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Structure from motion is an import theme in computer vision. Although great progress
has been made both in theory and applications, most of the algorithms only work for
static scenes and rigid objects. In recent years, structure and motion recovery of non-
rigid objects and dynamic scenes have received a lot of attention. In this paper, the
state-of-the-art techniques for structure and motion factorization of non-rigid objects are
reviewed and discussed. First, an introduction of the structure from motion problem is
presented, followed by a general formulation of non-rigid structure from motion. Second,
an augmented affined factorization framework, by using homogeneous representation,
is presented to solve the registration issue in the presence of outlying and missing data.
Third, based on the observation that the reprojection residuals of outliers are significantly
larger than those of inliers, a robust factorization strategy with outlier rejection is proposed
by means of the reprojection residuals, followed by some comparative experimental
evaluations. Finally, some future research topics in non-rigid structure from motion are
discussed.

Keywords: structure from motion, non-rigid object, robust algorithm, matrix factorization, outlier rejection

1. INTRODUCTION

Structure from motion (SfM) refers to the process of extracting three-dimensional structure of
the scene as well as camera motions by analyzing an image sequence. SfM is an important theme
in computer vision, and great progress has been made both in theory and in practice during the
last three decades. Successful applications include robot navigation, augmented reality, industrial
inspection, medical image analysis, digital entertainment, and many more.

The classical method for 3D reconstruction is stereo vision using two or three images (Hartley and
Zisserman, 2004), where the 3D structure is calculated via triangulations from the correspondences
between these images. For a sequence of many images, the typical approach is the structure and
motion factorization algorithm, which was first proposed by Tomasi and Kanade (1992). The
factorization method is based on a bilinear formulation that decomposes image measurements
directly into the structure and motion components. By assuming the tracking matrix of an image
sequence is available, the algorithm deals uniformly with the data from all images; thus, its solution
is more stable and accurate than the stereo vision method (Quan, 1996; Triggs, 1996; Ozden et al.,
2010; Resch et al., 2015).

The main idea of the factorization algorithm is to decompose the tracking matrix into the motion
and structure components simultaneously by Singular Value Decomposition (SVD) with low-rank
approximation. Most of the studies on the problem assume an affine camera model due to its
linearity (Hartley and Vidal, 2008). Christy and Horaud (1996) extended the method to a perspective
camera model by incrementally performing the affine factorization of a scaled tracking matrix.
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Triggs (1996) proposed a full projective factorization algorithm
with projective depths recovered from epipolar geometry. The
method was further studied, and different iterative schemes were
proposed to recover the projective depths by minimizing image
reprojection errors (Oliensis and Hartley, 2007; Wang and Wu,
2009). Oliensis and Hartley (2007) provided a complete theoreti-
cal convergence analysis for the iterative extensions.

The factorization algorithm was extended to non-rigid SfM by
assuming that the 3D shape of a non-rigid object can be modeled
as a weighted linear combination of a set of shape bases (Bregler
et al., 2000). Thus, the shape bases and camera motions are fac-
torized simultaneously for all time instants under a rank-3k con-
straint of the tracking matrix. The method has been extensively
investigated and developed by Brand (2001) and Torresani et al.
(2008). Recently, Rabaud and Belongie (2008) relaxed the Bregler’s
assumption and proposed a manifold-learning framework to solve
the problem. Yan and Pollefeys (2008) proposed a factorization
approach to recover the structure of articulated objects. Akhter
et al. (2011) proposed a dual approach to describe the non-rigid
structure in trajectory space by a linear combination of basis
trajectories. Gotardo and Martinez (2011) proposed to use kernels
to model non-linear deformation. More recent study can be found
in Agudo et al. (2014) and Newcombe et al. (2015).

Most factorization methods assume that all features are tracked
across the sequence. In the presence of missing data, SVD factor-
ization cannot be used directly, researches proposed to solve the
motion and shape matrices alternatively, such as the alternative
factorization (Ke and Kanade, 2005), power factorization (Hartley
and Schaffalizky, 2003), and factor analysis (Gruber and Weiss,
2004). In practice, outlying data are inevitable during the process
of feature tracking, as a consequence, performance of the algo-
rithm will degrade. The most popular strategy to handle outliers
in computer vision field is RANSAC, Least Median of Squares
(Hartley and Zisserman, 2004), and other similar hypothesize-
and-test frameworks (Scaramuzza, 2011). However, these meth-
ods are usually designed for two or three views, and they are
computational expensive.

