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The decomposition of channel information into synergies of different order is an open,
active problem in the theory of complex systems. Most approaches to the problem
are based on information theory and propose decompositions of mutual information
between inputs and outputs in several ways, none of which is generally accepted yet.
We propose a new point of view on the topic. We model a multi-input channel as a
Markov kernel. We can project the channel onto a series of exponential families, which
form a hierarchical structure. This is carried out with tools from information geometry
in a way analogous to the projections of probability distributions introduced by Amari.
A Pythagorean relation leads naturally to a decomposition of the mutual information
between inputs and outputs into terms, which represent single node information, pairwise
interactions, and in general n-node interactions. The synergy measures introduced in
this paper can be easily evaluated by an iterative scaling algorithm, which is a standard
procedure in information geometry.

Keywords: synergy, redundancy, hierarchy, projections, divergences, interactions, iterative scaling, information
geometry

1. INTRODUCTION

In complex systems like biological networks, for example neural networks, a basic principle is
that their functioning is based on the correlation and interaction of their different parts. While
correlation between two sources is well understood, and can be quantified by Shannon’s mutual
information (see, for example, Kakihara (1999)), there is still no generally accepted theory for
interactions of three nodes ormore. If we label one of the nodes as “output,” the problem is equivalent
to determine how much two (or more) input nodes interact to yield the output. This concept is
known in common language as “synergy,” which means “working together,” or performing a task
that would not be feasible by the single parts separately.

There are a number of importantworkswhich address the topic, but the problem is still considered
open. The first generalization of mutual information was interaction information (introduced in
McGill (1954)), defined for three nodes in terms of the joint and marginal entropies:

I(X : Y : Z) = −H(X,Y,Z) +H(X,Y) +H(X,Z) +H(Y,Z)+
−H(X)−H(Y)−H(Z). (1)

Interaction information is defined symmetrically on the joint distribution, but most approaches
interpret it by looking at a channel, rather than a joint distribution, (X,Y)→Z. For example, we can
rewrite equation (1) equivalently in terms of mutual information (choosing Z as “output”):

I(X : Y : Z) = I(X,Y : Z)− I(X : Z)− I(Y : Z), (2)
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where we see that it can mean intuitively “how much the whole
(X,Y) gives more (or less) information about Z than the sum of
the parts separately.” Another expression, again equivalent, is

I(X : Y : Z) = I(X : Y|Z)− I(X : Y), (3)

which we can interpret as “how much conditioning over Z
changes the correlation betweenX andY” (see Schneidmann et al.
(2003a)). Unlikemutual information, interaction information car-
ries a sign:

• I> 0: synergy. Conditioning on one node increases the corre-
lation between the remaining nodes. Or, the whole gives more
information than the sum of the parts. Example: XOR function.

• I< 0: redundancy. Conditioning on one node decreases, or
explains away the correlation between the remaining nodes.
Or, the whole gives less information than the sum of the parts.
Example: X=Y =Z.

• I= 0: 3-independence. Conditioning on one node has no effect
on the correlation between the remaining nodes. Or, the whole
gives the same amount of information as the parts separately.
The nodes can nevertheless still be conditionally dependent.
Example: independent nodes.1

As argued in Schneidmann et al. (2003b), Williams and Beer
(2010), and Griffith and Koch (2014), however, this is not the
whole picture. There are systems which exhibit both synergetic
and redundant behavior, and interaction information only quan-
tifies the difference of synergy and redundancy, with a priori no
way to tell the two apart. In a system with highly correlated
inputs, for example, the synergy would remain unseen, as it would
be canceled by the redundancy. Moreover, this picture breaks
down for more than three nodes. Another problem pointed out
in Schneidmann et al. (2003b) and Amari (2001) is that redun-
dancy (as for example in X=Y =Z) can be described in terms
of pairwise interactions, not triple, while synergy (as in the XOR
function) is purely threewise. Therefore, I compares and mixes
information quantities of different nature.

