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Sensitivity analysis of compressive
sensing solutions
Liyi Dai*

Computing Sciences Division, U.S. Army Research Office, Research Triangle Park, NC, USA

The compressive sensing framework finds a wide range of applications in signal pro-
cessing, data analysis, and fusion. Within this framework, various methods have been
proposed to find a sparse solution x from a linear measurement model y=Ax. In practice,
the linear model is often an approximation. One basic issue is the robustness of the
solution in the presence of uncertainties. In this paper, we are interested in compressive
sensing solutions under a general form of measurement y= (A+B)x+ v in which B
and v describe modeling and measurement inaccuracies, respectively. We analyze the
sensitivity of solutions to infinitesimal modeling error B or measurement inaccuracy v.
Exact solutions are obtained. Specifically, the existence of sensitivity is established and
the equation governing the sensitivity is obtained. Worst-case sensitivity bounds are
derived. The bounds indicate that sensitivity is linear to measurement inaccuracy due
to the linearity of the measurement model, and roughly proportional to the solution for
modeling error. An approach to sensitivity reduction is subsequently proposed.

Keywords: compressive sensing, sparse solutions, sensitivity analysis, robustness, gradient method

1. Introduction

Consider the following minimization problem from perfect measurements

min ||x||l0 , subject to y = Ax, (1)

where y∈Rm is a vector ofmeasurements, x∈Rn is the vector to be solved,A∈Rm×n is amatrix, and
l0 denotes the l0 norm, i.e., the number of non-zero entries. In the compressive sensing framework,
the number ofmeasurements available is far smaller than the dimension of the solution x, i.e.,m≪ n.
Because the l0 norm is not convex, equation (1) is a combinatorial optimization problem, solving,
which directly is computationally intensive and often prohibitive for problems of practical interest.
Therefore, equation (1) is replaced with the following l1 minimization problem

min ||x||l1 , subject to y = Ax, (2)

where the l1 norm is defined as ||x||l1 =
∑

i |xi|. Note that the matrix A in equations (1) or (2)
is assumed to be known exactly and that y is free from measurement inaccuracy. In practice, the
problem formulation equation (2) is often an approximation because there may exist modeling
errors in A and measurement inaccuracies in y. Therefore, a realistic measurement equation
would be

y = [A+B(θ)]x+ v(θ), (3)
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where θ= [θj]∈Rp is a vector of unknown parameters,
B(θ)∈Rm×n is a matrix describing modeling errors, and
v(θ)∈Rm is measurement noise. One appealing feature of the
measurement form equation (3) is that it can incorporate prior
knowledge of the inaccuracies. For example, we may have

B(θ) =
∑
j

θjBj , v(θ) =
∑
j

θjvj , (4)

where Bj and vj are known matrices or vectors of appropriate
dimensions from prior knowledge. When no prior knowledge is
available, Bj and vj can be chosen as the entry indicator matrix or
vector, e.g., vj has 1 for the j-th entry of v(θ) and 0 everywhere
else. The form equation (3) can be used to describe a wide range
of inaccuracies. In equation (4), θj is the unknown magnitude
of inaccuracy. Another interpretation of the measurement form
equation (3) is that it represents structured uncertainties and
can be used to describe the characteristics of inaccuracies for
different measurements. For example, in multi-spectrum imag-
ing, the noise characteristics are different for different spectrum.
Images taken fromdifferent views or at different timesmay exhibit
different noise characteristics. In the setting of a sensor network,
a particular sensor may produce bad data due to malfunction-
ing, which likely leads to different characteristics of inaccuracy
compared with other functioning sensors. Without loss of gen-
erality, it is assumed that the nominal value of θ is 0, which
corresponds to the case with perfectmodeling andmeasurements.
Under measurement equation (3), the problem equation (2) can
be recast as

min ||x||l1 , subject to y = [A+B(θ)]x+ v(θ). (5)

A natural question is how sensitive is the solution of equa-
tion (5) to small perturbations at θ, without loss of generality,
particularly around θ= 0? Because equation (2) is often only an
approximation for problems of practical interest, such sensitiv-
ity characterizes the robustness of the solution to modeling or
measurement inaccuracies. Among the vast literature on com-
pressive sensing, there has been significant interest in analyzing
the robustness of compressive sensing solutions in the presence of
measurement inaccuracies. One widely adopted approach, such as
those in Candes et al. (2006) and Candes (2008), is to reformulate
the problem equation (2) as

min ||x||l1 , subject to ||y −Ax||l2 ≤ ϵ, (6)

in which ϵ is a tolerable bound of solution inaccuracy, and
the l2 norm is defined as ||x||l2 = (

∑
i x

2
i )

