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In this paper, we consider the problem of searching for a source that releases particles in
a turbulent medium with searchers having binary sensors and limited space perception.
To this aim, we extend an information-theoretic strategy, namely Mapless, to multiple
searchers and demonstrate its efficiency both in simulation and robotic experiments. The
search time is found to decay as 1/n for n cooperative robots as compared to 1/

√
n

for independent robots so that significant gains in the search time are obtained with
a small number of robots, e.g., n=3. Search efficiency results from pooling sensory
information between robots to improve individual decision-making (three detections on
average per searcher were sufficient to reach the source) while still maintaining the
individual resistivity to various errors during the search. The method is robust to odometry
errors and is thus relevant to robots searching in low-visibility conditions, e.g., firefighter
robots exploring smoky environments.

Keywords: search and rescue, multi-robot systems, swarm robotics, fire searching, firefighter robot

1. Introduction

Searching for a source releasing particles in the environment (e.g., toxic or explosive materials,
pollutants, heat) is particularly challenging given that the chemical transport over long distances is
dominated by turbulence (Csanady, 1973; Shraiman and Siggia, 2000). The sensory landscape is thus
very heterogeneous in concentration and discontinuous in time, and consists of sporadically located
patches traveling with the air flow. The probability of encountering one of these patches decays
exponentially with distance from the source. In such turbulent conditions, odor detections become
intermittent and nomeasurement gradient points toward the source (Csanady, 1973; Humphrey and
Haj-Hariri, 2012; Celani et al., 2014). Methods based on a measurement gradient like extremum
seeking (Zhang et al., 2007; Cochran and Krstic, 2009) are inappropriate in this context because
the searcher has to rely on intermittent binary cues (hits with odor patches) rather than continuous
sampling of concentration values.

Insects can be very efficient at solving this problem. One example is provided by male moths
guided by pheromonal cues and searching for mates located hundreds of meters possibly kilometers
away (Baker et al., 1985; Murlis et al., 1992; Mafra-Neto and Carde, 1994; Vickers, 2000). Another
exceptional search behavior is the one of Melanophila beetles, which detect and track forest fires
from infrared (Schmitz et al., 1997) and olfactory (Schutz et al., 1999) cues because their larvae can
develop only in freshly burnt wood (Didier, 2010; Schmitz and Bousack, 2012). Artificial robots with
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searching ability similar to these insects are expected to be very
useful in many applications (Gelenbe et al., 1997), e.g., to assist
human firefighters in detecting gas leaks and exploring buildings
on fire. Models of search processes are therefore important not
only to biology but also to applications in robotics. As a search
scheme intended to deal with uncertain and dynamic environ-
ments, Infotaxis has been shown to produce trajectories similar
to those of animals, e.g., moths attracted by a sexual pheromone
(Vergassola et al., 2007) or nematodes foraging for food (Calhoun
et al., 2014).

Infotaxis is a probabilistic search method based on infor-
mation theory that relies on a grid map of the environment
(Vergassola et al., 2007). The posterior probability for the source
position is calculated over the entire map and the searcher moves
in the direction that minimizes the entropy of the distribution.
Rather than searching for the source position the searcher moves
to increase information on the position of the source (Barbi-
eri et al., 2011; Atanasov et al., 2015). Furthermore, Infotaxis,
during the Greedy decision process, slightly favors exploration
over exploitation of information. Infotaxis has been successfully
applied to robotic searches (Martin-Moraud and Martinez, 2010),
a prerequisite being that the robot has full access to its position
in the environment. Yet, for robots engaged in search missions,
space perception can be limited. Think about a firefighter robot
searching for fire indoor. As revealed by experiments in this paper,
the presence of smoke prevents the use of cameras and laser
range finders for localization. In such low-visibility conditions,
Infotaxis is not easily applicable as the robot is unable to correct its
odometry errors from external cues. Yet, adaptation of Infotaxis to
such conditions is not excluded. Another approach, introduced in
Masson (2013) as Mapless, allows searching in complex varying
environment with limited space perception, possibly corrupted or
incomplete information and limited memory. Mapless is based
on a standardized projection of the probability map of the source
location to remove space perception and on the evaluation of a
free energy, whose minimization along the path gives direction to
the searcher. Free-energy minimization allows reinforcement of
the maximum likelihood decision.