A detailed explanation of the problem for two inputs is pre-
sented in Williams and Beer (2010) and it yields a decomposition
(“Partial Information Decomposition,” PID) as follows: there exist
two non-negative quantities, Synergy and Redundancy, such that

I(X,Y : Z) = I(X : Z) + I(Y : Z) + Syn− Red, (4)

or equivalently:

I(X : Y : Z) = Syn− Red. (5)

Moreover, they define unique information for the inputs X and
Y as

UI(X) = I(X : Z)− Red, (6)
UI(Y) = I(Y : Z)− Red, (7)

so that the total mutual information is decomposed positively:

I(X,Y : Z) = UI(X) + UI(Y) + Red+ Syn. (8)

1For an example in which I = 0 but the nodes are not independent, seeWilliams and
Beer (2010).

What these quantities intuitively mean is

• Redundancy – information available in both inputs;
• Unique information – information available only in one of the

inputs;
• Synergy – information available only when both inputs are

present, arising purely from their interaction.

In this formulation, if one finds a measure of synergy, one
can automatically define compatible measures of redundancy and
unique information (and vice versa), provided that the measure
of synergy is always larger or equal to I(X:Y :Z), and that the
resulting measure of redundancy is less or equal than I(X:Z)
and I(Y :Z). Synergy, redundancy, and unique information are
defined on a channel, and choosing a different channel with the
same joint distribution (e.g., (Y, Z)→X) may yield a different
decomposition.

In Griffith and Koch (2014), an overview of (previous) mea-
sures of synergy and their shortcomings in standard exam-
ples is presented. In the same paper is then presented a newer
measure for synergy, defined equivalently in Bertschinger et al.
(2014) as

CI(X,Y;Z) := I(X,Y : Z)− min
p∗∈∧

Ip∗(X,Y : Z), (9)

where ∧ is the space of distributions with prescribed
marginals:

∧ = {q ∈ P(X,Y,Z) | q(X,Z) = p(X,Z), q(Y,Z) = p(Y,Z)}.
(10)

This measure satisfies interesting properties (proven in Griffith
and Koch (2014) and Bertschinger et al. (2014)), which make it
compatible with Williams and Beer’s PID, and with the intuition
in most examples. However, it was proven in Rauh et al. (2015)
that such an approach can not work in the desired way for more
than three nodes (two inputs).

Our approach uses information geometry (Amari and
Nagaoka, 2000), extending previous work on hierarchical
decompositions (Amari, 2001) and complexity (Ay, 2015).
(Compare the related approach on information decomposition
pursued in Harder et al. (2013).) The main tools of the
present paper are KL-projections and the Pythagorean
relation that they satisfy. This allows (as in Amari (2001))
to form hierarchies of interactions of different orders in a
geometrical way. In the present problem, we decompose mutual
information between inputs and outputs of a channel k, for two
inputs, as

I(X,Y : Z) = d1(k) + d2(k), (11)

where d2 quantifies synergy (as in Equation (8)), and d1 integrates
all the lower order terms (UI,Red), quantifying the so-called union
information (see Griffith and Koch (2014)). One may want to
use this measure of synergy to form a complete decomposition
analogous to Equation (8), but this does notwork, as in general it is
not true that d2 ≤ I(X:Y :Z). For this reason, we keep the decompo-
sition more coarse, and we do not divide union information into
unique and redundant.
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For more inputs X1, . . . , XN, the decomposition generalizes to

I(X1, . . . ,XN : Z) = d1(k) + . . .+ dN(k) =
N∑
i=1

di(k), (12)

where higher orders of synergy appear.
Until now, there seems to be no way of rewriting the decompo-

sition of Griffith andKoch (2014) and Bertschinger et al. (2014) in
a way consistent with information geometry, and more in general,
Williams and Beer’s PID seems hard to write as a geometric
decomposition. A comparison between d2 and the measure CI
of Griffith and Koch (2014) and Bertschinger et al. (2014) is
presented in Section 5. There we show that d2 ≤CI, and we argue,
with a numerical example, that CI overestimates synergy at least
in one case.

For a small number of inputs (. 5), our quantities are easily
computable with the standard algorithms of information geome-
try (like iterative scaling (Csiszár and Shields, 2004)). This allowed
us to get precise quantities for all the examples considered.

1.1. Technical Definitions
Weconsider a set ofN input nodesV = {1, . . . ,N}, taking values in
the setsX1, . . . ,XN, and an output node, taking values in the set Y.
We write the input globally asX:=X1 × . . .×XN. For example, in
biology, Y can be the phenotype andX can be a collection of genes
determining Y. We denote by F(Y) the set of real functions on Y
and with P(X) the set of probability measures on X.