1/2. Existing litera-
ture on equation (6) is extensive. Interested readers are referred
to Donoho (2006), Candes and Wakin (2008), and Eldar and
Kutyniok (2012) for a comprehensive treatment and literature
review. Of particular relevance to this paper, Donoho et al. (2011)
(Donoho and Reevew, 2012) analyzed sensitivity of signal recov-
ery solutions to the relaxation of sparsity under the Least Absolute
Shrinkage and Selection Operator (LASSO) problem formulation
and obtained asymptotic performance bounds in terms of under-
lying parameters in the methods of finding the solutions. Herman

and Strohmer (2010) derived l2 bounds between the solutions of
equations (2) and (5) in terms of perturbation bounds of unknown
B(θ) and v(θ). Only the magnitudes (i.e., ||.||l2 bounds) of B(θ)
and v(θ) are assumed known. Chi et al. (2011) analyzed solution
bounds to modeling errors of unknown B(θ) and v(θ). The goal
was to investigate the effects of basis mismatch since the matrix A
is also known as the basis matrix in compressive sensing. Upper
bounds of solution deviation were obtained. The treatments in
those papers considered both strictly sparse signals and compress-
ible signals, i.e., the ordered entries of the signal vector decay
exponentially fast. The bounds are of the following form Upper
bounds of solutions are obtained (Candes et al., 2006; Candes,
2008)

||x(θ)− x||l2 ≤ C1||x− xk||l1 + C2ϵ,

where C1 and C2 are constants dependent of A, k is the sparsity
of x, and xk is x with all but the k-largest entries set to zero.
Recent publications (Arias-Castro and Eldar, 2011; Davenport
et al., 2012; Tang et al., 2013) analyzed the statistical bounds
when measurement inaccuracies are modeled as Gaussian noises.
A recent publication (Moghadam et al., 2014) after this paper was
written-derived sensitivity bounds while this paper seeks exact
solutions to sensitivity.

The objective of this paper is to analyze the sensitivity of
compressive sensing solutions to perturbations (inaccuracies) in
matrix A and measurement y, i.e., the sensitivity of solutions to
equation (5) to the unknown parameter θ at θ= 0. Such sensi-
tivity characterizes the effects of infinitesimal perturbations in
modeling and measurements. Deterministic problem setting is
adopted, and the true solution is assumed to be k-sparse. The
sensitivity is local at θ= 0. Exact expressions of the sensitivity are
derived. The results of this paper provide complementary insights
regarding the effects of modeling and measurement inaccuracies
on compressive sensing solutions.

The rest of the paper is arranged as the follows: in Section
2, we examine the continuity of the solution x(θ) at θ= 0. In
Section 3, we establish the existence, finiteness, and equation for
the sensitivity of x(θ) at θ= 0. Bounds for worst-case infinitesimal
perturbations are derived in Section 4. An approach to sensitivity
reduction is proposed in Section 5. A numerical example is pro-
vided in Section 6 to illustrate the sensitivity reduction algorithms.
Finally, concluding remarks are provided in Section 7.

In this paper, we use lower case letters to denote column
vectors, upper case letters to denote matrices. For parameterized
vectors, the following notational conventions, if exist, will be
adopted.

∇v(θ) =
[
∂v(θ)
∂θ1

∂v(θ)
∂θ2

...
∂v(θ)
∂θp

]
∈ Rm×p,

∇B(θ) =
[
∂B(θ)
∂θ1

∂B(θ)
∂θ2

...
∂B(θ)
∂θp

]
∈ Rm×np.

Consequently, for a vector x∈Rn independent of θ,

∇[B(θ)x] =
[
∂B(θ)
∂θ1

x
∂B(θ)
∂θ2

x ...
∂B(θ)
∂θp

x
]
∈ Rm×p.

For notational consistence, the l2 norm of a matrix A= [ai,j] is
defined as the Frobenius norm, ||A||l2 = (

∑
i,j a2i,j)

1/2.
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2. Solution Continuity

Let x(θ) denote the solution to equation (5). Without confusion,
we reserve x= x(0) to denote a solution to the unperturbed prob-
lem equation (2). In this section, we examine the continuity of x(θ)
in the neighborhood of θ= 0. A vector x∈Rn is said to be k-sparse,
k≪ n, if it has at most k non-zero entries (Candes et al., 2006). In
the compressive sensing framework, we are interested in k-sparse
solutions.

Without further assumption, the existence of a (sparse) solution
to the optimization problem equation (5) is not sufficient in
guaranteeing the continuity of x(θ) near θ= 0. To illustrate this
issue, consider the following example.

Example 2.1. Consider the problem equation (5) with

y = 1, A =
[
1 1 + θ

]
near θ= 0. Then the minimum ||x||l1 is achieved by

x(θ) =



[
1

0

]
, if θ < 0

α

[
1

0

]
+ (1− α)

[
0

1

]
, for any 0 ≤ α ≤ 1 if θ = 0

[
0

1/(1 + θ)

]
, if θ > 0.

