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Human beings are highly efficient in maintaining standing balance under the influence of
different perturbations. However, biped humanoid robots are far from exhibiting similar
skills. This is mainly due to the limitations in the current control and modeling techniques
used in humanoid robots. Even though approaches using the Linear Inverted Pendulum
Model and the Preview Control schemes have shown improved results, they still suffer
from shortcomings in the overall generated motion. We propose here a model and control
approach that aims to overcome the limiting assumptions in the LIPM models through
using the ankle joint variables in modeling and control of the standing balance of the
humanoid robot.
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1. Introduction

Modeling and control of the biped robot balance and locomotion is a difficult and complex process
due to its high dimensionality and non-linearity. Simplifying assumptions are needed in order to
facilitate real-time robot control. There have been several studies in modeling biped locomotion.
All of these use the zero moment point (ZMP) concept to study and control the motion of the biped.
Themost notable one is the introduction of the Linear Inverted PendulumModel byKajita andTanie
(1991) and Kajita et al. (2001, 2003). In deriving this mode, the authors apply a set of constraints that
limit the motion of the pendulum. The first of these limits the motion to a plane with a given normal
and z intersection zc. For walking on uneven terrain, the normal vector is parallel to the ground
surface normal and the z intersection matches the average distance of the robot’s CoM from the
ground. Under these constraints the 3D inverted pendulum dynamics converted dynamics can be
described as follows:

ẍ =
g
zc
x +

1
mzc

ux (1)

where x is the CoM position along the x-axis, g is the gravity acceleration, m is the total mass of
the pendulum, and ux is a virtual input to compensate for the non-linearities in the system. In other
words, the 3D-LIPM linearizes the biped dynamics by constricting the center of mass (CoM) of the
robot to travel on a straight line at a constant height from the ground. The authors also derive an
expression of a conserved quantity termed the Orbital Energy (Kajita and Tanie, 1991). The orbital
energy characterizes the particular motion of the robot during the step. The linearized dynamics of
the 3D-LIPM and the fact that the orbital energy is conserved allows for the calculation of the leg
exchange condition to generate a stable walking gait.

Fujimoto and Kawamura (1998) proposed a control hierarchy for the posture of the robot by
considering the physical constraints on the feet. Real-time trajectory generation was performed
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using a linearized model of the inverted pendulum. Hashimoto
et al. (2013) developed humanoid walking stabilization method
based on the findings of analysis human gait. The controller con-
sists of the two main findings of the performed gait analysis (i.e.,
the swing foot step location is along the same direction of the CoM
as viewed from the stand leg and the step length is modified to
maintain a constant mechanical energy during locomotion). The
developed controller requires the offline generation of a reference
walking pattern and the iterative optimization of the swing leg hips
angle, to ensure that the total mechanical energy remains within
a predetermined range, based on the mechanical and dynamical
properties of the robot.

Sugihara and others developed a real-time motion generation
method through the control of the whole-body CoM by manip-
ulating the ZMP (Sugihara et al., 2002). The humanoid body
is simulated as an inverted pendulum on a cart with its pivot
point coinciding with the ZMP. The ZMP trajectory is then
planned through the control of the inverted pendulum system.
In a later article, Sugihara and Nakamura (2003) describe the
use of the CoM displacement to achieve short- and long-term
stability.

Standing balance recovery after a perturbation occurs is a
complex process compromising the use of different balancing
strategies. Experimental studies conducted byHorak andNashner
(1986) have identified that humans use threemethods for recover-
ing balance,Ankle,Hips, and Step strategies. Each one is employed
for a different level of disturbance. The Ankle strategy is exploited
for small disturbance. It uses the ankle torque to restore balance
by modifying the center of pressure location (CoP) and hence
changing the tangential term of the ground reaction force (GRF)
affecting the CoM. On the other hand, the hip strategy is used for
larger disturbances. Maki andMcIlroy (1997) showed that the hip
recovering torque is proportional to the size of the perturbation
triggering the instability. For even larger disturbances, a step has
to be taken to restore the robot balance by extending the support
polygon.