We can model the channel from X to Y as a Markov kernel
(called also stochastic kernel, transition kernel, or stochastic map)
k, that assigns to each x∈X a probability measure on Y (for a
detailed treatment, see Kakihara (1999)). Here, we will consider
only finite systems, so we can think of a channel simply as a
transition matrix (or stochastic matrix) whose rows sum to one.

k(x; y) ≥ 0 ∀x, y;
∑
y

k(x; y) = 1 ∀x. (13)

The space of channels from X to Y will be denoted by K(X;Y).
We will denote by X and Y also the corresponding random
variables, whenever this does not lead to confusion.

Conditional probabilities define channels: if p(X,Y)∈ P(X,Y)
and the marginal p(X) is strictly positive, then p(Y|X)∈K(X;Y)
is a well-defined channel. Vice versa, if k∈K(X;Y), given p∈ P(X)
we can form a well-defined joint probability:

pk(x, y) := p(x) k(x; y) ∀x, y. (14)

An “input distribution” p∈ P(X) is crucial also to extend the
notion of divergence from probability distributions to channels.
The most natural way of doing it is the following.

Definition 1: Let p∈ P(X), let k, m∈K(X;Y). Then

Dp(k||m) :=
∑
x,y

p(x) k(x; y) log k(x; y)
m(x; y) . (15)

Defined this way,Dp is affine in p.Moreover, it has an important
compatibility property. Let p,q be joint probability distributions
on X×Y, and let D be the KL-divergence. Then

D(p(X,Y)||q(X,Y)) = D(p(X)||q(X)) + Dp(X)(p(Y|X)||q(Y|X)).
(16)

Wewill now illustrate our geometric ideas in channels with one,
two, and three input nodes, and then we present some examples.
The general case will be addressed in Section 4.

2. GEOMETRIC IDEA OF SYNERGY

2.1. Mutual Information as Motivation
It is a well-known fact in information theory that Shannon’s
mutual information can be written as a KL-divergence:

Ip(X : Y) = D(p(X,Y)||p(X)p(Y)). (17)

From the point of view of information geometry, this can be
interpreted as a “distance” between the real distribution and a
product distribution that has exactly the same marginals, but
maximal entropy (see Figure 1). In other words, we have

Ip(X : Y) = inf
q∈P(X)
r∈P(Y)

D(p(X,Y)||q(X)r(Y)). (18)

The distribution given by p(X)p(Y) is optimal in the sense that

p(X)p(Y) = argmin
q∈P(X)
r∈P(Y)

D(p(X,Y)||q(X)r(Y)). (19)

The divergence between p and a submanifold is, as usual in
geometry, the “distance” between p and the “closest point” on that
submanifold, which in our case is the geodesic projection w.r.t. the
mixture connection.

2.2. Extension to Channels
We can use the same insight with channels. Instead of a joint
distribution onN nodes, we consider a channel from an inputX to
an outputY. Supposewe have a family E of channels, and a channel
k that may not be in E . Then, just as in geometry, we can define
the “distance” between k and E .

Definition 2: Let p be an input distribution. The divergence
between a channel k and a family of channels E is given by

Dp(k||E) := inf
m∈E

Dp(k||m). (20)

FIGURE 1 | For two binary nodes, the family of product distributions is
a surface in a 3-dimensional simplex.
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FIGURE 2 | Illustration of the Pythagoras theorem for projections.

If the minimum is uniquely realized, we call the channel

πEk := argmin
m∈E

Dp(k||m) (21)

the KL-projection of k on E (and simply “a” KL-projection if it is
not unique).

We will always work with compact families, so the minima will
always be realized, and for strictly positive p they will be unique
(see Section 4 for the details).

We will consider families E for which the KL-divergence sat-
isfies a Pythagorean equality (see Figure 2 below for some intu-
ition):

Dp(k||m) = Dp(k||πEk) + Dp(πEk||m) (22)
for every m∈E . These families (technically, closures of exponen-
tial families) are defined in Section 4.