Aguiar and Moura (2003) proposed a scalar-weighted SVD
algorithm that minimizes the weighted square errors. Gruber and
Weiss (2004) formulated the problem as a factor analysis and
derived an Expectation Maximization (EM) algorithm to enhance
the robustness to missing data and uncertainties. Zelnik-Manor
et al. (2006) defined a new type of motion consistency based on
temporal consistency, and applied it to multi-body factorization
with directional uncertainty. Zaharescu and Horaud (2009) intro-
duced a Gaussian mixture model and incorporate it with the EM
algorithm. Huynh et al. (2003) proposed an iterative approach to
correct the outliers with “pseudo” observations. Ke and Kanade
(2005) proposed a robust algorithm to handle outliers by mini-
mizing a L1 norm of the reprojection errors. Eriksson and van den
Hengel (2010) introduced the L1 norm to the Wiberg algorithm to
handle missing data and outliers.

Okatani et al. (2011) proposed to incorporate a damping factor
into the Wiberg method to solve the problem. Yu et al. (2011)
presented a Quadratic Program formulation for robust multi-
model fitting of geometric structures. Wang et al. (2012b) pro-
posed an adaptive kernel-scale weighted hypotheses to segment

multiple-structure data even in the presence of a large number
of outliers. Paladini et al. (2012) proposed an alternating bilinear
approach to SfM by introducing a globally optimal projection step
of the motion matrices onto the manifold of metric constraints.
Wang et al. (2012a) proposed a spatial-and-temporal-weighted
factorization approach to handle significant noise in the measure-
ment. The authors further proposed a rank-4 factorization algo-
rithm to handle missing and outlying data (Wang et al., 2013b).

Most of the above robust algorithms are initially designed for
SfM of rigid objects, and few studies have been carried out for
non-rigid case. In our most recent study (Wang et al., 2013a), a
robust non-rigid factorization approach is reported. The outlying
data are detected from a new viewpoint via image reprojection
residuals by exploring the fact that the reprojection residuals are
largely proportional to the measurement errors. In this paper, the
state-of-the-art techniques for structure from motion of non-rigid
objects are reviewed, with some most recent development and
results in this field.

The remaining part of this paper is organized as follows. Some
background of structure and motion recovery of rigid objects
is outlined in Section 2. Section 3 presents the formulation
and development of non-rigid SfM. An augmented factorization
framework for non-rigid SfM and a robust factorization strategy
are introduced in Section 4, followed by some experimental results
on both synthetic and real data in Section 5. Finally, the paper is
concluded and discussed in Section 6.

2. STRUCTURE AND MOTION
FACTORIZATION OF RIGID OBJECTS

In this section, a brief review to camera projection models and
rigid structure and motion factorization are presented.

Under perspective projection, a 3D point X; = [x;, yj, zj]T is
projected onto an image point x;; = [uy, v;;]” in frame i according
to the imaging equation

ik = PiXj = KiRi[ti]X; @

where )\ is a non-zero scale factor; X;; and X; are the homogeneous
form of x;; and X, respectively; P; is a 4 x 3 projection matrix of
the i-th frame; R; and t; are the corresponding rotation matrix
and translation vector of the camera with respect to the world
system; K; is the camera calibration matrix. When the object is far
away from the camera with relatively small depth variation, one
may safely assume a simplified affine camera model as below to
approximate the perspective projection.

Xij = A,‘Xj + ¢ (2)

where the matrix A; is a 2 x 3 affine projection matrix; ¢; is a
two-dimensional translation term of the frame. Under the affine
projection, the mapping from space to the image becomes linear
as the unknown depth scalar A; in equation (1) is eliminated in
equation (2). Consequently, the projection of all image points in
the i-th frame can be denoted as

[xi1, X2, -, Xin] = Ai[X1, X, - -+, Xu] + G (3)
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where C; =[c;, ¢;, ---, ¢i] is the translation matrix of the frame
i. Therefore, the imaging process of an image sequence can be
formulated by stacking equation (3) frame by frame.

