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Few phenomena are more ubiquitous than traffic in urban scenes, and few are more
significant economically, socially, or environmentally. Many virtual-reality applications and
systems, including virtual globes and immersive multi-player worlds that are often set in
a large-scale modern or futuristic setting, feature traffic systems. Virtual-reality models
can also aid in addressing the challenges of real-world traffic – the ever-present gridlock
and congestion in cities worldwide: traffic engineers and planners can diagnose system
instabilities and explore control strategies in virtual worlds reconstructed from available
sensor data. To create these VR systems with traffic mimicking real-world conditions,
road network models need to be created and represented. Traffic needs to be realistically
and efficiently simulated. To analyze real-world scenarios, the traffic conditions need to
be estimated and reconstructed. To create virtual scenarios, such as simulated cities,
traffic needs to be intelligently and efficiently routed. These applications all require research
advances in road network capture and modeling, intelligent traffic routing and simulation,
and traffic state estimation and reconstruction. New systems need to be designed that
combine these components with visual and analytical infrastructure. In this paper, we
present some state-of-the-art approaches for these areas as well as our vision for unified
virtual-reality traffic systems that combine and integrate them to achieve virtualized traffic.

Keywords: virtualized traffic, road networks, traffic simulation, traffic routing, urban scenes

1. Introduction

In both the physical world and many virtual cities, traffic is a ubiquitous phenomenon. Modeling
these systems realistically and efficiently is an ongoing challenge that can lead to more immersive
and more engaging virtual urban environments, as well as enable visual analysis and control to
significantly improve real-world outcomes.

Typical urban environments are rife with traffic, which has significant implications both econom-
ically and socially around the world. Systematic failings are regular events; gridlock and traffic jams
cost 2.9 billion gallons of wasted fuel and cost over 121 billion dollars every year in the U.S. alone,
as discussed in Schrank et al. (2012). A major drive to solve these challenges entails using the road
network more efficiently via Intelligent Traffic Systems, combining sensing, communications, and
traffic controls in a managed system. Virtual-reality models have a key role to play in (1) visualizing
real-world conditions, (2) visualizing potential alternative control strategies, (3) communicating
conditions and proposals to the public, and (4) providing analysts a real-world context and interface.

As self-driving and other cars become more prevalent, a shared model of the road network could
significantly improve their performance. Fleets of autonomous vehicles roving the road network
can build a map, including up-to-date details about road blockages and closures. Such a model
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can be used by the vehicles to plan more effectively than would be
possible using only real-time sensor data or static road network
maps. Rendered views of themodel can let controllers and analysts
validate the maps.

For the virtual world, research efforts have focused on creating,
representing, and visualizing “digital urbanscapes” [e.g., Pausch
et al. (1992), Cremer et al. (1997), and Donikian et al. (1999)].
These efforts have yielded significant results on a number of
fronts, including satellite and aerial imagery melded into virtual
globes, the creation of 3D models of cities, real-time rendered
worlds, and new procedural modeling techniques. Google Earth
and Microsoft Virtual Earth, which feature imagery of most cities
and 3D models, are both products of this success. The creation
of 3D city models from sensor data has been a focus area as has
work on streaming imagery and geometry for real-time rendering
of massive models on everything from high-end workstations to
mobile devices.

Despite the impressive progress that has been made, these
efforts focused only on static models of the world, ignoring
dynamic elements such as traffic. The evolution of flight and driv-
ing simulators from single-user programs to vast virtual worlds
magnifies the demand for a higher level of detail and for dynamic
elements. The addition of traffic to these worlds, especially driven
by real-time sensor data, would considerably enhance the realism
and immersion of these worlds. For other applications, such as
video games set in modern cities, city planning programs, and
traffic simulators, the need for traffic is even more clear. Further,
these traffic systems need to be realistic and need to behave
intelligently, often while operating within a tight computational
budget. There are existing systems for traffic simulation, [e.g.,
MITSIM (2011) and SUMO (2009)] and ongoing active research
on newmethodologies [see Delling et al. (2009) for details]. There
has also beenwork on incorporating realistic traffic in virtual envi-
ronments, such as Plumert et al. (2004), Thomson et al. (2005),
andWang et al. (2005), but these have focused on small scenarios:
single roads or intersections, predominantly.