2.3. One Input
Consider first one-input nodeX, with input distribution p(X), and
one output node Y. A constant channel k in K(X;Y) is a channel
whose entries do not depend onX (more precisely: k(x;y)= k(x′;y)
for any x, x′, y). This denomination is motivated by the following
properties:

• They correspond to channels that do not use any information
from the input to generate the output.

• The output distribution given by k is a probability distribution
on Y which does not depend on X.

• Deterministic constant channels are precisely constant
functions.

We call E0 the family of constant channels. Take now any
channel k∈K(X;Y). If we want to quantify the dependence in k of
Y on X, we can then look at the divergence of k from the constant
channels:

d1(k) := Dp(k||E0). (23)
The minimum is realized in πE0k. We have that

d1(k) = Dp(k||πE0k) =
∑
x,y

p(x) k(x; y) log k(x; y)
πE0k(y)

(24)

= HpπE0 k(Y)−Hpk(Y|X) = Ipk(X : Y), (25)

so that consistently with our intuition, the dependence of Y on X
is just the mutual information. From the channel point of view, it
is simply the divergence from the constant channels. (A rigorous
calculation is done in Section 4.)

2.4. Two Inputs
Consider now two input nodes with input probability p and one
output node. We can again define the family E0 of constant
channels, and the same calculations give

Dp(k||E0) = Ipk(X1,X2 : Y). (26)

This time, though, we can say a lotmore: the quantity above can
be decomposed. In analogy with the independence definition for
probability distributions, we would like to define a split channel as
a product channel of its parts: p(y|x1, x2)= p(y|x1)p(y|x2). Unfor-
tunately, the term on the right would be in general not normalized,
so we replace the condition by a weaker one. We call the channel
k(X1, X2; Y) split if it can be written as

k(x1, x2; y) = ϕ0(x1, x2)ϕ1(x1; y)ϕ2(x2; y) (27)

for some functions ϕ0, ϕ1, and ϕ2, which in general are not them-
selves channels (in particular, ϕi(xi; y) ̸= p(y|xi)). We call E1 the
family of split channels. This family corresponds to those channels
that do not have any synergy. This is a special case of an expo-
nential family, analogous to the family of product distributions of
Figure 1. The examples “single node” and “split channel” in the
next section belong exactly to this family. Take now any channel
k(X1, X2; Y). In analogy with mutual information, we call synergy
the divergence:

d2(k) := Dp(k||E1). (28)

Simply speaking, our synergy is quantified as the deviation of
the channel from the set E1 of channels without synergy.

We can now project k first to E1, and then to E0. Since E0 is
a subfamily of E1, the following Pythagoras relation holds from
Equation (22):

Dp(k||πE0k) = Dp(k||πE1k) + Dp(πE1k||πE0k). (29)

If, in analogy with the one-input case, we call the last quantity
d1, we get from Equations (26) and (28):

Ipk(X1,X2 : Y) = d2(k) + d1(k). (30)

The term d1 measures how much information comes from
single nodes (but it does not tell which nodes). The term d2
measures how much information comes from the synergy of X1
and X2 in the channel. The example “XOR” in the next section
will show this.

If we call E2 the whole K(X;Y), we get E0 ⊂E1 ⊂E2 and

di(k) := Dp(πEik||πEi−1k). (31)

2.5. Three Inputs
Consider now three nodes X1, X2, and X3 with input probability p
and a channel k. We have again

Dp(k||E0) = Ipk(X1,X2,X3 : Y). (32)

This time we can decompose the mutual information in differ-
ent ways. We can, for example, look at split channels, i.e., in the
form:

k(x1, x2, x3; y) = ϕ0(x)ϕ1(x1; y)ϕ2(x2; y)ϕ3(x3; y) (33)
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for some ϕ0, ϕ1, ϕ2, and ϕ3. As in the previous case, we call this
family E1. Or we can look at more interesting channels, the ones
in the form:

k(x1, x2, x3; y) = ϕ0(x)ϕ12(x1, x2; y)ϕ13(x1, x3; y)ϕ23(x2, x3; y)
(34)

for some ϕ0, ϕ12, ϕ13, and ϕ23. We call this family E2, and it is easy
to see that

E0 ⊂ E1 ⊂ E2 ⊂ E3, (35)

where E0 denotes again the constant channels, and E3 denotes the
whole K(X;Y). We define again

di(k) := Dp(πEik||πEi−1k). (36)

This time, the Pythagorean relation can be nested, and it
gives us

Ipk(X1,X2,X3 : Y) = d3(k) + d2(k) + d1(k). (37)

The difference between pairwise synergy and threewise synergy
is shown in the “XOR” example in the next section.