Hereafter, following a similar procedure as the one shown in
Masson et al. (2009), we extend Mapless to multiple searchers
(swarm Mapless). Whereas decision-making is performed indi-
vidually by each searcher, the probability of the source location
and hence the free energy are jointly estimated by the swarm.
The main difference with related works is that the information
metric is approximated analytically in swarm Mapless rather than
estimated from a grid map or by using (computationally expen-
sive) Monte Carlo sampling techniques in Cortez et al. (2009),
Barbieri et al. (2011), Dames and Kumar (2013), and Atanasov
et al. (2015). We present here a successful solution with a real
robotic system [search for a heat source in a turbulent medium
as in Martin-Moraud and Martinez (2010) and Masson (2013)].
This framework is employed as a testbed to assert complete and
rigorous evaluations of Mapless and swarm Mapless under real
conditions. The paper is organized as follows. Infotaxis, Map-
less, and swarm Mapless are detailed in the Section “Materi-
als and Methods.” The performance in terms of effectiveness
and robustness are assessed, both in simulations and robotic

experiments, in the Section “Results”. Our work is discussed in the
final section.

2. Materials and Methods

2.1. Infotaxis
Infotaxis was introduced in Vergassola et al. (2007) for search-
ing in complex environments with sparse detections. It is built
around two core components: Bayesian inference of the position
of the source based on detection history and Greedy decision
making based on entropy minimization. The former depends
on the modeling of the local environment. An efficient approx-
imation describes the propagation of the cues in the turbu-
lent environment by the advection–diffusion equation (shown in
Section “Appendix” for sake of completion). The properties of
the medium are encoded by a rate function R(⃗r|r⃗0) with r⃗0 the
position of the source and r⃗ the position of the searcher. Note
that a correlation length λ is associated with R(⃗r|r⃗0) and can be
interpreted as the mean distance traveled by the particles before
they vanish. The detection process is approximated by a Poisson
process, leading to a probability of k detections during time δt
ρk =

(R(⃗r|r⃗0)δt)k exp(−R(⃗r|r⃗0)δt)
k! . After following a path Θt, the

posterior distribution of the position of the source at time t reads:

Pt(⃗r0|Θt) =
exp(−

∫ t
0 R(rt′ |r0)dt′)

∏H
i=1 R(ri|r0)δt

Zt
(1)

with H the total number of detections experienced in Θt and
Zt =

∫
exp(−

∫ t
0 R(r⃗t′ |r⃗0)dt′)

∏H
i=1 R(r⃗i|r⃗0)δtdr⃗0 the normal-

ization constant. The detection process being approximated as
Markovian, update of the posterior distribution Pt+dt(⃗r0 |Θt) is
directly obtained from Pt(⃗r0 |Θt) by multiplying with the proba-
bility of detection or no-detection experienced during δt.

Moving toward the most probable source location, i.e., a maxi-
mum likelihood or maximum a posteriori strategy, systematically
fails far from the source because of the misrepresentation of the
environment by Pt(⃗r0 |Θt). Infotaxis, searches for information
about the position of the source rather than directly trying to reach
the source. Upon moving to a neighboring position, r⃗t+dt, the
searcher minimizes the expected variation of entropy of Pt(⃗r0 |Θt)

∆St(⃗rt → r⃗t+dt|Θt) = Pt(⃗rt+dt|Θt) [0 − St]

+ [1 − Pt(⃗rt+dt|Θt)](
∑
i=0

ρi∆S
i
t)

(2)

with St = −
∫
Pt(⃗r0 |Θt) log Pt(⃗r0 |Θt)d r⃗0 is the entropy of the

posterior field computed at time t. The first term encodes the
probability of finding the source and promotes maximum like-
lihood decision and the second, which encodes the probability
of not finding the source in r⃗t+dt, promotes exploration of the
environment. In the rest of the paper, the summation will be
reduced to zero and one detection as the probability of having
more detections during δt is usually extremely low.

2.2. Mapless
A prerequisite for the evaluation of equation (2) based on
the probability map [equation (1)] is that the agent perceives
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space, i.e., the agent is able to (i) build a spatial map of the
environment, (ii) locate itself on the map, and (iii) go pur-
posefully to predefined locations. These three tasks have been
extensively studied in robotics and are known under the term
SLAM for simultaneously localization and mapping (Thrun et al.,
2005). In the case of fire searching, however, precise localization
of the robot and map building operations would be difficult
to achieve because infrared light and smoke particles emitted
from burning objects prevents the use of cameras and laser
range finders. In such low-visibility conditions, it is safer to
conduct the search based on a coarse estimation of the robot
position.

