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Object detection is a key ability required by most computer and robot vision systems.
The latest research on this area has been making great progress in many directions. In
the current manuscript, we give an overview of past research on object detection, outline
the current main research directions, and discuss open problems and possible future
directions.
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1. INTRODUCTION

During the last years, there has been a rapid and successful expansion on computer vision research.
Parts of this success have come from adopting and adapting machine learning methods, while others
from the development of new representations and models for specific computer vision problems
or from the development of efficient solutions. One area that has attained great progress is object
detection. The present works gives a perspective on object detection research.

Given a set of object classes, object detection consists in determining the location and scale of all
object instances, if any, that are present in an image. Thus, the objective of an object detector is to find
all object instances of one or more given object classes regardless of scale, location, pose, view with
respect to the camera, partial occlusions, and illumination conditions.

In many computer vision systems, object detection is the first task being performed as it allows
to obtain further information regarding the detected object and about the scene. Once an object
instance has been detected (e.g., a face), it is be possible to obtain further information, including: (i)
to recognize the specific instance (e.g., to identify the subject’s face), (ii) to track the object over an
image sequence (e.g., to track the face in a video), and (iii) to extract further information about the
object (e.g., to determine the subject’s gender), while it is also possible to (a) infer the presence or
location of other objects in the scene (e.g., a hand may be near a face and at a similar scale) and (b) to
better estimate further information about the scene (e.g., the type of scene, indoor versus outdoor,
etc.), among other contextual information.

Object detection has been used in many applications, with the most popular ones being: (i)
human-computer interaction (HCI), (ii) robotics (e.g., service robots), (iii) consumer electronics
(e.g., smart-phones), (iv) security (e.g., recognition, tracking), (v) retrieval (e.g., search engines,
photo management), and (vi) transportation (e.g., autonomous and assisted driving). Each of these
applications has different requirements, including: processing time (off-line, on-line, or real-time),
robustness to occlusions, invariance to rotations (e.g., in-plane rotations), and detection under pose
changes. While many applications consider the detection of a single object class (e.g., faces) and from
a single view (e.g., frontal faces), others require the detection of multiple object classes (humans,
vehicles, etc.), or of a single class from multiple views (e.g., side and frontal view of vehicles).
In general, most systems can detect only a single object class from a restricted set of views and
poses.
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Several surveys on detection and recognition have been pub-
lished during the last years [see Hjelmas and Low (2001), Yang
et al. (2002), Sun et al. (2006), Li and Allinson (2008), Enzweiler
and Gavrila (2009), Dollar et al. (2012), Andreopoulos and Tsotsos
(2013), Li et al. (2015), and Zafeiriou et al. (2015)], and there are
four main problems related to object detection. The first one is
object localization, which consists of determining the location and
scale of a single object instance known to be present in the image;
the second one is object presence classification, which corresponds
to determining whether at least one object of a given class is
present in an image (without giving any information about the
location, scale, or the number of objects), while the third problem
is object recognition, which consist in determining if a specific
object instance is present in the image. The fourth related problem
is view and pose estimation, which consist of determining the view
of the object and the pose of the object.

The problem of object presence classification can be solved using
object detection techniques, but in general, other methods are
used, as determining the location and scale of the objects is not
required, and determining only the presence can be done more
efficiently. In some cases, object recognition can be solved using
methods that do not require detecting the object in advance [e.g.,
using methods based on Local Interest Points such as Tuytelaars
and Mikolajczyk (2008) and Ramanan and Niranjan (2012)]. Nev-
ertheless, solving the object detection problem would solve (or
help simplifying) these related problems. An additional, recently
addressed problem corresponds to determining the ‘objectness” of
an image patch, i.e., measuring the likeliness for an image window
to contain an object of any class [e.g., Alexe et al. (2010), Endres
and Hoiem (2010), and Huval et al. (2013)].

In the following, we give a summary of past research on object
detection, present an overview of current research directions, and
discuss open problems and possible future directions, all this with
a focus on the classifiers and architectures of the detector, rather
than on the used features.

2. A BRIEF REVIEW OF OBJECT
DETECTION RESEARCH

Early works on object detection were based on template match-
ing techniques and simple part-based models [e.g., Fischler and
Elschlager (1973)]. Later, methods based on statistical classi-
fiers (e.g., Neural Networks, SVM, Adaboost, Bayes, etc.) were
introduced [e.g., Osuna et al. (1997), Rowley et al. (1998), Sung
and Poggio (1998), Schneiderman and Kanade (2000), Yang
et al. (2000a,b), Fleuret and Geman (2001), Romdhani et al.
(2001), and Viola and Jones (2001)]. This initial successful fam-
ily of object detectors, all of them based on statistical clas-
sifiers, set the ground for most of the following research in
terms of training and evaluation procedures and classification
techniques.