Now that we have introduced the measure for a small number
of inputs, we can study the examples from the literature (Griffith
and Koch, 2014) and show that our measure is consistent with
the intuition. The general case will be more in rigor introduced
in Section 4.

3. EXAMPLES

Here, we present some examples of decomposition forwell-known
channels. All the quantities have been computed using an algo-
rithm analogous to iterative scaling (as in Csiszár and Shields
(2004)).

3.1. Single Node Channel
The easiest example is considering a channel which only depends
on X1, i.e.,

I(X : Y) = I(X1 : Y). (38)

For example, consider 3 binary input nodesX1,X2, andX3 with
constant input probability and one binary output node Y which is
an exact copy of X1.

Then, we have exactly one bit of single node information and
no higher order terms (see Figure 3). Geometrically, k lies in E1,
so the only non-zero divergence in equation (37) is d1(k). As one
would expect, d2(k) and d3(k) vanish, as there is no synergy of
orders 2 and 3.

3.2. Split Channel
The second easiest example is a more general channel which
obeys equation (33). In particular, consider 3 binary input nodes
X1, X2, and X3 with constant input probability (so, the xi are
independent), and output Y =X1 ×X2 ×X3. As channel, we sim-
ply take the identity map (x1, x2, x3) 7→ (x1, x2, x3)∈Y. In this
particular case:

I(X : Y) =
∑
i

I(Xi;Y). (39)

FIGURE 3 | Synergies of different orders for the single-node channel,
Example 3.1.

FIGURE 4 | Synergies of different orders for the split channel,
Example 3.2.

We have 3 bits of mutual information (see Figure 4), which are
all single node (but from different nodes). Since

k(x1, x2, x3; y) = ϕ1(x1; y1)ϕ2(x2; y2)ϕ3(x3; y3), (40)

which is a special case of Equation (33), k∈E1, and so d2(k) and
d3(k) in Equation (37) are again zero.

3.3. Correlated Inputs
Consider 3 perfectly correlated binary nodes, each one with
uniform marginal probability. As output take a perfect copy of
one (hence, all) of the inputs. We have again one bit of mutual
information, which could come from any of the nodes, but no
synergy, as no two nodes are interacting in the channel. The input
distribution has correlation, but this has no effect on the channel,
since the channel is simply copying the value of X1 (or X2 or X3,
equivalently). Therefore, again k∈E1. Of the terms in Equation
(37), again the only non-zero is d1(k) (see Figure 5).

This example in the literature is used to motivate the notion
of redundancy. A “redundant channel” is in our decomposition
exactly equivalent to a single node channel, since it contains
exactly the same amount of information.
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FIGURE 5 | Synergies of different orders for correlated inputs,
Example 3.3.

3.4. Parity (XOR)
The standard example of synergy is given by the XOR function
and more generally by the parity function between two or more
nodes.

For example, consider 3 binary input nodes X1, X2, and X3
with constant input probability, and one binary output node Y
which is given by X1 YX2. We have 1 bit of mutual informa-
tion, which is purely arising from a pairwise synergy (of X1
and X2), so this time k∈E2. The function XOR is pure syn-
ergy, so d2(k) is the only non-zero term in Equation (37) (see
Figure 6).

If instead Y is given by the threewise parity function, or
X1 YX2 YX3, we have again 1 bit of mutual information, which
now is purely arising from a threewise synergy, so here k∈E3,
and the only non-zero term in Equation (37) is d3(k) (see
Figure 7).

In these examples, there are no terms of lower order synergy,
but the generic elements of E2 and E3 usually do contain a non-
zero lower part. Consider, for instance, the next example.

3.5. AND and OR
The other two standard logic gates, AND and OR, share the
same decomposition. Consider two binary nodes X1, and X2 with
uniform probability, and let Y be X1 ∨X2 (or X1 ∧X2). There is
again one bit of mutual information, which comes mostly from
single nodes, but also from synergy (see Figure 8).