Most control approaches for biped robot standing balance
recovery implement the ankle strategy to regulate the CoP with
fixed feet positions, such as the case in Hirai et al. (1998) and
Nishiwaki and Kagami (2007). Pratt et al. (2006) extended the
LIPM model by adding a flywheel at the hips of the biped
to generate angular momentum around the CoM and employ
the hips strategy for balance recovery. They have introduced
the concept of the capture point and enhanced it through the
use of the hips angular momentum to cover an entire region
known as the Capture Region. Atkeson and Stephens (2007)
proposed a method to maintain standing balance using different
strategies by utilizing the same optimization criteria. The cost
function used was a combination of quadratic penalties on the
deviation of the joint angle and torques from zero. Further-
more, stepping strategies have been addressed with the Capture
point and similar concepts in Stephens (2007) and Wang et al.
(2009).

Our main goal here is to propose a new modeling approach
based on the Spherical Inverted Pendulum (SIP)Model alongwith
an efficient energy-based control law. In the following section, we
will introduce the SIP model for the biped robot. In Section 3, we

propose an energy controller based on the concept of dissipative
systems. After that, in Section 4, we will demonstrate the results of
the ankle strategy balance and compare its performance to tradi-
tional control approaches and extend the SIP model to utilize the
stepping strategy for balance recovery. The model and controller
described here are then used to derive the ankle strategy stability
bounds in terms of the SIP state variables in Section 5. Finally in
Section 6, we demonstrate how the stepping balance strategy can
be extended to generate a stable walking gait.

2. Spherical Inverted Pendulum Mode

In the biomechanical literature (Winter, 1995; Uyar et al., 2009),
the standing human body is modeled as an inverted pendulum
to represent the stance leg as shown in Figure 1. Similarly, the
humanoid robot ismodeled as a pointmass located at the center of
mass (CoM) of the robot with a mass equal to the total mass. The
point mass is supported by a mass-less rod, describing the stance
leg with a single contact point with the ground representing the
ankle joint.

The ankle joint in the SIP model is assumed to be a two
degrees of freedom rotational joint. The CoM is allowed to move
in three-dimensional space due to the two rotational degrees of
freedom at the ankle. As a result, the CoM can fall anywhere
on the surface defined by the hemisphere of radius equal to
the stance leg length, as can be seen in Figure 2. This way the
constraint tomaintain constant height for the CoMoff the ground
is not required and more natural motion can be generated and
controlled.

The CoM location in the local frame of reference is defined by
p= (0, l, 0)T, where l is the length of the fully extended stance leg.
The two rotational DoFs represent a rotation around the x and z
axes as defined in Figure 2. The world position of the CoM is then
given as:

wp =

−sin(ϕ)cos(θ)l
cos(ϕ)cos(θ)l

sin(θ)l

 (2)

FIGURE 1 | Biomechanical model for human balance and walking as
an inverted pendulum.
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FIGURE 2 | Spherical inverted pendulum with two degrees of freedom
at the pivot point.

The equations of motion have the following form:

d
dt

∂L
∂q̇ +

∂L
∂q = τ (3)

where L =K – U is the Lagrangian defined as the difference
between the kinetic energy, K, and the potential energy, U. The
system state variable q = (θ ϕ)T is the angles of the ankle joint
and τ is a (2× 1) vector of actuator torques. Carrying out the
derivatives in Eq. 3, we derive the dynamic equations of the system
as below:

ml2θ̈ + ml2ϕ̇2sin(θ)cos(θ) − mlgcos(ϕ)sin(θ) = τθ (4)

ml2cos(θ)2ϕ̈ − 2ϕ̇θ̇tan(θ) − gsin(ϕ)
lcos(θ) = τϕ (5)

As can be seen from Eqs 4 and 5, the system is non-linear and
there is a degree of cross coupling between the two degrees of
freedom appearing in the form of the Centrifugal and Coriolis
terms in the equations of motion. In the next section, we will
introduce a dissipative energy controller that is able to stabilize
the pendulum in its upright posture.

3. SIP Balancing Using Dissipative Control

In order to find a storage function for the SIP model as defined
by Willems (2007), we consider only one degree of freedom. Lin-
earizing Eq. 4 around the upright posture, θ = 0, the unpowered
system’s equation of motion is given by:

θ̈ =
g
l θ (6)

The above system behaves like a spring-mass system with
negative stiffness of k= −g/l. A conserved quantity ESIP can be
defined as:

ESIP = −1
2 θ̇2 +

g
2lθ

2 (7)

The ESIP represents the sum of the potential and kinetic ener-
gies. It can be interpreted as the stored energy function of the one
degree of freedom inverted pendulum. The system is stabilized
when the quantity ESIP = 0. The solution to this stable condition
results in the eigenvalues of the system as given below:

θ̇ = ±
√

g
l θ (8)

The solution given by Eq. 8 represents a saddle point in the
system dynamics with a stable eigenvector when θ and θ̇ have
opposite signs (the CoM is moving toward the pivot point), and
unstable eigenvector when the signs are the same (the CoM is
moving away from the pivot point). Rearranging Eq. 8, the state-
space stability condition, defined as P, is given by:

P = θ +

√
l
g θ̇ = 0 (9)

However, when the system is disturbed, the above stability
condition does not hold and P ̸= 0. Using a standard proportional
control law with gain, kp, with the goal of restoring P to 0, the
control input u can be defined as:

u = −kpP (10)

The control input, u, is then related to the ankle joint torque, τ ,
as follows:

τ = mglsin(u) (11)

Using the control torque as the driving input to the linearized
system described by Eq. 6, the system can be represented by:

θ̈ =
g
l (θ + u) (12)

The approximation sin(u)≈ u was used in simplifying Eq. 12.
Substituting the values of u and P from Eqs. 7 and 9, and simpli-
fying, we get the following, where ω =

√
g
l

θ̈ = (1 − kp)ω2θ − kpωθ̇ (13)

This controller offers the benefits of ease of tuning in compari-
son to standard proportional derivative controllers, since there is
only one gain variable instead of two tunable gains. Furthermore,
we will show in the next section that this controller results in a
critically damp response, achieving the fastest stabilization time
with the least amount of energy consumption possible.

Frontiers in Robotics and AI | www.frontiersin.org October 2015 | Volume 2 | Article 213

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Elhasairi and Pechev Spherical inverted pendulum model

4. Simulation Results of the SIP
Dissipative Energy Controller

To verify the validity of the energy controller described above,
we have run a number of simulation experiments, using classi-
cal control approaches, such as PD+Gravity compensation, and
the Energy controller presented here. The control torque was
constrained to ensure that the CoP does not leave the support
polygon defined by the foot. Assuming that the foot is fixed to
the floor and the ankle torque does not result in slippage or
foot rotation, Yu et al. (2009) define the CoP location to be
given by

xcop =
−τ

FZ
(14)

where τ is the total moment generated at the ground contact (the
pivot point) of the SIP. The other constraint is due to friction and
guarantees that the no slippage assumption is held.∥∥∥∥FXFZ

∥∥∥∥ ≤ µ (15)

Where FX and FZ are the components of the ground reaction force.
From Eq. 15, it is clear that the ground reaction force in the z
direction, FZ, must satisfy the following inequality:

FZ ≥
∥∥∥∥FXµ

∥∥∥∥ (16)

Furthermore, FZ is expressed as:

FZ = m(ẍZ + g) (17)

where ẍZ is the vertical acceleration of the CoM, m is the system
mass, and g is the gravity acceleration. From the constraint of
Eq. 16 and the constraint to maintain the CoP within the support
polygon defined by the foot, the maximum joint torque that can
be generated by the controller is written as a function of the
ground reaction force and the support polygon dimensions as
follows:

τmax = md(ẍZ + g) (18)

where d defines the edge of the support polygon. The SIP was
subjected to an instantaneous impulse varying in magnitude up
to 5Nm. The objective of the control was to restore the pen-
dulum to a stable upright posture. Table 1 shows the parame-
ters of the humanoid robot used in the simulations. Figure 3
shows the closed-loop system response for the different distur-
bances. The solid colored lines represent the response of the
energy controller, whereas the dotted lines represent the classical
controller response. The energy controller response resembles
that of a critically damped system resulting in increased stability
margins, since it does not suffer from any oscillation and over-
shoot in the system’s response observed in the hand tuned PD
controller.

The resulting controlling torque from both control approaches
is shown in Figure 4. Similarly, the solid lines represent the torque

TABLE 1 | Humanoid robot parameters used in the simulations.

Length (m)
CoM heighta 0.367
CoM to hip joint offsetb 0.095
Upper leg 0.11
Lower leg 0.103
Foot height 0.045
Foot length 0.2

Weight (kg)
Total bodyc 5
Upper leg 0.591
Lower leg 0.292
Foot 0.296

aPendulum length.
bDistance from the CoM as determined by the total robot mass to the hip joint location.
cThis includes the mass of head and arms.

resulting from the energy controller, whereas the dotted lines rep-
resent the PD controller torques. The energy controller requires
less overall torque to restore balance in response to the impulse
disturbances. As a result, it requires less energy in comparison
to the PD controller. Furthermore, the critically damped nature
of the SIP energy controller ensures that no energy is expended
in attenuating the oscillations that result from the undamped PD
controller.