Because face detection is a critical ability for any system that
interacts with humans, it is the most common application of
object detection. However, many additional detection problems
have been studied [e.g., Papageorgiou and Poggio (2000), Agarwal
et al. (2004), Alexe et al. (2010), Everingham et al. (2010), and
Andreopoulos and Tsotsos (2013)]. Most cases correspond to

objects that people often interact with, such as other humans [e.g.,
pedestrians (Papageorgiou and Poggio, 2000; Viola and Jones,
2002; Dalal and Triggs, 2005; Bourdev et al., 2010; Paisitkriangkrai
et al.,, 2015)] and body parts [(Kolsch and Turk, 2004; Ong and
Bowden, 2004; Wu and Nevatia, 2005; Verschae et al., 2008;
Bourdev and Malik, 2009) e.g., faces, hands, and eyes], as well
as vehicles [(Papageorgiou and Poggio, 2000; Felzenszwalb et al.,
2010b), e.g., cars and airplanes], and animals [e.g., Fleuret and
Geman (2008)].

Most object detection systems consider the same basic scheme,
commonly known as sliding window: in order to detect the objects
appearing in the image at different scales and locations, an exhaus-
tive search is applied. This search makes use of a classifier, the
core part of the detector, which indicates if a given image patch,
corresponds to the object or not. Given that the classifier basically
works at a given scale and patch size, several versions of the input
image are generated at different scales, and the classifier is used
to classify all possible patches of the given size, for each of the
downscaled versions of the image.

Basically, three alternatives exist to the sliding window scheme.
The first one is based on the use of bag-of-words (Weinland
etal., 2011; Tsai, 2012), method sometimes used for verifying the
presence of the object, and that in some cases can be efficiently
applied by iteratively refining the image region that contains
the object [e.g., Lampert et al. (2009)]. The second one samples
patches and iteratively searches for regions of the image where
it is likely that the object is present [e.g., Prati et al. (2012)].
These two schemes reduce the number of image patches where to
perform the classification, seeking to avoid an exhaustive search
over all image patches. The third scheme finds key-points and
then matches them to perform the detection [e.g., Azzopardi and
Petkov (2013)]. These schemes cannot always guarantee that all
object’s instances will be detected.

3. OBJECT DETECTION APPROACHES

Object detection methods can be grouped in five categories, each
with merits and demerits: while some are more robust, others
can be used in real-time systems, and others can be handle more
classes, etc. Table 1 gives a qualitative comparison.

3.1. Coarse-to-Fine and Boosted

Classifiers

The most popular work in this category is the boosted cascade
classifier of Viola and Jones (2004). It works by efficiently rejecting,
in a cascade of test/filters, image patches that do not correspond
to the object. Cascade methods are commonly used with boosted
classifiers due to two main reasons: (i) boosting generates an
additive classifier, thus it is easy to control the complexity of each
stage of the cascade and (ii) during training, boosting can be also
used for feature selection, allowing the use of large (parametrized)
families of features. A coarse-to-fine cascade classifier is usually
the first kind of classifier to consider when efficiency is a key
requirement. Recent methods based on boosted classifiers include
Li and Zhang (2004), Gangaputra and Geman (2006), Huang
et al. (2007), Wu and Nevatia (2007), Verschae et al. (2008), and
Verschae and Ruiz-del-Solar (2012).
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3.2. Dictionary Based

The best example in this category is the Bag of Word method [e.g.,
Serre et al. (2005) and Mutch and Lowe (2008)]. This approach
is basically designed to detect a single object per image, but after
removing a detected object, the remaining objects can be detected
[e.g., Lampert et al. (2009)]. Two problems with this approach are
that it cannot robustly handle well the case of two instances of the
object appearing near each other, and that the localization of the
object may not be accurate.

3.3. Deformable Part-Based Model

This approach considers object and part models and their relative
positions. In general, it is more robust that other approaches, but
it is rather time consuming and cannot detect objects appearing
at small scales. It can be traced back to the deformable models
(Fischler and Elschlager, 1973), but successful methods are recent
(Felzenszwalb et al., 2010b). Relevant works include Felzenszwalb
et al. (2010a) and Yan et al. (2014), where efficient evaluation
of deformable part-based model is implemented using a coarse-
to-fine cascade model for faster evaluation, Divvala et al. (2012),
where the relevance of the part-models is analyzed, among others
[e.g., Azizpour and Laptev (2012), Zhu and Ramanan (2012), and
Girshick et al. (2014)].