Mapless was introduced in Masson (2013) as a method for
searching with limited space perception, for handling unreliable
cues and controlling actively the exploration/exploitation balance.
To remove space perception, the posterior distribution Pt(⃗r0 |Θt)

is projected into a standardized form. The posterior distribution,
that later will not directly used by the agent to make direction
decision, reads

PMt (⃗r0|Θt) =

e−
| r⃗0 − r⃗G |2

λG
2

(
1 − 1

NM

Nt∑
j=Nt−NM+1

e−
| r⃗0 − r⃗j |2

λu
2

)
ZM
t

,

(3)

with r⃗G is the damped center of mass of the detections, r⃗js repre-
sent the perceived (by the agent) positions of the agent when there
was no detection, λG is the scale of the Gaussian approximating
the detection term, λu is the scale of the Gaussian approximating
the non-detection term and ZM

t is a normalization constant. This
projection is based on the separation of the detection and non-
detection terms, approximating the former by itsmain component
and the latter by a mean field approximation [Supplementary in
Masson (2013)]. This projection allows an essential component of
the posterior distribution of the source position to be encoded:
the local decrease of the probability around the visited locations
where no detections have been experienced. Whereas Nt is the
total number of visited positions in Θt, only the last NM posi-
tions are recalled to compute the posterior. This prevents storing
indefinitely unreliable cues or positioning errors. The parameters
λu and λG are related to the correlation length λ of the source
but are not necessarily the same as the non-detection term is
made of a larger number of events and is less localized than the
detection term.

Instead of the entropy in Infotaxis (Vergassola et al., 2007),
a free-energy formulation is used in Mapless. The free energy
is written as Ft =Wt +TSt with T an internal (temperature)
parameter that controls the balance between the entropy St =

−
∫
PMt (⃗r0 |Θt) log PMt (⃗r0 |Θt)d r⃗0 and the “working energy”Wt =∫

A PMt (⃗r0 |Θt)d r⃗0 where the integration domain A is defined as
| r⃗0 − r⃗G | ≤ λG/2 (Masson, 2013). Note that free energy has been
previously used as a principle for linking action to perception
(Friston et al., 2010, 2011) and that various functional can be
used for the “work term.” In Mapless, the free-energy formulation
allows an active control between exploration and exploitation
through the internal temperature T, see Masson (2013) for the
details. When the agent moves from position r⃗t at time t to a

neighboring position, r⃗t+dt, the expected variation in the free-
energy reads

∆Ft(⃗rt → r⃗t+dt|Θt) = PMt (⃗rt+dt|Θt) (1 − Ft)

+ ([1 − PMt (⃗rt+dt|Θt)](ρ0∆F0
t + ρ1∆F1

t )
(4)

where the summation limitation has been applied. The first and
second terms on the right-hand side correspond to finding andnot
finding the source at the new position, respectively. If the source
is found at the next step, the free energy Ft+ dt becomes one. If the
source is not found, the agent may or may not detect leading to
different variations in the free energy, namely ∆F1

t and ∆F0
t .

An important characteristics of approximating the posterior Pt
[equation (1)] by PMt [equation (3)] is that the free energy Ft can
be computed analytically without the computation of the approx-
imated posterior distribution PMt (⃗r0 |Θt). All terms involved in
the computation of equation (4) are described in Masson (2013).
Thus, unlike Infotaxis, Mapless does not require the searcher
to build a probability map and locate itself precisely. Efficient
searches, far from the source with significant odometry errors are
demonstrated in Masson (2013).