From the static kinematic analysis of the inverted pendulum,
Flanagan (2014) relates the sway angle to the CoP location during
quiet standing by

xCoP = −lsin(θ) (19)

Solving Eq. 19 for θ to derive the largest possible sway angle,
we get:

θ = −sin−1
(xCoP

l

)
(20)

where l is the length of the stance leg and xCoP is the location of
the center of pressure.

Both controllers manage to stabilize the SIP in face of impulse
disturbances with a maximum sway angle of around 8°, which is
well within the limits described in Eq. 20 when solved using the
parameters of our robot hardware. The limit on the sway angle for
the robot hardware was found to be ±17°.

In the case of large disturbances, a different strategy needs
to be used to avoid falling over. One such strategy is to allow the
robot to take a step in order to enlarge its support polygon and pre-
vent a fall. The optimal stepping location is defined using the con-
cept of the capture point (Pratt et al., 2006). Taking into account
the effects of the instantaneous impact of the swing leg, the pen-
dulum angular velocity just before impact is determined by the
following:

θ̇ =
ωsin(θ)

(2sin(θ)tan(θ) + cos(θ)).
√

cos(θ)
(21)

To compute the required orientation of the robot in terms of
its ankle angular velocity θ̇, Eq. 21 is solved numerically and
the optimal step location is found to be the intersection point
between the CoM trajectory and the resulting trajectory from
solving Eq. 21.
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FIGURE 3 | Ankle joint trajectories for a range of disturbance sizes.
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FIGURE 5 | Comparison between the TME change using energy-based controller vs. standard controller.

For small angular velocities, the biped angle before impact is
a linear function of the velocity. A linear approximation can be
used to simplify the computation time when implemented on the
computer for simulation or on the actual robot hardware. If the
angular velocity is larger than ±1 rad/s, the system is forced to
take a number of steps before it can reach a complete stop in a
balanced state due to size limitation of the biped robot. The exact
step length ls is defined as a function of the ankle angle and the leg
length as:

ls = 2lsin(θ)

where l is the pendulum length and θ is the angle between the
pendulum and the vertical just before taking the step, which was
found to be around ±20° in the sagittal plane. The foot landing
position in the frontal plane is decided so that the pivot point of
the pendulum coincides with the CoM ground projection when
the robot comes to a stop.Hence, the pendulumangleϕ after taken
a step is always equal to zero.

4.1. Comparison of Canonical and
Energy Controllers
Reducing the required energy to maintain the standing balance
will prolong the battery life and autonomous behavior of the
humanoid robot. Figure 5 shows the delta in the total mechan-
ical energy of the SIP humanoid robot model in response to
small disturbances. It is evident that the new energy controller

achieves faster response time in comparison to the canonical con-
trol approaches. It is also visible that the energy-based controller
requires less overall energy in restoring the system balanced state
in comparison to the classical approaches, without the need for
extensive tuning of the different gains in the control system.

The transfer function from the measurement noise to the out-
put of the closed-loop energy control law is denoted by T, the
complementary sensitivity function

TEnergy =
ωKps + ω2Kp

s2 + ωKps − ω2(1 − Kp)
(22)

while in the case of the classical PD control the same transfer
function is given by:

TPD =
Kds + Kp

ml2s2 + Kds − (mlg − Kp)
(23)

The energy control law transfer function, TEnergy, depends only
on the gain variable, KP. While TPD depends on both the propor-
tional and derivative gains as well as the mass of the pendulum.
Both Eqs 22 and 23 behave as low-pass filters as shown in the
Bode plot of Figure 6. The steady-state (DC) gain of these transfer
functions is given by:

Gss = lim
s→0

T(s)
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FIGURE 8 | Angular stability regions as defined by the SIP Ankle Balance Strategy.