These applications demand advancements in modeling and
simulating virtualized traffic, i.e., the creation of virtual traffic flows
directly from real-world data. In this paper, we present a vision
based on the synthesis of our recent work to construct virtualized
traffic at metropolitan scales for VR applications. First, for the
creation and representation of virtual road networks, we review
related approaches and suggest a direction forward for virtual
models suitable for the above applications, as discussed above.Our
approach builds off of approaches to create simulation-enabled
representations from GIS road network models, which are now
publicly available in vast databases. This step involves building
formal models atop of the noisy, human-authored data before
creating a geometric representation. These models can also serve
as a prior model to be fused with traffic sensor data. Second, to
simulate virtualized traffic, we present approaches for creating
hybrid traffic simulators that allow for level-of-detail simulations,
enabling low-cost simulation of background traffic that can be
switched to high-fidelity traffic simulation when necessary (see
Section 2). Third, to estimate and communicate traffic conditions,
we present a method that filters traffic sensor data, discrete in
both space and time, to recreate a continuous estimate of traffic

conditions that can be used to create visualizations or predict
future traffic patterns, as described in Section 3. Fourth, to enable
low-cost intelligent routing for city-scale navigation, we present
an approach that manages traffic flows via “participatory traffic
routing,” in which the plans for individual vehicles are aggregated
to coordinate their routes, as presented in Section 4. Using this
approach, simulated, virtualized vehicles can react intelligently
to the addition of roads or to anomalous conditions. Finally, in
Section 5, we discuss our approaches and the directions for future
work they point toward.

2. Road Networks

Road networks are an integral part of the traffic system. These
networks can be models of real-world networks, captured using
a variety of techniques, or can be artificial networks, generated to
represent fictitious locales in virtual worlds. In either case, these
networks are geometrically and topologically complex, making
manual creation difficult for large-scale models.

There have been a variety of efforts directed at the problem
of representing, designing, and acquiring road networks. Thomas
and Donikian (2000) presented an early and influential approach
to modeling human environments including streets, buildings,
and free spaces. Themodel is used to create behavioral animations
of pedestrians and vehicles in highly detailed scenarios.Willemsen
et al. (2006) discuss “ribbon networks” for modeling the paths
of agents in a road network, such that kinematic behavior is
preserved. Wang et al. (2002) propose curves parameterized by
their arc-length for motion-control and animation suitable for
description of vehicle motion. Garcia-Dorado et al. (2014) take
the novel approach of letting desired traffic behavior guide the
creation of road networks and cityscapes. While these approaches
do a good job of representing roads, they often do not address
the challenges of creating large-scalemodels, especially fromnoisy
data, and some road networkmodels would not be able to support
efficient simulation due to their geometric representations.

2.1. Levels of Detail
Road networks can be represented by differing levels of detail,
from polygonal graphs to meshes and parameterized curves.
These representations are suitable for different applications and
have different costs associated for creation and use.

2.1.1. Directed Graph
A road network can be represented very simply as a directed
graph for which edges, E, represent segments of roadway, and the
vertices, V, represent intersections between roads and terminus
points. Each edge can have attributes such as length, number of
lanes, and speed limit. Representations such as this are suitable
for online map display and for applications that do not require a
high level of detail, such as simple routing operations.

However, a network such as this would not be suited for any
visual analysis, animation, or highly detailed simulation, as the
geometric details of the road are lost. Some problems would also
be difficult to handle with this representation, such as determin-
ing which roads correspond to a sequence of global-positioning
system (GPS) coordinates.
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2.1.2. Polyline Road Networks
To address these shortcomings, road networks must be embed-
ded in space; typically a 2D planar (or a height-field) is used.
In this representation, the vertices, V i, i.e., intersections, have
coordinates indicating their positions, and each edge e, i.e., each
road segment, has additional vertices, V g

e , that approximate the
geometry of the road. The edges and vertices can have additional
attributes, A, as above.