2.3. Swarm Mapless
Interest in swarms of agents stems from the expected increase
in task efficiency by having multiple agents performing it. As
multiple agents can explore an environment more efficiently as a
group than as individuals (Berdahl et al., 2013), we propose here
an extension of Mapless to collective search. The best performing
strategy would be the full collaboration between the agents; that
is, the free energy is computed from the shared observations and
decision-making is obtained by evaluating the effects of moving
the whole swam. Yet, the number of possible actions for n agents
on a square 2D grid is 5n so that performing full collaboration
in real time is difficult in practice when n> 3. An alternative
approach is that the agents share information during their path
(i.e., detection and non-detection events) but decision-making is
performed individually. Namely, the s-th agent chooses the move
r⃗ st → r⃗ st+dt that minimizes

∆F s
t (⃗r st → r⃗ st+dt|Θt) = PM

t (⃗r st+dt|Θt) [1 − Ft]
+ (1 − PM

t (⃗r st+dt|Θt))[ρ0∆F s,0
t + ρ1∆F s,1

t ]
(5)

where Θt = {Θ1
t , Θ2

t , . . . , Θs
t, . . .} denotes the search history for

the whole swarm while Θs
t is the self-generated path of the s-th

agent. It is worth remembering that the robots share their own
measurements of their paths and detection history, thus they share
paths with odometry errors and possibly anomalous detection,
yet as it will be shown Mapless and Swarm Mapless are resistive
to these errors. This strategy is referred to swarm Mapless in the
following.

3. Results

3.1. Swarm Mapless in Simulation: Three
Searchers is Sufficient
Before considering robotic implementations, we first assess the
performance of swarm Mapless using numerical simulations in
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A B

C D

E F

FIGURE 1 | Efficiency of swarm Mapless in simulation. (A) Dependency
of the search time ts on the number of Mapless searchers n. Simulations were
performed in C on Ubuntu Linux (2.2GHz). Sensory information is binary
(detection/no detection). The environmental parameters used in the
simulations are (in arbitrary units) the emission rate at the source J= 1,
diffusivity D= 1, lifetime of particles τ = 400, and wind speed V= 0 leading to
a correlation length λ =20. The other Mapless parameters to compute the
free energy are the scaling factors λu = 0.5λ and λG = λ for the detection and
non-detection events, the number NM = 750 of visited locations stored in
memory and the internal temperature T= 1. Blue, red, and black plots are in
log–log scale for independent searchers, swarm Mapless, and fully
collaborative searchers, respectively. Points are means±SEM estimated over
2000 simulations. Solid lines represent power law fits ts ∝ nβ . The exponent
β is −0.9 for swarm Mapless, −0.95 for fully collaborative searchers and
−0.5 for independent searchers so that the search time decays as 1/n for
swarm Mapless and 1/

√
n for independent searchers. (B–D) Examples of

swarm Mapless trajectory with three searchers. The source is located at (21,
41). The agent starting points are (16, 20), (21, 21), and (26, 21).
(E) Dependency of the search time ts on the number of independent random
walkers n. Same conditions as in (A). (F) Example of search path with three
independent random walkers. Same conditions as in (B).

terms of effectiveness (search time) and robustness (with respect
to changes in environmental conditions).

The dependency of the search time ts on the number of
searchers n is shown in Figure 1A for swarmMapless as compared
to independent and fully collaborative searchers (see Materials
and Methods). The simulations were performed in C with param-
eters given in figure caption. In all cases, the data are well fitted
by a power law ts ∝ nβ . The exponent β is −0.5 for independent
searchers and −0.9 for swarm Mapless so that ts decays more
rapidly (ts ∝ 1

n ) when the searchers cooperate than when they are
independent (ts ∝ 1√

n ). Interestingly, both β are consistent with
Masson et al. (2009) for swarm of infotactic searchers.

We also note that the gain resulting from full collaboration
between the agents is marginal as compared to swarm Mapless
with individual decision-making (β =−0.95 for full collabora-
tion vs. −0.9 for swarm Mapless). The gain with fully collabo-
rative searchers was more significant in Infotaxis (Masson et al.,

2009) than in Mapless. This is the consequence of the reduced
representation of the environment in Mapless, the full collabora-
tion between searchers does not improve much Greedy decision
processes based on limited information. Yet, the implementation
cost of a full collaboration is much higher. Due to the power law,
the percentage decrease in the search time for swarm Mapless is
70% from n= 1 to 3 searchers and 20% from n= 3 to 5, so that
swarm Mapless reveals impressive gains in the search time even
with a limited number of searchers (n= 3).