It’s clear that the solution x(θ) is not continuous at θ= 0.
In Example 2.1, the solution is not unique at θ= 0. It turns out

that the uniqueness of the solution is critical in guaranteeing the
continuity of the solution near θ= 0.

One popular approach to finding the solution to equation (5) is
to solve the following LASSO problem.

min
x(θ)

{
1

2
||y − [(A+B(θ))x(θ) + v(θ)]||2l2 + τ ||x(θ)||l1

}
(7)

which τ > 0 is a weighting parameter.
Theorem 2.1. Assume that both B(θ) and v(θ) are continuous

at θ= 0, B(0)= 0, v(0)= 0, AAT is positive definite, and that the
solution x(θ) to equation (7) is unique at θ= 0. Then, x(θ) is
continuous at θ= 0, i.e.,

lim
θ→0

x(θ) = x, (8)

where x is the solution of equation (7) at θ= 0.
Proof. Consider

x̂(θ) = [A+B(θ)][(A+B(θ))(A+B(θ))T ]
−1

(y − v(θ)).

Then x̂(θ) is the Moore–Penrose pseudoinverse solution to
y = [A + B(θ)]x̂(θ) + v(θ). Under the assumptions that AAT

is positive definite and that both B(θ) and v(θ) are continuous at
θ= 0 with B(0)= 0, v(0)= 0, we know that x̂(θ) is continuous and
uniformly bounded in a small neighborhood of θ= 0, i.e., there

exist c> 0, δ > 0 such that ||x̂(θ)||l1 ≤ c for all ||θ||l2 ≤ δ.Because
x(θ) is the optimal solution to equation (7) while x̂(θ)may not, we
have

τ ||x(θ)||l1 ≤ 1

2
||y − [(A+B(θ))x(θ) + v(θ)]||2l2 + τ ||x(θ)||l1

≤ 1

2
||y − [(A+B(θ))x̂(θ)+ v(θ)]||2l2 + τ ||x̂(θ)||l1 = τ ||x̂(θ)||l1 .

or
||x(θ)||l1 ≤ ||x̂(θ)||l1 ≤ c

for all ||θ||l2 ≤ δ. Therefore, x(θ) is uniformly bounded for all
||θ||l2 ≤ δ.

We next prove equation (8) by contradiction. Assume that
equation (8) is not true. Because x(θ) is uniformly bound for all
||θ||l2 ≤ δ, there exists a sequence θi, i= 1, 2,. . ., such that

lim
i→∞

θi = 0 and lim
i→∞

x(θi) = x̃ ̸= x. (9)

Note that x(θ) is the unique solution to equation (7). It must be
that

1

2
||y − [(A+B(θi))x(θi) + v(θi)]||2l2 + τ ||x(θi)||l1

<
1

2
||y − [(A+B(θi))x+ v(θi)]||2l2 + τ ||x||l1 .

By setting i→∞, also noting the continuity of B(θ) and v(θ) at
θ= 0, we obtain

1

2
||y −Ax̃||2l2 + τ ||x̃||l1 ≤ 1

2
||y −Ax||2l2 + τ ||x||l1 .

Therefore, we must have x̃ = x because the solution to equa-
tion (7) at θ= 0 is unique, which contradicts equation (9). The
contradiction establishes equation (8). �

Note that the number of rows of A is far smaller than the
number of columns, m= n. The positive definiteness of AAT is
equivalent to that all measurements y are not redundant, which
is technical and mild. Theorem 2.1 states that the solution to
equation (7) is continuous if it is unique at θ= 0. Similarly, we
can establish the continuity of the solution to equation (5). The
proof is similar to that for Theorem 2.1 and omitted to avoid
repetitiveness.

Theorem 2.2. Assume that both B(θ) and v(θ) are continuous
at θ= 0, B(0)= 0, v(0)= 0, AAT is positive definite, and that the
solution x(θ) to equation (5) is unique at θ= 0. Then x(θ) is
continuous at θ= 0, i.e.,

lim
θ→0

x(θ) = x. (10)

We introduce the following concept, which is a one-sided relax-
ation of the Restricted Isometry Property (RIP) (Candes et al.,
2006).

