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Abstraction and hierarchical information processing are hallmarks of human and animal
intelligence underlying the unrivaled flexibility of behavior in biological systems. Achieving
such flexibility in artificial systems is challenging, even with more and more computational
power. Here, we investigate the hypothesis that abstraction and hierarchical information
processing might in fact be the consequence of limitations in information-processing
power. In particular, we study an information-theoretic framework of bounded ratio-
nal decision-making that trades off utility maximization against information-processing
costs. We apply the basic principle of this framework to perception-action systems
with multiple information-processing nodes and derive bounded-optimal solutions. We
show how the formation of abstractions and decision-making hierarchies depends on
information-processing costs. We illustrate the theoretical ideas with example simulations
and conclude by formalizing a mathematically unifying optimization principle that could
potentially be extended to more complex systems.

Keywords: information theory, bounded rationality, computational rationality, rate-distortion, decision-making,
hierarchical architecture, perception-action system, lossy compression

1. INTRODUCTION

A key characteristic of intelligent systems, both biological and artificial, is the ability to flexibly
adapt behavior in order to interact with the environment in a way that is beneficial to the system.
In biological systems, the ability to adapt affects the fitness of an organism and becomes key to
survival not only of individual organisms but species as a whole. Both in the theoretical study of
biological systems and in the design of artificial intelligent systems, the central goal is to understand
adaptive behavior formally. A formal framework for tackling the problemof general adaptive systems
is decision-theory, where behavior is conceptualized as a series of optimal decisions or actions
that a system performs in order to respond to changes to the input of the system. An important
idea, originating from the foundations of decision-theory, is the maximum expected utility (MEU)
principle (Ramsey, 1931; Von Neumann and Morgenstern, 1944; Savage, 1954). Following MEU, an
intelligent system is formalized as a decision-maker that chooses actions in order to maximize the
desirability of the expected outcome of the action, where the desirability of an outcome is quantified
by a utility function.

A fundamental problem of MEU is that the computation of an optimal action can easily exceed
the computational capacity of a system. It is for example in general prohibitive trying to compute
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an optimal chess move due to the large number of possibilities.
One way to deal with such problems is to study optimal decision-
making with information-processing constraints. Following the
pioneering work of Simon (1955, 1972) on bounded rationality,
decision-making with limited information-processing resources
has been studied extensively in psychology (Gigerenzer and Todd,
1999; Camerer, 2003; Gigerenzer and Brighton, 2009), economics
(McKelvey and Palfrey, 1995; Rubinstein, 1998; Kahneman, 2003;
Parkes and Wellman, 2015), political science (Jones, 2003), indus-
trial organization (Spiegler, 2011), cognitive science (Howes et al.,
2009; Janssen et al., 2011), computer science, and artificial intel-
ligence research (Horvitz, 1988; Lipman, 1995; Russell, 1995;
Russell and Subramanian, 1995; Russell and Norvig, 2002; Lewis
et al., 2014). Conceptually, the approaches differ widely ranging
from heuristics (Tversky and Kahneman, 1974; Gigerenzer and
Todd, 1999; Gigerenzer and Brighton, 2009; Burns et al., 2013) to
approximate statistical inference schemes (Levy et al., 2009; Vul
et al., 2009, 2014; Sanborn et al., 2010; Tenenbaum et al., 2011;
Fox and Roberts, 2012; Lieder et al., 2012).

In this study, we use an information-theoretic model of
bounded rational decision-making (Braun et al., 2011; Ortega
and Braun, 2012, 2013; Braun and Ortega, 2014; Ortega and
Braun, 2014; Ortega et al., 2014) that has precursors in the
economic literature (McKelvey and Palfrey, 1995; Mattsson and
Weibull, 2002; Sims, 2003, 2005, 2006, 2010; Wolpert, 2006)
and that is closely related to recent advances in the information
theory of perception-action systems (Todorov, 2007, 2009; Still,
2009; Friston, 2010; Peters et al., 2010; Tishby and Polani, 2011;
Daniel et al., 2012, 2013; Kappen et al., 2012; Rawlik et al., 2012;
Rubin et al., 2012; Neymotin et al., 2013; Tkačik and Bialek, 2014;
Palmer et al., 2015). The basis of this approach is formalized by a
free energy principle that trades off expected utility, and the cost
of computation that is required to adapt the system accordingly
in order to achieve high utility. Here, we consider an extension of
this framework to systems with multiple information-processing
nodes and in particular discuss the formation of information-
processing hierarchies, where different levels in the hierarchy
represent different levels of abstraction. The basic intuition is that
information-processing nodes with little computational resources
can adapt only a little for different inputs and are therefore forced
to treat different inputs in the same or a similar way, that is the
system has to abstract (Genewein and Braun, 2013). Importantly,
abstractions arising in decision-making hierarchies are a core
feature of intelligence (Kemp et al., 2007; Braun et al., 2010a,b;
Gershman and Niv, 2010; Tenenbaum et al., 2011) and constitute
the basis for flexible behavior.

The paper is structured as follows. In Section 2, we recapit-
ulate the information-theoretic framework for decision-making
and show its fundamental connection to a well-known trade-
off in information theory (the rate-distortion problem for lossy
compression). In Section 3, we show how the extension of
the basic trade-off principle leads to a theoretically grounded
design principle that describes how perception is shaped by
action. In Section 4, we apply the basic trade-off between
expected utility and computational cost to a two-level hierar-
chy and show how this leads to emergent, bounded-optimal
hierarchical decision-making systems. In Section 5, we present

a mathematically unifying formulation that provides a starting
point for generalizing the principles presented in this paper to
more complex architectures.

2. BOUNDED RATIONAL
DECISION-MAKING

2.1. A Free Energy Principle for
Bounded Rationality
In a decision-making task with context, an actor or agent is
presented with a world-state w and is then faced with finding an
optimal action a∗w out of a set of actions A in order to maximize
the utility U(w, a):

a∗w = argmax
a

U(w, a). (1)

If the cardinality of the action-set is large, the search for the
single best action can become computationally very costly. For
an agent with limited computational resources that has to react
within a certain time-limit, the search problem can potentially
become infeasible. In contrast, biological agents, such as animals
and humans, are constantly confronted with picking an action
out of a very large set of possible actions. For instance, when
planning a movement trajectory for grasping a certain object with
a biological arm with many degrees of freedom, the number of
possible trajectories is infinite. Yet, humans are able to quickly
find a trajectory that is not necessarily optimal but good enough.
The paradigm of picking a good enough solution that is actually
computable has been termed bounded rational acting (Simon,
1955, 1972; Horvitz, 1988; Horvitz et al., 1989; Horvitz and Zil-
berstein, 2001). Note that bounded rational policies are in general
stochastic and thus expressed as a probability distribution over
actions given a world-state p(a|w).

We follow the work of Ortega and Braun (2013), where
the authors present a mathematical framework for bounded
rational decision-making that takes into account computational
limitations. Formally, an agent’s initial behavior (or search
strategy through action-space) is described by a prior distribution
p0(a). The agent transforms its behavior to a posterior p(a|w) in
order to maximize expected utility Σap(a|w)U(w, a) under this
posterior policy. The computational cost of this transformation is
measured by the KL-divergence between prior and posterior and
is upper-bounded in case of a bounded rational actor. Decision-
making with limited computational resources can then be
formalized with the following constrained optimization problem:

p∗(a|w) = argmax
p(a|w)

∑
a

p(a|w)U(w, a)

s.t.DKL(p(a|w)||p0(a)) ≤ K. (2)

This principle models bounded rational actors that initially fol-
low a prior policy p0(a) and then use information about the world-
state w to adapt their behavior to p(a|w) in a way that optimally
trades off the expected gain in utility against the transformation
costs for adapting from p0(a) to p(a|w). The constrained optimiza-
tion problem in equation (2) can be rewritten as an unconstrained
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variational problem using the method of Lagrange multipliers:

p∗(a|w)= argmax
p(a|w)

∑
a

p(a|w)U(w, a)︸ ︷︷ ︸
Ep(a|w)[U(w,a)]

− 1
β

∑
a

p(a|w) log p(a|w)
p0(a)︸ ︷︷ ︸

DKL(p(a|w)||p0(a))

,

(3)
where β is known as the inverse temperature. The inverse tem-
perature acts as a conversion-factor, translating the amount of
information imposed by the transformation (usually measured in
nats or bits) into a cost with the same units as the expected utility
(utils). The distribution p*(a|w) that maximizes the variational
principle is given by

p∗(a|w) = 1
Z(w)p0(a)e

βU(w,a), (4)

with partition sum Z(w)=Σa p0(a) eβU(w ,a). Evaluating equation
(3) with themaximizing distribution p*(a|w) yields the free energy
difference

∆F(w) = max
p(a|w)

Ep(a|w)[U(w, a)]−
1
β
DKL(p(a|w)||p0(a))

=
1
β
logZ(w), (5)

which is well known in thermodynamics and quantifies the energy
of a system that can be converted to work. ∆F(w) is composed
of the expected utility under the posterior policy p*(a|w) minus
information processing cost that is required for computing the

posterior policy measured as the Kullback-Leibler (KL) diver-
gence between the posterior p*(a|w) and the prior p0(a).

The inverse temperature β governs the influence of the trans-
formation cost and thus the boundedness of the actor which
determines the maximally allowed deviation of the final behavior
p*(a|w) from the initial behavior p0(a). A perfectly rational actor
that maximizes its utility can be recovered as the limit case β→∞
where transformation cost is ignored. This case is identical to
equation (1) and simply reflects maximumutility action selection,
which is the foundation of most modern decision-making frame-
works. Note that the optimal policy p*(a|w) in this case collapses
to a delta over the best action p∗(a|w) = δaa∗w . In contrast, β→ 0
corresponds to an actor that has infinite transformation cost or
no computational resources and thus sticks with its prior policy
p0(a). An illustrative example is given in Figure 1.

Interestingly, the free energy principle for bounded rational
acting can also be used for inference problems. In particular if the
utility is chosen as a log-likelihood function U(w, a)= log q(w|a)
and the inverse temperature β is set to one, Bayes’ rule is recov-
ered as the optimal bounded rational solution [by plugging into
equation (4)]:

p∗(a|w) =
p0(a)q(w|a)∑
a p0(a)q(w|a)

.

Importantly, the inverse temperature β can also be interpreted
in terms of computational or sample complexity (Braun and
Ortega, 2014; Ortega and Braun, 2014; Ortega et al., 2014).

A B E

C D F

FIGURE 1 | Bounded rationality and the free energy principle. Imagine an actor that has to grasp a particular cup w from a table. There are four options a1 to
a4 to perform the movement and the utility U(w, a) shown in (A) measures the performance of each option. There are two actions a1 and a4 that lead to a successful
grasp without spilling, and a4 is minimally better. Action a3 leads to a successful grasp but spills half the cup, and a2 represents an unsuccessful grasp. (B) Prior
distribution over actions p0(a): no preference for a particular action. (C) Posterior p*(a|w) [equation (4)] for an actor with limited computational capacity. Due to the
computational limits, the posterior cannot deviate from the prior arbitrarily far, otherwise the KL-divergence constraint would be violated. The computational
resources are mostly spent on increasing the chance of picking one of the two successful options and decreasing the chance of picking a2 or a3. The agent is
almost indifferent between the two successful options a1 and a4. (D) Posterior for an actor with large computational resources. Even though a4 is only slightly better
than a1, the agent is almost unbounded and can deviate a lot from the prior. This solution is already close to the deterministic maximum expected utility solution and
incurs a large KL-divergence from prior to posterior. (E) Expected utility Ep∗(a|w)[U(w, a)] as a function of the inverse temperature β. Initially, allowing for more
computational resources leads to a rapid increase in expected utility. However, this trend quickly flattens out into a regime where small increases in expected utility
imply large increases in β. (F) KL-divergence DKL (p*(a|w)||p0(a)) as a function of the inverse temperature β. In order to achieve an expected utility of ≈95% of the
maximum utility roughly 1 bit suffices [leading to a posterior similar to (C)]. Further increasing the performance by 5% requires twice the computational capacity of
2 bits [leading to a posterior similar to (D)]. A bounded rational agent that performs reasonably well could thus be designed at half the cost (in terms of computational
capacity) compared to a fully rational maximum expected utility agent. An interactive version of this plot where β can be freely changed is provided in the
Supplementary Jupyter Notebook “1-FreeEnergyForBoundedRationalDecisionMaking.”
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The basic idea is that in order to make a decision, the bounded
rational decision-maker needs to generate a sample from the pos-
terior p*(a|w). Assuming that the decision-maker can draw sam-
ples from the prior p0(a), samples from the posterior p*(a|w) can
be generated by rejecting any samples from p0(a) until one sample
is accepted as a sample of p*(a|w) according to the acceptance rule
u≤ exp(β(U(w, a)−T(w))), where u is drawn from the uniform
distribution over the unit interval [0;1] and T(w) is the aspiration
level or acceptance target value with T(w)≥maxaU(w, a). This
is known as rejection sampling (Neal, 2003; Bishop, 2006). The
efficiency of the rejection sampling process depends on howmany
samples are needed on average from p0(a) to obtain one sample
from p*(a|w). This average number of samples #Samples(w) is
given by the mean of a geometric distribution

#Samples(w) = 1∑
a p0(a) exp(β(U(w, a)− T(w)))

=
exp(βT(w))

Z(w) , (6)

where the partition sum Z(w) is defined as in equation (4).
The average number of samples increases exponentially with
increasing resource parameter β when T(w)>maxaU(w, a). It
is also noteworthy that the exponential of the Kullback-Leibler
divergence provides a lower bound for the required number
of samples that is #Samples(w) ≥ exp

(
DKL(p∗(a|w)||p0(a))

)
(see Section 6 in the Supplementary Methods for a derivation).
Accordingly, a decision-maker with high β can manage high
sampling complexity, whereas a decision-maker with low β can
only process a few samples.