Some examples of swarm Mapless trajectories obtained with
three searchers are depicted in Figures 1B–D. We note that some
agents originally follow a direction opposite to the one of the
source. These incorrect paths are not surprising given the uncer-
tain belief resulting from the lack of detections at the beginning of
the search. Yet, the direction toward the source emerges as infor-
mation from odor detections is gathered over time. On average,
we found that only three detections per searcher are sufficient to
reach the source, in the search configuration displayed here. It is
worth noting that even if the detections are rare (characteristic
of searches in dilute or desertic conditions), they are neverthe-
less crucial to the search process. To assess their importance, we
performed complementary simulations with random walkers (see
Figures 1E,F). The search time of random walkers also exhibits
a power law decay with n. Yet, it is many orders of magnitude
higher than for swarm Mapless. It is also worth noting that
swarm Mapless, Mapless, and obviously Infotaxis exploit the non-
detections to explore the search space. Swarms Mapless gains a lot
of efficiency from the various parts of the search space where no
detections occurred. From the observations above, it is therefore
sufficient for experimental purposes to consider a swarm of three
searchers to improve effectiveness.

It has been shown that Mapless is resistant to incorrect mod-
eling of the environment (Masson, 2013). Is this robustness pre-
served when the swarm accumulates information on multiple
locations at the same time? To judge it, we tested swarm Mapless
under varying conditions, i.e., isotropic diffusivity D in range
0.4–1.6 au in Figure 2A, lifetime of particles τ in range 100–800 au
in Figure 2B, λG/λ and λu/λ in range 0.1–1 in Figure 2C. In
each condition, we observe that the variability (as given by the SD
of the search time) decreases with the number of searchers (see
Figure 2D).Moreover, the gain in robustness inmore pronounced
for n≤ 3 than for n> 3.

3.2. Swarm Mapless in Robotic Experiments:
Resistance to Odometry Errors
Promising results were achieved with Swarm Mapless in simula-
tion (Figures 1 and 2). Nevertheless, experimental implementa-
tions are necessary to ensure that swarm Mapless can be used in
real turbulent environments and can handle the numerous errors
encountered.We present hereafter a successful solution for imple-
menting swarm Mapless within a robotic system, and we assess
its performance in the real environment. All experiments were
performedwith Khepera III robots (K-Team SA, Switzerland) and
several modules: Korebot II (embedded ARM processor running
Linux 2.6 at 600MHz), KoreIOLE (acquisition board with 12 ana-
log inputs in the 0–5V range with 5mV resolution), and KoreWifi
(board allowing Wifi communication with the robot).
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A B

C

D

FIGURE 2 | Robustness of swarm Mapless in simulation (n=number of
searchers). (A) Swarm Mapless considers isotropic diffusivity D that is different
from the one of the source (D= 1 au). Points represent the search time ts as
means±SEM estimated over 2000 simulations. Different colors are associated
with the number of searchers as indicated in the figure. Within- and
between-group differences are significant (Kruskal–Wallis test). Asterisks
indicate significant differences (*p<0.05, ***p<0.001). (B) Swarm Mapless

considers a lifetime of particles τ that is different from the one of the source
(τ = 400 au). Same conditions as in (A). (C) Swarm Mapless considers scaling
factors λu and λG for detection and non-detection events that are different from
the correlation length λ of the source. (D) SD of the search time SD (ts) versus
the number of Mapless searchers n under the three conditions: mismatch in
diffusivity D [as in (A)], mismatch in lifetime of particles τ [as in (B)] and
mismatch in correlation length λ [as in (C)].

As a proof of concept for fire searching, we consider the search
for a heat source with robots equipped with temperature sensors.
If the heat source is set to only few degrees above room tempera-
ture, the setup is also valid to model olfactory cue searches as in
Masson (2013). The environmental conditions inside a building

on fire can rapidly deterioratemaking visual navigation difficult in
the presence of smoke. To assess whether precise localization can
still be obtained in low visibility conditions, we equipped a robot
with a rangefinder module (Figure 3A). The rangefinder sensor
is a LIDAR (URG-04LX, Hokuyo) that determines the distance
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A B

FIGURE 3 | Limited space perception with smoke. (A) LIDAR
sensor (±120° detection range) mounted on a Khepera robot.
(B) Experiments with the robot placed in a closed chamber (dashed
rectangle). Black and colored points are measurements obtained during

100 scans without and with smoke, respectively. Artificial smoke is
produced by a smoke machine (VDL400SM, Velleman). Higher levels of
smoke (from moderate to heavy) are obtained by running the machine
for longer time periods.

