about S:

I (S : R1) = SI (S : R1; R2)+ UI (S : R1 \ R2),

I (S : R2) = SI (S : R2; R1)+ UI (S : R2 \ R1).
(22)

Similarly, the total information I (S : R1, R2) from both variables
should be decomposable into the two unique information terms
UI (S : R1\R2) and UI (S : R2\R1) of each Ri about S, the redun-
dant, or shared, information SI (S : R1;R2) that both variables
have about S, and the synergistic, or complementary, informa-
tion CI (S : R1;R2) that can only be obtained by considering
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{R1, R2} jointly:

I (S : R1, R2) = UI (S : R1 \ R2)+ UI (S : R2 \ R1)

+ SI (S : R1; R2)+ CI (S : R1; R2).
(23)

Figure 3A shows this so-called partial information decompo-
sition (Williams and Beer, 2010). One sees that the redundant,
unique, and synergistic information cannot be obtained by simply
subtracting classical mutual information terms. However, if we are
given either a measure of redundant, synergistic, or unique infor-
mation, the other parts of the decomposition can be computed.
Hence, classic information theory is insufficient for a partial infor-
mation decomposition (Williams and Beer, 2010), and a definition
of either unique, redundant of synergistic information based on
a choice of axioms is needed. A minimal requirement for such
axioms, and measures satisfying them, is that they should comply
with our intuitive notion of what unique, redundant, and synergis-
tic information should be in some clear cut extreme cases, such as
the examples above. The original set of axioms proposed for such
a functional definition of redundant (and thereby also unique and
synergistic) information comprises three axioms that currently all
authors seem to agree on (Williams and Beer, 2010):

1. (Weak) Symmetry: the redundant information that variables
R1, R2, . . ., Rn have about S is symmetric under permutations
of the variables R1, R2, . . ., Rn.

2. Self-redundancy: the redundant information that R1 shares
with itself about S is just the mutual information I (S : R1).

3. Monotonicity: the redundant information that variables R1,
R2, . . ., Rn have about S is smaller than or equal to the redun-
dant information that variables R1, R2, . . ., Rn−1 have about S.
Equality holds if Rn−1 is a function of Rn.

These three axioms also lead to global positivity, i.e., SI (· : ·)
≥ 0, CI (· : ·) ≥ 0, and UI (· : ·) ≥ 0 (Williams and Beer,
2010). As said above, these axioms are uncontroversial, although
some authors restrict them to only two input variables R1, R2

as detailed below (Harder et al., 2013; Rauh et al., 2014). These
axioms, however, are not sufficient to uniquely define a measure
of either redundant, unique or synergistic information. Therefore,
various additional axioms, or assumptions, have been proposed
(Williams and Beer, 2010; Harder et al., 2013; Lizier et al., 2013;
Bertschinger et al., 2014; Griffith and Koch, 2014; Griffith et al.,
2014) that are not all compatible with each other (Bertschinger
et al., 2013). Here, we exemplarily discuss the recent choice of an
assumption by Bertschinger et al. (2014) to define a measure of
unique information, which is, in fact, equivalent to another for-
mulation proposed by Griffith and Koch (2014). The reasons for
selecting this particular assumption are that at the time of writing
it comes with the richest set of derived theorems, and that it has
an appealing link to game theory and utility functions, and thus
to measures of success of an agent or a BICS. We note at the outset
that this is one of the measures that are defined only for two“input”
variables R1, R2 and one “output” S (although the Ri themselves
may be multivariate RVs). For more details on this restriction see
Rauh et al. (2014).

The basic idea of the definition by Bertschinger and colleagues
comes from game theory and states that someone (say Alice) who
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FIGURE 3 | (A) Overview of the contributions to a partial information
decompositions of the mutual information I(S:R1;R2). (B) (1–8) Schematic
derivation of the definition of unique information by Bertschinger et al.
(2014). This figure is meant as a guide to the structure of the original work
that should be consulted for the rigorous treatment of the topic.
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has access to one input variable R1 with unique information about
an output variable S must be able to prove that her variable has
information not available in the other. To prove this, Alice can
design a bet on the output variable (by choosing a suitable utility
function) so that someone else (say Bob) who has only access to
the other input variable R2 will on average loose this bet. Via some
intermediate steps, this leads to the (defining) assumption that the
unique information only depends on the two marginal probability
distributions P(s, r1) and P(s, r2), but not on the exact full dis-
tribution P(s, r1, r2). In other words, the unique information UI
should not change when replacing P with a probability distribu-
tion Q from the space ∆p of probability distributions that share
these marginals with P :

∆P = {Q ∈ ∆ : Q(S = s, R1 = r1) = P(S = s, R1 = r1)

and Q(S = s, R2 = r2) = P(S = s, R2 = r2)

for all s ∈ AS , r1 ∈ AR1 , r2 ∈ AR2}

(24)

where ∆ is the space of all probability distributions on the support
of S, R1, R1. This motivated the following definition for a measure
ŨI of unique information:

ŨI (S : R1 \ R2) = min
Q∈∆P

IQ(S : R1|R2), (25)

where IQ(S : R1|R2) is a conditional mutual information computed
with respect to the joint distribution Q(s, r1, r2) instead of P(s, r1,
r2). Note that this conditional mutual information IQ(S : R1|R2)
does change on ∆p, and that only its minimum is a measure of
the (constant) unique information (see Figure 3). As stated above,
knowing one of the three parts UI, SI, CI is enough to compute
the others. Therefore, the matching definitions of measures for
redundant (S̃I ) and shared information (C̃I ) are:

S̃I (S : R1; R2) = max
Q∈∆P

CoIQ(S : R1; R2), (26)

C̃I (S : R1; R2) = I (S : R1, R2)− min
Q∈∆P

IQ(S : R1, R2). (27)

where CoIQ(S;R1;R2)= I (S : R1)− IQ(S : R1|R2) is the so-called
co-information (equivalent to the redundancy minus the synergy)
for the distribution Q(s, r1, r2).

Among the notable properties of the measures defined this way
is the fact that they can be found by convex optimization, and that
all three measures above have been explicitly shown to be posi-
tive. Moreover, the above measures are bounds for any definitions of
synergistic CI, shared (redundant) SI, and unique information UI
that satisfy equations (22) and (23). That is, it can be shown that:

UI (S : R1 \ R2) ≤ ŨI (S : R1 \ R2),

UI (S : R2 \ R1) ≤ ŨI (S : R2 \ R1),

SI (S : R1; R2) ≥ S̃I (S : R1; R2),

CI (S : R1; R2) ≥ C̃I (S : R1; R2),

holds (Bertschinger et al., 2014).
The field of information decomposition has seen a rapid devel-

opment since the initial study of Williams and Beer; however, some

major questions remain unresolved so far. Most importantly, the
definitions above have acceptable properties, but apply only for
the case of decomposing mutual information into contributions
of two (sets of) input variables. The structure of such a decompo-
sition for more than two inputs is an active area of research at the
moment.