Geometrically, thismeans that ANDandOR are channels in E2,
which lie close to the submanifold E1.

3.6. XorLoses
Here, we present a slightly more complicated example, coming
from Griffith and Koch (2014). We have three binary nodes X1,
X2, and X3, where X1 and X2 have uniform probabilities, and an
output node Y =X1 YX2, just like in the “XOR” example. Now we
takeX3 to be perfectly correlatedwithY =X1 YX2, so thatY could
get the information either from X3 or from the synergy between
X1 and X2. We have one bit of mutual information, which can be
seen as entirely coming from X3, and so the synergy between X1
and X2 is not adding anything (see Figure 9).

FIGURE 6 | Synergies of different orders for the binary XOR function,
Example 3.4.

FIGURE 7 | Synergies of different orders for the three wise parity
function, Example 3.4.

FIGURE 8 | Synergies of different orders for the AND (and OR)
function, Example 3.5.

3.7. XorDuplicate
Again from Griffith and Koch (2014), we have 3 binary nodes
X1, X2, and X3, where X1 and X2 have uniform probabilities,
whileX3 =X1. The output isX1 YX2 =X3 YX2, so it could get the
information either from the synergy betweenX1 andX2 orX2 and
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FIGURE 9 | Synergies of different orders for the XorLoses channel,
Example 3.6.

FIGURE 10 | Synergies of different orders for the XorDuplicate
channel, Example 3.7.

X3. There is one bit of mutual information, which is coming from
a pairwise interaction (see Figure 10). Again, it does not matter
between whom.

It should be clear from the examples here that decomposing
only by order, and not by the specific subsets, is crucial. For
example, in the “input correlation” example, there is no natural
way to decide fromwhich single node the information comes, even
if it is clear that the interaction is of order 1.

4. GENERAL CASE

Here, we try to give a general formulation, for N inputs, of the
quantities defined in Section 2. As in the Section “Introduction,”
we call the set of input nodes V of cardinality N, and we consider
a subset I of the nodes. We denote the joint random variable
(Xi, i∈ I) by XI, and we denote the complement of I in V by
Ic. The case N = 3 in Section 2 should motivate the following
definition.

Definition 3: Let I⊆V. We call FI the space of functions that
only depend on XI and Y :

FI := {f ∈ F(X,Y) | f(xI, xIc ; y) = f(xI, x′Ic ; y) ∀xIc , x′Ic}. (41)

Let 0≤ i≤N. We call Fi the space of channels which can
be written as a product of functions of FI with the order of I
at most i:

Ei :=

cl
{
k ∈ K(X;Y) | ∃ϕI ∈ FI, ϕ0 ∈ F(X) | k = ϕ0

∏
I

ϕI; |I| ≤ i
}

,

(42)

where cl denotes the closure in K(X;Y). Intuitively, this means
that E i does not only contain terms in the form given in the
curly brackets, but also limits of such terms. Stated differently,
the closure of a set includes not only the set itself, but also its
boundary. This is important because when we project to a family,
the projection may lie on the boundary. In order for the result to
exist, the boundary must then be included.

This way:

• E0 is the space of constant channels;
• EN is the whole K(X;Y);
• E i ⊆E j if and only if i≤ j;
• For N ≤ 3 we recover exactly the quantities of Section 2.

The family E i is also the closure of the family in the form:{
1

Z(X) exp
(∑

I
fI(X;Y)

)
| fI ∈ FI; |I| ≤ i

}
, (43)

where

Z(x) :=
∑
y

exp

(∑
I

fI(x; y)
)

. (44)

Such families are known in the literature as exponential families
(see, for example, Amari and Nagaoka (2000)). In particular, it is
compact (for finite N), so that the infimum of any function on E i
is always aminimum. Thismeans that for a channel k and an input
distribution p:

Dp(k||Ei) := inf
m∈Ei

Dp(k||m) = min
m∈Ei

Dp(k||m) (45)

always exists. If it is unique, for example if p is strictly positive, we
define the unique KL-projection as

πEik := arg min
m∈Ei

Dp(k||m). (46)

πEik has the property that it defines the same output probability
on Y.