A B

FIGURE 4 | Odometry errors. (A) Motion capture device used to
characterize the odometry error in our robot. Six infrared cameras (Qualisys
Oqus 7, 12MP/300Hz) allow robot tracking with millimeter precision.
(B) Typical example of systematic and non-systematic errors. The trajectory
in black is estimated from integration of the robot velocity sensed from its

wheels. The trajectory in red is the ground truth measured by the motion
capture device (A). The systematic error resulting from discrete-time
integration and/or incorrect parameters in robot kinematics is small. The
non-systematic error resulting from wheel slippage (here occurring during
the re-orientation phases of the robot) is large.

to objects from the time-of-flight of a rotating laser. In smoky
conditions, the LIDAR is not able to detect the boundaries of
the test apparatus (Figure 3B). Instead, the LIDAR returns the
distance to the bottom of the smoke layer so that the measured
distance decreases with the smoke density (from moderate to
heavy in Figure 3B). In agreement with Pascoal et al. (2008) and
Starr and Lattimer (2014), this result indicates that a LIDARwould
not be capable of providing accurate range finding information in
smoky environments.

An alternative method for robot localization is to use odom-
etry, which is path integration of the robot velocity sensed from
its wheels. To assess the localization error, we compared robot
trajectories obtained from the odometry tracking module of the
Khepera III Toolbox (http://en.wikibooks.org/wiki/Khepera_III_
Toolbox) to the ground truth provided by amotion capture device
(Figure 4A). An example of trajectory is shown in Figure 4B. The
systematic error, resulting from discrete-time integration and/or
incorrect parameters in robot kinematics, appeared to be small.

Yet, we noticed the occurrence of large non-systematic errors
due to wheel slippage during the re-orientation phases of the
robot (Figure 4B). Although similar re-orientation phases are
used in the experiments below due to step-like movements, we
tested swarm Mapless without correcting for odometry errors.
Experimental Mapless searches shown in Masson (2013) were
very resistant to strong odometry errors, yet accumulating infor-
mation from multiple searchers is also accumulating errors from
all searchers. Thus, it is important to question odometry errors
in the context of swarm Mapless experimental searches. In some
ways, it allows us to assess the robustness of the algorithm.

In swarm Mapless experiments, we consider the search for a
heat source with three robots equipped with temperature sensors
(Figure 5A). The temperature signal was amplified and filtered
with a custom-made board previously designed for biological
signals (Martinez et al., 2014). The search was performed in an
arena of 6m long by 4m large, resulting in a grid-based model of
the environment of 30× 20 steps (Figure 5B). At every step, each
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A B

FIGURE 5 | Robotic experiments (proof of concept for fire searching).
(A) Temperature sensor (Thermocouple probe TKA01-5 type K,
T.M.Electronics) mounted on a Khepera robot. Preprocessing (amplification
×5000, sampling frequency 1KHz) is performed via a custom-made board.
(B) The search space is 6m long by 4m large, resulting in a grid-based model
of the environment of 30×20 steps. In order to obtain statistically
comparable results, all trials reported hereafter are done with the three robots
initially located at (x, y)= (5, 6), (10, 6), and (15, 6) and the heat source (S) at
(10,24). The heat source had an internal fan with 90° oscillation producing a
wind oriented downward with fluctuations around the y axis, as indicated by
the arrows.

robot chooses the best strategy in terms of free-energy minimiza-
tion among the five possible actions, i.e., making a move to one
of the four neighboring steps or staying still. Linear and angular
speeds were set to 10 cm/s and 90°/s as they offer a good compro-
mise between minimizing the errors in the step-like movements
and being fast enough (each individual step, including translation
and rotation, is performed in ≈3 s). To allow searching with
obstacles (e.g., the boundaries delimiting the search space) and
prevent the robots running into each other, we added to swarm
Mapless a Braitenberg avoidance scheme based on the readings of
the Khepera proximity sensors. An example of collective search
with three robots is shown in Figure 6.