5. ANALYZING DISTRIBUTED COMPUTATION IN NEURAL
SYSTEMS

5.1. ANALYZING NEURAL CODING AND GOAL FUNCTIONS IN A
DOMAIN-INDEPENDENT WAY

The analysis of neural coding strategies presented above relies on
our a priori knowledge of the set of task level (e.g., stimulus) fea-
tures that is encoded in neural responses at the implementation
level. If we have this knowledge, information theory will help us
to link the two levels. This is somewhat similar to the situation in
cryptography where we consider a code “cracked” if we obtain a
human-readable plain text message, i.e., we move from the imple-
mentation level (encrypted message) to the task level (meaning).
However, what happens if the plain text were in a language that
one never heard of3? In this case, we would potentially crack the
code without ever realizing it, as the plain text still has no meaning
for us.

The situation in neuroscience bears resemblance to this exam-
ple in at least two respects: first, most neurons do not have direct
access to any properties of the outside world, rather they receive
nothing but input spike trains. All they ever learn and process
must come from the structure of these input spike trains. Sec-
ond, if we as researchers probe the system beyond early sensory or
motor areas, we have little knowledge of what is actually encoded
by the neurons deeper inside the system. As a result, proper stim-
ulus sets get hard to choose. In this case, the gap between the task-
and the implementation level may actually become too wide for
meaningful analyses, as noticed recently by Carandini (2012).

Instead of relying on descriptions of the outside world (and
thereby involve the task level), we may take the point of view that
information processing in a neuron is nothing but the transforma-
tion of input spike trains to output spike trains. We may then try to
use information theory to link the implementation and algorith-
mic level, by retrieving a “footprint” of the information processing
carried out by a neural circuit. This approach only builds on a
very general agreement that neural systems perform at least some
kind of information processing. This information processing can
be partitioned into the component processes, which determine or
predict the next RV of a processY at time t,Yt: (1) information stor-
age, (2) information transfer, and (3) information modification.
A partition of this kind had already been formulated by Turing
[see Langton (1990)], and was recently formalized by Lizier et al.
(2014) [see also Lizier (2013)]:

• Information storage quantifies the information contained in the
past state variable Yt−1 of a process that is used by the process at
the next RV at t, Yt (Lizier et al., 2012b). This relatively abstract
definition means that an observer will see at least a part of

3See, for example, the Navajo code during World War Two that was never deciphered
(Fox, 2014).
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the past information in the process’ past again in its future,
but potentially transformed. Hence, information storage can be
naturally quantified by a mutual information between the past
and the future4 of a process.
• Information transfer quantifies the information contained in the

state variables Xt−u (found u time steps into the past) of one
source process X that can be used to predict information in the
future variable Yt of a target process Y, in the context of the past
state variables Yt−1 of the target process (Schreiber, 2000; Paluš,
2001; Vicente et al., 2011).
• Information modification quantifies the combination of infor-

mation from various source processes into a new form that is not
trivially predictable from any subset of these source processes
[for details of this definition also see Lizier et al. (2010, 2013)].

Based on Turing’s general partition of information process-
ing (Langton, 1990), Lizier and colleagues recently proposed an
information-theoretic framework to quantify distributed compu-
tations in terms of all three component processes locally, i.e., for
each part of the system (e.g., neurons or brain areas) and each time
step (Lizier et al., 2008c, 2010, 2012b). This framework is called
local information dynamics and has been successfully applied to
unravel computation in swarms (Wang et al., 2011), in Boolean
networks (Lizier et al., 2011b), and in neural models (Boedecker
et al., 2012) and data (Wibral et al., 2014a) (also see Section 6 for
details on these example applications).

Crucially, information dynamics is the perspective of an
observer who measures the processes X and Y and tries to par-
tition the information in Yt into the apparent contributions from
stored, transferred, and modified information, without necessar-
ily knowing the true underlying system structure. For example,
such an observer would label any recurring information in Y as
information storage, even where such information causally left the
system and re-entered Y at a later time (e.g., a stigmergic process).

Other partitions are possible; James et al. (2011), for example,
partition information in the present of a process in terms of its
relationships to the semi-infinite past and semi-infinite future. In
contrast, we focus on the information dynamics perspective laid
out above since it quantifies terms, which can be specifically iden-
tified as information storage, transfer, and modification, which
aligns with many qualitative descriptions of dynamics in complex
systems. In particular, the information dynamics perspective is
novel in focusing on quantifying these operations on a local scale
in space and time.

In the following we present both global and local measures of
information transfer, storage, and modification, beginning with
the well established measures of information transfer and ending
with the highly dynamic field of information modification.

5.2. INFORMATION TRANSFER
The analysis of information transfer was formalized initially by
Schreiber (2000) and Paluš (2001), and has seen a rapid surge

4We consider ourselves having information up to time t−1, predicting the future
values at t.

of interest in neuroscience5 and general physiology6. Informa-
tion transfer as measured by the transfer entropy introduced
below has recently also been given a thermodynamic interpreta-
tion by Prokopenko and Lizier (2014), continuing general efforts
to link information theory and thermodynamics (Szilárd, 1929;
Landauer, 1961), highlighting the importance of the concept.

5.2.1. Definition
Information transfer from a process X (the source) to another
process Y (the target ) is measured by the transfer entropy (TE)
functional7 (Schreiber, 2000):

TE(Xt−u → Yt ) = I (Xt−u : Yt |Yt−1) (28)

=

∑
yt∈AYt ,yt−1∈AYt−1 ,xt−u∈AXt−u

p(yt , yt−1, xt−u) log
p(yt |yt−1, xt−u)

p(yt |yt−1)
, (29)

where I (· : ·|·) is the conditional mutual information, Yt is the
RV of process Y at time t, and Xt−u, Yt−1 are the past state-RVs
of processes X and Y, respectively. The delay variable u in Xt−u

indicates that the past state of the source is to be taken u time steps
into the past to account for a potential physical interaction delay
between the processes. This parameter need not be chosen ad hoc,
as it was recently proven for bivariate systems that the above esti-
mator is maximized if the parameter u is equal to the true delay
δ of the information transfer from X to Y (Wibral et al., 2013).
This relationship allows one to estimate the true interaction delay
δ from data by simply scanning the assumed delay u:

δ = argmax
u
[TE (Xt−u → Yt )] (30)

The TE functional can be linked to Wiener–Granger type
causality (Wiener, 1956; Granger, 1969; Barnett et al., 2009).
More precisely, for systems with jointly Gaussian variables, transfer
entropy is equivalent8 to linear Granger causality [see Barnett et al.
(2009) and references therein]. However, whether the assumption
of jointly Gaussian variables is appropriate in a neural setting must
be checked carefully for each case (note that Gaussianity of each
marginal distribution is not sufficient). In fact, EEG source signals
were found to be non-Gaussian (Wibral et al., 2008).