X1 vt Xip Ay C
=Xy s X+ i ] @
Xml - Xmn A S3xn Cin
Womxn Mamxs Camxn

where m is the frame number and 7 is the number of features.
It is easy to verify that ¢; in equation (2) is the image of the
centroid of all space points. Thus, if all imaged points in each
image are registered to the centroid and relative image coordinates
with respect to the centroid are employed, the translation term
vanishes, i.e., ¢; = 0. Consequently, the imaging process [equation
(4)] is written concisely as

Womxn = M2m><3s3><n (5)

where W is called the tracking matrix or measurement matrix,
which is composed of all tracked features. Structure from motion
is a reverse problem to the imaging process. Suppose the tracking
matrix W is available, our purpose is to recover the motion matrix
M and the shape matrix S.

It is obvious from equation (5) that the tracking matrix is highly
rank deficient, and the rank of W is at most 3 if the translation
term C is removed. In practice, the rank of a real tracking matrix
is definitely >3 due to image noise and affine approximation error.
Thus, one needs to find a rank-3 approximation of the tracking
matrix. A common practice is to perform SVD decomposition on
matrix W and truncate it to rank 3, then the motion matrix M and
the shape matrix S can be easily decomposed from the tracking
matrix. Nevertheless, this decomposition is not unique since it is
only defined up to a non-singular linear transformation matrix
HcR? ™3 as

W = (MH)(H'S) (6)

In order to upgrade the solution from perspective space to the
Euclidean space, the metric constraint on the motion matrix is
usually adopted to recover the transformation matrix H (Quan,
1996; Wang and Wu, 2010). Then, the Euclidean structure is
recovered from H™'S and the camera motion parameters of each
frame are decomposed from MH.

3. STRUCTURE AND MOTION
FACTORIZATION OF NON-RIGID OBJECTS

We assumed rigid objects and static scenes in the last section.
While in real world, many objects do not have fixed structure,
such as human faces with different expressions, torsos, animals
bodies, etc. In this section, the factorization algorithm is extended
to handle non-rigid and deformable objects.

3.1. Bregler’s Deformation Model
For non-rigid objects, if their surfaces deform randomly at any
time instance, there is currently no suitable method to recover

LA A A

FIGURE 1 | Four female face models carrying expressions from neutral
to smiling. We may take any two models as shape bases, and then the other
models can be derived as weighted linear combinations of the two bases.
Courtesy of Jing Xiao.

its structure from images. A well-adopted assumption about the
deformation is proposed by Bregler et al. (2000), where the 3D
structure of non-rigid object is approximated by a weighted com-
bination of a set of rigid shape bases. Figure 1 shows a very simple
example of face models from neutral to smiling with only mouth
movements. The deformation structure can be approximated by
only two shape bases. If more face expressions, such as joy, sad-
ness, surprise, and fear, are involved, then more shape bases are
needed to model the structure.

Suppose the deformation structure S; € R** " is expressed as
a weighted combination of k principal modes of deformation
B, eR3**" =1, -, k. We formulate the model as

k
Si = Z WilBl (7)
=1

where w; € R is the deformation weight for base I at frame i.
A perfect rigid object corresponds to the situation of k=1 and
Wi = 1.

3.2. Non-Rigid Factorization
Under Affine Models

Under the assumption [equation (7)], the imaging process of one
image can be modeled as

Wi =[x, Xin] = AiSi + [ci, -+, €]
B,
= [win Ay, wgA] | | e, 6l
By

It is easy to verify that if all image points in each frame are regis-
tered to the centroid and relative image coordinates are employed,
the translation term vanishes, i.e., ¢; = 0. Consequently, the non-
rigid factorization under affine camera model is expressed as

X1 - X wi1Aq wikA1 | [Bs
= : : (®)
Xml Xmn W1 Am wmkAm Bk
Womxn Mo x 3k S3kxn

Structure from motion is a reverse problem. Suppose the track-
ing matrix W is available, our purpose is to recover the camera
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motion parameters in M and the 3D structure from the shape
matrix S;. It is obvious from equation (8) that the rank of the
tracking matrix W is at most 3k.