The heat source had an internal fan with 90° oscillation aiming
at increasing wind fluctuations and thereby the turbulence level.
This dispersion model was also used in Masson (2013). The air
conditioningwas turned off while other instruments and furniture
in the room were placed as usual. This setup led to a complex
temperature pattern and the heat source was sufficiently hot for
the robots to detect local temperature variations at several meters
from the source. Figure 7 provides two examples of the signal
measured by the robot while moving straight toward the heat
source (Figure 7A) andwithout the source (Figure 7B). Detection
events are triggered each time the temperature signal exceeds an
adaptive threshold (see figure caption for details). The statistics of
detections obtained by repeating the experiment 12 times is shown
in Figure 7 with and without the source. With the heat source
(Figure 7C), the detection rate decays exponentially with the
source distance, in well agreement with the expression of R(⃗r, r0)
derived in the Section “Appendix” with a correlation length of
λ = 20 au. Without the source (Figure 7D), the false alarm rate is
low (≈1 false positive every 12 s) and independent of the source
distance.

To test the effectiveness of robot swarm Mapless in the real
environment, we repeated experiments in order to obtain 20 suc-
cessful runs. One successful trial is defined by the fact that one
of the robot in the swarm reaches the source within a reasonable
search time set at 700, 600, and 500 steps for n= 1, 2, and 3 robots,
respectively. Above this time limit, the robots are considered to
be lost. The total number of trials with (1, 2, 3) robots was (21,
22, 24) and (21, 21, 23) for collaborative and independent robots,
respectively. The success rate is high and comparable to what has
been previously obtained with one robot (Masson, 2013). More
interesting is that the power law dependency of the search time
obtained in robotic experiments is similar to the one in simulation
(Figure 8A). Thus, the search time also decays as 1/n for swarm
Mapless with n robots as compared to 1/

√
n for independent

robots. The 1/n decay of swarm Mapless leads to significant
gains in the search time. As an example, the mean duration of
the search is ≈20min with one robot as compared to ≈7min
with three robots. An example of swarm Mapless trajectory is
shown in Figure 8B. It is worth noting that the paths of the 3
robots were reconstructed from an external video camera and
not from the odometry of the robots. The reason is that, during
the search, the robots have enough time to accumulate odometry
errors and their estimated trajectories do not correspond to the
reality. Nevertheless, the efficiency of the search confirms that
swarm Mapless is resistant to odometry errors. Among the useful
properties of swam Mapless, the capability to handle erroneous
information is an important one allowing for efficient applications
in real environments.

4. Discussion

In the case of diffusion (the signal is maximum at source location
and decays with distance from the source), search methods based
on a measurement gradient (Ogren et al., 2004; Zhang et al.,
2007; Cochran and Krstic, 2009) are guaranteed to converge to the
source location. Multiple searchers can similarly be used to locate
the plume front in the case of advection (Li et al., 2014). These
methods are applicable only in the presence of a homogeneous
signal field for which the computation of a measurement gradient
is feasible. Here, we addressed the more challenging problem of
searching in a turbulent medium. In this context, even if a local
gradient could be measured, its direction would not point toward
the source, thus the searcher has to rely on intermittent binary
cues.

To this aim, we considered an information-theoretic method
(Mapless) and its extension to multiple searchers (swarm Map-
less). The search strategy is motivated by the fact that the expected
search time is bounded by the Shannon’s entropy of the probabil-
ity distribution for the source location (Vergassola et al., 2007).
The reduction of entropy in the estimated distribution is thus a
necessary (although not sufficient) condition for effective search-
ing. No pure mathematical proof of the algorithmic convergence
exists for Mapless and swarm Mapless. Yet, simulations in Masson
(2013) show exponentially tailed distributions for the search time
ensuring that the average search time is not driven by the tail
dynamics. Furthermore, there is a non-nul probability of having
no detection during the initial spiraling exploratory behavior, thus
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FIGURE 6 | Swarm searching with three robots. Snapshot of the collective search at particular steps. At each step, the source S is at location (10,24) and wind
blows as indicated by the arrow. At step 0, the three robots start from locations (5,6), (10,6), and (15,6). At step 51, robot #2 found the source.