5Paluš (2001), Chávez et al. (2003), Hadjipapas et al. (2005), Leistritz et al. (2006),
Gourevitch and Eggermont (2007), Barnett et al. (2009), Garofalo et al. (2009),
Sabesan et al. (2009), Staniek and Lehnertz (2009), Buehlmann and Deco (2010),
Besserve et al. (2010a,b), Li and Ouyang (2010), Lüdtke et al. (2010), Vakorin et al.
(2009, 2010, 2011), Amblard and Michel (2011), Ito et al. (2011), Lindner et al.
(2011), Lizier et al. (2011a), Neymotin et al. (2011), Vicente et al. (2011); Wibral
et al. (2011), Battaglia et al. (2012), Stetter et al. (2012), Bedo et al. (2014), Butail
et al. (2014), Battaglia (2014a), Chicharro (2014), Kawasaki et al. (2014), Liu and
Pelowski (2014), Marinazzo et al. (2014a,b,c), McAuliffe (2014), Montalto et al.
(2014), Orlandi et al. (2014), Porta et al. (2014), Razak and Jensen (2014), Rowan
et al. (2014), Shimono and Beggs (2014), Thivierge (2014), Untergehrer et al. (2014),
van Mierlo et al. (2014),Varon et al. (2014),Yamaguti and Tsuda (2014), Zubler et al.
(2014).
6Faes and Nollo (2006), Faes et al. (2011a,b, 2014a,b), Faes and Porta (2014).
7A functional maps from the relevant probability distribution (i.e., functions) to the
real numbers. In contrast, an estimator maps from empirical data, i.e., a set of real
numbers, to the real numbers.
8To a constant factor of 2.
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5.2.2. Transfer entropy estimation
When the probability distributions entering equation (28) are
known (e.g., in an analytically tractable neural model), TE can
be computed directly. However, in most cases, the probability dis-
tributions have to be derived from data. When probabilities are
estimated naively from the data via counting, and when these esti-
mates are then used to compute information-theoretic quantities
such as the transfer entropy, we speak of a “plug in” estimator.
Indeed, such plug in estimators has been used in the past, but they
come with serious bias problems (Panzeri et al., 2007b). There-
fore, newer approaches to TE estimation rely on a more direct
estimation of the entropies that TE can be decomposed (Kraskov
et al., 2004; Gomez-Herrero et al., 2010; Vicente et al., 2011; Wibral
et al., 2014b). These estimators still suffer from bias problems but
to a lesser degree (Kraskov et al., 2004). We therefore restrict our
presentation to these approaches.

Before we can proceed to estimate TE we will have to recon-
struct the states of the processes (see Section 2.1.5). One approach
to state reconstruction is time delay embedding (Takens, 1981).
It uses past variables Xt−nτ, n= 1, 2,. . . that are spaced in time
by an interval τ. The number of these variables and their optimal
spacing can be determined using established criteria (Ragwitz and
Kantz, 2002; Small and Tse, 2004; Lindner et al., 2011; Faes et al.,
2012). The realizations of the states variables can be represented
as vectors of the form:

xd
t = (xt , xt−τ, xt−2τ, ..., xt−(d−1)τ), (31)

where d is the dimension of the state vector. Using this vector
notation, transfer entropy can be written as:

T ESPO (Xt−u → Yt ) =
∑

yt ,y
dy
t−1,xdx

t−u

p
(

yt , y
dy

t−1, xdx
t−u

)

log
p
(

yt |y
dy

t−1, xdx
t−u

)
p
(

yt |y
dy

t−1

) ,

(32)

where the subscript SPO (for self prediction optimal) is a reminder

that the past states of the target, y
dy

t−1, have to be constructed
such that conditioning on them is optimal in the sense of taking
the active information storage in the target correctly into account

(Wibral et al., 2013): if one were to condition on y
dy
t−w with w 6=1,

instead of y
dy

t−1, then the self prediction for Yt would not be optimal
and the transfer entropy would be overestimated.

We can rewrite equation (32) using a representation in the form
of four entropies9 H(·), as:

T ESPO (Xt−u → Yt ) = H
(

Y
dy

t−1, Xdx
t−u

)
−H

(
yt , Y

dy

t−1, Xdx
t−u

)
+H

(
yt , Y

dy

t−1

)
−H

(
Y

dy

t−1

)
.

(33)
Entropies can be estimated efficiently by nearest-neighbor tech-

niques. These techniques exploit the fact that the distances between

9For continuous-valued RVs, these entropies are differential entropies.

neighboring data points in a given embedding space are inversely
related to the local probability density: the higher the local prob-
ability density around an observed data point the closer are the
next neighbors. Since next neighbor estimators are data efficient
(Kozachenko and Leonenko, 1987; Victor, 2005), they allow to
estimate entropies in high-dimensional spaces from limited real
data.

Unfortunately, it is problematic to estimate TE by simply apply-
ing a naive nearest-neighbor estimator for the entropy, such as
the Kozachenko–Leonenko estimator (Kozachenko and Leonenko,
1987), separately to each of the terms appearing in equation (33).
The reason is that the dimensionality of the state spaces involved
in equation (33) differs largely across terms – creating bias prob-
lems. These are overcome by the Kraskov–Stögbauer–Grassberger
(KSG) estimator that fixes the number of neighbors k in the highest

dimensional space (spanned here by yt , y
dy

t−1, xdx
t−u) and by project-

ing the resulting distances to the lower dimensional spaces as the
range to look for additional neighbors there (Kraskov et al., 2004).
After adapting this technique to the TE formula (Gomez-Herrero
et al., 2010), the suggested estimator can be written as:

T ESPO (Xt−u → Yt ) = ψ (k)+
〈
ψ

(
n

y
dy
t−1

+ 1

)
−ψ

(
n

yt y
dy
t−1

+ 1

)
−ψ

(
n

y
dy
t−1xdx

t−u

+ 1

) 〉
t
, (34)

where ψ denotes the digamma function, the angle brackets (〈·〉t )
indicate averaging over time for stationary systems, or over an
ensemble of replications for non-stationary ones, and k is the
number of nearest neighbors used for the estimation. n(·) refers
to the number of neighbors, which are within a hypercube that
defines the search range around a state vector. As described above,
the size of the hypercube in each of the marginal spaces is defined
based on the distance to the k-th nearest neighbor in the highest
dimensional space.

5.2.3. Interpretation of transfer entropy as a measure at the
algorithmic level

TE describes computation at the algorithmic level, not at the level
of a physical dynamical system. As such it is not optimal for infer-
ence about causal interactions – although it has been used for
this purpose in the past. The fundamental reason for this is that
information transfer relies on causal interactions, but non-zero
transfer entropy can occur without direct causal links, and causal
interactions do not necessarily lead to non-zero information trans-
fer (Ay and Polani, 2008; Lizier and Prokopenko, 2010; Chicharro
and Ledberg, 2012). Instead, causal interactions may serve active
information storage alone (see next section), or force two sys-
tems into identical synchronization, where information transfer
becomes effectively zero. This might be summarized by stating
that transfer entropy is limited to effects of a causal interaction
from a source to a target process that are unpredictable given the
past of the target process alone. In this sense, TE may be seen as
quantifying causal interactions currently in use for the communi-
cation aspect of distributed computation. Therefore, one may say
that TE measures predictive, or algorithmic information transfer.
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A simple thought experiment may serve to illustrate this point:
when one plays an unknown record, a chain of causal interactions
serve the transfer of information about the music from the record
to your brain. Causal interactions happen between the record’s
grooves and the needle, the magnetic transducer system behind
the needle, and so on, up to the conversion of pressure modu-
lations to neural signals in the cochlea that finally activate your
cortex. In this situation, there undeniably is information trans-
fer, as the information read out from the source, the record,
at any given moment is not yet known in the target process,
i.e., the neural activity in the cochlea. However, this informa-
tion transfer ceases if the record has a crack, making the needle
skip, and repeat a certain part of the music. Obviously, no new
information is transferred which under certain mild conditions
is equivalent to no information transfer at all. Interestingly, an
analysis of TE between sound and cochlear activity will yield
the same result: the repetitive sound leads to repetitive neural
activity (at least after a while). This neural activity is thus pre-
dictable by its own past, under the condition of vanishing neural
“noise,” leaving no room for a prediction improvement by the
sound source signal. Hence, we obtain a TE of zero, which is the
correct result from a conceptual point of view. Remarkably, at
the same time the chain of causal interactions remains practi-
cally unchanged. Therefore, a causal model able to fit the data
from the original situation will have no problem to fit the data
of the situation with the cracked record, as well. Again, this is
conceptually the correct result, but this time from a causal point
of view.