This is known as the polyline road network representation (Safra
et al., 2006), and it is the most common for road networks and is
used for nearly all geographic-information system (GIS) applica-
tions, including in online mapping and routing applications, and
are widely available in public data sources.

This representation also has its shortcomings. For one, lanes are
not individually represented. This limits the level of detail at which
simulations can be done and limits the level of analysis. Second,
the polyline (or polygonal chain) geometry can be a source of
significant error – real-world cars “cut” corners, following curvi-
linear paths derived from their kinematics (LaValle, 2006). This
is exacerbated at intersections, at which simulated cars could take
unrealistic turns.

This leads into the third shortcoming, that intersections are
modeled as abstract, dimensionless junctions of edges. In reality,
they have a geometric extent and can encompass complicated
topological relationships. A consequence of this representation is
that complex intersections either must be modeled using multiple
vertices or their geometric and topological details must be sacri-
ficed:modeling the intersectionswithmultiple verticesmeans that
vertices no longer solely represent the topological relationships
between roads, but instead also represent the geometric extent and
internal connections of the intersection.

2.1.3. Lanes, Geometry, and Intersections
To address these issues, additional details can be added to the
representation. First, individual lanes can be represented. These
lanes need geometric representations, which can be distinct or can
reference a shared road segment geometry. Second, intersections
also need a more complex representation: their geometric extents
and topological relations need to be captured. This includes not
only a bounding geometry but also internal lanes that connect
the incoming and outgoing lanes. Third, a more detailed repre-
sentation can be used for the various geometries, such as using
a higher number of vertices or using a representation that can
model curves, such as a spline. Finally, a model is needed for each
intersection that defines the behavior of the intersection, whether
the intersection uses a traffic light logic, stop sign, or some other
rules of the road.

2.2. Road Network Creation
The complexity of road network geometry and topology is such
that themanipulation and creation of their representations is com-
putationally costly. Several approaches show promise for the auto-
mated creation of road network models, using GIS data, sensors,
or procedural generation, depending on the desired application.
We consider here only those methods for creating reconstructions
or models of real-world road networks.

2.2.1. Creation from Sensing
Numerous methods for creating GIS road geometry from satellite
imagery have been proposed, many of which are described in
surveys including Park et al. (2002),Mena (2003), and Fortier et al.
(1999). At this point, these methods are limited to creating rela-
tively low detail networks due to the limited resolution of satellite
imagery. Similar methods using aerial imagery from aircraft and
UAVs have the potential to create more detailed road maps, along
with 3D reconstructions of terrain and buildings.

Rich road network models can also be created by car-mounted
sensors, which are becoming increasingly common as cars with
auto-pilot, adaptive cruise-control, and self-driving functions
enter the market. These sensors range from simple GPS devices
to laser and radar sensors capable of mapping the geometry of
the roads. Fleets of vehicles such as this have the potential, in
the future, to use their sensors not only for real-time navigation
but also to collaboratively create full 3Dmodels of road networks.
From the point clouds and reconstructed meshes created by these
methods, logical road structures, as described above, need to be
extracted in order to be used for traffic simulation and animation.

2.2.2. Creation from GIS Data
Digital representations of real-world road networks are com-
monly available in the form of GIS polyline road networks, but
many applications, such asmicroscopic traffic simulation or high-
quality animation, require a higher level of detail and accuracy.
Some higher quality data sets already exist, but are usually limited
to relatively small scale scenarios. Other techniques focus on
extrapolating a detailed road network from the 2D GIS data. The
SUMO traffic simulation system (Krajzewicz et al., 2012), can now
generate networks from GIS input. A recent work (Wang et al.,
2014) demonstrated an approach to creating 3D geometry from
GIS inputs.

InWilkie et al. (2012), we presentedwork on extrapolating plau-
sible, high detail road network models suitable for microscopic
simulation and animation from publicly available geographic-
information system (GIS) data, i.e., polyline roads. The resulting
model is composed of both (1) a graph that captures the topolog-
ical relationships of the lanes that make up the road network and
(2) a geometric representation that captures the shape of the roads
as an optimal sequence of arcs and line segments. The model has
the following features:

• It has sufficient data for high detail traffic simulation, visu-
alization, and analysis, created automatically.