Following the idea of rigid factorization, we perform SVD
decomposition on the non-rigid tracking matrix and impose the
rank-3k constraint, W can be factorized into a 2m x 3k matrix M
and a 3k x n matrix S. However, the decomposition is not unique
as any non-singular linear transformation matrix H e Rk 3k
can be inserted into the factorization, which leads to an alter-
native factorization W = (MH)(H™'S). If we have a transforma-
tion matrix H that can resolve the affine ambiguity and upgrade
the solution to Euclidean space, the shape bases are then easily
recovered from S = H™!S, while the rotation matrix and the
weighting coefficient w;; can be decomposed from M = MH by
Procrustes analysis (Bregler et al., 2000; Brand, 2001; Torresani
et al., 2001).

Similar to the rigid situation, the upgrading matrix is usually
recovered by application of metric constraint to the motion matrix
(Wang and Wu, 2010). However, only the rotation constraints may
be insufficient when the object deforms at varying speed, since
most of the constraints are redundant. Xiao and Kanade (2005)
proposed a basis constraint to solve this ambiguity. The main
idea is based on the assumption that there exists k frames in the
sequence, which include independent shapes that can be treated
as a set of bases.

4. MATERIALS AND METHODS

In non-rigid structure from motion, the input is an image
sequence of a non-rigid object with the point features being
tracked across the sequence. However, due to occlusion and
lack of proper constraints, the tracking data are usually cor-
rupted by outliers and missing points. This section will intro-
duce a robust scheme to handle imperfect data (Wang et al,
2013a).

4.1. Augmented Affine Factorization
Without Registration

One critical condition for the affine factorization equation (8) is
that all image measurements are registered to the correspond-
ing centroid of each frame. When the tracking matrix contains
outliers and/or missing data, it is impossible to reliably retrieve
the centroid. As will be shown in the experiments, the mis-
calculation of the centroid will cause a significant error to the
final solution. Previous studies were either ignoring this problem
or hallucinating the missing points with pseudo observations,
which may lead to a biased estimation. In this section, a rank-
(3k + 1) augmented factorization algorithm is proposed to solve
this issue.

Let us formulate the affine imaging process [equation (2)] in
the following form

x;j = [Aile] X; ©)
where X; = [XjT, tj]T is a 4-dimensional homogeneous expression

of X;. Let S = [f'] be the homogeneous form of the deformable

1

structure, then the imaging process of frame i can be written as

k
B
W; = [Xih e 7Xin] — [Ailci} |:Zl:1t'wll l:|
1
B;

= [winAj, -, wikAj, ¢i]
By

t;

Thus, the structure and motion factorizations for the entire
sequence are formulated as follows.

X1 o Xin wi1Ay wikAl C1
By
Xm1 " Xmn W1 Am wmkAm Cm tT
i
Womxn My x (3k+1) ~—~—
S(ak+1) xn
(10)

Obviously, the rank of the tracking matrix becomes 3k +1 in
this case. Given the tracking matrix, the factorization can be easily
obtained via SVD decomposition and imposing rank-(3k + 1)
constraint. The expression [equation (10)] does not require any
image registration thus can directly work with outlying and miss-
ing data.

Both factorization algorithms [equations (8) and (10)] can be
equivalently denoted as the following minimization scheme.

fM,8) = argmin || W —MS |3 (11)

By enforcing different rank constraints, the Frobenius norm of
equation (11) corresponding to the algorithms [equations (8) and
(10)] would be

N N
2 2
E3 = Z o7y Eskpr = Z of (12)
i=3k+1 i=3k+2
where o, i=1,---, N are singular values of the tracking matrix

in descending order, and N = min(2m, n). Clearly, the error dif-
ference by the two algorithm is o3 . For noise free data, if all
image points are registered to the centroid, then, o; =0, Vi > 3k,
the equations (8) and (10) are actually equivalent. However, in
the presence of outlying and missing data, the image centroid
cannot be accurately recovered, the rank-3k algorithm [equation
(8)] will yield a big error since 03,41 does not approach zero in
this situation.

4.2. Outlier Detection and

Robust Factorization
Based on the foregoing proposed factorization algorithm, a fast
and practical scheme for outlier detection is discussed in this
section.

The best fit model of the factorization algorithm is obtained
by minimizing the sum of squared residuals between the
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observed data and the fitted values provided by the model.
Extensive empirical studies show that the algorithm usually
yields reasonable solutions even in the presence of certain
amount of outliers, and the reprojection residuals of the outlying
data are usually significantly larger than those associated with
inliers.