The difference between an analysis of information transfer in a
computational sense and causality analysis based on interventions
has been demonstrated convincingly in a recent study by Lizier and
Prokopenko (2010). The same authors also demonstrated why an
analysis of information transfer can yield better insight than the
analysis of causal interactions if the computation in the system is to
be understood. The difference between causality and information
transfer is also reflected in the fact that a single causal structure
can support diverse pattern of information transfer (functional
multiplicity), and the same pattern of information transfer can be
realized with different causal structures (structural degeneracy) as
shown by Battaglia (2014b).

5.2.4. Local information transfer
As transfer entropy is formally just a conditional mutual informa-
tion, we can obtain the corresponding local conditional mutual
information [equation (15)] from equation (32). This quan-
tity is called the local transfer entropy (Lizier et al., 2008c).
For realizations xt, yt of two processes X, Y at time t it
reads:

te
(

Xt−u = xt−u → Yt = yt
)
= log

p
(

yt |y
dy

t−1, xdx
t−u

)
p
(

yt |y
dy

t−1

) , (35)

As said earlier in the section on basic information theory, the use
of local information measures does not eliminate the need for an
appropriate estimation of the probability distributions involved.
Hence, for a non-stationary process, these distributions will still

have to be estimated via an ensemble approach for each time point
for the RVs involved, e.g., via physical replications of the system,
or via enforcing cyclostationarity by design of the experiment.

The analysis of local transfer entropy has been applied with
great success in the study of cellular automata to confirm the
conjecture that certain coherent spatiotemporal structures trav-
eling through the network are indeed the main carriers of infor-
mation transfer (Lizier et al., 2008c) (see further discussion at
Section 6.4). Similarly, local transfer entropy has identified coher-
ent propagating wave structures in flocks as information cascades
(Wang et al., 2012) (see Section 6.5), and indicated impend-
ing synchronization among coupled oscillators (Ceguerra et al.,
2011).

5.2.5. Common problems and solutions
Typical problems in TE estimation encompass (1) finite sample
bias, (2) the presence of non-stationarities in the data, and (3)
the need for multivariate analyses. In recent years, all of these
problems have been addressed at least in isolation, as summarized
below:

• Finite sample bias can be overcome by statistical testing using

surrogate data, where the observed realizations yt , y
dy

t−1, xdx
t−u

of the RVs Yt , Y
dy

t−1, Xdx
t−u are reassigned to other RVs of the

process, such that the temporal order underlying the informa-
tion transfer is destroyed [for an example see the procedures
suggested in Lindner et al. (2011)]. This reassignment should
conserve as many data features of the single process realizations
as possible.
• As already explained in the section on basic information theory

above, non-stationary random processes in principle require
that the necessary estimates of the probabilities in equation
(28) are based on physical replications of the systems in ques-
tion. Where this is impossible, the experimenter should design
the experiment in such a way that the processes are repeated in
time. If such cyclostationary data are available, then TE should
be estimated using ensemble methods as described in Gomez-
Herrero et al. (2010) and implemented in the TRENTOOL
toolbox (Lindner et al., 2011; Wollstadt et al., 2014).
• So far, we have restricted our presentation of transfer entropy

estimation to the case of just two interacting random processes
X, Y, i.e., a bivariate analysis. In a setting that is more realistic
for neuroscience, one deals with large networks of interacting
processes X,Y,Z, . . .. In this case, various complications arise if
the analysis is performed in a bivariate manner. For example, a
process Z could transfer information with two different delays
δZ→X, δZ→Y to two other processes X, Y. In this case, a pairwise
analysis of transfer entropy between X, Y will yield an apparent
information transfer from the process that receives informa-
tion from Z with the shorter delay to the one that receives it
with the longer delay (common driver effect). A similar prob-
lem arises if information is transferred first from a process X to
Y, and then from Y to Z. In this case, a bivariate analysis will
also indicate information transfer from X to Z (cascade effect).
Moreover, two sources may transfer information purely syner-
gistically, i.e., the transfer entropy from each source alone to
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the target is zero, and only considering them jointly reveals the
information transfer10.

From a mathematical perspective, this problem seems to be
easily solved by introducing the complete transfer entropy, which
is defined in terms of a conditional transfer entropy (Lizier et al.,
2008c, 2010):

TE
(

Xt−u → Yt |Z
−
)
=

∑
yt ,yt−1,xt−u ,z−

p
(
yt , yt−1, xt−u, z−

)
log

p
(
yt |yt−1, xt−u, z−

)
p
(
yt |yt−1, z−

) ,

(36)

where the state-RV Z− is a collection of the past states of one or
more processes in the network other than X, Y. We label equation
(36) a complete transfer entropy TE(c)(Xt−u→Yt) when we take
Z−=V−, the set of all processes in the network other than X, Y.

It is important to note that TE and conditional/complete TE are
complementary (see mathematical description of this at Section
5.4) – each can reveal aspects of the underlying dynamics that
the other does not and both are required for a full description.
While conditional TE removes redundancies and includes syn-
ergies, knowing that redundancy is present may be important,
and local pairwise TE additionally reveals interesting cases when
a source is mis-informative about the dynamics (Lizier et al.,
2008b,c).

Furthermore, even for small networks of random processes the
joint state space of the variables Yt, Yt−1, Xt−u, V− may become
intractably large from an estimation perspective. Moreover, the
problem of finding all information transfers in the network, either
from single sources variables into the target or synergistic transfer
from collections of source variables to the target, is a combinatorial
problem, and can therefore typically not be solved in a reasonable
time.