• The geometric road representation is C1 continuous.
• Geometric operations such as calculating the distance

between cars and the position along the road can be com-
puted efficiently.

Our approach creates a polyline road network as described
above. While each GIS data set has some notion of a road (or
“way”), the usage is not necessarily consistent nor is the definition
necessarily useful for further processing.We enforce a formal defi-
nition for a road on the data, easing filtering steps and enabling the
creation of more complex road network features. We then create
geometric representations for the roads and their intersections,
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FIGURE 1 | A selection of road networks generated by our approach. (A) A large-scale highway scene. (B) A highway overpass created by our method for a
3D application. (C) A road network created by our approach and overlaid on a satellite image. (D) Ramps connecting to a divided highway. Wilkie et al. (2012).
Image © IEEE.

including for details such as highway ramps. Some example road
networks generated with this approach can be seen in Figure 1.

In addition, we plan to release the code for creating a 3D road
network directly from GIS data as described in this section at:
http://gamma.cs.unc.edu/RoadLib.

3. Traffic Simulation

Research on traffic simulation began in 1950s and is still an active
field. Helbing (2001) serves as a good entry point to the field,
although there have been many developments since. Doniec et al.
(2008) apply strong behavioral models to agent-based simulation,
as does Lu et al. (2014b). Shen and Jin (2012) discuss urban
agent-based simulation with a focus on smooth lane changes, and
recent work by Lu et al. (2014a) and focuses on preventing agent
collisions in rural environments.

An essential component of traffic systems is all the vehicles –
the cars, trucks, motorcycles, etc. The state of the vehicles is time-
varying (except at very severe traffic jams), and a representation
is needed for both the vehicles that are on the roads at a particular
time and for the boundary conditions of the system.

At any moment of time, we can refer to the state of the traffic
system, which is the specification of all time-varying values, such
as how many cars are on the road; how fast the cars are moving;
and how many cars are entering the system. The representation
of the state is dependent on how the dynamics of the traffic
system are modeled. There are two primary approaches. First,
every vehicle can be represented. This is themost direct approach:
for every car in the real, there is a virtual car in the model with a
known position along a lane, a velocity, and perhaps other param-
eters. This type of representation is referred to as microscopic in
the literature or agent-based if the car models encapsulate some

decision making ability. Second, the vehicles can be represented
as average quantities over some spatial discretization, i.e., a lane
can be divided into cells, and each of these cells can contain
a density value and velocity value that represent the average of
these statistics in the real-world. This type of representation is
called macroscopic. Each state representation has its associated
dynamics definition, i.e., how the cars actuallymove. Like the state
representation, there are two broad categories for these models –
microscopic and macroscopic. For the former, individual vehicles
are simulated, typically by calculating an acceleration from the
state of the vehicle and the vehicle ahead of it along the lane.
For the latter, differential equations define the evolution of the
density and velocity fields over time. In either case, the model of
the dynamics can be embodied in a simulation, which, if given
initial and boundary conditions, can model the evolution of the
traffic dynamics over time.

Real-world road networks span whole continents. Working
with networks, this largewould be impractical, and so some region
of interest must be extracted. Cars pass into and out of this region,
and boundary modeling can be used to control the edge behavior
of the system. “Internal boundaries,” such as large parking lots, can
be similarly represented.

3.1. Animation and Immersion with Continuum
Simulation
We have shown in Sewall et al. (2010) that it is possible to create
realistic animations and immersive simulations using continuum
(or macroscopic) simulations. This requires a continuum simu-
lation model that is well defined for all road network features,
including changes in speed limit, intersections, highway ramps,
etc. In our work, we used the state-of-the-art Aw-Rascle-Zhang
model of traffic dynamics (Aw and Rascle, 2000; Zhang, 2002) on
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FIGURE 2 | An example of our microscopic, hybrid, and macroscopic
traffic simulation performance for over 100k cars on a road network
with 2151km of lanes. Sewall et al. (2011). Image © ACM.

a fully featured road network as described above. This simulation
is visualized using carticles, microscopic cars that are coupled
with the macroscopic simulation. These cars match the traffic
simulation state determined by the continuum simulator as well as
determine when certain events occur within the simulation, such
as lane changes. With this approach, we can easily simulate many
thousands of cars at faster than real time (Sewall et al., 2010).