Definition 4: Let k∈K(X;Y), let 1≤ i≤N. Then the i-wise
synergy of k is (if the KL-projections are unique):

di(k) := Dp(πEik||πEi−1k). (47)

For more clarity, we call the 1-wise synergy “single node infor-
mation” or “single-node dependence.”

For k∈K(X;Y)= EN, we can look at its divergence from E0. If
we denote πE0k by k0:

Dp(k||E0) = Dp(k||k0) =
∑
x,y

p(x) k(x; y) log k(x; y)
k0(y)

. (48)
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If k is not strictly positive, we take the convention 0 log(0/0)= 0,
and we discard the zero terms from the sum. Since the output
distributions are the same, but k0 is constant in x, it can not happen
that for some (x;y), k0(x;y)= 0 but k(x;y) ̸= 0. (The very same is
true for all KL-projections πEik, since Dp(πEik||k0) ≤ Dp(k||k0).)
For all other terms, Equation (48) becomes:

Dp(k||E0) =
∑
x,y

p(x) k(x; y) log k(x; y)

−
∑
x,y

p(x) k(x; y) log k0(y) (49)

= −Hpk(Y|X)−
∑
y

k∗p(y) log k0(y) (50)

= −Hpk(Y|X)−
∑
y

k0∗p(y) log k0(y) (51)

= −Hpk(Y|X) +Hk0∗p(Y) = −Hpk(Y|X) +Hk∗p(Y)
(52)

= Ipk(X : Y). (53)

On the other hand, the Pythagorean relation (22) implies:

Dp(k||k0) = Dp(k||πEN−1k) + Dp(πEN−1k||k0), (54)

and iterating:

Dp(k||k0) = Dp(k||πEN−1k)
+ Dp(πEN−1k||πEN−2k) + . . .+ Dp(πE1k||k0). (55)

In the end, we get

I(X : Y) =
N∑
i=1

Dp(πEik||πEi−1k) =
N∑
i=1

di(k). (56)

This decomposition is always non-negative, and it depends
on the input distribution. The terms in Equation (56) can be in
general difficult to compute exactly. Nevertheless, they can be
approximated with iterative procedures.

5. COMPARISON WITH TWO RECENT
APPROACHES

The measure of synergy, or respectively complementary informa-
tion, defined in Griffith and Koch (2014) and Bertschinger et al.
(2014) is

CIp(Y : X1,X2) := Ip(Y : X1,X2)− min
p∗∈∧

Ip∗(Y : X1,X2), (57)

where ∧ is the space of prescribed marginals:

∧= {q ∈ P(X1,X2,Y) | q(X1,Y)= p(X1,Y), q(X2,Y)= p(Y2,Y)}.
(58)

Our measure of synergy can be written, for two inputs, in a
similar form:

d2(k) = Dp(k||πE1k) = Ip(Y : X1,X2)− min
p∗∈△

Ip∗(Y : X1,X2),

(59)

where △, in addition to the constraints of ∧, prescribes also the
input:

△ = {q ∈ P(X1,X2,Y) |
q(X1,Y) = p(X1,Y), q(X2,Y) = p(Y2,Y),
q(X1,X2) = p(X1,X2)}. (60)

Clearly △⊆∧, so

min
p∗∈△

Ip∗(Y : X1,X2) ≥ min
p∗∈∧

Ip∗(Y : X1,X2), (61)

which implies that

d2(k) ≤ CIp(Y : X1,X2). (62)

We argue that not prescribing the input leads to overestimating
synergy, because the subtraction in Equation (57) includes a
possible difference in the correlation of the input distributions.