Therefore, Faes et al. (2012), Lizier and Rubinov (2012), and
Stramaglia et al. (2012) suggested to analyze the information trans-
fer in a network iteratively, selecting information sources for a
target in each iteration either based on magnitude of apparent
information transfer (Faes et al., 2012) or its significance (Lizier
and Rubinov, 2012; Stramaglia et al., 2012). In the next iteration,
already selected information sources are added to the condition-
ing set [Z− in equation (36)], and the next search for information
sources is started. The approach of Stramaglia and colleagues is
particular here in that the conditional mutual information terms
are computed at each level as a series expansion, following a sug-
gestion by Bettencourt et al. (2008). This allows for an efficient
computation as the series may truncate early, and the search can
proceed to the next level. Importantly, these approaches also con-
sider synergistic information transfer from more than one source

10Again, cryptography may serve as an example here. If an encrypted message is
received, there will be no discernible information transfer from encrypted message
to plain text without the key. In the same way, there is no information transfer from
the key alone to the plain text. It is only when encrypted message and key are com-
bined that the relation between the combination of encrypted message and key on
the one side and the plain text on the other side is revealed.

variable to the target. For example, a variable transferring infor-
mation purely synergistically with Z− maybe included in the next
iteration, given that the other variables it transfers information
with are already in the conditioning set Z−. However, there is
currently no explicit indication in the approaches of Faes et al.
(2012) and Lizier and Rubinov (2012) as to whether multivariate
information transfer from a set of sources to the target is, in fact,
synergistic; in addition, redundant links will not be included. In
contrast, both redundant and synergistic multiplets of variables
transferring information into a target may be identified in the
approach of Stramaglia et al. (2012) by looking at the sign of the
contribution of the multiplet. Unfortunately, there is also the pos-
sibility of cancellation if both types of multivariate information
(redundant, synergistic) are present.

5.3. ACTIVE INFORMATION STORAGE
Before we present explicit measures of active information storage,
a few comments may serve to avoid misunderstanding. Since we
analyze neural activity here, measures of active information stor-
age are concerned with information stored in this activity – rather
than in synaptic properties, for example11. This is the perspec-
tive of what an observer of that activity (not necessarily with any
knowledge of the underlying system structure) would attribute
as information storage at the algorithmic level, even if the causal
mechanisms at the level of a physical dynamical system under-
pinning such apparent storage were distributed externally to the
given variable (Lizier et al., 2012b). As laid out above, storage is
conceptualized here as a mutual information between past and
future states of neural activity. From this it is clear that there will
not be much information storage if the information contained in
the future states of neural activity is low in general. If, on the other
hand these future states are rich in information but bear no rela-
tion to past states, i.e., are unpredictable, again information storage
will be low. Hence, large information storage occurs for activity
that is rich in information but, at the same time, predictable.

Thus, information storage gives us a way to define the pre-
dictability of a process that is independent of the prediction error:
information storage quantifies how much future information of a
process can be predicted from its past, whereas the prediction error
measures how much information can not be predicted. If both are
quantified via information measures, i.e., in bits, the error and
the predicted information add up to the total amount of infor-
mation in a random variable of the process. Importantly, these
two measures may lead to quite different views about the pre-
dictability of a process. This is because the total information can
vary considerably over the process, and the predictable and the
unpredictable information may thus vary almost independently.
This is important for the design of BICS that use predictive coding
strategies.

Before turning to the explicit definition of measures of infor-
mation storage it is worth considering which temporal extent of
“past”and“future”states we are interested in: most globally, predic-
tive information (Bialek et al., 2001) or excess entropy (Crutchfield
and Packard, 1982; Grassberger, 1986; Crutchfield and Feldman,

11See the distinction made between passive storage in synaptic properties and active
storage in dynamics by Zipser et al. (1993).
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2003) is the mutual information between the semi-infinite past
and semi-infinite future of a process before and after time point t.
In contrast, if we are interested in the information currently used
for the next step of the process, the mutual information between
the semi-infinite past and the next step of the process, the active
information storage (Lizier et al., 2012b) is of greater interest. Both
measures are defined in the next paragraphs.

5.3.1. Predictive information/excess entropy
Excess entropy is formally defined as:

EXt = lim
k→∞

I (Xk−
t : Xk+

t ) (37)

where Xk−
t = {Xt , Xt−1, . . . , Xt−k+1}, and Xk+

t = {Xt+1, . . .,
Xt+k} indicate collections of the past and future k variables of the

process X12. These collections of RVs
(

Xk−
t , Xk+

t

)
, in the limit

k→∞, span the semi-infinite past and future, respectively. In gen-
eral, the mutual information in equation (37) has to be evaluated
over multiple realizations of the process. For stationary processes,
however, EXt is not time-dependent, and equation (37) can be
rewritten as an average over time points t and computed from a
single realization of the process – at least in principle (we have to
consider that the process must run for an infinite time to allow the
limit lim

k→∞
for all t ):

EX = 〈 lim
k→∞

i(xk−
t : xk+

t )〉t . (38)

Here, i(· : ·) is the local mutual information from equation (14),
and xk−

t , xk+
t are realizations of Xk−

t , Xk+
t . The limit of k→∞ can

be replaced by a finite kmax if a kmax exists such that conditioning

on Xkmax−
t renders Xkmax+

t conditionally independent of any Xl

with l ≤ t − kmax.
Even if the process in question is non-stationary, we may look

at values that are local in time as long as the probability distribu-
tions are derived appropriately (see Section 2.1.2) (Shalizi, 2001;
Lizier et al., 2012b):

eXt = lim
k→∞

i(xk−
t : xk+

t ). (39)

5.3.2. Active information storage
From a perspective of the dynamics of information processing, we
might not be interested in information that is used by a process at
some time far in the future, but at the next point in time, i.e., infor-
mation that is said to be “currently in use” for the computation of
the next step (the realization of the next RV) in the process (Lizier
et al., 2012b). To quantify this information, a different mutual
information is computed, namely the active information storage
(AIS) (Lizier et al., 2007, 2012b):

AXt = lim
k→∞

I (Xk−
t−1 : Xt ). (40)

AIS is similar to a measure called “regularity” introduced by
Porta et al. (2000), and was also labeled as ρu (“redundant portion”
of information in Xt) by James et al. (2011).

12In principle, these could harness embedding delays, as defined in equation (31)

Again, if the process in question is stationary then AXt =

const. = AX and the expected value can be obtained from an
average over time – instead of an ensemble of realizations of the
process – as:

AX = 〈 lim
k→∞

i(xk−
t−1 : xt )〉t , (41)

which can be read as an average over local active information
storage (LAIS) values aXt (Lizier et al., 2012b):

AX = 〈aXt 〉t (42)

aXt = lim
k→∞

i(xk−
t−1 : xt ). (43)

Even for non-stationary processes, we may investigate local
active storage values, given the corresponding probability distrib-
utions are properly obtained from an ensemble of realizations of

Xt, Xk−
t−1:

aXt = lim
k→∞

i(xk−
t−1 : xt ). (44)

Again, the limit of k→∞ can be replaced by a finite kmax if a

kmax exists such that conditioning on Xkmax
t−1 renders Xt condition-

ally independent of any Xl with l ≤ t − kmax [see equation (16)].

5.3.3. Interpretation of information storage as a measure at the
algorithmic level

As laid out above information storage is a measure of the amount
of information in a process that is predictable from its past. As
such it quantifies, for example, how well activity in one brain area
A can be predicted by another area, e.g., by learning its statistics.
Hence, questions about information storage arise naturally when
asking about the generation of predictions in the brain, e.g., in
predictive coding theories (Rao and Ballard, 1999; Friston et al.,
2006).