2.2. From Free Energy to Rate-Distortion:
The Optimal Prior
In the free energy principle in equation (3), the prior p0(a) is
assumed to be given. A very interesting question is which prior
distribution p0(a) maximizes the free energy difference ∆F(w)
for all world-states w on average (assuming that p(w) is given).
To formalize this question, we extend the variational principle in
equation (3) by taking the expectation over w and the argmax
over p0(a)

argmax
p0(a)

∑
w

p(w)

×

[
argmax
p(a|w )

Ep(a|w )[U(w, a)]−
1
β
DKL

(
p(a |w )

∥∥p0(a)
)]

.

The inner argmax-operator over p(a|w) and the expectation
overw can be swapped because the variation is not over p(w).With
the KL-term expanded this leads to

argmax
p0(a),p(a|w )

∑
w,a

p(w, a)U(w, a)

− 1
β

∑
w

p(w)
∑
a

p(a |w ) log
p(a |w )

p0(a)
.

The solution to the arg max over p0(a) is given by p∗0 (a) =∑
w p(w)p(a|w) = p(a). [see Section 2.1.1 in Tishby et al. (1999)

or Csiszár and Tusnády (1984)]. Plugging in the marginal p(a) as
the optimal prior p∗0 (a) yields the following variational principle
for bounded rational decision-making

argmax
p(a|w)

∑
w,a

p(w, a)U(w, a)︸ ︷︷ ︸
Ep(a|w)[U(w,a)]

− 1
β

∑
w

p(w)DKL(p(a |w ) ∥p(a) )︸ ︷︷ ︸
I(W;A)

= argmax
p(a|w)

JRD(p(a |w )), (7)

where I(W; A) is the mutual information between actions A
and world-states W. The mutual information I(W; A) is a
measure of the reduction in uncertainty about the action a after
having observed w or vice versa since the mutual information is
symmetric

I(W;A) = H(W)−H(W|A) = H(A)−H(A|W) = I(A;W),

where H(L)= –Σlp(l)log p(l) is the Shannon entropy of random
variable L.

The exact same variational problem can also be obtained as the
Langragian for maximizing expected utility with an upper bound
on the mutual information

p∗(a|w) = argmax
p(a|w)

∑
w,a

p(w, a)U(w, a) s.t. I(W;A) ≤ R (8)

or in the dual point of view, asminimizing themutual information
between actions and world-states with a lower bound on the
expected utility. Thus, the problem in equation (7) is equivalent
to the problem formulation in rate-distortion theory (Shannon,
1948; Cover and Thomas, 1991; Tishby et al., 1999; Yeung, 2008),
the information-theoretic framework for lossy compression. It
deals with the problem that a stream of information must be
transmitted over a channel that does not have sufficient capacity
to transmit all incoming information – therefore some of the
incoming information must be discarded. In rate-distortion the-
ory, the distortion d(w, a) quantifies the recovery error of the
output symbol a with respect to the input symbol w. Distortion
corresponds to a negative utility which thus leads to an argmin
instead of an arg max and a positive sign for the mutual informa-
tion term in the optimization problem. In this case, a maximum
expected utility decision-maker would minimize the expected
distortion which is typically achieved by a one-to-one mapping
between w and a, which implies that the compression is not lossy.
From this, it becomes obvious why MEU decision-making might
be problematic: if the MEU decision-maker requires a rate of
information processing that is above channel capacity, it simply
cannot be realized with the given system.

The solution that extremizes the variational problem of equa-
tion (7) is given by the self-consistent equations [see Tishby et al.
(1999)]

p∗(a|w) = 1
Z(w)p(a)e

βU(w,a), (9)

p(a) =
∑
w

p(w)p∗(a|w), (10)

with partition sum Z(w)=Σap(a)eβU(w ,a).
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In the limit case β→∞ where transformation costs are
ignored, p∗(a|w) = δaa∗w is the perfectly rational policy for each
value of w independent of any of the other policies and p(a)
becomes a mixture of these solutions. Importantly, due to the low
price of information processing 1

β ,high values of themutual infor-
mation term in equation (7) will not lead to a penalization, which
means that actions a can be very informative about the world-state
w. The behavior of an actor with infinite computational resources
will thus in general be very world-state-specific.

In the case where β→ 0 the mutual information between
actions and world-states is minimized to I(W; A)= 0, leading to
p*(a|w)= p(a) ∀w, the maximal abstraction where all w elicit the
same response. Within this limitation, the actor will, however,
emit actions that maximize the expected utility Σw ,ap(w)p(a)
U(w, a) using the same policy for all world-states.

For values of the rationality parameter β in between these limit
cases, that is 0<β <∞, the bounded rational actor trades off
world-state-specific actions that lead to a higher expected utility
for particular world-states (at the cost of an increased information
processing rate), against more robust or abstract actions that yield
a “good” expected utility for many world-states (which allows for
a decreased information processing rate).

Note that the solution for the conditional distribution p*(a|w)
in the rate-distortion problem [equation (9)] is the same as the
solution in the free energy case of the previous section [equa-
tion (4)], except that the prior p0(a) is now defined as the
marginal distribution p0(a)= p(a) [see equation (10)]. This par-
ticular prior distribution minimizes the average relative entropy
between p(a|w) and p(a) which is themutual information between
actions and world-states I(W; A).

An alternative interpretation is that the decision-maker is a
channel that transmits information from w to a according to
p(a|w). The channel has a limited capacity, which could arise
from the agent not having a “brain” that is powerful enough,
but a limited channel capacity could also arise from noise that
is induced into the channel, i.e., an agent with noisy sensors or
actuators. For a large capacity, the transmission is not severely
influenced and the best action for a particular world-state can
be chosen. For smaller capacities, however, some information
must be discarded and robust (or abstract) actions that are “good”
under a number of world-states must be chosen. This is possible
by lowering β until the required rate I(W; A) does no longer
exceed the channel capacity. The notion that a decision-maker
can be considered as an information processing channel is not
new and goes back to the cybernetics movement (Ashby, 1956;
Wiener, 1961). Other recent applications of rate-distortion theory
to decision-making problems can be found for example in Sims
(2003, 2006) and Tishby and Polani (2011).

2.3. Computing the Self-Consistent
Solution
The self-consistent solutions that maximize the variational prin-
ciple in equation (7) can be computed by starting with an initial
distribution pinit(a) and then iterating equations (9) and (10)
in an alternating fashion. This procedure is well known in the
rate-distortion framework as a Blahut-Arimoto-type algorithm
(Arimoto, 1972; Blahut, 1972; Yeung, 2008). The iteration is

guaranteed to converge to a uniquemaximum [see Section 2.1.1 in
Tishby et al. (1999) andCsiszár andTusnády (1984) andCover and
Thomas (1991)]. Note that pinit(a) has to have the same support
as p(a). Implemented in a straightforward manner, the Blahut-
Arimoto iterations can become computationally costly since the
iterations involve evaluating the utility function for every action-
world-state-pair (w, a) and computing the normalization constant
Z(w). In case of continuous-valued random variables, closed-
form analytic solutions exist only for special cases. Extending the
sampling approach presented at the end of Section 2.1 could be
one potential alleviation. A proof-of-concept implementation of
the extended sampling scheme is provided in the Supplementary
Jupyter Notebook “S1-SampleBasedBlahutArimoto.”

2.4. Emergence of Abstractions
The rate-distortion objective for decision-making [equation (7)]
penalizes high information processing demandmeasured in terms
of the mutual information between actions and world-states I(W;
A). A large mutual information arises when actions are very infor-
mative about the world-state which is the case when a particular
action is mostly chosen under a particular world-state and is
rarely chosen otherwise. Policies p(a|w) with many world-state-
specific actions are thus more demanding in terms of informa-
tional cost and might not be affordable by an agent with limited
computational capacity. In order to keep informational costs low
while at the same time optimizing expected utility, actions that
yield a “good” expected utility for many different world-states
must be favored. This leads to abstractions in the sense that the
agent does not discriminate between differentworld-states out of a
subset of all world-states, but rather responds with the same policy
for the entire subset. Importantly, these abstractions are driven
by the agent-environment structure encoded through the utility
function U(w, a). Limits in computational resources thus lead to
abstractionswhere differentworld-states are treated as if theywere
the same.

To illustrate the influence of different degrees of computational
limits and the resulting emergence of abstractions we constructed
the following example. The goal is to design a recommender
system that observes an item bought w and then recommends
another item a. In this example the system can either recommend
another concrete item or the best-selling item of a certain cate-
gory or the best-selling item of a super-category which subsumes
several categories (see Table 1). An illustration of the example is
shown in Figure 2A. The possible items bought are shown on the
x-axis and possible recommendations are shown on the y-axis.
The super-categories and categories as well as the corresponding
bought items can be seen in Table 1 where each bought item
also indicates the corresponding concrete item that scores highest
when recommended.

The utility of each (w, a)-pair is color-coded in blue in
Figure 2A. For each possible world-state there is one concrete
item that can be recommended that will (deterministically) yield
the highest possible utility of 3 utils. Further, each bought item
belongs to a category and recommending the best-selling item of
the corresponding category leads to a utility of 2.2 utils. Finally,
recommending the best-selling item of the corresponding super-
category yields a utility of 1.6 utils. For each world-state there is
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TABLE 1 | Recommender system example.

Super-category Category Bought item Best recommended
item

Electric devices
and electronics

Computers Laptop Laptop sleeve
Monitor Monitor cable
Game pad Video game

Small
appliances

Coffee machine Coffee capsules
Vacuum cleaner Vacuum cleaner bags
Electric toothbrush Brush heads

Food and
cooking

Fruit Grapes Cheese
Strawberries Cream
Limes Cane sugar

Baking Pancake mix Maple syrup
Baking soda Vinegar
Baker’s yeast Flour
Muffin cups Flour and chocolate

chips

The system observes an item bought w and can then recommend another item to buy
a. For each bought item w, there is one other concrete item a that yields the maximum
utility when recommended (indicated in the last column of the table). Additionally, each
bought item belongs to a category and a less specific super-category. Recommend-
ing the best-selling item of the corresponding category or super-category yields sub-
optimal but non-zero utility values. A depiction of the utility function U(w, a) is shown in
Figure 2A.

A B

FIGURE 2 | Task setup and solution p*(a|w) for βββ===1.3. (A) Utility function U(w, a) for the recommender system task. The recommender system observes an item
w bought by a customer and recommends another item a to buy to the customer. For each item bought there is another concrete item that has a high chance of
being bought by the customer. Therefore, recommending the correct concrete item leads to the maximum utility of 3. However, each item also belongs to a category
(indicated by capital letters) and recommending the best-selling item of the corresponding category leads to a utility of 2.2. Finally, each item also belongs to a
super-category (either “food” or “electronics”) and recommending the best-selling item of the corresponding super-category leads to a utility of 1.6. There is one item
(muffin cups) where two concrete items can be recommended and both yield maximum utility. Additionally there is one item (pancake mix) where the
recommendation of the best-selling item of both categories “fruit” and “baking” yields the same utility. (B) Solution p*(a|w) [equation (9)] for β= 1.3. Due to the lowβ,
the computational resources of the recommender system are quite limited and it cannot recommend the highest scoring items (except in the last three columns).
Instead, it saves computational effort by applying the same policy to multiple items.

one specific action that leads to the highest possible utility but zero
utility for all other world-states. At the same time there exist more
abstract actions that are sub-optimal but still “good” for a set of
world-states. See the legend of Figure 2 for more details on the
example.