3.2. Level-of-Detail Simulation
Though the above work adds individual vehicles to the continuum
traffic simulation, there are scenarios in which a more detailed,
microscopic simulation is needed. If a user is interacting with
the traffic, for example, heterogeneous, agent-like vehicles would
create a more realistic and immersive experience. Given the com-
putational cost of microscopic simulation, however, it is typically
not feasible to simulate a large area using this method. To address
this challenge, we proposed an approach in Sewall et al. (2011) in
which subsets of the road network can be simulated using amicro-
scopic simulator while the surrounding region can be simulated
using the computationally cheaper macroscopic simulator.We are
also able to interactively switch between simulation strategies for
a particular region, allowing levels of detail based on, for example,
viewing distance – all in real time. An example of our method’s
performance can be seen in Figure 2.

In addition, we have validated our simulation results by mod-
ifying string-distance metrics, such as LCSS and EDR, to com-
pare agent-based, continuum, and level-of-detail simulation using
NGSIM data. Our level-of-detail simulation has been able to
achieve comparable accuracy while maintaining overall excellent
performance, as shown in Table 1.

3.3. Other Issues
Above, we discussed our prior work on level-of-detail traffic sim-
ulation. However, further work is possible here as microscopic
simulation still may not provide sufficient detail for some applica-
tions. Remember that in these simulation formulations, the space

TABLE 1 | Sequence comparison results (in percentile) along the NGSIM 101
freeway.

Metric Agent-based Continuum Hybrid

Flux LCSS 0.934 0.541 0.820
Flux EDR 0.951 0.685 0.861

The rows show that our hybrid technique, in contrast to agent-based, microscopic traffic
simulation, gives only a modest drop (in the mid to upper 80 percentile) in comparison
scores with the real-world data.

in which the vehicles can move is restricted to a single dimension,
the centerline of the lane. Real-world vehicles do not adhere to this
constraint, and there are many applications that are only possible
if this is relaxed: reconstructions and visualizations of anomalous
traffic conditions, dangerous intersections, or accidents would
require deeper models of vehicle movement. More immersive
interactive traffic also requires these agents as real-world traffic
does not neatly align itself to the lane. However, removing this
constraint creates additional difficulties: allowing 2D movement
of the cars requires providing a motion planning strategy that
accounts for their non-holonomic kinematics, such as LaValle and
Kuffner (2001), which is computationally costly.

4. Traffic Reconstruction

As discussed above, one area of research has focused on the
creation and representation of “digital urbanscapes,” which are
digital representations of cities and, more generally, geographic
areas. Commercial systems are now available that feature such
models, obtained by using reconstruction techniques and aerial
photography or other sensormeasurements. However, thesemod-
els are static: they lack dynamic elements, such as virtual people or
traffic, which would increase their realism and user immersion.

Creating a digital representation of traffic that corresponds to
real-world conditions is called “virtualized traffic” and was first
introduced in van den Berg et al. (2009). To create virtualized
traffic representations, in Wilkie et al. (2013), we proposed an
efficient approach to creating animations thatmatch observations,
which could originate either from real-world traffic sensors or
from a procedural system to allow the creation of controlled traffic
animations. An overview of our approach is shown in Figure 3.
We can see that there are two primary stages: data analysis and
visualization. In the data analysis stage, the traffic state is esti-
mated via a filter and a macroscopic traffic simulation model. In
the visualization stage, a reconstruction of the traffic is created by
an agent-based traffic simulator that is controlled via boundary
conditions and a target velocity field. The created traffic can be
displayed in 3D VR settings and is consistent with the traffic
sensors and/or control points. An example of our reconstruction
method’s accuracy can be seen in Figure 4.

4.1. State Estimation
To create a traffic state estimate, the first part of our approach,
we use sensor measurements (or control points), a macroscopic
traffic simulator, and an Ensemble Kalman Smoother (EnKS),
which was first introduced in Evensen (2003). This approach is
summarized as follows. In Figure 5, we can see that each lane is
discretized into cells, which hold continuum quantities. We create
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FIGURE 3 | A schematic view of the approach Wilkie et al. (2013). Image © ACM.