3.4. Deep Learning

One of the first successful methods in this family is based on
convolutional neural networks (Delakis and Garcia, 2004). The
key difference between this and the above approaches is that in
this approach the feature representation is learned instead of being
designed by the user, but with the drawback that a large number

of training samples is required for training the classifier. Recent
methods include Dean et al. (2013), Huval et al. (2013), Ouyang
and Wang (2013), Sermanet et al. (2013), Szegedy et al. (2013),
Zeng et al. (2013), Erhan et al. (2014), Zhou et al. (2014), and
Ouyang et al. (2015).

3.5. Trainable Image Processing

Architectures

In such architectures, the parameters of predefined operators
and the combination of the operators are learned, sometimes
considering an abstract notion of fitness. These are general-
purpose architectures, and thus they can be used to build several
modules of a larger system (e.g., object recognition, key point
detectors and object detection modules of a robot vision sys-
tem). Examples include trainable COSFIRE filters (Azzopardi and
Petkov, 2013, 2014), and Cartesian Genetic Programming (CGP)
(Harding et al., 2013; Leitner et al., 2013).

4. CURRENT RESEARCH PROBLEMS

Table 2 presents a summary of solved, current, and open prob-
lems. In the present section we discuss current research directions.

4.1. Multi-Class

Many applications require detecting more than one object class.
If a large number of classes is being detected, the processing
speed becomes an important issue, as well as the kind of classes
that the system can handle without accuracy loss. Works that
have addressed the multi-class detection problem include Tor-
ralba et al. (2007), Razavi et al. (2011), Benbouzid et al. (2012),

TABLE 1 | Qualitative comparison of object detection approaches.

Method Coarse-to-fine and Dictionary based Deformable part-based Deep learning Trainable image
boosted classifiers models processing architectures

Accuracy ++ += ++ ++ +=

Generality == ++ += 44 4=

Speed ++ += == += +=

Advantages Real-time, it can Representation It can handle Representation can General-purpose architecture
work at small can be shared deformations and be transfered to other that can be used is several
resolutions across classes occlusions classes modules of a system

Drawbacks/ Features are It may not It can not detect Large training sets The obtained system may be

requirements predefined detect all object small objects specialized hardware Too specialized for a

instances (GPU) for efficiency particular setting
Typical Robotics, security Retrieval, search Transportation Retrieval, search HCI, health, robotics
applications pedestrian detection

Accuracy: ++, High; +=, Good; ==, Low.
Speed: ++, real-time (15 fps or more); +=, online (10-51ps); ==

offline (5 fos or more).

Generality: ++ (+=), applicable to many (some) object classes; ==, depend on features designed for specific classes.

TABLE 2 | Summary of current directions and open problems.

Solved problems Single-class

Single-view

Small deformations Multi-scale

Current directions Multi-class (scalability and efficiency)

Open Incremental learning

Multi-view/pose
Multi-resolution

Object-part relation

Contextual information
Temporal features

Occlusions, deformable
Interlaced object and background

Pixel-level detection Multi-modal

Background objects
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Song et al. (2012), Verschae and Ruiz-del-Solar (2012), and Erhan
etal. (2014). Efficiency has been addressed, e.g., by using the same
representation for several object classes, as well as by develop-
ing multi-class classifiers designed specifically to detect multiple
classes. Dean et al. (2013) presents one of the few existing works
for very large-scale multi-class object detection, where 100,000
object classes were considered.

4.2. Multi-View, Multi-Pose,

Multi-Resolution

Most methods used in practice have been designed to detect a
single object class under a single view, thus these methods cannot
handle multiple views, or large pose variations; with the exception
of deformable part-based models which can deal with some pose
variations. Some works have tried to detect objects by learning
subclasses (Wu and Nevatia, 2007) or by considering views/poses
as different classes (Verschae and Ruiz-del-Solar, 2012); in both
cases improving the efficiency and robustness. Also, multi-pose
models [e.g., Erol et al. (2007)] and multi-resolution models [e.g.,
Park et al. (2010)] have been developed.

4.3. Efficiency and Computational Power
Efficiency is an issue to be taken into account in any object detec-
tion system. As mentioned, a coarse-to-fine classifier is usually the
first kind of classifier to consider when efficiency is a key require-
ment [e.g., Viola et al. (2005)], while reducing the number of image
patches where to perform the classification [e.g., Lampert et al.
(2009)] and efficiently detecting multiple classes [e.g., Verschae
and Ruiz-del-Solar (2012)] have also been used. Efficiency does
not imply real-time performance, and works such as Felzenszwalb
etal. (2010b) are robust and efficient, but not fast enough for real-
time problems. However, using specialized hardware (e.g., GPU)
some methods can run in real-time (e.g., deep learning).