Suppose M and § are a set of initial solution of the motion and
structure matrices, the reprojection residuals can be computed
by reprojecting the solution back onto all images. Let us define
a residual matrix as follows.

€11 €in
E=W-MS= (13)
€m1 " C€mn mxn
where
- Augj
ej = Xjj — Mi§; = ’f} (14)
ij ij i8; [AVij

is the residual of point (i,f) in both image directions. The repro-
jection error of a point is defined by the Euclidean norm of the
residual at that point as ||e;||.

Assuming Gaussian image noise, it is easy to prove that the
reprojection residuals also follow Gaussian distribution (Wang
et al, 2013a). Figure 2 shows an example from the syn-
thetic data in Section 1. Three units Gaussian noise and 10%
outliers were added to the synthetic images, and the resid-
ual matrix was calculated from equation (13). As shown in
Figure 2, the residuals are obviously followed by Gaussian distri-
bution. Thus, the points with large residuals will be classified as
outliers.

Inspired by this observation, a simple outlier detection and
robust factorization scheme is proposed in Algorithm 1.

A
2000 e and outl 2N
10000 | oise and outliers ‘/ \\ nliers i
8000 | : 1
6000 : | b
4000 | | : b
2000 F Outliers | | Outliers
m———————— K —_——————— ~
G‘M——-5O————/'\\O_/I\————S-o———/
B
10000 T I
Reprojection residuals Mean
8000 [ b
6000 [ b
4000 E
2000 } Threshholdl lThreshhoId ]
0 -50 0 50
FIGURE 2 | (A) Histogram distribution of the added noise and outliers;
(B) histogram distribution of the reprojection residuals.

ALGORITHM 1 | Robust non-rigid factorization algorithm.

Input: Tracking matrix of the sequence

1. Perform rank-(3k + 1) affine factorization on the tracking matrix to obtain an
initial solution of M and S.

2. Estimate the reprojection residuals [equation (13)] and determine an outlier
threshold.

3. Eliminate the outliers and reestimate the reprojection residuals using alternative
factorization (Wang et al., 2013a).

4. Redetermine the outlier threshold and eliminate the outliers.

5. Estimate the weight matrix 3 and perform a weighted factorization using the
inliers to obtain a set of refined solution.

6. Recover the upgrading matrix H and upgrade the solution to the Euclidean
space: M= MH,S=H"!S.

7. Recover the Euclidean structure S; and motion parameters corresponding to
each frame.

Output: 3D structure and camera motion parameters.

Two important parameters are required in the robust algorithm:
one is the outlier threshold, and the other is the weight matrix.
A detailed discussion on how to recover these parameters can be
found in Wang et al. (2013a).

5. EVALUATIONS ON SYNTHETIC AND
REAL DATA

The section presents two examples of structure and motion recov-
ery using the above robust factorization scheme.

5.1. Evaluations on Synthetic Data

The proposed technique was evaluated extensively on synthetic
data and compared with previous algorithms. During the simula-
tion, we generated a deformable space cube, which was composed
of 21 evenly distributed rigid points on each side and three sets
of dynamic points (33 x 3 points) on the adjacent surfaces of the
cube that were moving outward. There are 252 space points in total
as shown in Figure 3. Using the synthetic cube, 100 images were
generated by affine projection with randomly selected camera
parameter. Each image corresponds to a different 3D structure.
The image resolution is 800 U x 800 U, and Gaussian white noise
is added to the synthetic images.

For the above simulated image sequence, Gaussian noise was
added to each image point, and the noise level was varied from
1 to 5U in step 1. In the meantime, 10% outliers were added to
the tracking matrix. Using the contaminated data, the foregoing
proposed robust algorithm was employed to recover the motion
and shape matrices. Figure 3 shows three noise and outlier-
corrupted images and the corresponding 3D structures recovered
by the proposed approach. It is evident that the deformable cube
structures are correctly retrieved.

As a comparison, two popular algorithms in the literature were
implemented as well, one is an outlier correction scheme proposed
by Huynh et al. (2003), the other one is proposed by Ke and
Kanade (2005) based on minimization of the L1 norm. The two
algorithms were initially proposed for rigid SfM; here, they were
extended to deal with non-rigid SfM. The mean reprojection
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reconstructed 3D structures corresponding to the three images.