Figure 2B shows the result p*(a|w) obtained through Blahut-
Arimoto iterations [equations (9) and (10)] for β= 1.3. For each
world-state (on the x-axis) the probability over all actions (y-
axis) corresponds to one column in the plot and is color-coded
in red. For this particular value of β the agent cannot afford to
pick the specific actions for most of the world-states (except for
the last three world-states) in order to stay within the limit on
the maximum allowed rate. Rather, the agent recommends the
best-selling items of the corresponding categorywhich allows for a
lower rate by having identical policies (i.e., columns in the plot) for
sets of world-states. The optimal policies thus lead to abstractions,
where several different world-states elicit identical responses of
the agent. Importantly, the abstractions are not induced because
some stimuli are more similar than others under some utility-free
measure and they are also not the result of a post hoc aggregation
or clustering scheme. Rather, the abstractions are shaped by the
utility function and appear as a consequence of bounded rational
decision-making in the given task.
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A

B

C

FIGURE 3 | Sweep over βββ values. (A) Evolution of expected utility and value of the objective JRD(p(a|w)) [equation (7)]. The expected utility is monotonically
increasing, the objective also increases with increasing β but not monotonically. In both curves, there are some sharp kinks which indicate a change in level of
abstraction (see panels below). (B) Evolution of information quantities. The same sharp kinks as in the panel above can also be seen in all three curves. Interestingly,
H(A) has mostly flat plateaus in between these kinks which means that the behavior of the agent does not change qualitatively along the plateau. At the same time,
H(A|W) goes down, indicating that behavior becomes less and less stochastic until a phase transition occurs where H(A) changes. (C) Solutions p*(a|w) [equation (9)]
that illustrate the agents behavior on each of the plateaus of H(A). It can be seen that on each plateau (and with each kink), the level of abstraction changes.

Figure 3A shows the expected utility Ep(w ,a)[U(w, a)] and the
rate-distortion objective JRD(p(a|w)) as a function of the inverse
temperature β. The plot shows that by increasing β the expected
utility increases monotonically, whereas the objective JRD(p(a|w))
also shows a trend to increase but not monotonically. Interest-
ingly, there are a few sharp transitions at the same points in both
curves. The same steep transitions are also found in Figure 3B,
which shows the mutual information and its decomposition into
the entropic terms I(W, A)=H(A)−H(A|W) as a function of
β. The line corresponding to the entropy over actions H(A)
shows flat plateaus in between these phase transitions. Figure 3C
illustrates solutions p*(a|w) for β values corresponding to points
on each of the plateaus (labels for bought and recommended
items have been omitted for visual compactness but are identical
to the plot in Figure 2B). Surprisingly, most of the solutions
correspond to different levels of abstraction – from fully abstract
for β→ 0, then going through several levels of abstraction and
getting more and more specific up to the case β→∞ where
the conditional entropy H(A|W) goes to zero implying that the

conditionals p*(a|w) become deterministic and identical to the
maximum expected utility solutions. Within a plateau of H(A),
the entropy over actions does not change but the conditional
entropy H(A|W) tends to decrease with increasing β. This means
that qualitatively the behavior along a plateau does not change in
the sense that across all world-states the same subset of actions
is used. However, the stochasticity within this subset of actions
decreases with increasing β (until at some point a phase-transition
occurs). Changing the temperature leads to a natural emergence
of different levels of abstraction – levels that emerge from the
agent-environment interaction structure described by the utility
function. Each level of abstraction corresponds to one plateau
in H(A).

In general, abstractions are formed by reducing the information
content of an entity until it only contains relevant information.
For a discrete random variablew∈W , this translates into forming
a partitioning over the space W where “similar” elements are
grouped into the same subset of W and become indistinguish-
able within the subset. In physics, changing the granularity of a
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partitioning to a coarser level is known as coarse-graining which
reduces the resolution of the space W in a non-uniform manner.
Here, the partitioning emerges in p*(a|w) as a soft-partitioning
(see Still and Crutchfield, 2007), where “similar” world-states w
get mapped to an action a (or a subset of actions) and essentially
become indistinguishable. Readers are encouraged to interactively
explore the example in the Supplementary Jupyter Notebook “2-
RateDistortionForDecisionMaking.”

In analogy to rate-distortion theory where the rate-distortion
function serves as an information-theoretic characterization of a
system, one can define the rate-utility function

U(R) = max
p(a|w):I(W;A)≤R

Ep(w,a)[U(w, a)]. (11)

where the expected utility is a function of the information pro-
cessing rate I(W; A). If the decision-maker is conceptualized as
a communication channel between world-states and actions, the
rate I(W;A) defines the minimally required capacity of that chan-
nel. The rate-utility function thus specifies theminimum required
capacity for computing actions given a certain expected utility tar-
get, or analogously themaximally achievable expected utility given
a certain information processing capacity. The rate-utility curve is
obtained by varying the inverse temperature β (corresponding to
different values ofR) and plotting the expected utility as a function
of the rate. The resulting plot is shown in Figure 4, where the
solid line denotes the rate-utility curve and the shaded region
corresponds to systems that are theoretically infeasible and cannot
be achieved regardless of the implementation. Systems in thewhite
region are sub-optimal, meaning that they could either achieve
the same performance with a lower rate or given their limits on
computational capacity they could theoretically achieve higher
performance. This curve is interesting for both designing systems
as well as characterizing the degree of sub-optimality of given
systems.

FIGURE 4 | Rate-utility curve. Analogously to the rate-distortion curve in
rate-distortion theory, the rate-utility curve shows the minimally required
information processing rate to achieve a certain level of expected utility or
dually, the maximally achievable expected utility, given a certain rate. Systems
that optimally trade-off expected utility against cost of computation lie exactly
on the curve. Systems in the shaded region are theoretically impossible and
cannot be realized. Systems that lie in the white region of the figure are
sub-optimal in the sense that they could achieve a higher expected utility
given their computational resources or they could achieve the same expected
utility with lower resources.

3. SERIAL INFORMATION-PROCESSING
HIERARCHIES

In this section, we apply the rate-distortion principle for decision-
making to a serial perception-action system.Wedesign two stages:
a perceptual stage p(x|w) that maps world-statesw to observations
x and an action stage p(a|x) that maps observations x to actions
a. Note that the world-state w does not necessarily have to be
considered as a latent variable but could in general also be an
observation from a previous processing stage. The action stage
implements a bounded rational decision-maker (similar to the
one presented in the previous section) that optimally trades off
expected utility against cost of computation [see equation (7)].
Classically, the perceptual stage might be designed to represent w
as faithfully as possible, given the computational limitations of the
perceptual stage. Here, we show that trading off expected utility
against the cost of information processing on both the perceptual
and the action stage leads to bounded-optimal perception that
does not necessarily representw as faithfully as possible but rather
extracts the most relevant information about w such that the
action stage can work most efficiently. As a result, bounded-
optimal perception will be tightly coupled to the action stage and
will be shaped by the utility function as well as the computational
capacity of the action channel.

3.1. Optimal Perception is Shaped
by Action
To model a perceptual channel we extend the model from Section
2.2 as follows: The agent is no longer capable of fully observing
the state of the world W but using its sensors it is capable to
form a percept X as p(x|w) which then allows for adaptation
of behavior according to p(a|x). The three random variables for
world-state, percept, and action form a serial chain of channels,
one channel from world-states to percepts expressed by p(x|w)
and another channel from percepts to actions expressed by p(a|x)
which implies the following conditional independence

p(w, x, a) = p(w)p(x|w)p(a|x),

that is also expressed by the graphical model W→X→A. We
assume that p(w) is given and the utility function depends on the
world-state and the action U(w, a). Note that mathematically, the
results are identical for U(w, x, a), but in this paper we consider
the utility independent of the internal percept x.

Classically, inference and decision-making are separated – for
instance, by first performing Bayesian inference over the state
of the world w using the observation x and then choosing an
action a according to the maximum expected utility principle.
TheMEU action-selection principle can be replaced by a bounded
rational model for decision-making that takes into account the
computational cost of transforming a (optimal) prior behavior
p0(a) to a posterior behavior p(a|x) as shown in Section 2.

Bayesian inference : p(w|x) = p(w)p(x|w)∑
w p(w)p(x|w)

(12)

Bounded rational decision : p∗(a|x) = 1
Z(x)p(a)e

β2U(x,a)

(13)
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where U(x, a)=Σwp(w|x)U(w, a) is the expectation of the util-
ity under the Bayesian posterior over w given x. Note that the
bounded rational decision-maker in equation (13) is identical to
the rate-distortion decision-maker introduced in Section 2 that
minimizes the trade-off given by equation (7) by implementing
equation (9). It includes the MEU solution as a special case for
β2 →∞. Here, the inverse temperature is denoted by β2 (instead
of β as in the previous section) for notational reasons that ensure
consistency with later results of this section.

In equation (12), the choice of the likelihood model p(x|w)
remains unspecified and the question is where does it come from?
In general, it is chosen by the designer of a system and the choice
is often driven by bandwidth or memory constraints. In purely
descriptive scenarios, the likelihood model is determined by the
sensory setup of a given system and p(x|w) is obtained by fitting it
to data of the real system. In the following, we present a particular
choice of p(x|w) that is fundamentally grounded on the principle
that any transformation of behavior or beliefs is costly (which is
identical to the assumption of limited-rate information processing
channels) and this cost should be traded off against gains in
expected utility. Remarkably, equations (12) and (13) drop out
naturally from the principle.

Given the graphical model: W→X→A, we consider an infor-
mation processing channel between W and X and another one
between X and A and introduce different rate-limits on these
channels, i.e., the information processing price on the perceptual
level 1

β 1
can be different from the price of information process-

ing on the action level 1
β 2

. Formally, we set up the following
variational problem:

argmax
p(x|w),p(a|x)

Ep(w,x,a)[U(w, a)]−
1
β 1

I(W;X)− 1
β 2

I(X;A)

= argmax
p(x|w),p(a|x)

Jser(p(x|w), p(a|x)). (14)

Similar to the rate-distortion case, the solution is given by the
following set of four self-consistent equations:

p∗(x|w) = 1
Z(w)p(x)exp

(
β1∆Fser(w,x)

)
(15)

p(x) =
∑
w

p(w)p∗(x|w) (16)

p∗(a|x) = 1
Z(x)p(a)exp

(
β2
∑
w

p(w|x)U(w, a)
)

(17)

p(a) =
∑
w,x

p(w)p∗(x|w)p∗(a|x), (18)

where Z(w) and Z(x) denote the corresponding normalization
constants or partition sums. The conditional probability p(w|x) is
given by Bayes’ rule p(w|x) =

p(w)p∗(x|w)
p(x) and ∆Fser(w, x) is the

free energy difference of the action stage:

∆Fser(w,x) := Ep∗(a|x)[U(w, a)]−
1
β 2

DKL(p∗(a|x)||p(a)), (19)

see also equation (5).More details on the derivation of the solution
equations can be found in the Supplementary Methods Section 2.

The bounded-optimal perceptual model is given by equation
(15). It follows the typical structure of a bounded rational solution
consisting of a prior times the exponential of the utility multiplied
by the inverse temperature. Compare equation (9) to see that the
downstream free-energy trade-off ∆Fser(w ,x) now plays the role
of the utility function for the perceptual model. The distribution
p*(x|w) thus optimizes the downstream free-energy difference in a
bounded rational fashion, that is taking into account the computa-
tional resources of the perceptual channel. Therefore, the optimal
percept becomes tightly coupled to the agent-environment inter-
action structure as described by the utility function or in other
words: the optimal percept is shaped by the embodiment of the
agent and, importantly, is not simply a maximally faithful repre-
sentation of W through X given the limited rate of the perceptual
channel. A second interesting observation is that the action stage
given by equation (17) turns out to be a bounded rational decision-
maker using the Bayesian posterior p(w|x) for inferring the true
world-state w given the observation x. This is identical to equa-
tion (13) (using the optimal prior p(a)=Σw ,xp(w)p*(x|w)p*(a|x)),
even though the latter was explicitly modeled by first performing
Bayesian inference over the world-state w given the percept x
[equation (12)] and then performing bounded rational decision-
making [equation (13)], whereas the same principle drops out
naturally in equation (17) as a result of optimizing equation (14).