For example, consider X1, X2, Y binary and correlated, but not
perfectly correlated. (For perfectly correlated nodes, as in Section
3, △=∧, so there is no difference between the two measures.) In
detail, consider the channel:

kβ(x1, x2; y) :=
exp (β y (x1 + x2))∑
y′ exp (β y′(x1 + x2))

, (63)

and the input distribution:

pα(x1, x2) :=
exp (α x1x2)∑

x′1,x′2 exp (α x′1x′2)
. (64)

For α, β→∞, the correlation becomes perfect, and the two
measures of synergy are both zero. For 0<α, β <∞, our measure
d2(kβ) is zero, as clearly kβ ∈E1. CI is more difficult to compute,
but we can give a (non-zero) lower bound in the following way.
First, we fix two values β= β0, α=α0. We consider the joint
distribution pα0

kβ0 , and look at the marginals:

pα0
kβ0(X1,Y) , pα0

kβ0(X2,Y). (65)

We define the family ∧ as the set of joint probabilities which
have exactly these marginals. If we increase β, we can always find
an α such that the marginals do not change:

pαkβ(X1,Y) = pα0
kβ0(X1,Y) , pαkβ(X2,Y) = pα0

kβ0(X2,Y),
(66)

i.e., such that pαkβ ∈∧. Now we can look at the mutual informa-
tion of pαkβ and of pα0

kβ0 . If they differ, and (for example) the
former is larger, then

Ipαkβ (Y : X1,X2)− Ipα0
kβ0

(Y : X1,X2)

≤ Ipαkβ (Y : X1,X2)− min
p∗∈∧

Ip∗(Y : X1,X2) = CIpαkβ (67)

is a well-defined lower bound for CIpαkβ . With a numerical
simulation, we can show graphically that the mutual information
is indeed not constant within the families ∧ (see Figure 11).
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FIGURE 11 | Mutual information and fixed marginals. The shades of blue
represent the amount of Ip(Y :X1,X2) as a function of α,β (brighter is higher).
Each red line represents a family ∧ of fixed marginals. While the lines of fixed
mutual information and the families of fixed marginals look qualitatively similar,
they do not coincide exactly, which means that Ip varies within the ∧.

From the picture, we can see that the red lines (families ∧
for different initial values) approximate well the lines of constant
mutual information, at least qualitatively, but they are not exactly
equal. This means that for most points p of ∧, the quantity:

CIp(Y : X1,X2) := Ip(Y : X1,X2)− min
p∗∈∧

Ip∗(Y : X1,X2) (68)

will be non-zero. More explicitly, we can plot the increase in
mutual information as p varies in ∧, for example, as a function
of β (see Figure 12). This is always larger than or equal to the
difference between the mutual information and its minimum in
∧ (i.e., CI). We can see that it is positive, which implies that CIp is
also positive.

We can see in Figure 11 that especially for very large or very
small values ofα and β (i.e., very strong or very weak correlation),
CI captures the behavior of mutual information quite well. These
limits are precisely deterministic and constant kernels, for which
most approaches in quantifying synergy coincide. This is the
reason why the examples studied in Griffith and Koch (2014) give
quite a satisfying result for CI (in their notation, SVK). For the less
studied (and computationallymore complex) intermediate values,
like 1<α, β < 2, the approximation is instead far from accurate,
and in that interval (see Figure 12), there is a sharp increase in I,
which leads to overestimating synergy.

FIGURE 12 | Lower bound for CI versus β. For each β∈ [0.7, 3] we can
find an α such that the joint pαkβ lies in ∧. The increase in mutual information
as β varies is a lower bound for CI, which is then in general non-zero.

6. CONCLUSION

Using information geometry, we have defined a non-negative
decomposition of the mutual information between inputs and
outputs of a channel.

The decomposition divides themutual information into contri-
butions of the different orders of synergy in a unique way. It does
not, however, divide the mutual information into contributions of
the different subsets of input nodes as Williams and Beer’s PID
(Williams and Beer, 2010) would require.

For two inputs, our measure of synergy is closely related to
the well-received quantification of synergy in Griffith and Koch
(2014) and Bertschinger et al. (2014). Our measure though works
in the desired way for an arbitrary (finite) number of inputs.
Differently from Griffith and Koch (2014) and Bertschinger et al.
(2014), anyway, we do not define a measure for redundant or
“shared” information, nor unique information of the single inputs
or subsets.

The decomposition depends on the choice of an input dis-
tribution. In case of input correlation, redundant information is
counted automatically only once. This way, there is no need to
quantify redundancy separately.

In general, there is no way to compute our quantities in closed
form, but they can be approximated by an iterative-scaling algo-
rithm (see, for example, Csiszár and Shields (2004)). The results
are consistent with the intuitive properties of synergy, outlined in
Williams and Beer (2010) and Griffith and Koch (2014).
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