Definition 2.1. A matrix A∈Rm×n is said to be k-sparse posi-
tive definite if there exists a constant c> 0 such that

||Ax||2l2 ≥ c||x||2l2 (11)

for any k-sparse vector x∈Rn.
The 2k-sparse positive definiteness is a sufficient condition for

guaranteeing the uniqueness of the optimal solution to equation
(5) (Candes, 2008).
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3. Solution Sensitivity

In this section, we are interested in the gradient information

∇x(θ) =
[
∂x(θ)
∂θ1

∂x(θ)
∂θ2

...
∂x(θ)
∂θp

]
(12)

which, if exists, is an n× p matrix in Rn×p.
The next theorem establishes the existence of the gradient

equation (12).
Theorem 3.1. Consider problem equation (5). Assume that

both B(θ) and v(θ) are differentiable at θ= 0, B(0)= 0, v(0)= 0,
and that there exists a δ > 0 such that A is 3k-sparse positive
definite for all ||θ||l2 ≤ δ.Then at θ= 0, the gradient▽x(θ) exists,
is finite, and satisfies

AZ + EX +W = 0, (13)

where

Z = ∇x(θ)|θ=0 ∈ Rn×p, E = ∇B(θ)|θ=0 ∈ Rm×np,

W = ∇v(θ)|θ=0 ∈ Rm×p,

X =


x 0 0 ... 0

0 x 0 ... 0

... ... ... ... ...

0 0 0 ... x

 ∈ Rnp×p,

and x is the solution to equation (2).
Proof. For the sake of simple notations, we only prove the

theorem for scalar θ. The proof can be extended component wisely
to the vector case.

We first establish the existence of ▽x(θ). Let
h(θ)= θ−1[x(θ)− x] where x(θ) and x are solutions to the
optimization problems equations (5) and (2), respectively.

Under the continuity ofB(θ),A+B(θ) is 3k-sparse positive def-
inite with a constant c̃ independent of θ in a small neighborhood
of θ= 0 if A is. Therefore,

c̃||x− x(θ)||2l2 ≤ ||[A+B(θ)][x− x(θ)]||2l2 ≤ ||B(θ)||2l2 ||x||
2
l2

+ ||v(θ)||2l2 . (14)

or

||h(θ)||2l2 ≤ c̃−1[||θ−1B(θ)||2l2 ||x||
2
l2 + ||θ−1v(θ)||2l2 ].

By assumption, B(θ) and v(θ) are differentiable at θ= 0. The
previous inequality shows that h(θ) is uniformly bounded in
a small neighborhood of θ= 0. Consequently, there exists a
sequence θ(i) → 0 such that

ĥ
△
= lim

i→∞
h(θ(i)) (15)

exists and is finite. Recall that

[A+B(θ)]h(θ) = −θ−1B(θ)x− θ−1v(θ)

and

[A+B(θ(i))]h(θ(i)) = −(θ(i))
−1

B(θ(i))x− (θ(i))
−1

v(θ(i)).

Their difference gives

A[h(θ)− h(θ(i))] = −B(θ)h(θ) +B(θ(i))h(θ(i))− θ−1B(θ)x

+ (θ(i))
−1

B(θ(i))x− θ−1v(θ) + (θ(i))
−1

v(θ(i))

or

||A[h(θ)− h(θ(i))]||2l2 ≤ ||B(θ)h(θ)||2l2 + ||B(θ(i))h(θ(i))||2l2

+ ||[θ−1B(θ)− (θ(i))
−1

B(θ(i))]x||2l2

+ ||θ−1v(θ)− (θ(i))
−1

v(θ(i))||2l2 .

Since A is 3k-sparse positive definite, there exists a constant
c> 0 such that

c||h(θ)− h(θ(i))||2l2 ≤ ||A[h(θ)− h(θ(i))]||2l2 .

Consequently,

c||h(θ)− h(θ(i))||2l2 ≤ ||B(θ)h(θ)||2l2 + ||B(θ(i))h(θ(i))||2l2

+ ||θ−1B(θ)− (θ(i))
−1

B(θ(i))||2l2 ||x||
2
l1

+ ||θ−1v(θ)− (θ(i))
−1

v(θ(i))||2l2 . (16)

The right hand side of equation (16) goes to zero as θ→ 0,
i→∞. Therefore,

lim
θ→0,i→∞

||h(θ)− h(θ(i))||2l2 = 0.

Or equivalently,

lim
θ→0

h(θ) = lim
i→∞

h(θ(i)) = ĥ, (17)

which establishes that ▽x(θ) exists at θ= 0 and is finite.
Finally, the fact that x(θ) and x are the solutions to problems

equations (5) and (2), respectively, gives

[A+B(θ)]h(θ) + θ−1B(θ)x+ θ−1v(θ) = 0.

Denote Z
△
= ĥ = limθ→0h(θ) which exists and is finite. By

setting θ→ 0 in the above equation, we obtain

AZ + EX +W = 0

which is equation (13). This completes the proof of the
theorem. �

Since the solution x(θ) is k-sparse for all θ in a small neigh-
borhood of θ= 0, by focusing on the non-zero entries of x and
x(θ), the proof of Theorem 3.1 also shows that each column of Z
is k-sparse. The support of Z is the same as that of x.