3.2. Illustrative Example
In this section, we design a hand-crafted perceptual model
pλ(x|w) with precision-parameter λ, that drives a subsequent
bounded rational decision-maker that maps an observation x to
a distribution over actions p(a|x) in order to maximize expected
utility while not exceeding a constraint on the rate of the action
channel. The latter is implemented by following equation (13)
and setting β2 according to the limit on the rate I(X; A). We
compare the bounded rational actor with hand-crafted perception
against a bounded-optimal actor that maximizes equation (14)
by implementing the four corresponding self-consistent equa-
tions (15)–(18). Importantly, the perceptual model p*(x|w) of the
bounded-optimal actor maximizes the downstream free-energy
trade-off of the action stage ∆Fser(w ,x) which leads to a tight
coupling between perception and action that is not present in the
hand-crafted model of perception. The action stage is identical in
both models and given by equation (17).

We designed the following example where the actor is an ani-
mal in a predator-prey scenario. The actor has sensors to detect
the size of other animals it encounters. In this simplified scenario,
animals can only belong to one of three size-groups and their size
correlates with their hearing-abilities:

• Small animals (insects): either 2, 3, or 4 size-units cannot hear
very well.

• Medium-sized animals (rodents): either 6, 7, or 8 size-units can
hear quite well.

• Large animals (cats of prey): either 10, 11, or 12 size-units can
hear quite well.

The actor has a sensor for detecting the size of an animal,
however, depending on the capacity of the perceptual channel this
sensor will either be more or less noisy. To survive, the actor can
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FIGURE 5 | Predator-prey utility function U(w, a). The actor encounters
different groups of animals – small, medium-sized, and large – and should
hunt small and medium-sized animals for food and flee from large animals.
Animals within a group have a similar size w: small animals ∈ {2,3,4}
size-units, medium-sized animals ∈ {6,7,8} size-units, and large animals
∈ {10,11,12} size-units. For hunting – denoted by the action a – the actor can
either ambush the other animal or alternatively sneak up to the other animal
and strike once close enough. In general, sneaking up works well on small
animals as they cannot hear very well, whereas medium-sized animals can
hear quite well which decreases the chance of a successful sneak-up. The
ambush works equally well on both groups of prey. Large animals should
never be engaged, but the actor should flee in order to avoid falling prey to
them. In addition to the generic hunting patterns that work equally well for all
members of a group, for small animals there are specific sneak-up patterns
that have an increased chance of success if applied to the correct animal but
a decreased chance of success when applied to the wrong animal. For
medium-sized animals, there are specific ambush behaviors that have the
same chance of success as the generic ambush behavior when applied to the
correct animal but a decreased chance of success when applied to the wrong
animal. Since the specific ambush behaviors for the medium-sized animals
have no advantage over the generic ambush behavior but require more
information processing, any bounded rational actor should never choose the
specific ambush behaviors. This somewhat artificial construction is meant to
illustrate that bounded rational actors do not add unnecessary complexity to
their behavior. See main text for more details on the example.

hunt animals from both the small and the medium-sized group
for food. On the other hand, it can fall prey to animals of the large
group. The actor has three basic actions:

• Ambush: steadily wait for the other animal to get close and then
strike.

• Sneak-up: slowly move closer to the animal and then strike.
• Flee: quickly move away from the other animal.

The advantage of the ambush is that it is silent, however, the
risk is that the animal might not move toward the position of
the ambush – it works equally well on animals from the small
and medium-sized group. The sneak-up is not silent but does
not rely on the other animal coincidentally getting closer – it
works better than the ambush for small-sized animals but the
opposite is true for medium-sized animals. If the actor encounters
a large animal the only sensible action is to flee in order to avoid
falling prey to the large animal. Besides these generic actions, the
actor also has a repertoire of more specific hunting patterns – see
Figure 5which shows the full details of the utility function for the
predator-prey scenario. The exact numeric values are found in the
Supplementary Jupyter Notebook “3-SerialHierarchy.”

The hand-crafted model of perception is specified by pλ(x|w),
where the observed size x corresponds to the actual size of the ani-
mal w corrupted by noise. The precision-parameter λ governs the
noise-level and thus the quality of the perceptual channel which
can be measured with I(W; X). In particular, the observation o is
a discretized noisy version of w with precision λ:

x|w, λ ∼ round(Ntrunc(w, 1/λ)), (20)

where the set of world-states is given by all possible animal sizes
w∈W = {2,3,4,6,7,8,10,11,12} and the set of possible observations
is given by x∈X = {1,2,3,. . .,11,12,13}. To avoid a boundary-bias
due to the limited interval X we reject and re-sample all values of
x that would fall outside of X . For λ→∞, the perceptual channel
is very precise, and there is no uncertainty about the true value of
w after observing x. However, such a channel incurs a large com-
putational effort as the mutual information I(W; X) is maximal
in this case. If the perceptual channel has a smaller capacity than
required to uniquely map eachw to an x, the rate must be reduced
by lowering the precision λ. Medium precision will mostly lead
to within-group confusion whereas low precision will also lead to
across-group confusion and corresponds to perceptual channels
with a very low rate I(W; X).

The results in Figure 6 show solutions when having large com-
putational resources on both the perception and action channel.
As the figure clearly shows, the hand-crafted model pλ(x|w) looks
quite different from the bounded-optimal solution p*(x|w), even
though the rate on the perceptual channel is identical in both cases
(given by themutual information I(W;X)≈ 2 bits). The difference
is that the bounded-optimal percept spends the two bitsmainly on
discriminating between specific animals of the small group and
on discriminating between medium-sized and large animals. It
does not discriminate between specific sizes within the latter two
groups. This makes sense, as there is no gain in utility by applying
any specific actions to specific animals in the medium- or large-
sized group. Figure 6 also shows the overall-behavior from the
point of view of an external observer p(a|w), which is computed
as follows

pλ(a|w) =
∑
x

pλ(x|w)pλ(a|x) and

p∗(a|w) =
∑
x

p∗(x|w)p∗(a|x) (21)

The overall-behavior in the bounded-optimal case is more
deterministic, leading to a higher expected utility in the bounded-
optimal case. The distributions pλ(a|x) and p*(a|w) are not shown
in the figure but can easily be inspected in the Supplementary
Jupyter Notebook “3-SerialHierarchy.” If the price of information
processing on the perceptual channel in the hand-crafted model
is the same as in the bounded-optimal model (given by β1), then
the overall objective Jser(p(x|w), p(a|x)) is larger for the bounded-
optimal case compared to the hand-crafted case, implying that
the bounded optimal actor achieves a better trade-off between
expected utility and computational cost. The crucial insight of
this example is that the optimal percept depends on the utility
function, where in this particular case it does for instance make
no sense to waste computational resources on discriminating
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A B E

C D F

FIGURE 6 | Comparing hand-crafted perception against bounded-optimal perception (parameters are given above the panels). Both the perceptual and
the action channel have large computational resources (λ or β1 for the perceptual channel, respectively, and β2 for the action channel). (A) Hand-crafted perceptual
model pλ(x|w) [equation (20)] – the observed animal size is a noisy version of the actual size of the animal, but the noise-level is quite low (due to large λ).
(B) Overall-behavior of the system pλ(a|w) [equation (21)] with the hand-crafted perception. For small animals, the specific sneak-up patterns are used, but the
noisiness of the perception does not allow to deterministically pick the correct pattern. (C) Bounded-optimal perceptual model p*(x|w) [equation (15)] – the
bounded-optimal model does not distinguish between the individual medium- or large-sized animals as all of them are treated with the respective generic action.
Instead, the computational resources are spent on precisely discriminating between the different small animals. Note that this bounded-optimal perceptual model
spends exactly the same computation as the hand-crafted model [see (F), blue bars]. (D) Overall-behavior p*(a|w) [equation (21)] of the bounded-optimal system.
Compared to the hand-crafted system, the bounded-optimal perception allows to precisely discriminate between the different small animals which is also reflected in
the overall-behavior. The bounded-optimal system thus achieves a higher expected utility (E). (E) Comparison of expected utility (dark blue, first two columns) and
value of the objective [equation (14), dark red, last two columns] for the hand-crafted system (denoted by λ) and the bounded-optimal system (denoted by *). Since
both systems spend roughly the same amount of computation [see (F)], but the bounded-optimal model achieves a higher expected utility, the overall objective is in
favor of the bounded-optimal system. (F) Comparison of information processing effort in the hand-crafted system (denoted by λ) and the bounded-optimal system
(denoted by *). Both systems spend (roughly) the same amount of computation, however, the bounded-optimal system spends it in a more clever way – compare
(A,C). The distributions pλ (a|x) and p*(a|w) are not shown in the figure but can easily be inspected in the Supplementary Jupyter Notebook “3-SerialHierarchy.”

between the specific animals of the large group because the opti-
mal response (flee with certainty) is identical to all of them. In the
Supplementary Jupyter Notebook“3-SerialHierarchy” the utility
function can easily be switched while keeping all other parameters
identical in order to observe how the bounded-optimal percept
changes accordingly. Note that the bounded-optimal behavior
p*(a|w) shown in Figure 6D yields the highest possible expected
utility in this task setup – there is no behavior that would lead to a
higher expected utility (though there are other solutions that lead
to the same expected utility).

The bounded-optimal percept depends not only on the utility
function but also on the behavioral richness of the actor which is
governed by the rate on the action channel I(X; A). In Figure 7
we show the results of the same setup as in Figure 6 with the
only change being the significantly increased price for information
processing in the action stage (as specified by β2 = 1 bit per util
whereas it used to be β2 = 10 bits per util in the previous figure).
The hand-crafted perceptual model is unaffected by this change
of the action stage, but the bounded-optimal model of perception
has changed compared to the previous figure and now reflects

the limited behavioral richness. As shown in p*(a|w) in Figure 7,
the actor is no longer capable of applying different actions to
animals of the small group and animals of the medium-sized
group. Accordingly, the bounded-optimal percept does not waste
computational resources for discriminating between small and
medium-sized animals since the downstream policy is identical
for both groups of animals. In terms of expected utility, both
the hand-crafted model as well as the bounded-optimal decision-
maker score equally at ≈3 utils. However, the bounded-optimal
model does so by using lower computational resources and thus
scoring better on the overall trade-off Jser(p(x|w), p(a|x)).

In Figure 8 we again use large resources on the action chan-
nel β2 = 10 (as in the first example in Figure 6), but now the
resources on the perceptual channel are limited by setting β1 = 1
(compared to β1 = 8 in the first case). Accordingly, the preci-
sion of the hand-crafted perceptual model is tuned to λ= 0.4
(compared to λ= 1.65 in the first case) such that it has the same
rate I(W; X) as the bounded-optimal model. By comparing the
two panels for pλ(x|w) and p*(x|w), it can clearly be seen that
the bounded-optimal perceptual model now spends its scarce
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FIGURE 7 | Comparing hand-crafted perception against bounded-optimal perception (parameters are given above the panels). Compared to Figure 6,
the action channel of both the hand-crafted and the bounded-optimal system now has low computational resources (through the low β2 for the action channel).
(A) Hand-crafted perceptual model pλ(x|w) [equation (20)] – the hand-crafted perception is unaffected by the increased limit in computational resources on the action
channel. (B) Overall-behavior of the system pλ(a|w) [equation (21)] with the hand-crafted perception. Even though perception was unaffected by the increased limit
on the action channel, the overall-behavior is severely affected. (C) Bounded-optimal perceptual model p*(x|w) [equation (15)] – due to the low information processing
rate on the action channel [see (F), yellow bars], the bounded-optimal perception adjusts accordingly and only discriminates between predator and prey animals.
(D) Overall-behavior p*(a|w) [equation (21)] of the bounded-optimal system. Compared to the hand-crafted system, the bounded-optimal system distinguishes
sharply between predator and prey animals. Note, however, that both systems achieve an identical expected utility [(E), dark blue bars]. (E) Comparison of expected
utility (dark blue, first two columns) and value of the objective [equation (14), dark red, last two columns] for the hand-crafted system (denoted by λ) and the
bounded-optimal system (denoted by *). Both systems achieve the same expected utility, but the bounded-optimal system does so with requiring less computation
on the perceptual channel [see (F), blue bars]. (F) Comparison of information processing effort in the hand-crafted system (denoted by λ) and the bounded-optimal
system (denoted by *). Due to the low computational resources on the action channel, the corresponding information processing rate (yellow bars) is quite low. The
bounded-optimal perception adjusts accordingly and requires a much lower rate compared to the hand-crafted model of perception that does not adjust. The
distributions pλ (a|x) and p*(a|x) are not shown in the figure but can easily be inspected in the Supplementary Jupyter Notebook “3-SerialHierarchy.”

resources to reliably discriminate between large animals and all
other animals. The overall behavioral policies p(a|w) reflect the
limited perceptual capacity in both cases, however, the bounded-
optimal case scores a higher expected utility of≈3 utils compared
to the hand-crafted case. The overall objective Jser(p(x|w), p(a|x))
is also higher for the bounded-optimal model, indicating that
this model should be preferred because it finds a better trade-off
between expected utility and information processing cost.