A B

C D

FIGURE 7 | Detection events with and without source. (A,B) Temporal
evolution of the measured temperature as a function of the source distance
when the robot moves straight toward the source location. The blue curve
represents the local variation of the temperature; that is, the difference between
the current temperature and a running average calculated over a 10-s sliding
window. Red dots correspond to detection events triggered each time the

variation in temperature exceeds 15 digits. (C,D) Histogram of the number of
detections with respect to the source distance d with and without the heat
source (n= 12 trials in each condition). The dashed curve in C corresponds to a
fit with the detection rate R(⃗r, r⃗0) derived in the Section “Appendix” with a
correlation length of λ = 20 au. The dashed line in D corresponds to a mean
false alarm rate of 0.08 detection/s.

not all searches are insured to find the source. Here, we provided
statistical measures of the search time based on more than 105

simulations (Figure 1A) and 102 robotic experiments (Figure 8A).
The power law dependency of the search time on the

number of searchers revealed significant gains even with a

small number of robots (e.g., n= 3). The search time was
found to decay as 1/n for swarm Mapless with n robots as
compared to 1/

√
n for independent Mapless robots. Search

efficiency results from pooling sensory information between
robots to improve individual decision-making (three detections
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A B

FIGURE 8 | Efficiency of swarm Mapless in robotic experiments.
(A) Dependency of the search time (number of steps) on the number of
searchers in log–log scale for robotic experiments (circles) and simulations
(points and power law fits from Figure 1A). Results are means±SEM

estimated over 20 trials for robotic experiments (same parameters as in
Figure 1A). Red and blue plots are for swarm Mapless and independent
searchers, respectively. (B) Example of swarm Mapless trajectory with three
robots.

on average per searcher were sufficient to reach the source). In our
experiments, loss of efficiency due to collision was not a problem
in part because of the small number of robots exploring a relatively
large search space and also because the robots tend to repel each
other when their distance is inferior to the correlation length
of the source, a behavior also observed in infotactic searches
(Masson et al., 2009). Yet, it is worth noting that the repellent effect
between robots is much weaker than for swarm Infotaxis. It is the
consequence of the simplified representation of the environment.

Search methods based on an information gradient, e.g.,
Atanasov et al. (2015), are related to our work. They are guaran-
teed to converge to a local maximum of the mutual information
(and thereby to the source location provided it corresponds to the
local maximum). Yet, it is difficult to judge their efficiency from
the literature as no theoretical estimation or upper bound on the
search time is given – for example, the searcher may spend a lot of
time far from the source where the information gradient is very
small – and no evaluation was conducted under real turbulent
conditions – mere simulations were performed with a homoge-
neous signal field in Atanasov et al. (2015). When considering
robotic implementation, we also note that calculating an informa-
tion metric analytically (as in swarm Mapless) is computationally
more efficient than estimating it via particle filters.

Future work will then concentrate on comparing the perfor-
mance of swarm Mapless (in terms of search time and computa-
tional complexity) to related approaches on real robotic problems
including obstacle-cluttered environments. Another interesting
line of research that may prove beneficial and ought to be con-
sidered as future work is the generalization of swarm Mapless to
cope with multiple sources, as done for example in Masson et al.
(2009) for Infotaxis and in Masson (2013) for Mapless.
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Appendix

A.1 Detection Rate Function in a Simplified
Turbulent Medium
We consider a source located at r⃗0 = (x0, y0) and emitting
“particles” at a rate J. The particles propagate in the environment
with diffusivity D, have a mean lifetime τ and are advected by a
mean current or wind V (the wind blows in the −y direction).
The rate function R(⃗r, r⃗0) models how particles are detected at
location r⃗ = (x, y) given the source at r⃗0. It is obtained by solving
the advection–diffusion equation

D∇2C(⃗r) + V⃗ · ∇C(⃗r)− 1
τC(⃗r)− Jδ(⃗r− r⃗0) = 0 (A1)

where C(⃗r) is the local concentration of particles at r⃗ and δ is the
Dirac delta function. In the three dimensional case, the solution

to equation A1 writes:

C(⃗r, r⃗0) =
J

4πDre
−(y−y0)V

2D e
−r
λ (A2)

where r is the distance from the source and λ =

√
Dτ/(1 + V2τ

4D ) is
the correlation length that can be interpreted as themean distance
traveled by the particles before they vanish. A similar expression
is obtained in the 2D case (Vergassola et al., 2007). Consider-
ing that particles are detected with a spherical sensor of radius
“a,” the detection rate follows the Smoluchowski’s expression
(Smoluchowski, 1917)

R(⃗r, r⃗0) = 4πDa · C(⃗r, r⃗0) (A3)
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