Equation (13) indicates that only those perturbations in E that
corresponds to non-zero entries of x contribute to the sensitivity.

A note is needed regarding the requirement of the 3k-sparse
positive definiteness in Theorem 3.1. It has been known in the
literature [e.g., Candes (2008) in the form of the Restricted Isom-
etry Property] that 2k-sparse positive definiteness is needed for
guaranteeing the uniqueness of a k-sparse solution. The 3k-sparse
positive definiteness is needed for ensuring the differentiability of
the solution, a higher order property. This is a sufficient condition,
and its relaxation is a subject of current effort.
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4. Sensitivity Analysis

Equation (13) gives an explicit expression of the sensitivity ▽x(θ)
at θ= 0. Theorem 3.1 shows that the k-sparse solution Z is unique
for given x, E, and W. In this section, we consider the worst-case
perturbations, i.e., the value(s) of E andW that maximizes ||Z||l2 .
It’s obvious that the sensitivity increases when either ||E||l2 or
||W ||l2 increases. We analyze the sensitivity based on normalized
perturbations. Specifically, we consider the following

max
E:||E||l2=1;W=0

||Z||l2 , max
E=0;W :||W ||l2=1

||Z||l2 , and

max
E,W :||[E W ]||l2=1

||Z||l2 .

Lemma 4.1. The sensitivity Z satisfies the following relation-
ship

max
E:||E||l2=1;W=0

||AZ||l2 = ||x||l2 , (18)

max
E=0;W :||W ||l2=1

||AZ||l2 = 1, (19)

max
E,W :||[E W ]||l2=1

||AZ||l2 = (||x||2l2 + 1)
1/2

. (20)

Proof. According to equation (13), Z satisfies

AZ = −EX −W.

Next we consider each of the three cases.
Case I:W= 0. In this case,

||AZ||l2 = ||EX||l2 .

Recall that

EX = [E1x E2x ... Epx].

By applying the Cauchy-Schwarz inequality ||Ax||l2 ≤ ||A||l2
||x||l2 , we obtain

||EX||2l2 =

p∑
j=1

||Ejx||2l2 ≤
p∑

j=1

||Ej ||2l2 ||x||
2
l2

=

 p∑
j=1

||Ej ||2l2

 ||x||2l2 = ||E||2l2 ||x||
2
l2 .

Therefore,

sup
E:||E||l2=1;W=0

||AZ||l2 = sup
E:||E||l2=1;W=0

||EX||l2

≤ max
E:||E||l2=1

||E||l2 ||x||l2 = ||x||l2 . (21)

Next, we prove that the upper bound is achievable for a specif-
ically chosen E. Let

Ê = [Ê1 Ê2 ... Êp], Êj =αemxT , α=(mp)−1/2||x||−1
l2

,

em = [1 1 ... 1]
T ∈ Rm.

Then

||Êj ||2l2 = trace(ÊjÊ
T
j ) = α2||x||2l2 trace(emeTm) = mα2||x||2l2

and

||Ê||2l2 =

p∑
j=1

||Ej ||2l2 =

p∑
j=1

mα2||x||2l2 = α2(mp||x||2l2) = 1.

For this E = Ê, we have

||ÊX||2l2 =

p∑
j=1

||Êjx||2l2 =

p∑
j=1

||αemxT x||2l2

= α2||x||4l2mp = ||x||2l2 ,

or equivalently

||AZ||l2 = |ÊX||l2 = ||x||l2 . (22)

The combination of equations (21) and (22) gives (18).
Case II: E= 0. In case,

||AZ||l2 = ||W ||l2 .

from which equation (19) follows.
Case III: In general,

||AZ||l2 = ||EX +W ||l2 = ||ẼX̃||l2

where

Ẽ = [Ẽ1x̃ Ẽ2x̃ ... Ẽpx̃], x̃ =

[
x

1

]
,

Ẽj = [Ej Wj ], j = 1, 2, ..., p

and Wj is the j-th column of W. By following the proof of Case I,
we know that

max
E,W :||[E W ]||l2=1

||AZ||l2 = max
Ẽ:||Ẽ||l2=1

||ẼX̃||l2

= ||x̃||l2 = (||x||2l2 + 1)
1/2

which establishes equation (20). �
Equations (18)–(20) show that the worst-case ||AZ||l2 is a

constant for measurement noise but proportional to the solution
vector for modeling error E.

Theorem 4.1. Under the assumptions in Theorem 3.1, the
sensitivity Z satisfies the following bounds

max
E:||E||l2=1;W=0

||Z||l2 ≤ σ−1
min(A)||x||l2 , (23)

max
E=0;:||W ||l2=1

||Z||l2 ≤ σ−1
min(A), (24)

max
E:||E||l2=1;W :||W ||l2=1

||Z||l2 ≤ σ−1
min(A)(||x||2l2 + 1)

1/2
. (25)

in which σmin(A)> 0 is the minimal singular value of A.