5.4. COMBINING THE ANALYSIS OF LOCAL ACTIVE INFORMATION
STORAGE AND LOCAL TRANSFER ENTROPY

The two measures of local active information storage and local
transfer entropy introduced in the preceding section may be fruit-
fully combined by pairing storage and transfer values at each point
in time and for each agent. The resulting space has been termed
the “local information dynamics state space” and has been used
to investigate the computational capabilities of cellular automata,
by pairing a(yj,t) and te(xi,t−1→yj,t) for each pair of source and
target xi, yj at each time point (Lizier et al., 2012a).

Here, we suggest that this concept may be used to disentangle
various neural processing strategies. Specifically we suggest to pair
the sum13 over all local active information storage in the inputs xi

of a target yj [at the relevant delays ui, obtained from an analysis
of transfer entropy (Wibral et al., 2013)] with the sum of outgoing

13More complex ways of combining incoming active information storage are
conceivable.
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FIGURE 4 | Various information processing regimes in the information
state space. ΣLAIS = sum of local active information storage in input,
ΣLTE = sum of outgoing local transfer entropy. Each dot represents these
values for one agent and time step.

local information transfers from this target to further targets zk,
for each agent yj and each time point t :(∑

xi

a(xi,t−ui ),
∑

zk

te(yj ,t → zk,t+uk
)

)
(45)

where sources xi and second order targets zk are defined by the
conditions:

te(xi,t−ui → yj ,t ) 6= 0,∀xi,t−ui (46)

te(yj ,t → zk,t+uk
) 6= 0,∀zk,t+uk

. (47)

The resulting point set can be used to answer the important
question, whether the aggregate outgoing information transfer of
an agent is high either for predictable or for surprising input. The
former information processing function amounts to a sort of fil-
tering, passing on reliable (predictable) information, and would be
linked to something reliable being represented in activity. The lat-
ter information processing function is a form of prediction error
encoding, where high outgoing information transfer is triggered
when surprising, unpredictable information is received (also see
Figure 4).

Note that for this type of analysis recordings of at least triplets of
connected agents are necessary. This may pose a considerable chal-
lenge in experimental neuroscience, but may be extremely valuable
to disentangle the information processing goal functions of the
various cortical layers, for example. This type of analysis will also

be valuable to understand the information processing in evolved
BICS, as in these systems the availability of data from triplets of
agents is no problem.

5.5. INFORMATION MODIFICATION AND ITS RELATION TO PARTIAL
INFORMATION DECOMPOSITION

Langton (1990) described information modification as an inter-
action between transmitted and/or stored information that results
in a modification of one or the other. Attempts to define informa-
tion modification more rigorously implemented this basic idea.
First attempts at defining a quantitative measure of information
modification resulted in a heuristic measure termed local separable
information (Lizier et al., 2010), where the local active information
storage and the sum over all pairwise local transfer entropies into
the target was taken:

sXt = aXt +

∑
Zt− ,i∈VXt \Xt−1

i(xt : zt−,i |xt−1), (48)

with VXt \Xt−1 = {Zt−,1, . . . , Zt−,G} indicating the set of G past
state variables of all processes Zt−,i that transfer information into
the target variable Xt; note that Xt−1, the history of the target,
is explicitly not part of the set. The index t− is a reminder that
only past state variables are taken into account, i.e., t−< t. As
shown above, the local measures entering the sum are negative if
they are mis-informative about the future of the target. Eventually
the overall sum, or separable information, might also be negative,
indicating that neither the pairwise information transfers, nor the
history could explain the information contained in the target’s
future. This has been interpreted as a modification of either stored
or transferred information.

While this first attempt provided valuable insights in systems
like elementary cellular automata (Lizier et al., 2010), it is ulti-
mately heuristic. A more rigorous approach is to look at decompo-
sition of the local information h(xt) in the realization of a random
variable to shed some more light on the issue which part of this
information may be due to modification. In this view, the overall
information H (Xt), in the future of the target process [or its local
form, h(xt)] can be explained by looking at all sources of informa-
tion and the history of the target jointly, at least up to the remaining
stochastic part (the intrinsic innovation of the random process)
in the target, as shown by Lizier et al. (2010) [also see equations
(50) and (51)]. In contrast, we cannot decompose this informa-
tion into pairwise mutual information terms only. As described
in the following, the remainder after exhausting pairwise terms is
due to synergistic information between information sources and
has motivated the suggestion to define information modification
based on synergy (Lizier et al., 2013).

To see the differences between a partition considering vari-
ables jointly or only in pairwise terms, consider a series of subsets
formed from the set of all variables Zt−,i (defined above; ordered
by i here) that can transfer information into the target, except
variables from the target’s own history. The bold typeface in Zt−,i

is a reminder that we work with a state space representation
where necessary. Following the derivation by Lizier et al. (2010),
we create a series of subsets V

g
Xt
\Xt−1 such that V

g
Xt
\Xt−1 =

{Zt−,1, . . . , Zt−,g−1}, i.e., the g -th subset only contains the first
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g − 1 sources. We can decompose the collective transfer entropy
from all our source variables, TE(VXt \Xt−1 → Xt ), as a series of
conditional mutual information terms, incrementally increasing
the set that we condition on:

TE(VXt \Xt−1 → Xt ) =

G∑
g=1

I (Xt : Zt−,g |Xt−1, V
g
Xt
\Xt−1).

(49)
These conditional MI terms are all transfer entropies – start-

ing for g = 1 with a pairwise transfer entropy TE(Zt−,1 → Xt ),
then with conditional transfer entropies for g = 2. . .G− 1 and fin-
ishing with a complete transfer entropy for g =G, TE(Zt−,G →

Xt |VG
Xt
\Xt−1). The total entropy of the target H(Xt) can then be

written as:

H (Xt ) = AXt−1+

G∑
g=1

I (Xt : Zt−,g |Xt−1, V
g
Xt
\Xt−1)+WXt (50)

where WXt is the innovation in Xt. If we rewrite the partition in
equation (50) in its local form:

h(xt ) = aXt−1 +

G∑
g=1

i(xt : zt−,g |xt−1, v
g
Xt
\xt−1)+ wXt , (51)

and compare to equation (48), we see that the difference between
the potentially mis-informative sum sXt in equation (48) and the
fully accounted for information in h(xt) from equation (51) lies
in the conditioning of the local transfer entropies. This means
that the context that the source variables provide for each other is
neglected and synergies and redundancies (see Section 4) are not
properly accounted for. Importantly, the results of both equations
(48) and (51) are identical, if no information is provided either
redundantly or synergistically by the sources Zt−,g . This observa-
tion led Lizier et al. (2013) to propose a more rigorously defined
measure of information modification based on the synergistic part
of the information transfer from the source variables Zt−,g , and the
targets history Xt−1 to the target Xt. This definition of information
modification has several highly desirable properties. However, it
relies on a suitable definition of synergy, which is currently only
available for the case of two source variables (see Section 4). As
there is currently a considerable debate on how to define the part
of a the mutual information I (Y : {X 1, . . ., Xi,. . .}), which is syn-
ergistically provided by a larger set of source variables Xi [but see
Gomez-Herrero et al. (2010)], the question of how to best measure
information modification may still be considered open.