For the energy control law, the steady-state gain is defined
to be:

GEnergyss =
Kp

Kp − 1 (24)

The classical control law has a similar expression for the
steady-state gain as that given by Eq. 24. The steady-state gain is
given by:

GPDss =
Kp

Kp − mlg (25)

For large proportional gains, the steady-state gain of both
transfer functions approaches one. In most practical situations,
this ideal case cannot be achieved, since the value of these gains is
limited to an upper bound. The maximum gain value is imposed
by the actuator saturation limits, or in the case of humanoid
robots, by the center of pressure constraints. In this situation, the
DC gain will be larger than 1, as evident from the denominator of
both Eqs 24 and 25.

Themagnitude of the transfer function for both systems decays
to zero as the frequency increases as shown in Figure 6. The
classical control magnitude decays faster than the energy-based
controller. However, it is evident from the Bode plot of the PD
transfer function that a peak at low frequencies exists. This peak
corresponds to the overshoot in the time response when using the
PD controller to restore the pendulum to its upright posture. On
the other hand, the energy-based controller does not suffer from
such effects. In fact, it acts similarly to a critically damped system,
as observed in its time response.

To simulate walking at low speeds, the ankle joint of the pen-
dulum is demanded to go back and forth at a rate of two steps
per second. A sinusoidal input signal, r(t), was used as the driving
input for both systems.

r(t) = sin(4πt) (26)

The top graph in Figure 7 shows the tracking response of the
two control methods. The classical control system has a large
tracking error and phase delay of roughly π/2. On the other
hand, the response from the energy controller closely tracks the
input signal in terms of the amplitude and the phase of the
signal.

To simulate the effects of the real-world measurement and
actuation noise, white Gaussian noise was added to the input
signal before being fed to the system. The noise signal was filtered
at 100Hz to model the bandwidth of our robot hardware joint
position and IMU sensors. This is also the sampling frequency at
which the control loop will be running on the robot. The bottom
graph of Figure 7 shows the response of both controllers. The PD
control system performs better in rejecting the high-frequency
noise compared to the energy control system. However, this is
expected due to the larger bandwidth of the energy-based control
law in comparison to the classical method, as can be determined
from Figure 6.

On the other hand, the energy-based controller tracks the input
signal, r(t), closely as can be seen at the top graph in Figure 7. The
PD controller causes a larger phase delay and more attenuation to
the input signal of almost 30%.
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5. Ankle Strategy Stability Regions

The orbital energy of the SIPmodel defined by Eq. 7 is a conserved
quantity until the moment of touch-down or lift-off of the swing
foot. As the CoM moves toward the pivot point, three situations
are possible depending on the value of ESIP

• ESIP > 0, the CoM will pass the pivot point and carry on in the
same direction

• ESIP < 0, the CoM will come to a stop over the pivot point
momentarily before reversing direction and starting to move in
the opposite direction

• ESIP = 0, the CoM will come to a rest over the pivot point,
resulting in a stable stance.

The solution to the stable condition is given by Eq. 8. From the
center of pressure constraint on the control input to the system,
the maximum input torque on the system, assuming ẍz = 0, is

given by
τmax = mgd (27)

where m is the total mass of the system, g is the acceleration due
to gravity, and d is the distance from the pivot point to the edge
of the support region. Defining the pendulum angle, δθ , as the
maximum possible sway angle as defined by Eq. 20, expressing d
in terms of δθ , Eq. 27 becomes

τmax = mglsin(δθ) (28)

The maximum acceleration, θ̈, due to the maximum control
torque is then given by

θ̈max =
g
l θ − g

l sin(δθ) (29)

By analogy, the saddle point of the system when ESIP = 0 is
expressed as

θ̇max = ±
√

g
l (θ − sin(δθ)) (30)
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FIGURE 10 | Top view of the CoM motion as a result of the simulation of the gait generation and control method for a number of steps. The foot
locations are also shown highlighting the support exchange from one foot to the next.

FIGURE 11 | CoM displacement as a result of the gait generation approach developed using the SIP control framework.
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The above equation describes the stability bounds on the SIP
while using the ankle balancing strategy. The stable region in
terms of the SIP states is then defined as

sin(δ−
θ ) < θ +

√
l
g θ̇ < sin(δ+

θ ) (31)

Figure 8 shows that all the stable trajectories in blue fall in the
middle section defined by the two yellow lines. The region defined
by Eq. 31 and the numerical simulations for balance recovery show
that the system is able to recover from a push impulse with a
magnitude of 5.7Ns. The fact that bothmethods coincide validates
our assumptions in deriving the stability bounds, allowing the
control framework tomonitor the angular state of the SIP tomake
a decision on the method to be used in recovering and restoring
balance to the humanoid robot.