FIGURE 4 | An example of the accuracy of our reconstruction
approach for the lane-mean velocity for a lane of highway traffic. The
green line is the ground truth, the red line is the state estimate, and the blue
line is the agent-based simulation. Wilkie et al. (2013). Image © ACM.

multiple estimates of the traffic for each lane, which is called the
ensemble. Then, we update each ensemble member to maximize
the likelihood of the given observations, which again come from
either sensor measurements or specified control points. As seen
in Figure 6, this update is a combination of simulation, to evolve
the ensemble member forward in time, and statistics, to align the
member with the observations using a calculated Kalman Gain
matrix. Finally, we use the mean of the ensemble of states for each
timestep as the estimate of the traffic state.

4.2. Reconstruction Animation
Once a state has been estimated for each timestep, we create a traf-
fic animation. To do this, we first create cars for each lane in a way
thatmatches the target density field. This is done by separating the
cars by a distance calculated from the target density. If a higher
variance in the separation distances is desired, additional noise
can be added to the distances or a Poisson process can be used

FIGURE 5 | The initialization of the smoothing process.

to place the vehicles. The vehicles are simulated using a simplified
microscopic traffic simulator. Each car is first advected according
to the target velocity field. Additionally, each vehicle has a velocity
scaling factor, drawn from a bounded normal distribution, to
model the variance in preferred driving speeds. The cars are also
subject to a simplified leader-follower relationship. Other details,
such as merging and boundary conditions, are also determined
by the underlying state estimate. An example of reconstructed
highway traffic, recreated at interactive rates, can be seen in
Figure 7.

4.3. Other Issues
The method described above created detailed animations of a
single highway. For larger scale reconstructions with tighter com-
putational budgets, an alternative approach is needed to creating
the estimate of the traffic state. One such interpolation method
for offline data is the adaptive smoothing method, described in
Treiber and Kesting (2013), which uses a superposition of two
convolution kernels that account for traffic flows. It remains to
be seen how well approaches such as this work in the context of
visual reconstruction and whether observable details in the traffic
are lost.

Another potential area for further research is fitting full
microscopic simulation models to the traffic data. Our work
creates vehicles using relatively simple agents that follow the
estimated velocity field. Full microscopic simulations would
require fitting behavioral parameters based on the data. How-
ever, a larger dataset is required to avoid the solution being
underdetermined.
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FIGURE 6 | An ensemble member is simulated forward in time, then corrected given the sensor measurement. Finally, previous ensembles are updated to
account for the new sensor reading.

FIGURE 7 | On the bottom half of the divided highway is virtualized traffic matching real-world conditions as measured by loop-detector sensors. On
the top half of the highway is virtualized traffic matching user-specified control points. The traffic is animated atop a GIS-derived road network. Wilkie et al. (2013).
Image © ACM.

5. Vehicle Routing

The problem of routing a car through a road network can be
abstractly described as the problem of finding a route through
a graph, preferably a route that optimizes some desired criteria,
which is solvable using Djikstra’s algorithm or an A* algorithm.
However, in their basic form, these approaches do not yield good
performance for large road networks. Optimizations and alterna-
tive approaches that take advantage of the structure of the road
network can yield computational speedups on the order of 105 and
106, as described in Delling et al. (2009). These approaches build
hierarchies of the road network and pre-compute distance tables
and shortest path regions.

In the context of virtual reality, these optimization efforts are
likely less necessary for most applications as the scale of the road
networks is often smaller: few applications need continent-sized
road networks. However, in virtual-reality applications, the
challenge is that every vehicle must be routed, and they need to
be routed in a way that does not artificially create congestion. If
every car is routed naively, the “shortest” routes will be assigned
more traffic than is optimal, creating congestion patterns in some

areas while leaving other parts of the road network underutilized.
This can be especially frustrating in city simulation scenarios
where the drivers are expected to behave intelligently to user road
network designs.