Note that in all three examples the optimal percept p*(x|w)
often leads to a uniform mapping of an exclusive subset of world-
states w to the same set of percepts x. Importantly, these per-
cepts do not directly correspond to an observed animal size as
in the case of the hand-crafted model of perception. Rather, the
optimal percepts often encode more abstract concepts such as
medium- or large-sized animal (as in Figure 6) or predator and
prey animal (as in Figures 7 and 8). In a sense, abstractions
similar to the ones shown in the recommender system example
in the previous section (Figure 3) emerge in the predator-prey
example as well but now they also manifest themselves in the
form of abstract percepts. Crucially, the abstract percepts allow

for more efficient information processing further downstream in
the decision-making part of the system. The formation of these
abstract percepts is driven by the embodiment of the agent and
reflects certain aspects of the utility function of the agent. For
instance, unlike the actor in Figure 6, the actors in Figures 7 and 8
would not “understand” the concept of medium-sized animals
as it is of no use to them: with their very limited resources it is
most important for them to have the two perceptual concepts of
predator and prey. Note that the cardinality of X in the bounded-
optimal model of perception is fixed in all examples in order to
allow for easy comparison against the hand-crafted model, but
it could be reduced further without any consequences (up to a
certain point) – this can be explored in the Supplementary Jupyter
Notebook “3-SerialHierarchy.”

The solutions shown in this section were obtained by iterating
the self-consistent equations until numerical convergence. Since
there is no convergence-proof, it cannot be fully ruled out that
the solutions are sub-optimal with respect to the objective. How-
ever, the point of the simulation results shown here is to allow
for easier interpretation of the theoretical results and highlight
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FIGURE 8 | Comparing hand-crafted perception against bounded-optimal perception (parameters are given above the panels). Compared to Figure 6,
the perceptual channel of both the hand-crafted and the bounded-optimal system now has low computational resources (through the low λ and β1 respectively).
(A) Hand-crafted perceptual model pλ(x|w) [equation (20)] – due to the low precision λ, the noise for the hand-crafted perception has increased dramatically.
(B) Overall-behavior of the system pλ(a|w) [equation (21)] with the hand-crafted perception. Even though the action-part of the system still has large computational
resources the overall-behavior is severely affected due to the bad perceptual channel. (C) Bounded-optimal perceptual model p*(x|w) [equation (15)] – due to the low
computational resources on the perceptual channel (β1) the system can only distinguish between predator and prey animal (which is the most important information).
Note how the percept in the bounded-optimal case no longer corresponds to some observed animal size but rather to a more abstract concept such as predator or
prey animal. The parameters were chosen such that both the hand-crafted and the bounded-optimal system spend the same amount of information processing on
the perceptual channel [see (F), blue bars]. (D) Overall-behavior p*(a|w) [equation (21)] of the bounded-optimal system. Compared to the hand-crafted system, the
bounded-optimal system distinguishes sharply between predator and prey animals. This is only possible because the bounded-optimal perception spends its scarce
resource to exactly perform this distinction. (E) Comparison of expected utility (dark blue, first two columns) and value of the objective [equation (14), dark red, last
two columns] for the hand-crafted system (denoted by λ) and the bounded-optimal system (denoted by *). The bounded-optimal system achieves a higher expected
utility even though the amount of information processing is not larger compared to the hand-crafted model [see (F)]. Rather, the bounded-optimal model spends its
scarce resources more optimally. (F) Comparison of information processing effort in the hand-crafted system (denoted by λ) and the bounded-optimal system
(denoted by *). Note that both perceptual channels (blue bars) require the same information processing rate, but the bounded-optimal perceptual model processes
the more important information (predator versus prey) which allows the subsequent action channel to perform better [see (E), dark blue bars). The distributions
pλ(a|x) and p*(a|x) are not shown in the figure but can easily be inspected in the Supplementary Jupyter Notebook “3-SerialHierarchy.”

certain aspects of the theoretical findings. We discuss this issue
in Section 5.2.

4. PARALLEL INFORMATION-
PROCESSING HIERARCHIES

Rational decision-making requires searching through a set of
alternatives a and picking the option with the highest expected
utility. Bounded rational decision-making replaces the “hard
maximum” operation with a soft selection mechanism where the
first action that satisfies a certain level of expected utility is picked.
A parallel hierarchical architecture allows for a prior partitioning
of the search space which reduces the effective size of the search
space and thus speeds up the search process. For instance, consider
amedical system that consists of general practitioners and special-
ist doctors. The general doctor can restrict the search space for a
particular ailment of a patient by determining which specialist the
patient should see. The specialist doctor in turn can determine the
exact disease. This leads to a two-level decision-making hierarchy

consisting of a high-level partitioning that allows for making a
subsequent low-level decision with reduced (search) effort. In
statistics, the partitioning that is induced by the high-level deci-
sion is often referred to as a model and is commonly expressed as
a probability distribution over the search space p(a|m) (where m
indicates the model) which also allows for a soft-partitioning. The
advantage of hierarchical architectures is that the computation
that leads to the high-level reduction of the search space can be
stored in the model (or in a set of parameters in case of a para-
metric model). This computation can later be re-used by using
the correct model (or set of parameters) in order to perform the
low-level computation more efficiently. Interestingly, it should be
most economic to put the most re-usable, and thus more abstract,
information into the models p(a|m) which leads to a hierarchy
of abstractions. However, in order to make sure that the correct
model is used, another deliberation process p(m|w) is required
(where w indicates the observed stimulus or data). Another prob-
lem is how to chose the partitioning to be most effective. In this
section, we address both problems from a bounded rational point
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of view. We show that the bounded optimal solution p*(a|m)
trades off the computational cost for choosing a model m against
the reduction in computational cost for the low-level decision.

To keep the notation consistent across all sections of the paper
we denote the model m in the rest of the paper with the variable
x. This is in contrast to Section 3, where x played the role of a
percept. The advantage of this notation is that it allows to easily see
similarities and differences of the information terms and solution
equations of the different cases. In particular, in Section 5 we
present a unifying case that includes the serial and parallel case as
special cases – by keeping the notation consistent this can easily
be seen.

4.1. Optimal Partitioning of the
Search Space
Constructing a two-level decision-making hierarchy requires the
following three components: high-level models p(a|x), a model
selection mechanism p(x|w) and a low-level decision maker
p(a|w, x) (w denotes the observed world-state, x indicates a par-
ticular model and a is an action). The first two distributions are
free to be chosen by the designer of the system, for p(a|w, x) a
maximum expected utility decision-maker is the optimal choice if
computational costs are neglected. Here, we take computational
cost into account and replace the MEU decision-maker with a
bounded rational decision-maker that includes MEU as a special
case (β3 →∞) – the bounded rational decision-maker optimizes
equation (7) by implementing equation (9). In the following we
show how all parts of the hierarchical architecture:

1. Selection of model (or expert): p(x|w) (22)
2. Prior knowledge of model (or expert): p(a|x) (23)
3. Bounded rational decision of model (or expert):

p∗(a|w, x) = 1
Z(w, x)p(a|x)e

β3U(w,a) (24)

emerge from optimally trading off computational cost against
gains in utility. Importantly, p(a|x) plays the role of a prior distri-
bution for the bounded rational decision-maker and reflects the
high-level partitioning of the search space.

The optimization principle that leads to the bounded-optimal
hierarchy trades off expected utility against the computational
cost of model selection I(W; X) and the cost of the low-level
decision using the model as a prior I(W; A|X):

argmax
p(x|w),p(a|w,x)

Ep(w,x,a)[U(w, a)]−
1
β 1

I(W;X)− 1
β 3

I(W;A|X)

= argmax
p(x|w),p(a|w,x)

Jpar(p(x|w), p(a|w, x)). (25)

The set of self-consistent solutions is given by

p∗(x|w) = 1
Z(w)p(x)exp

(
β1∆Fpar(w,x)

)
(26)

p(x) =
∑
w

p(w)p∗(x|w) (27)

p∗(a|w, x) = 1
Z(w, x)p

∗(a|x)exp (β3U(w, a)) (28)

p∗(a|x) =
∑
w

p(w|x)p∗(a|w, x), (29)

where Z(w) and Z(w, x) denote the corresponding normaliza-
tion constants or partition sums. p(w|x) is given by Bayes’ rule
p(w|x) =

p(w)p∗(x|w)
p(x) and ∆Fpar(w ,x) is the free energy difference

of the low-level stage:

∆Fpar(w, x) := Ep∗(a|w,x)[U(w, a)]− 1
β 3

DKL(p∗(a|w, x)||p∗(a|x)),
(30)

see equation (5). More details on the derivation of the solution
equations can be found in the Supplementary Methods Section
3. By comparing the solution equations (26)–(29) with equations
(22)–(24) the hierarchical structure of the bounded-optimal solu-
tion can be seen clearly. The bounded-optimal model selector
in equation (26) maximizes the downstream free-energy trade-
off ∆Fpar(w ,x) in a bounded rational fashion and is similar to the
optimal perceptual model of the serial case [equation (15)]. This
means that the optimal model selection mechanism is shaped
by the utility function as well as the computational process on
the low-level stage of the hierarchy (governed by β3) but also by
the computational cost of model selection (governed by β1). The
optimal low-level decision-maker given by equation (28) turns
out to be exactly a bounded rational decision-maker with p(a|x)
as a prior – identical to the low-level decision-maker that was
motivated in equation (24). Importantly, the bounded-optimal
solution provides a principled way of designing the models p(a|x)
[see equation (29)]. According to the equation, the optimal model
p*(a|x) is given by a Bayesian mixture over optimal solutions
p*(a|w, x) where w is known. The Bayesian mixture turns out to
be the optimal compressor of actions for unknown w under the
belief p(w|x).

4.2. Illustrative Example
To illustrate the formation of bounded-optimal models, we
designed the following example: in a simplified environment,
only three diseases can occur – a heart disease or one of two
possible lung diseases. Each of the diseases comes in two possible
types (e.g., type 1 or type 2 diabetes). Depending on how much
information is available on the symptoms of a patient, diseases
can be treated according to the specific type (which is most
effective) or with respect to the disease category (which is less
effective but requires less information). See Figure 9 for a plot
of the utility function and a detailed description of the example.
The goal is to design a medical analysis hierarchy that initiates
the best possible treatment, given its limitations. The hierarchy
consists of an automated medical system that can cheaply take
standard measurements to partially assess a patient’s disease cat-
egory. Additionally, the patient is then sent to a specialist who
can manually perform more elaborate measurements if neces-
sary to further narrow down the patient’s precise disease type
and recommend a treatment. The automated system should be
designed in a way that minimizes the additional measurements
required by the specialists. More formally, the automated system
delivers a first diagnosis x given the patient’s precise disease typew
according to p(x|w). The first diagnosis narrows down the possible
treatments a according to a model p(a|x). For each x, a specialist
can further reduce uncertainty about the correct treatment by per-
forming more measurements p(a|w, x). We compare the optimal
design of the automated system and the corresponding optimal
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FIGURE 9 | Task setup of the medical system example. (A) Utility
function. The disease category heart disease comes in the two types h1 or
h2. There are two different categories of lung diseases that come in types l1
or l2 (lung disease A) or types l3 and l4 (lung disease B). The goal of the
medical system is to gather information about the disease type and then
initiate a treatment. Each of the disease types is best treated with a specific
treatment. However, when the specific treatment is applied to the wrong
disease type of the same disease category it is less effective. Additionally
there are general treatments for the heart- and the two lung diseases that are
slightly worse than the specific treatments but can be applied with less
knowledge about the disease type. For lung diseases, there is a general
treatment that works even if the specific lung disease is not known; however,
it is less effective compared to the treatments where the disease but not the
precise type is known. (B) Distribution of disease types in environment 1 – all
diseases appear with equal probability. (C) Distribution of disease types in
environment 2 where the heart diseases have an increased probability and the
two corresponding disease types appear with higher chance.

treatment recommendations to the specialist p*(a|x) according
to equation (29) in two different environments: one, where all
disease types occur with equal probability (Figure 9B) versus two,
where heart diseases occurwith increased chance (Figure 9C). For
this example, the number of different high-level diagnoses X is
set to |X |= 3 which also means that there can be three different
treatment recommendations p(a|x). Since in the example the total
budget for performing measurements is quite low (reflected by
β1, β3 both being quite low), the whole system (automated plus
specialists) can in general not gather enough information about
the symptoms to treat every disease type with the correct specific
treatment. Rather, the low budget has to be spent on gathering the
most important information.