6. APPLICATION EXAMPLES
6.1. ACTIVE INFORMATION STORAGE IN NEURAL DATA
Here, we present two very recent applications of (L)AIS to neural
data and their estimation strategies for the PDFs. In both, esti-
mation of (L)AIS was done using the JAVA information dynamics
toolkit (Lizier, 2012c, 2014b) and state space reconstruction was
performed in TRENTOOL (Lindner et al., 2011) [for details, see
Gomez et al. (2014) and Wibral et al. (2014a)]. The first study
investigated AIS in magnetoencephalographic (MEG) source sig-
nals from patients with autism spectrum disorder (ASD), and

FIGURE 5 | AIS in ASD patients compared to controls. (Left) Investigated
MEG source locations (spheres; red= significantly lower AIS in ASD,
blue=not sign.). (Right) Box and whisker plot for LAIS in source 10
(Hippocampus, corresponding to red sphere), where significant differences
in AIS between patients and controls were found. Modified from Gomez
et al. (2014); creative commons attribution license (BB CY 3.0).

reported a reduction of AIS in the hippocampus in patients com-
pared to healthy controls (Gomez et al., 2014) (Figure 5). In this
study, the strategy for obtaining an estimate of the PDF was to
use only baseline data (between stimulus presentations) to guar-
antee stationarity of the data. Results from this study align well
with predictive coding theories (Rao and Ballard, 1999; Friston
et al., 2006) of ASD [also see Gomez et al. (2014), and references
therein]. The significance of this study in the current context lies in
the fact, which it explicitly sought to measure the information pro-
cessing consequences at the algorithmic level of changes in neural
dynamics in ASD at the implementation level.

The second study (Wibral et al., 2014a) analyzed LAIS in volt-
age sensitive dye (VSD) imaging data from cat visual cortex. The
study found low LAIS in the baseline before the onset of a visual
stimulus, negative LAIS directly after stimulus onset and sustained
increases in LAIS for the whole stimulation period, despite chang-
ing raw signal amplitude (Figure 6). These observed information
profiles constrain the set of possible underlying algorithms being
implemented in the cat’s visual cortex. In this study, all available
data were pooled, both from baseline and stimulation periods,
and also across all recording sites (VSD image pixels). Pooling
across time is unusual, but reasonable insofar as neurons them-
selves also have to deal with non-stationarities as they arise, and
a measure of neurally accessible LAIS should reflect this. Pool-
ing across all sites in this study was motivated by the argument
that all neural pools seen by VSD pixels are capable of the same
dynamic transitions as they were all in the same brain area. Thus,
pixels were treated as physical replications for the estimation of
the PDF. In sum, the evaluation strategy of this study is applicable
to non-stationary data, but delivers results that strongly depend
on the data included. Its future application therefore needs to be
informed by precise estimates of the time scales at which neurons
may sample their input statistics.

6.2. ACTIVE INFORMATION STORAGE IN A ROBOTIC SYSTEM
Recurrent neural networks (RNNs) consist of a reservoir of
nodes or artificial neurons connected in some recurrent net-
work structure (Maass et al., 2002; Jaeger and Haas, 2004). Typ-
ically, this structure is constructed at random, with only the
output neurons connections trained to perform a given task.
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FIGURE 6 | LAIS in VSD data from cat visual cortex (area 18), before and after presentation of a visual stimulus at time t = 0 ms. Modified from Wibral
et al. (2014a); creative commons attribution license (BB CY 3.0).

This approach is becoming increasingly popular for non-linear
time-series modeling and robotic applications (Boedecker et al.,
2012; Dasgupta et al., 2013). The use of Intrinsic Plasticity based
techniques (Schrauwen et al., 2008) is known to assist performance
of such RNNs in general, although this method is still outper-
formed on memory capacity tasks, for example, by the implemen-
tation of certain changes to the network structure (Boedecker et al.,
2009).

To address this issue, Dasgupta et al. (2013) add an on-line
rule to adapt the “leak-rate” of each neuron based on the AIS of its
internal state. The leak-rate is reduced where the AIS is below a cer-
tain threshold, and increased where it is above. The technique was
shown to improve performance on delayed memory tasks, both for
benchmark tests and in embodied wheeled and hexapod robots.
Dasgupta et al. (2013) describe the effect of their technique as
speeding up or slowing down the dynamics of the reservoir based
on the time-scale(s) of the input signal. In terms of Marr’s levels,
we can also view this as an intervention at the algorithmic level,
directly adjusting the level of information storage in the system
in order to affect the higher-level computational goal of enhanced
performance on memory capacity tasks. It is particularly interest-
ing to note the connection in information storage features across
these different levels here.

6.3. BALANCE OF INFORMATION PROCESSING CAPABILITIES NEAR
CRITICALITY

It has been conjectured that the brain may operate in a self-
organized critical state (Beggs and Plenz, 2003), and recent evi-
dence demonstrates that the human brain is at least very close
to criticality, albeit slightly sub-critical (Priesemann et al., 2013a,
2014). This prompts the question of what advantages would be
delivered by operating in such a critical state. From a dynamical
systems perspective, one may suggest that the balance of stabil-
ity (from ordered dynamics) with perturbation spreading (from
chaotic dynamics) in this regime (Langton, 1990) gives rise to
the scale-free correlations and emergent structures that we asso-
ciate with computation in natural systems. From an information
dynamics perspective, one may suggest that the critical regime
represents a balance between capabilities of information stor-
age and information transfer in the system, with too much of
either one decaying the ability for emergent structures to carry out
the complementary function (Langton, 1990; Lizier et al., 2008b,
2011b).

Several studies have upheld this interpretation of maximized
but balanced information processing properties near the critical

regime. In a study of random Boolean networks it was shown that
TE and AIS are in an optimal balance near the critical point (Lizier
et al., 2008b, 2011b). This is echoed by findings for recurrent
neural networks (Boedecker et al., 2012) and for maximization of
transfer entropy in the Ising model (Barnett et al., 2013), and max-
imization of entropy in neural models and recordings (Haldeman
and Beggs, 2005; Shew and Plenz, 2013). From Marr’s perspec-
tive, we see here that at the algorithmic level the optimal balance
of these information processing operations yields the emergent
and scale-free structures associated with the critical regime at the
implementation level. This reflects the ties between Marr’s levels
as described in Section 6.2. These theoretical findings on compu-
tational properties at the critical point are of great relevance to
neuroscience, due to the aforementioned importance of criticality
in this field.

6.4. LOCAL INFORMATION DYNAMICS IN CELLULAR AUTOMATA
Cellular automata (CAs) are discrete dynamical systems with an
array of cells that synchronously update their value as a function
of a fixed number of spatial neighbors cells, using a uniform rule
(Wolfram, 2002). CAs are a classic complex system where, despite
their simplicity, emergent structures arise. These include gliders,
which are coherent structures moving against regular background
domains. These gliders and their interactions have formed the
basis of analysis of cellular automata as canonical examples of
nature-inspired distributed information processing (e.g., in a dis-
tributed “density” classification process to determine whether the
initial state had a majority of “1” or “0” states) (Mitchell, 1998). In
particular (moving), gliders were conjectured to transmit infor-
mation across the CA, static gliders to store information, and their
collisions or interactions to process information in “computing”
new macro-scale dynamics of the CA.