5.1. Self-Aware and Participatory Route Planning
To address this challenge, we proposed in Wilkie et al. (2011) a
method that can route thousands of vehicles in a manner that
minimizes congestion and travel time. By utilizing a method
for estimating each vehicle’s effect on the traffic density field,
our method allows the route planner to take other vehicles into
account without any explicit cooperation.

Our method work considers the cars’ own planned routes as a
source of information. The method routes cars individually, and
then uses the planned routes as estimates for the cars’ trajectories
in the near future. These trajectories, in aggregate, form an esti-
mate of the future traffic pattern. Thismethod is composed of (a) a
route planner that computes paths for cars through a time-varying
density field defined on the road network and (b) an update that
modifies the density field according to the calculated route.
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FIGURE 8 | On the left is the velocity field predicted by our routing system for two time intervals. On the right is the “ground truth” velocity field created by
simulating the cars following their assigned routes. We can see qualitative similarities in the congestion patterns in the fields. Wilkie et al. (2014). Image © ACM.

The route planner makes use of a stochastic A*-search algo-
rithm through a time-dependent density field. This field is
composed of Gaussian distributions, discrete in time and space,
defined over the road network graph, G. For each road explored,
the cost of traversing the road is the estimated travel time

τe(t) =
ℓe

fe(ρe(t))
,

which is the length of the road le divided by the estimated velocity,
fe(ρe(t)), which is a function of the estimated density. The function
uses values for the maximum density and maximum velocity to
determine the current velocity, which can be estimated using a
number of models, as discussed in Greenshields et al. (1935) and
Work et al. (2010).

Once a route has been planned, that route is considered an
estimate for where that car will go in the future. For each car
routed, the method adds a marginal amount of density to the road
network along the planned path. For each edge of the route, the
travel time estimates are used to calculate the probability that the
car is on that edge during each time interval, qe(t). This car is
then added to the density field for that road segment, taking into
account the length of the road,

ρe(t) = ρe(t) + qe(t)/ℓe

The above approach uses a relatively simple model of traffic,
however, and ignores certain phenomena, including congestion
and delay caused by traffic lights and the spread of congestion
and grid lock through a road network. In Wilkie et al. (2014), we
presented an extension that models these phenomena in order to
include their costs in the routing calculation. With these models,

our approach is able to predict the evolution of the traffic condi-
tions in the future, allowing vehicles to take those conditions into
account when routing and behave more intelligently. In Figure 8,
for example, we can see the velocity field predicted by our router
as well as the velocity field that occurred when the routes were
simulated by a state-of-the-art microscopic traffic simulator.

5.2. Other Issues
Our approach can create routes for vehicles that simulate intelli-
gent routing behavior and realistic traffic patterns. However, it is
still relatively computationally costly. Years of research has gone
into optimizing planning for static road networks, but it is not
clear which if any of these approaches can be used in tandem with
our approach.

6. Conclusion

Virtual environments, including training simulations, virtual
globes, games set in cities, city simulations, traffic controller sys-
tems, and others, can all benefit from realistic, visual, efficient, and
detailed traffic systems. Creating these systems, however, poses
a number of ongoing research challenges. We have surveyed our
approaches to creating virtual road networks and to simulating,
reconstructing, and routing virtualized traffic using real-world
data. We believe that these methods are among the first steps
toward creating efficient virtualized traffic systems for realistic,
metropolitan-scale virtual environments.

Much work remains to be done to fully achieve this vision,
however. In each of the areas we discussed, there are promising
future directions for research. For road network generation, cur-
rent accuracy is limited to the accuracy and availability of the
road network data and challenges remain in realistic procedural
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road network generation. For microscopic (or agent-based)
traffic simulation, more detailed simulation models can be
developed, such as models that allow more realistic movement
within and between lanes, and better driver behavior mod-
els for intersections and routing are needed to enable more
realistic traffic simulation and avoid deadlock situations in
dense scenarios. For virtualized traffic reconstruction from data,
further research is needed to improve the efficiency of the
approaches and extend them to handle GPS data signals and

complex road networks. For traffic routing, algorithmic improve-
ments are needed to decrease the compute cost, especially in
the context of interactive applications with a large number of
vehicles.
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