Figure 10 shows bounded-optimal hierarchies for the medical
system in both environments. The top row in Figure 10 shows
the optimal hierarchy for the environment where all diseases
appear with equal probability: the automated system p*(x|w) (see
Figure 10A) distinguishes between a heart disease, lung disease
A and lung disease B, which means that there is one treatment
recommendation for heart diseases and one treatment recommen-
dation for each of the two possible lung diseases respectively (see
the three columns of p*(a|x) in Figure 10B). Since the general

treatment for the heart diseaseworks less effective than the general
treatments for the two lung diseases, the (very limited) budget of
the specialists is completely spent on finding the correct specific
heart treatment. Both lung diseases are treated with their respec-
tive general treatments since the two lung specialists have no
budget for additional measurements. Since the automated system
already distinguishes between the two lung diseases, it can narrow
down the possible treatments to a delta over the correct general
treatment, thus requiring no additional measurements by the lung
specialists (shown by the two columns in p*(a|x) that have a delta
over the treatment).

The bottom row in Figure 10 shows the optimal hierarchy for
the environment where heart diseases appear with higher proba-
bility. In this case it is optimal to redesign the automated system
to distinguish between the two types of the heart disease h1, h2,
and lung diseases in general (see p*(x|w) in Figure 10D of the
figure). This means that there are now treatment recommenda-
tions p*(a|x) for h1 and h2 that do not require any more measure-
ments by the specialists (shown by the delta over a treatment in the
first two columns of p*(a|x) in Figure 10E) and there is another
treatment recommendation for lung diseases. The correspond-
ing specialist can use the limited budget to perform additional
measurements to distinguish between the two categories of lung
disease (but not between the four possible types as this would
requiremoremeasurements than the budget allows). The example
illustrates how the bounded-optimal decision-making hierarchy
is shaped by the environment and emerges from optimizing the
trade-off between expected utility and overall information pro-
cessing cost. Readers can interactively explore the example in
the Supplementary Jupyter Notebook “4-ParallelHierarchy” – in
particular by changing the information processing costs of the
specialists β3 or changing the number of specialists by increasing
or decreasing the cardinality of X.

The solutions shown in this section were obtained by iterating
the self-consistent equations until numerical convergence. Since
there is no convergence-proof, it cannot be fully ruled out that
the solutions are sub-optimal with respect to the objective. How-
ever, the point of the simulation results shown here is to allow
for easier interpretation of the theoretical results and highlight
certain aspects of the theoretical findings. We discuss this issue
in Section 5.2.

4.3. Comparing Parallel and
Serial Information Processing
In order to achieve a certain expected utility, a certain overall rate
I(W; A) is needed. In the one-step rate-distortion case (Section 2)
the channel from w to a must have a capacity larger or equal to
that rate. In the serial case (Section 3) there is a channel from w
to x and another channel from x to a. Both serial channels must
at least have a capacity of I(W; A) in order to achieve the same
overall rate, as the following inequality always holds for the serial
case

I(W;A) ≤ min {I(W;X), I(X;A)}.

In contrast, the parallel architecture allows for computing a
certain overall rate I(W; A) using channels with a lower capacity
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FIGURE 10 | Bounded-optimal hierarchies for two different environments (different p(w)). Top row: all disease types are equally probable, bottom row: heart
diseases and thus h1 and h2 are more probable. (A,D) Optimal model (or specialist) selectors [equation (26)]. In the uniform environment it is optimal to have one
specialist for each disease category (heart, lung A, and lung B) and have a model selector that maps specific disease types to the corresponding specialist x. In the
non-uniform environment it is optimal to have one specialist for each of the two types of the heart disease (h1, h2) and another one for all lung diseases. The
corresponding model selector in the bottom row reflects this change in the environment. (B,E) Optimal models [equation (29), each column corresponds to one
specialist]. The resources of the specialists are very limited due to a very low β3, meaning that the average deviation of p*(a|w, x) from p*(a|x) must be small. In the
uniform environment it is optimal that the heart specialist spends all the resources for discriminating between the two heart disease types because using the general
heart treatment on both types is less effective compared to using one of the lung disease treatments on both corresponding types. In the non-uniform environment
this is reversed as the specialists for h1 and h2 do not need any more measurements to determine the correct treatment, however, the remaining budget (of 1 bit) is
spent on discriminating between the two categories of lung diseases (but is insufficient for discriminating between the four possible lung disease types).
(C,F) Overall-behavior of the hierarchical system p*(a|w)=Σxp*(x|w)p*(a|w, x). The distributions p*(a|w, x) [equation (28)] are not shown in the figure but can easily be
investigated in the Supplementary Jupyter Notebook “4-ParallelHierarchy.”

because the contribution in reducing uncertainty about a on each
level of the hierarchy splits up as follows:

I(W,X;A)︸ ︷︷ ︸
total reduction

= I(X;A)︸ ︷︷ ︸
high−level

+ I(W;A|X)︸ ︷︷ ︸
low−level

,

which implies I(W, X; A)≥ I(X; A). In particular, if the low-level
step contributes information then I(W;A|X)> 0 and the previous
inequality becomes strict. The same argument also holds when
considering I(W; A) (see Section 5.1).

Inmany scenarios themaximum capacity of a single processing
element is limited and it is desirable to spread the total processing
load on several elements that require a lower capacity. For
instance, there could be technical reasons why processing
elements with 5 bits of capacity can easily be manufactured
but processing elements with a capacity of 10 bits cannot be
manufactured or are disproportionally more costly to produce. In
the one-step case and the serial case the only way to stay below a

certain capacity limit is by tuning β until the required rate is below
the capacity – however, in both cases this also decreases the overall
rate I(W; A). In the parallel hierarchical case several building
blocks with a limited capacity can be used to produce an overall
rate I(W; A) larger than the capacity of each processing block.

Splitting of information processing load onto several processing
blocks is illustrated in Figure 11, where the one-step and parallel
hierarchical solutions to the medical example are compared. In
this example, the price of information processing in the one-step
case is quite low (β= 10 bits per util) such that the correspond-
ing solution leads to a deterministic mapping of each w to the
best a (see Figure 11A). Doing so requires I(W; A)≈ 2.6 bits
(see Figure 11B). Now assume for the sake of this example
that processing elements, where information processing cost is
reduced (15 bits per util), could be manufactured, but the maxi-
mum capacity of these elements is 1.58 bits. In the one-step case
these processing elements can only be used if it is acceptable
to reduce the rate I(W; A) to 1.58 bits (by tuning β) which
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FIGURE 11 | Bounded-optimal parallel hierarchy (denoted by “par”) versus one-step (rate-distortion) case (denoted by “RD”). (A) Overall-behavior
p*(a|w)=Σxp*(x|w)p*(a|w, x). The overall-behavior is identical for the one-step case and the parallel hierarchical solution. Due to the low price of information
processing each w is deterministically mapped to the best a. (B) Comparison of performance of one-step (“RD”) and parallel case (“par”). Both solutions achieve the
same expected utility but the hierarchical solution has a better trade-off between expected utility and information processing cost (because the price of information
processing is lower in the hierarchical case 1

β 1
, 1

β 3
compared to 1

β in the one-step case) since in the hierarchical case the cheap but capacity-limited processing
elements can be used – see main text). JRD(p(a|w)) corresponds to equation (7) and Jpar(p(x|w), p(a|w, x)) corresponds to equation (25). (C) Mutual information terms
of the parallel case I(W; X ), I(X; A), I(W; A|X ), and I(W; A) (from left to right). The individual processing channels in the hierarchical case are all within the capacity limit
of 1.58 bits, but the overall processed information I(W; A) is ≈2.6 bits. (D) Comparison of “effective” information I(W; A) processed in the parallel case (denoted by
“par”) and the information processed in the one-step (rate-distortion) case (denoted by “RD”). I(W; A) is identical for the one-step and the hierarchical case, but in the
parallel case it was computed in a distributed fashion, where each computational step (or channel) has a rate lower than I(A; W) [see (C)]. The figure can be
reproduced with the Supplementary Jupyter Notebook “5-DistributionOfInformationProcessing.”

would imply a lower expected utility. However, in the parallel
hierarchical case the new processing elements can be used (see
Figure 11C) which leads to a reduced price of information pro-
cessing (β1 = 15, β3 = 14.999). In conjunction the new processing
elements process the same effective information I(W; A) (see
Figure 11D) and achieve the same expected utility as the one-step
case (see Figure 11B). However, since the price for information
processing is lower on the more limited elements, the overall
trade-off between expected utility and information processing
cost is in favor of the parallel hierarchical architecture. Note that
in this example it is important that the cardinality of X is limited
(in this case |X |= 3) and β1 >β3. We discuss this in the next
paragraphs.

In the parallel hierarchical case, there are two possible pathways
from w to a:

Two-stage serial pathway I(W;X) → I(X;A)
Parallel pathway I(W;A|X)

Note that I(X; A) does not appear in the objective [equation
(25)]; however, it is crucial for distributing information processing
on both levels of the hierarchy (see more analysis of the medical
system example in Figure 11). I(X; A) measures the average
adaptation effort for going from p(a) to p(a|x). In the parallel
hierarchical case it is a measure of how much the different models
p(a|x) narrow down the search space compared to the average
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p(a)=Σxp(x)p(a|x). If all models are equal p(a|x)= p(a) ∀x the
mutual information I(X; A) is zero. Note, however, that a large
I(X; A) is rendered useless by a low I(W; X) and vice versa – if the
model selector is very bad, even the best models are not useful and
vice versa.

Since there is no cost for having a large rate I(X; A), the overall
throughput of the serial pathway is effectively governed by β1
as it affects the rate I(W; X). Similarly, β3 governs the rate on
the parallel pathway I(W; A|X). As a result, whenever one of the
two inverse temperatures β1 and β3 is larger than the other, it
becomes more economic to shift all the information processing
to the cheaper pathway (either serial or parallel) thus rendering
the other pathway obsolete. The only scenario where it can be
advantageous to use both pathways (and distribute computation)
is when the cheaper pathway has insufficient capacity and the
more expensive pathway is used to take on additional computa-
tional load that cannot be handled by the cheap pathway alone.
Effectively, this translates into the constraint that the serial path-
way must be cheaper β1 >β3 and additionally the serial pathway
must be limited in its capacity by limiting the cardinality |X | (see
Supplementary Methods Section 5 for a detailed discussion).

Note the important difference between changing the cardinality
of X which governs the channel capacity of the serial pathway
(that is the maximally possible rates I(W; X), I(X; A)) but has no
influence on the price of information processing and changing β1
which governs the price of processing I(W; X) and hence affects
the actual rate on the serial pathway but has no effect on the
capacity of the channels of the serial pathway.

I(W;X) = H(X)−H(X|W) ≤ H(X) (31)
I(X;A) = H(A)−H(A|X) = H(X)−H(X|A) ≤ H(X) (32)

I(W;A|X) = H(A|X)−H(A|W,X) ≤ H(A|X) (33)

H(X) is an upper bound for both I(W; X) but also I(X; A) and
the upper bound ofH(X) itself is a function of |X |. Note that since
there is no cost associated with I(X; A) it is generally desirable
to maximize I(X; A) at least such that I(X; A)≥ I(W; X). To do
so H(A|X) must be pushed toward zero [equation (32)] – how-
ever, this simultaneously pushes the upper bound for I(W; A|X)
toward zero [equation (33)]. In case of a sufficiently limitedH(X)
(through a low |X |), I(X; A) cannot be fully maximized, therefore
leaving a non-zero upper bound for I(W; A|X).