Frontiers in Robotics and AI | www.frontiersin.org July 2015 | Volume 2 | Article 165

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Dai Sensitivity analysis of compressive sensing solutions

Proof. Without loss of generality, assume θ is a scalar. Let S be
the collection of indices of possibly non-zero entries ofZ,ZS ∈R|S|

be the vector of non-zero entries of Z corresponding to the indices
in S, andAS be the matrix consisting of corresponding columns of
A. Then,AS is of full column rank if it is k-sparse positive definite,
σmin(AS)≥σmin(A), and

AZ = ASZS .

Consider the matrix AZ,

||AZ||2l2 = trace(ZTATAZ) = trace(ZT
S AT

SASZS)

≥ trace(ZT
S (σmin(AS))

2ZS)

≥ (σmin(A))2||ZS ||2l2 = (σmin(A))2||Z||2l2 ,

which gives
||Z||l2 ≤ σ−1

min(A)||AZ||l2 . (26)

The rest follows from combining the previous inequality with
equations (18)–(20) in Lemma 4.1. �

If σmin(A) is achieved over k columns of A that correspond to
the k-sparse signal to be recovered, then the equality in equation
(26) holds and the bounds in Theorem 4.1 could be tight. The
bounds are not tight in general because the k columns of A
corresponding to the indices in S are unknown a priori.

5. Sensitivity Reduction

One natural way of reducing the sensitivity of compressive sensing
solutions is to carefully select the basis matrix A so that Z is as
small as possible. There has been extensive research on how to
select A (Donoho et al., 2006). The general idea is to improve the
incoherence of the matrix A, for example, by making A as close as
possible to the identity matrix in terms of the RIP property. The
problem could be difficult because selecting the correct columns
of A from available choices is a combinatorial optimization prob-
lem. In this section, we consider an alternative. We assume that
the matrix A is given. The objective is to find a solution x that is
least sensitive to perturbations B and v. One example where this
problem arises is in pattern recognition where each column of A
represents a vector in a feature space. The issue is how to classify
the pattern based on features of the training data so that the
solution is robust to potential perturbations (i.e., noise in data).

We consider to improve the robustness of a signal recovery solu-
tion by reducing its sensitivity to model error and measurement
inaccuracy. Toward that goal, we reformulate the l1 optimization
problem equation (5) by including a term to penalize high sen-
sitivity. This approach offers an alternative to the conventional
approach of basis matrix selection and could be performed after
the matrix A is selected.

Solution robustness can be improved by reducing the magni-
tude of sensitivity. The l∞ norm is a natural choice because it
characterizes the largest entry of a vector or a matrix. Therefore,
we consider the following optimization problem.

min ||x||l1 + λ||Z||l∞ , subject to y = Ax,AZ + EX +W = 0,

(27)

where λ> 0 is a penalizing weight and the l∞ norm is defined as
||Z||l∞ = maxi,j |zij |.Note that Z ∈Rn×p is a matrix. We convert
Z into a vector by defining

z̃ =


z1
z2
...
zp

 ∈ Rnp,

where for each j, 1≤ j≤ p, zj is the j-th column ofZ. Then problem
equation (27) can be re-written as

min ||x||l1 + λ||z̃||l∞ , subject to Cx+Dz̃ = f, (28)

in which

C=


A

E1

E2

...
Ep

∈R(m+1)p×n, D=


0 0 ... 0

A 0 ... 0

0 A ... 0

... ... ... ...

0 0 ... A

∈R(m+1)p×np,

f=


y

−w1

−w2

...
−wp

 ∈ R(m+1)p,

and wj is the j-th column of W, 1≤ j≤ p.
Severalmethods are available to solve the optimization problem

equation (28), one of which is the Alternating Direction Method
of Multipliers (ADMM) (Boyd et al., 2011). In fact, equation
(28) is in the standard form of the ADMM problem formulation.
There is a trade-off in selecting the method or algorithm to solve
the optimization problem equation (28) in terms of accuracy,
efficiency, and reliability. We adopt the gradient projection algo-
rithms proposed by Figueiredo et al. (2007) for solving LASSO
problems. Toward that end, we consider two modifications: The
first modification is to replace the l∞ norm with the lv norm
defined as ||Z||lν = (

∑
i,j |zj(i)|ν)1/ν where zj(i) is the ith entry

of zj-the jth column of Z. It is known that limν→∞||Z||lν =

||Z||l∞ . So a large v is chosen. To ensure the smoothness of the
objective function, v is chosen as an even number. The second
modification is to reformulate equation (28) as a modified LASSO
problem so that the efficient gradient projection algorithms are
applicable with minimum modifications. Finally, it is noted that
for each j, zj(i)= 0 for all i not in the support of x. Consequently,
we consider the following optimization problem for sensitivity
reduction.