6. Walking Gait Generation

The SIP model is used to generate and control a stable walking
gait using the principles of passive dynamic walking. The SIP
model is extended to be described as a hybrid dynamic system
with two stages. The first is a continuous dynamic model for the
Single Support Phase to describe the CoM behavior. The second
stage is during the exchange of support instance and impact
of the swing leg. After each impact, an internal impulse push
is used to restore any lost energy due to the impact with the
ground. In the proposed control architecture, the SIP model and
its energy-based control are considered as an internal model that
provides the CoM and feet trajectories during the walking cycle.
These trajectories are converted to joint motion through a full-
body inverse kinematics algorithm to be executed through the
robot individual joints. The full control framework is visualized
in Figure 9.

The walk cycle stability is a nominally periodic sequence of
steps that is stable as a whole, but not locally stable at every instant
in time. The motion stability in this way is defined as “the ability
to interrupt and avoid a fall.”

In order to generate a walking gait, the authors extended the
stepping strategy for standing balance through the injection of a
virtual impulse push into the controller at the moment of impact
to restore any energy loss. The energy loss is modeled through the
angular velocity loss of the pendulum as described below:

θ̇+ = lcos(2θ−)θ̇− (32)

where θ− is the pendulum angle just before impact and θ+ is
the angle just after impact and l is the pendulum length. Under
these conditions, every step of the walking gait is defined as an
interrupted fall and the overall motion is stable as a whole, but
not locally stable at every instant in time. Hobbelen and Martijn
(2007) define this a “limit cycle walking.”

Themotion in the frontal place of the robot is controlled in such
away that will translate theCoM from side to side during thewalk.
This motion trajectory is dependent on the CoM trajectory in the
sagittal plane. This trajectory is provided as a reference input to the

FIGURE 12 | Biomechanics measurements of CoM displacement
(Whittle, 1997).

energy controller for the CoM motion to follow. Figure 10 shows
the projection of the CoM motion on the ground along with the
step locations.

The resulting CoM trajectory is shown in Figure 11. By com-
parison to the findings of the CoM motion characterized by
biomechanical researchers shown in Figure 12, we can see large
similarities between the two trajectories. The shape and phase
of the forward direction resembles two sinusoidal curves. The
maxima occur at about∼35% and∼85% of the gait cycle, whereas
the minima occur at the moment of foot impact at ∼10% and
∼60% of the cycle. On the other hand, the lateral displacement is
represented with a sinusoidal curve, ensuring the CoM is moved
from one support foot to the other. The phase difference between
the SIP andbiomechanical trajectory is resulting from the first step
choice, and it does not change the nature of the results.

The vertical motion has the same periodicity as that of the
humanwalk. However, the SIP-generated trajectory has an instan-
taneous change in the direction of the CoMmotion at themoment
of foot impact at∼50%of the gait cycle. This instantaneous change
results from the stepping model used with the SIP biped model.
The CoM reaches its highest point twice during the gait cycle at
around 25 and 75% of the cycle. This is the time when the support
leg is fully extended and is in an upright position. The lowest CoM
position occurs at the moment of switching support. Figure 13
shows a series of screenshots of the resulting walking motion. It
should be noted here that the entire motion was generated using
the SIP CoM trajectories and a fifth-order polynomial to give the
swing foot trajectory. The difference between this approach and
that of the standard 3DLIPM approaches can be summarized by
the fact that themotion of theCoM is not constrained to a constant
height of the plane during a single-stepmotion resulting in amore
natural overall motion for the entire humanoid body.

7. Conclusion

This article presents the Spherical Inverted Pendulum model for
the biped standing balance control. It describes the system using
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FIGURE 13 | Screenshots of the generated full-body walking motion as a result of the proposed approach.

the two rotational degrees of freedom at the ankle and does
not suffer from the limiting assumptions of the traditional
approaches such as maintaining a constant CoM height off the
ground.

We also described an energy-based control architecture for
push recovery on humanoid robots. This control method trans-
forms the SIP model into a critically damped system with the
use of a single tuning parameter, so that balance is restored
in the fastest and most energy efficient way possible. Finally,
a description of the stability bounds and walking gait gen-
eration method using the SIP and the energy controller is
presented.
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