In the example shown in Figure 11 information processing is
performed on both the serial pathway (I(W; X) and I(X; A)) but
also on the parallel pathway (I(W; A|X)) because the constraints
for distribution of information processing are fulfilled: β1 >β3
and the capacity (that is themaximum rate I(W;X) and I(X;A)) of
the serial pathway is limited by the (low) cardinality |X |= 3. The
cardinality of X for the example can easily be changed in the Sup-
plementary Jupyter Notebook “4-ParallelHierarchy” – if it is for
instance increased to |X |= 6 while keeping all other parameters
the same, the whole information processing load will be entirely
on the serial pathway and I(W; A|X)= 0. Alternatively to limiting
the cardinality of X, a cost for I(X; A) could be introduced to limit
the computational resources for computing p(a|x) from p(a). This
is explored in Section 5.

5. TOWARD MORE GENERAL
ARCHITECTURES

In the serial case in Section 3, information processing cost arises
from adapting p(x) to p(x|w) and p(a) to p(a|x), and the average
informational effort is measured by I(W; X) and I(X; A). In
the parallel hierarchical case in Section 4 the two information
processing terms considered are I(W;X) and I(W;A|X), where the
latter measures the average informational effort for adapting from
p(a|x) to p(a|w, x). In this section, we present a mathematically
unifying case that considers all three mutual information terms
and includes the serial and the parallel case as special cases. This
unifying formulation might also be a starting point for generaliz-
ing toward more than three random variables as the correspond-
ing objective function could easily be extended to include more
variables.

The general case uses the same factorization of the three vari-
ablesW,X,A as the parallel case: p(w, x, a)= p(w)p(x|w)p(a|w, x).
Given this factorization, the KL-divergence between the joint p(w,
x, a) and the product of all threemarginals, also known as the total
correlation C(W, X, A), leads to:

C(W,X,A) = DKL(p(w, x, a)||p(w)p(x)p(a))
= H(W) +H(X) +H(A)−H(W,X,A) (34)

=
∑
w,x,a

p(w, x, a) log p(w, x, a)
p(w)p(x)p(a)

=
∑
w,x

p(w, x) log p(x|w)
p(x)

+
∑
w,a,x

p(w, x, a) log p(a|w, x)
p(a)

= I(W;X) + I(W,X;A) (35)
= I(W;X) + I(X;A) + I(W;A|X). (36)

The total correlation (Watanabe, 1960), also called multivari-
ate constraint (Garner, 1962) or multiinformation (Studenỳ and
Vejnarová, 1998), is the sum of the three information processing
terms considered in the serial and parallel case. The general objec-
tive is formed by assigning different prices to each of the terms
and trading off the resulting information processing cost against
the expected utility:

argmax
p(x|w),p(a|w,x)

Ep(w,x,a)[U(w, a)]−
1
β 1

I(W;X)

− 1
β 2

I(X;A)− 1
β 3

I(W;A|X)

= argmax
p(x|w),p(a|w,x)

Jgen(p(x|w), p(a|w, x)). (37)

Identical to the parallel hierarchical case, the general case has
two information processing pathways that allow for splitting up
the total computational load: a serial pathway consisting of the
two stages I(W; X) and I(X; A) and a parallel pathway I(W; A|X).
If any of the pathways is cheaper than the other one, it is more
economical to shift all the computation to the cheaper pathway.
However, the capacity of the serial pathway can be limited, for
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example by reducing the cardinality ofX. In such a case the parallel
pathway can take on additional computational load, leading to a
parallel hierarchical information processing architecture.

The solution to the general objective is given by the following
set of five self-consistent equations (the detailed derivation of the
solutions is included in the Supplementary Methods Section 1):

p∗(x|w) = 1
Z(w)p(x) exp

(
β1∆Fgen(w, x)

−
(
β1
β3

− β1
β2

)
DKL(p∗(a|w, x)||p∗(a|x))

)
(38)

p(x) =
∑
w

p(w)p∗(x|w) (39)

p∗(a|w, x) = 1
Z(w, x)p

∗(a|x) exp
(
β3U(w, a)−

β3
β2

log
p∗(a|x)
p(a)

)
(40)

p∗(a|x) =
∑
w

p(w|x)p∗(a|w, x) (41)

p(a) =
∑
w,x

p(w)p∗(x|w)p∗(a|w, x), (42)

where Z(w) and Z(w, x) denote the corresponding normalization
constants or partition sums. The conditional distribution p(w|x)
is given by Bayes’ rule p(w|x) =

p(w)p∗(x|w)
p(x) and ∆Fgen(w ,x) is the

free energy difference

∆Fgen(w, x) := Ep∗(a|w,x)[U(w, a)]− 1
β 2

DKL(p∗(a|w, x)||p(a)).

For β3 <β2 the KL-term in equation (38) has a positive sign,
implying that the KL-divergence is a utility instead of a cost
which makes sense if computation on I(W; A|X) is cheaper than
computation on I(A|X). For β3 >β2 the KL-term gets a negative
sign, implying that the KL-divergence is a cost, as a result of com-
putation on I(W; A|X) being more expensive than computation
on I(A|X).

Equation 38 can also be rewritten as (see Supplementary Meth-
ods Section 1.2):

p∗(x|w) = 1
Z(w)p(x) exp

(
β1∆Fpar(w, x)

− β1
β2

∑
a

p∗(a|w, x) log p∗(a|x)
p(a)

)
(43)

where ∆Fpar(w ,x) is the same free energy difference as in the
parallel case

∆Fpar(w, x) := Ep∗(a|w,x)[U(w, a)]
− 1

β 3
DKL(p∗(a|w, x)||p∗(a|x)) (44)

see equation (30).
Comparing the objective in equation (37) with the objective of

the parallel case in equation (25), it can be seen that by setting
β2 →∞ the two objective functions become equal and the implicit
assumption that in the parallel case there is no cost for going
from p(a) to p(a|x) (as the latter is considered a prior) is made
explicit. The solution equations of the general case also collapse

TABLE 2 | Recovery of special cases from the general, unifying case by
specific settings of the inverse temperatures.

Case β1 β2 β3 (inverse) price per transformation

General β1 β2 β3 β1: p(x)→p(x|w)
β2: p(a)→p(a|x)
β3: p(a|x)→p(a|w,x)

Total correlation β β β β: p(x)→p(x|w)
β: p(a)→p(a|w,x)

Degenerate TC β1 β β β1: p(x)→p(x|w)
β: p(a)→p(a|w,x)

Serial β1 β2 → 0 β1: p(x)→p(x|w)
β2: p(a)→p(a|x)

p(a|w,x)=p(a|x)∀w
I(W; A|X )= 0

Parallel β1 →∞ β3 β1: p(x)→p(x|w)
β3: p(a|x)→p(a|w,x)

Joint (x,a) β →∞ β β: p(x,a) → p(x,a|w)

The table shows how to set the inverse temperatures in the general case to recover partic-
ular special cases. The last column shows for all cases which probability-transformations
are considered as computational effort and the corresponding (inverse) price. The case
“degenerate total correlation” is not described in the main paper, but is outlined in the
Supplementary Methods Section 4 – it could be relevant in a two-dimensional decision-
making scenario, that is when x is considered one dimension of the decision and a is
considered the other dimension. This implies that the utility function also depends on x:
U(w,x,a). Similarly, the case “joint (x,a)” is only described in the Supplementary Methods
Section 5 and describes how the one-step (rate-distortion) case is related to the general
case.

to the solutions of the parallel case by letting β2 →∞: compare
equations (43) and (40) against equations (26) and (28). The gen-
eral case thus also allows for designing more realistic hierarchical
cases where there is a small cost for switching models p*(a|x)
that arises, for instance, from loading a certain set of parameters
or switching to a particular sampler or reading the model from
memory. Similarly, the serial case can be recovered by β3 → 0. The
special cases of the general objective are summarized in Table 2.

5.1. Effective Information
Throughput I(W; A)
The amount of information processing that effectively contributes
toward achieving a high expected utility is measured by I(W; A)
which does not directly appear in the objective of the general
case (nor the serial and parallel case). However, the effective
information throughput of the system is given by

I(W;A) = I(W;X;A) + I(W;A|X) (45)
= I(W;X) + I(X;A)− I(X;W,A) + I(W;A|X) (46)
= C(W,X,A)− I(X;W,A) (47)

where I(W; X; A) denotes the multivariate mutual information
(MMI; Yeung, 1991). The first equation above is obtained by
re-ordering the definition of the MMI I(K; L; M)= I(K; M)−
I(K; M|L). Note that in the serial hierarchical case I(W; A|X)= 0
always holds. The equations above also show how the total corre-
lation C(W, X, A) and the MMI I(W; X; A) are related.

The multivariate mutual information is upper-bounded by
I(W; X; A)≤min{I(W; X), I(W; A), I(X; A)} (see (Yeung, 1991)).
Using the bound in equation (45) leads to and upper bound for
the effective information throughput:

I(W;A) ≤ min {I(W;X), I(X;A)}+ I(W;A|X) (48)
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Equation 48 shows how information processing in the general
case can be distributed between a two-stage serial pathway (con-
sisting of I(W;X) and I(X;A)) and a parallel pathway (I(W;A|X)).
The general case forms a parallel hierarchy similar to Section 4,
but it allows to associate a cost with I(X; A) (which is a measure
of how costly it is to switch models). Importantly the discussion
on splitting up information processing between both levels of the
parallel hierarchy as in Section 4.3 also holds for the general case.

5.2. Iterating the Self-Consistent Equations
For the simulation results shown in this paper the corresponding
set of self-consistent equations was iterated until convergence (by
checking that the total change in probability distributions between
two iteration steps is below a certain threshold – see code under-
lying the Supplementary Notebooks for details). This is inspired
by the Blahut-Arimoto scheme that is proven to converge to the
global maximum in the rate-distortion case (Csiszar, 1974; Cover
and Thomas, 1991) (Section 2). Unfortunately there is no such
proof for iterating the sets of self-consistent equations of the gen-
eral, serial or parallel case. It is not clear whether the optimization
problems are still convex and have a global solution, nor is it clear
that iterating the self-consistent equations would converge toward
these global solutions. A convexity and convergence analysis is
certainly among themost important steps for future investigations
of the principles presented here. At this point, we can only report
empirical observations and interested readers are encouraged to
explore convergence behavior using the Supplementary Jupyter
Notebooks (which include plots that show convergence behavior
across iterations) but also the underlying code (published in the
Supplementary Material).

6. DISCUSSION AND CONCLUSION

The overarching principle behind this paper is the consistent
application of the trade-off of gains in expected utility against
the computational cost that these gains require. Here, compu-
tational cost is defined as the average effort of computational
adaptation (measured by the mutual information) multiplied by
the price of information processing. This definition is motivated
by first principles (Mattsson andWeibull, 2002; Ortega and Braun,
2010; Ortega and Braun, 2011) and is grounded in a thermody-
namic framework for decision-making (Ortega and Braun, 2013).
Mathematically, the basic principle is identical to the principle
behind rate-distortion theory, the information-theoretic frame-
work for lossy compression (Genewein and Braun, 2013; Still,
2014). This connection is no coincidence as bounded rational
decision-making can be cast as a lossy compression problem
in lossy compression the goal is to transmit the most relevant
information (given the limited channel capacity) in order to mini-
mize a distortion-function. In bounded rational decision-making
the goal is to process the most relevant information in order
maximize a utility function, given the limitations on information
processing. In Section 2, we have shown how different levels of
behavioral abstraction can be induced by different computational
limitations. The authors in (van Dijk and Polani, 2013) use the
Relevant Information method, which is a particular application

of rate-distortion theory and find a very similar emergence of
“natural abstractions” and “ritualized behavior” when studying
goal-directed behavior in the MDP case. We have shown how the
basic principle can be extended to more complex cases and that
analytic solutions can be obtained for these cases. Importantly, the
solutions allow for interesting interpretations, highlighting how
the same fundamental trade-off can lead to systems that elegantly
solve more complex problems. For instance, when designing a
perception-action system, the perceptual part of the system can
easily be understood as a lossy compressor, but the corresponding
distortion-function is not intuitively clear. We have shown in
Section 3 how the extended lossy compression principle leads to
a well-defined distortion-function for the perceptual part of the
system that optimizes the downstream trade-off between expected
utility and computational cost. In a similar fashion we have shown
in Section 4 how the problem of designing bounded-optimal
decision-making hierarchies is fundamentally equal to designing
a distributed lossy compressor (that is spread over both levels of
the hierarchy).