min τ ||x||l1 + λ||z̃||lν +
1

2
||Cx+Dz̃ − f ||2l2 (29)

subject to S(x) = S(zj), j = 1, 2, ..., p

where v> 1 is a large even number, τ > 0 and λ> 0 are user-
selected weights, S(x) is the set of indices corresponding to pos-
sibly non-zero entries of a sparse vector x, i.e., the support of x.
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We next provide the algorithmic details of implementing the
gradient projection method. First, the problem equation (29) is
equivalent to the following constrained optimization problem
(Figueiredo et al., 2007).

minF (u, r, z̃)
△
=

τ

2
eT (u+ r) + λ||z̃||lν

+
1

2
||C(r − u) +Dz̃ − f ||2l2 (30)

subject to u ≥ 0, r ≥ 0, S(r − u) = S(zj), j = 1, 2, ..., p

in which e is the vector of all ones, u= [uj]≥ 0 (or r= [rj]≥ 0)
denotes uj ≥ 0 (or rj ≥ 0, respectively) for all j= 1, 2,. . ., n. The
sparse solution x is given by

x =
1

2
(r − u),

and thus S(r− u)= S(x) in equation (30). The gradient of the
objective function F (u, r, z̃) in equation (30) is

∇F (u, r, z̃) =

∇uF (u, r, z̃)

∇rF (u, r, z̃)

∇z̃F (u, r, z̃)

 , (31)

where

∇uF (u, r, z̃) =
τ

2
e− 1

2
CT [C(r − u) +Dz̃ − f ],

∇rF (u, r, z̃) =
τ

2
e+

1

2
CT [C(r − u) +Dz̃ − f ],

∇z̃F (u, r, z̃) = λ||z̃||1−ν
lν

z̃ν−1 +DT [
1

2
C(r − u) +Dz̃ − f ],

in which z̃ν−1 = [z̃ν−1
j ] for z̃ = [z̃j ].

The gradient projection algorithms proposed in Figueiredo
et al. (2007) find the optimal solutions iteratively. Let
u(i), r(i), z̃(i) denote the values of u, r, z̃ at the ith iteration.
Then, at the (i+ 1)th iteration, u(i+1), r(i+1), z̃(i+1) are updated
according tou(i+1)

r(i+1)

z̃(i+1)

 =

u(i) + η(i)(u(i+1:i) − u(i))

r(i) + η(i)(r(i+1:i) − r(i))

z̃(i) + η(i)(z̃(i+1:i) − z̃(i))

 (32)

where η(i) ∈ [0,1] is a weighting factor, and the transition values
u(i+1:i), r(i+1:i), z̃(i+1:i) are gradient projection updates

u(i+1:i) = ΠC+(u
(i) − α(i)∇uF (u(i), r(i), z̃(i))). (33)

r(i+1:i) = ΠC+(r
(i) − α(i)∇rF (u(i), r(i), z̃(i))). (34)

z̃(i+1:i) = ΠS(r(i+1)−u(i+1))(z̃
(i) − α(i)∇z̃F (u(i), r(i), z̃(i))).

(35)

In equations (33)–(35), α(i) > 0 is the step-size of the gradi-
ent algorithm, C+ = {u= [uj]∈Rn|uj ≥ 0,j= 1,2,. . .n} is the non-
negative subspace, S(x) is the support of x as defined in equa-
tion (29), and ΠC(u) is the projection operator that projects
u onto the subspace C. Because x= 1/2(r− u), the subspace

S[r(i+1) − u(i+1)] in equation (35) is the subspace of x at the
(i+ 1)th iteration. To increase the efficiency of the algorithm, the
step-size α(i) is selected according to the Armijo rule, i.e., α(i) =

α0β
i0 in which α0 is the initial step-size, β ∈ (0,1), and i0 is the

first number in the sequence of α0, αβ, αβ2, αβ3, . . . that achieves

min
i

F (ΠC+(u
(i) − α0β

i∇uF ),ΠC+(r
(i) − α0β

i∇rF ),

ΠS(r(i+1)−u(i+1))(z̃
(i) − α0β

i∇z̃F )),

in which the values of ▽F are evaluated at (u(i), r(i), z̃(i)). Note
that the projection of z̃ onto the support of x in equation (35) is
unique to solving the optimization problem equation (30).

The value of x at the ith iteration is given by 1
2 (r

(i) − u(i)).

The dimension of z is np which could be high for large p since
n typically is a large number. However, the matrix multiplications
in updating the gradient equation (31) could be done offline.
Updating equations (32)–(35) is straightforward.