Local transfer entropy, active information storage and separa-
ble information were applied to CAs to produce spatiotemporal
local information dynamics profiles in a series of experiments
(Lizier et al., 2008c, 2010, 2012b; Lizier, 2013, 2014a). The results of
these experiments confirmed the long-held conjectures that glid-
ers are the dominant information transfer entities in CAs, while
blinkers and background domains are the dominant information
storage components, and glider/particle collisions are the dom-
inant information modification events. These results are crucial
in demonstrating the alignment between our qualitative under-
standing of emergent information processing in complex systems
and our new ability to quantify such information processing via
these measures. These insights could only be gained by using local
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information measures, as studying averages alone tells us nothing
about the presence of these spatiotemporal structures.

For our purposes, a crucial step was the extension of this
analysis to a CA rule (known as ψpar), which was evolved to
perform the density classification task outlined above (Lizier,
2013; Lizier et al., 2014), since we may interpret this with Marr’s
levels (Section 2.2). Spatiotemporal profiles of local informa-
tion dynamics for a sample run of this density classification
rule are shown in Figure 7, and may be reproduced using the
DemoFrontiersBitsFromBiology2014.m script in the
demos/octave/CellularAutomata demonstration dis-
tributed with the Java Information Dynamics Toolkit (Lizier,
2014b). In this example, the classification of the density of the
initial CA state is the clear goal of the computation (task level).
At the algorithmic level, our local information dynamics analysis
allowed direct identification of the roles of the emergent struc-
tures arising on the CA after a short initial transient Figure 7. For
example, this analysis revealed markers that CA regions had iden-
tified local majorities of “0” or “1” (see the wholly white or black
regions, or checkerboard patterns indicating uncertainty). These
regions are identified as storing this information in Figure 7B.
The analysis also quantifies the role of several glider types in com-
municating the presence of these local majorities and the strength
of those majorities (see the slow and faster glider structures iden-
tified as information transfer in Figures 7C,D), and the role of
glider collisions resolving competing local majorities.

6.5. INFORMATION CASCADES IN SWARMS AND FLOCKS
Swarming or flocking refers to the collective behavior exhibited
in movement by a group of animals (Lissaman and Shollen-
berger, 1970; Parrish and Edelstein-Keshet, 1999), including the
emergence of patterns and structures such as cascades of pertur-
bations traveling in a wave-like manner, splitting, and reforming
of groups and group avoidance of obstacles. Such behavior is
thought to provide biological advantages, e.g., protection from
predators. Realistic simulation of swarm behavior can be gener-
ated using three simple rules for individuals in the swarm, based
on separation, alignment, and cohesion with others (Reynolds,
1987).

Wang et al. (2012) analyzed the local information storage and
transfer dynamics exhibited in the patterns of motion in a swarm
model, based on time-series of (relative) headings and speeds
of each individual. Most importantly, this analysis quantitatively
revealed the coherent cascades of motion in the swarm as waves
of large, coherent information transfer [as had previously been
conjectured, e.g., see Couzin et al. (2006) and Bikhchandani et al.
(1992)].

These “information cascades” are analogous to the gliders in
CAs (above), and strongly constrain the possible algorithms being
implemented in the swarm here. When viewed using Marr’s levels
they have a similar algorithmic role of carrying information coher-
ently and efficiently across the swarm, while the implementation
of the information here is simply in the relative heading and speed
of the individuals. The goal of the computation (task level) for the
swarm depends on the current environment, but may be to avoid
predators, or efficiently transport the whole group to nesting or
food sites.
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FIGURE 7 | Local information dynamics in rule ψpar. Local information
dynamics in rule ψpar with r = 3 for the raw values displayed in (A) (black for
“1,” white for “0”). Seventy-five time steps are displayed for 75 cells,
starting from an initial random state. Notice that a short initial transient
occurs after that the emergent structures arise. For the spatiotemporal
information dynamics plots (B–D), we use a history length k =10
(therefore, the measures are undefined and not plotted for n≤10), and all
units are in bits. We have (B) Local active information storage a(i, n, k =10);
(C) Local apparent or pairwise transfer entropy one cell to the left t (i,
j =−1, n, k =10); and (D) Local complete transfer entropy one cell to the
left tc(i, j =−1, n, k =10). After Lizier et al. (2014).

6.6. TRANSFER ENTROPY GUIDING SELF-ORGANIZATION IN A
SNAKEBOT

Lizier et al. (2008a) inverted the usual use of transfer entropy,
applying it for the first time as a fitness function in the evolution
of adaptive behavior, as an example of guided self-organization
(Prokopenko, 2009, 2014). This experiment utilized a snakebot –
a snake-like robot with separately controlled modules along its
body, whose individual actuation was evolved via genetic pro-
graming to maximize transfer entropy between adjacent modules.
The actual motion of the snake emerged from the interaction
between the modules and their environment. While the approach
did not result in a particularly fast-moving snake (as had been
hypothesized), it did result in coherent traveling information
waves along the snake, which were revealed only by local transfer
entropy.

These coherent information waves are akin to gliders in CAs
and cascades in swarms (above), suggesting that such waves may
emerge as a resonant mode in evolution for information flow. This
may be because they are robust and optimal for coherent commu-
nication over long distances, and may be simple to construct via
evolutionary steps. Again, we may use Marr’s levels here to identify
the goal of the computation (task level) as to transfer information
between the snake’s modules here (perhaps information about the
terrain encountered). At the algorithmic level, the coherent waves
carry this information efficiently along the snake’s whole body,

Frontiers in Robotics and AI | Computational Intelligence March 2015 | Volume 2 | Article 5 | 20

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive


Wibral et al. Bits from brains

while the implementation is simply in the attempted actuation
of the modules on joints and their interaction (tempered by the
environment).

7. CONCLUSION AND OUTLOOK
Neural systems perform acts of information processing in the
form of distributed (biological) computation, and many of the
more complex computations and emergent information process-
ing capabilities remain mysterious to date. Information theory can
help to advance our understanding in two ways.

On the one hand, neural information processing can be quan-
titatively partitioned into its component processes of information
storage, transfer, and modification using information-theoretic
tools (Section 5). These observations allow us to derive constraints
on possible algorithms served by the observed neural dynamics.
That is to say, these measures of how information is processed allow
us to narrow in on the algorithm(s) being implemented in the
neural system. Importantly, this can be done without necessarily
understanding the underlying causal structure precisely.

On the other hand, the representations that these algorithms
operate on, can be guessed by analyzing the mutual information
between human-understandable descriptions of relevant concepts
and quantities in our experiments and indices of neural activ-
ity (Section 3). This helps to identify which parts of the real
world neural systems care for. However, care must be taken when
asking such questions about neural codes or representations, as
the separation of how neurons code uniquely, redundantly, and
synergistically has not been solved completely to date (Section 4).

Taken together, the knowledge about representations and pos-
sible algorithms describes the operational principles of neural
systems at Marr’s algorithmic level. Such information-theoretic
insights may hint at solutions for solving ill-defined real world
problems that biologically inspired computing systems have to
face with their constrained resources.
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