FIGURE 3 | (A,B) Two simulated space cubes with three sets of moving points; (i-iii) three synthetic images with noise and outliers (black stars); (iv=vi) the
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FIGURE 4 | The mean reprojection variance of different algorithms with respect to different noise levels and outliers. (A) 5% outliers, (B) 20% outliers.

variance at different noise levels and outliers ratios is shown in
Figure 4.

The results in Figure 4 were evaluated from 100 independent
tests in order to yield a statistically meaningful result, where
“Direct” stands for normal factorization algorithm without outlier
rejection. In this test, the reprojection variance was estimated
only using the original inlying data without outliers. Obviously,
the proposed scheme outperforms other algorithms in terms of
accuracy. The direct factorization algorithm yields significantly
large errors due to the influence of outliers, and the error increases
with the increase of the amount of outliers. The experiment
also shows that all three robust algorithms are resilient to out-
liers, as can be seen in Figure 4, the ratio of outliers has lit-
tle influence to the reprojection variance of the three robust
algorithms.

5.2. Evaluations on Real Sequences
Two experimental results are reported in this section to test
the robust scheme. The first one was on a dinosaur sequence

(Akhter et al., 2011) isreported here. The sequence consists of 231
images with different movement and deformation of a dinosaur
model. The image resolution is 570 x 338 pixel and 49 features
were tracked across the sequence. In order to test the robustness
of the algorithm, an additional 8% outliers were added to the
tracking data as shown in Figure 5.

Using the proposed approach, all outliers were successfully
rejected; however, a few tracked features were also eliminated due
to large tracking errors. The proposed approach was employed
to recover the motion and structure matrices, and the solution
was then upgraded to the Euclidean space. Figure 5 shows the
reconstructed structure and wireframes. The VRML model is
visually realistic, and the deformation at different instant is cor-
rectly recovered, although the initial tracking data are not very
reliable.

The histogram distribution of the reprojection residual matrix
[equation (13)] with outliers is shown in Figure 6. The residuals
are largely conform to the assumption of normal distribution.
As can be seen from the histogram, the outliers are obviously
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FIGURE 5 | Four frames from the dinosaur sequence, the corresponding reconstructed VRML models, and triangulated wireframes. The tracked
features (red circles) and added outliers (blue stars) are superimposed to the images.

A 4000 e 2500
2000
3000 b
z z
£ € 1500
2 2000 | 1 2
€ €
£ -5 1000
< hreshhold Threshhold .
1000 | Threshho! |
l l 500
0 — - 0
-50 0 50 -5 0 5
Reprojection residuals Reprojection residuals

FIGURE 6 | The histogram distribution of the residual matrix of the dinosaur sequence before (A) and after (B) outlier rejection.

FIGURE 7 | Test results of the face sequence. (top) Four frames from the sequence overlaid with the tracked features (red circles) and added outliers (blue stars);
(bottom) the corresponding 3D VRML models from two different viewpoints.
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distinguished from inliers, and the computed threshold is shown
in the figure. After rejecting outliers, the histogram distribution
of the residuals produced by the final solution is also shown in
Figure 6. Clearly, the residual error is reduced significantly. The
final mean reprojection error given by the proposed approach is
0.597. In comparison, the reprojection errors by the algorithms of
“Huynh” and “Ke” are 0.926 and 0.733, respectively. The proposed
scheme outperforms other approaches.

The second test was on a non-rigid face sequence, as shown
in Figure 7, with different facial expressions. This sequence was
downloaded from FGnet (http://www-prima.inrialpes.fr/FGnet/
html/home.html), and 200 consecutive images were used in the
experiment. The resolution of each image is 720 x 576 and 68 fea-
ture points are automatically tracked across the sequence using the
active appearance model (AAM). In order to test the robustness
of the approach, 8% outliers were added randomly to the tracking
data as shown in Figure 7.

Figure 7 shows the reconstructed VRML models of four frames
shown from front and right side. It is obvious that all out-
liers are removed successfully by the proposed algorithm, and
different facial expressions have been correctly recovered. The
reprojection errors obtained from “Huynh,” “Ke,” and the pro-
posed algorithms are 0,697, 0.581, and 0.453, respectively. The
proposed scheme again yields the lowest reprojection error in
this test.
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