The algorithm described by equations (32)–(35) has been
observed with fast convergence for the numerical example in
Section 6. It is nevertheless a basic version of the gradient pro-
jection algorithms. Our purpose is to illustrate the incorpora-
tion sensitivity information in improving the robustness of com-
pressive sensing solutions through sensitivity reduction. Read-
ers interested in the gradient projection approach are referred
to Figueiredo et al. (2007) for a comprehensive treatment and
improvements.

6. A Numerical Example

The goal of this section is to illustrate the performance of the
sensitivity reduction algorithm described in Section 5 through a
numerical example. In this example, the matrix A and measure-
ment y are taken from the numerical example described in the
software package accompanying (Candes and Romberg, 2005).
In this example, n= 1024, m= 512. The matrix A and measure-
ment y are, respectively, a random matrix and vector drawn from
uniform distributions. Sparsity factor k= 102, about 10% of the
entries of x. The sparse solution x is shown in Figure 1.

We consider the sensitivity analysis and reduction for the
following perturbation

B = θai0 , v = θ


1

0
...
0

 ∈ Rm, (36)

where i0 = 959, ai0 is the i0-th column of A. Note that θ is a
scalar, thus p= 1. Perturbation equation (36) leads to a spike in
sensitivity as shown in Figure 2. For pattern classification, each
column of A represents a feature vector of a training data point.
The choice of B implies that we are interested in the sensitivity of
a bad training data point and seek the reduction of its effects to
pattern classification. Other user-selected parameters are v= 50,
τ = 0.85, η(i) = 0.4 for all i, α0 = 0.9, and β= 0.8. For comparison,
we show the sparse solution x and the corresponding sensitivity
for two cases.
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Solution x: λ=0

FIGURE 1 | Solution x without sensitivity reduction: λ= 0.
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Sensitivity z: λ=0

FIGURE 2 | Sensitivity Z without sensitivity reduction: λ=0.

Case 1: λ= 0. This case corresponds to the sparse solution to
the following LASSO optimization:

min τ ||x||l1 +
1

2
||y −Ax||2l2 .

Figure 1 shows the values of the solution x, which clearly indi-
cates the sparseness of the solution. Figure 2 shows the sensitivity,
Z displayed in the vector form z̃ (Z = z̃ for p= 1), of xwith respect
to the parameter θ. The largest value of sensitivity is ||z̃||l∞ =

1.8443, which corresponds to x(i0)= x(959). The largest value of
sensitivity is orders of magnitude larger than the rest of sensitivity
values, which indicates the solution x is sensitive to the value of
the i0th column of A.

Case 2: λ= 1.0. This case corresponds to the sparse solution
with sensitivity reduction through the gradient projection algo-
rithm described in Section 5. The values of x and z̃ are shown in
Figures 3 and 4. Figure 3 indicates that x(i0) is now set to 0 to
remove the effect of the i0th column of A. For pattern classifica-
tion, this would mean that the feature vector corresponding to the
i0 column of A is sensitive to noise and thus is removed for this
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Solution x: λ=1.0

FIGURE 3 | Solution x with sensitivity reduction: λ=1.0.
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FIGURE 4 | Sensitivity Z with sensitivity reduction: λ=1.0.

particular case. Such feature vector may be resulted from biased
data or incorrect choice, depending on the particular problem of
concern or scenario. The largest value of sensitivity is ||Z||l∞ =

0.0761, which represents orders of magnitude reduction from
||Z||l∞ = 1.8443.

7. Conclusion

Robustness of compressive sensing solutions has attracted exten-
sive interest. Existing efforts have been focused on obtaining
analytical bounds between the solutions of the perturbed and
unperturbed linear measurement models. The perturbation is
unknown but finite with a known upper bound. In this paper,
we consider solution sensitivity to infinitesimal perturbations,
the “other” side of perturbation has opposed to finite perturba-
tions. The problem formulation enables the derivation of exact
solutions. The results show that solution sensitivity is linear
to measurement noise and proportional to the solution. We
have also demonstrated how the sensitivity information can
be incorporated in problem formulation to improve solution
robustness. The new problem formulation provides a trade-off

Frontiers in Robotics and AI | www.frontiersin.org July 2015 | Volume 2 | Article 168

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Dai Sensitivity analysis of compressive sensing solutions

(i.e., by adjusting the parameter λ) between accuracy and
robustness of compressive sensing solutions. One future research
direction would be using the sensitivity information to adaptive
optimization of parameterized compressive sensing problems. In
computer vision, it is well recognized that the performance, e.g.,
the probability of detection, of object recognition is sensitive to
feature selection and training data. The sensitivity information
may be used to reduce such sensitivity, for example, in compres-
sive sensing-based approaches to object recognition.
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