4.4. Occlusions, Deformable Objects, and

Interlaced Object and Background

Dealing with partial occlusions is also an important problem,
and no compelling solution exits, although relevant research has
been done [e.g., Wu and Nevatia (2005)]. Similarly, detecting
objects that are not “closed,” i.e., where objects and background
pixels are interlaced with background is still a difficult problem.
Two examples are hand detection [e.g., Kolsch and Turk (2004)]
and pedestrian detection [see Dollar et al. (2012)]. Deformable
part-based model [e.g., Felzenszwalb et al. (2010b)] have been to
some extend successful under this kind of problem, but further
improvement is still required.

4.5. Contextual Information and

Temporal Features

Integrating contextual information (e.g., about the type of scene,
or the presence of other objects) can increase speed and robust-
ness, but “when and how” to do this (before, during or after
the detection), it is still an open problem. Some proposed
solutions include the use of (i) spatio-temporal context [e.g.,
Palma-Amestoy et al. (2010)], (ii) spatial structure among visual
words [e.g., Wu et al. (2009)], and (iii) semantic information

aiming to map semantically related features to visual words
[e.g., Wuetal. (2010)], among many others [e.g., Torralba and
Sinha (2001), Divvala et al. (2009), Sun et al. (2012), Mottaghi et al.
(2014), and Cadena et al. (2015)]. While most methods consider
the detection of objects in a single frame, temporal features can be
beneficial [e.g., Viola et al. (2005) and Dalal et al. (2006)].

5. OPEN PROBLEMS AND
FUTURE DIRECTIONS

In the following, we outline problems that we believe have not
been addressed, or addressed only partially, and may be interest-
ing relevant research directions.

5.1. Open-World Learning and Active Vision
An important problem is to incrementally learn, to detect new
classes, or to incrementally learn to distinguish among subclasses
after the “main” class has been learned. If this can be done in
an unsupervised way, we will be able to build new classifiers
based on existing ones, without much additional effort, greatly
reducing the effort required to learn new object classes. Note that
humans are continuously inventing new objects, fashion changes,
etc., and therefore detection systems will need to be continu-
ously updated, adding new classes, or updating existing ones.
Some recent works have addressed these issues, mostly based on
deep learning and transfer learning methods [e.g., Bengio (2012),
Mesnil et al. (2012), and Kotzias et al. (2014)]. This open-world
learning is of particular importance in robot applications, case
where active vision mechanisms can aid in the detection and
learning [e.g., Paletta and Pinz (2000) and Correa et al. (2012)].

5.2. Object-Part Relation

During the detection process, should we detect the object first or
the parts first? This is a basic dilemma, and no clear solution exists.
Probably, the search for the object and for the parts must be done
concurrently where both processes give feedback to each other.
How to do this is still an open problem and is likely related to how
to use of context information. Moreover, in cases the object part
can be also decomposed in subparts, an interaction among several
hierarchies emerge, and in general it is not clear what should be
done first.

5.3. Multi-Modal Detection

The use of new sensing modalities, in particular depth and ther-
mal cameras, has seen some development in the last years [e.g.,
Fehr and Burkhardt (2008) and Correa et al. (2012)]. However,
the methods used for processing visual images are also used for
thermal images, and to a lesser degree for depth images. While
using thermal images makes easier to discriminate the foreground
from the background, it can only be applied to objects that irra-
diate infrared light (e.g., mammals, heating, etc.). Using depth
images is easy to segment the objects, but general methods for
detecting specific classes has not been proposed, and probably
higher resolution depth images are required. It seems that depth
and thermal cameras alone are not enough for object detection,
at least with their current resolution, but further advances can be
expected as the sensing technology improves.
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5.4. Pixel-Level Detection (Segmentation)
and Background Objects

In many applications, we may be interested in detecting objects
that are usually considered as background. The detection of such
“background objects,” such as rivers, walls, mountains, has not
been addressed by most of the here mentioned approaches. In gen-
eral, this kind of problem has been addressed by first segmenting
the image and later labeling each segment of the image [e.g., Peng
et al. (2013)]. Of course, for successfully detecting all objects in
a scene, and to completely understand the scene, we will need to
have a pixel level detection of the objects, and further more, a 3D
model of such scene. Therefore, at some point object detection and
image segmentation methods may need to be integrated. We are
still far from attaining such automatic understanding of the world,
and to achieve this, active vision mechanisms might be required
[e.g., Aloimonos et al. (1988) and Cadena et al. (2015)].

6. CONCLUSION

Object detection is a key ability for most computer and robot
vision system. Although great progress has been observed in the
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