In the serial hierarchy in Section 3, we compared a perceptual
channel that performs Bayesian inference against a bounded-
optimal perceptual channel that optimizes the downstream free
energy trade-off. We found that the difference between both
models of perception was that in one case the likelihood model
p(x|w) was unspecified (Bayesian inference) whereas in the other
case it was well defined (bounded-optimal solution). Perception is
often conceptualized as (Bayesian) inference, however, given our
findings there is a subtle but important difference. In our model
of a perception-action system, the goal of the perceptual model
p(x|w) is to extract the most relevant information from w for
choosing an action according to p(a|x), given the computational
limitations of the system. In plain inference, the goal is to predict
w from x very well and the likelihood model is thus chosen to
maximize predictive power. In many cases the two objectives
coincide as achieving a large expected utility often requires precise
knowledge about w. However, this must not always be the case
and in particular for systems where computational limitations
play a large role, the (limited) computational resources can often
be spent more economically which allows for a higher expected
utility at the cost of not being able to predict w from x that well.
An interestingmachine-learning application of the serial principle
could be the design of optimal features for classification.

In Section 4, we showed how parallel bounded-optimal
decision-making hierarchies can emerge from solving the trade-
off between utility and cost of computation. We found that the
condition for parallel hierarchies to being optimal solutions was
that the price for model selection is lower than the price for
processing information on the low level of the hierarchy (β1 >β3).
At the same time, the upper level of the hierarchy must be
limited in capacity (for instance through the cardinality |X |).
Intuitively this makes sense and fits with the general observation
that often hardware that allows for cheap information processing
is itself quite expensive to build (low signal to noise ratio, etc.).
Therefore the amount of hardware that allows for cheap informa-
tion processing is likely to be quite limited. It remains an open
question whether this is a fundamental constraint for hierarchies
being optimal solutions or whether there are other arguments in
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favor of hierarchical architectures. In changing environments, for
example, the overall change required to adapt a system is smaller
for a hierarchical system, compared to a flat system, because the
more abstract levels of the hierarchy might require little or no
change at all. It could also be that the upper levels of a hierarchical
model based on our principle contain more transferable knowl-
edge that can be applied to novel but similar tasks. Changing the
task corresponds to changing the utility-function, which requires
a non-equilibrium analysis (Grau-Moya and Braun, 2013) that we
leave for future investigation.

In our simulations, we initialize p(x|w) and either p(a|w, x)
(parallel hierarchies) or p(a|x) (serial hierarchies) and iterate the
equations until (numerical) convergence. We found sometimes
that the solutions can be sensitive to the initialization. This hints
at the problem being non-convex or the iteration-scheme being
prone to get stuck in local optima or plateaus. In particular, we
find that in the serial hierarchy with low cost of computation, a
sparse, diagonal-like initialization of p(x|w) works much better
than a random initialization. For the parallel hierarchies, we found
that a random or sparse initialization of p(x|w) combined with a
uniform initialization of p(a|w, x) works most reliably. Addition-
ally we found that in the hierarchical case if β3 is slightly larger
than β1 the iterations converge to sub-optimal solutions where
both pathways are used instead of shifting all the computation to
the parallel pathway. The toy simulations presented here are illus-
trative examples only and numerically efficient implementations
of the iteration-schemes are beyond the scope of the current paper.
These problems might be addressed by other solution schemes
like sampling-based or parametric model-based solutions. Nev-
ertheless, these other solution schemes (that potentially do not
even require the sets of analytical solutions) can benefit from the
interpretations given by the analytic solution equations in this
paper.

The ability to form abstractions is thought of as a hallmark
of intelligence, both in cognitive tasks and in basic sensorimotor
behaviors (Kemp et al., 2007; Braun et al., 2010a,b; Gershman
and Niv, 2010; Tenenbaum et al., 2011; Genewein and Braun,
2012). Traditionally, the formation of abstractions is conceptual-
ized as being computationally costly because particular entities
have to be grouped together by neglecting irrelevant informa-
tion. Recently, abstractions that arise from sensory evolution and
hierarchical behaviors have been studied from an information-
theoretic perspective (Salge and Polani, 2009; Van Dijk et al.,
2011). Here, we study abstractions in the process of decision-
making, where “similar” situations elicit the same behavior when
partially ignoring the current situational context. Extending our
principle to hierarchies with more than two levels might provide
novel points of view on the formation of hierarchies in biological
systems, such as the early visual system (DiCarlo et al., 2012). One
fundamental prediction, based on our current work is that the
formation of abstractions and concepts should be heavily shaped
by the agent-environment structure (the utility function). Fol-
lowing the work of (Simon, 1972) decision-making with limited
information-processing resources has been studied extensively
in psychology, economics, political science, industrial organi-
zation, computer science, and artificial intelligence research. In

this paper, we use an information-theoretic model of decision-
making under resource constraints (McKelvey and Palfrey, 1995;
Kappen, 2005; Wolpert, 2006; Todorov, 2009; Peters et al., 2010;
Theodorou et al., 2010; Rubin et al., 2012). In particular, Braun
et al. (2011) and Ortega and Braun (2011, 2012, 2013) present a
framework in which gain in expected utility is traded off against
the adaptation cost of changing from an initial behavior to a
posterior behavior. The variational problem that arises due to
this trade-off has the same mathematical form as the minimiza-
tion of a free energy difference functional in thermodynamics.
Here, we discuss the close connection between the thermody-
namic decision-making framework (Ortega and Braun, 2013) and
rate-distortion theory which is an information-theoretic frame-
work for lossy compression. The problem in lossy compression
is essentially the problem of separating structure from noise
and is thus highly related to finding abstractions (Tishby et al.,
1999; Still and Crutchfield, 2007; Still et al., 2010). In the con-
text of decision-making the rate-distortion framework can be
applied by conceptualizing the decision-maker as a channel from
observations to actions with limited capacity, which is known
in economics as the framework of “Rational Inattention” (Sims,
2003).

The rate-distortion principle and all the extended principles
presented in this paper measure computational cost with the
mutual information which is an abstract measure that quantifies
the average KL-divergence. The mutual information measures the
actual transformation of probabilities and thus provides a lower
bound for any possible implementation. In fact, different imple-
mentations could perform the same transformation more or less
efficiently which should reflect in the price of information pro-
cessing but not the amount of information processed. The advan-
tage of using a generic measure is that the principle is universal
and can be applied to any system. The downside of this is that it
cannot be directly used to analyze specific implementations. In
practice it can be hard to determine how difficult or “costly” it is to
implement a certain transformation of probability distributions.
Rather, the price for information processing is often set implicitly,
for instance by certain computation-time constraints or by con-
straining the number of samples, etc.When applying the principle
to a specific implementation it might be required to derive a
novel, specific solution scheme for the corresponding optimiza-
tion problem. In Leibfried and Braun (2015), for instance, the
authors apply the rate-distortion principle for decision-making
to a spiking neuron model by deriving a gradient-based update
rule for tuning the parameters of the model (the weights of the
neuron). In their case, the price of information processing β

appears directly in the parameter update equations which leads
to an interesting regularizer for the (online) parameter update
rule.

The fundamental trade-off between large expected utility
and low computational cost appears in many domains such
as machine learning, AI, economics, computational biology or
neuroscience, and many solutions, such as heuristics, sampling-
based approaches, andmodel-based approximation schemes, exist
(Gershman et al., 2015; Jordan and Mitchell, 2015; Parkes and
Wellman, 2015).One of the exciting prospects of such an approach
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is that it might provide a common ground for research-questions
from artificial intelligence and neuroscience, thus partially uni-
fying the two fields that share common origins but have drifted
apart over the last decades (Gershman et al., 2015). The main
contribution of this paper is to advance a principled mathematical
framework that formalizes the problem objective such that the
trade-off between large expected utility and low computational
cost and its solutions can be addressed in both a qualitative but
also quantitative way. The main finding is that the consistent
application of the principle beyond simple one-stage information
processing systems leads to non-trivial solutions that address
questions like optimal likelihood model design or the design of
optimal decision-making hierarchies. Since the mathematics can
easily be extended to more variables while the underlying princi-
ple remains the same, we believe that the formulation presented in
this paper is a good candidate for a general underlying objective
that is also applicable to biological organisms and evolutionary
processes. We find the principle an interesting starting point for
solving timely problems in machine learning, robotics, and AI
but also for providing an interesting novel angle for research
in computational neuroscience and biology. The principle also
provides a promising basis for the design and analysis of guided
self-organizing systems as most of the inner structure of systems
following our principle is emergent (and thus self-organized) but
ultimately aimed at solving particular tasks (through the utility
function).
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at http://journal.frontiersin.org/article/10.3389/frobt.2015.00027

A SupplementaryMethods provides detailed steps to derive the
solution to the general case (Section 5) and how to rewrite the
solution equations of the general case. Additionally it outlines how
to derive the solutions for the serial and the parallel case. It also
provides the set of self-consistent equations for the “degenerate
total correlation” and “total correlation” case that drop out math-
ematically from the general case but are not used in this paper
(see Table 2). The Supplementary Methods provides details to the
discussion on the different information processing pathways of
the parallel case (Section 4.3). Finally, it contains the proof for the
inequality based on equation (6).

The simulations underlying the results presented in this
paper are published as supplementary material using Jupyter
(http://jupyter.org/) notebooks. The notebooks are considered
part of the results of this paper and readers are encouraged

to use the notebooks to interactively explore the examples
and concepts presented here. The underlying code is written
in Julia (Bezanson et al., 2014) and uses the Gadfly package
(http://gadflyjl.org/) for visualization. At the time of writing,
the notebooks can be run with a local installation of Jupyter
and Julia or without any installation in a web-browser
through the JuliaBox project (https://www.juliabox.org/).
The notebooks and code at the time of publication are provided
in a supplementary.zip file but also under (Genewein, 2015).
The notebooks and the code behind the notebooks as well as
information on different methods to run the notebooks will
be kept up-to-date in the accompanying GitHub repository:
https://github.com/tgenewein/BoundedRationalityAbstraction
AndHierarchicalDecisionMaking. If compatibility issues with
future Julia versions are encountered, please refer to the GitHub
repository and feel free to submit an issue. A readme-file on
how to run the notebooks (with or without installation) is also
provided in the supplementary data as well as in the GitHub
repository.

The following notebooks are provided:

• “1-FreeEnergyForBoundedRationalDecisionMaking”:
Illustrates the results of Section 1 and reproduces Figure 1.

• “2-RateDistortionForDecisionMaking”: Illustrates the results
of Section 4 (the recommender system example) and repro-
duces Figures 2–4. The notebook can be used as a general
template for setting up any of the examples presented in the
paper and solving it using Blahut-Arimoto.

• “S1-SampleBasedBlahutArimoto”: A simple proof-of-concept
implementation of sample-based Blahut-Arimoto iterations.
Due to space-constraints, this part has been omitted from the
paper, but interested readers can find a short theoretical part
on the sampling approach in the notebook. Additionally, the
notebook shows an implementation of the sampling scheme
and applies it to a toy example.

• “3-SerialHierarchy”: Illustrates the comparison between hand-
crafted perception and bounded-optimal perception in the
serial case (Section 3) using the predator-prey example. The
notebook reproduces Figures 5–8. The notebook allows to
easily modify the parameters (e.g., inverse temperatures) of the
example or to switch to a different utility function. It can also
be used to see how the parallel or general case solution for the
predator-prey example would look like.

• “4-ParallelHierarchy”: Illustrates the emergence of bounded-
optimal hierarchies in two different environments of the med-
ical system example as presented in Section 4 and reproduces
Figures 9 and 10. The notebook can be used to easily explore the
different information processing pathways in the parallel case
but also to compare any two cases against each other (because
it compares two general case solutions and they can be tuned to
all of the special cases).

• “5-DistributionOfInformationProcessing”: Compares the par-
allel hierarchical solution to the medical example to the
one-step (rate-distortion) case as shown in Figure 11. Since
it implements the parallel case through the general case,
it also allows to compare any other case to the one-step
solution.
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