:\' frontiers

In Robotics and Al

HYPOTHESIS AND THEORY
published: 18 January 2016
doi: 10.3389/frobt.2015.00039

OPEN ACCESS

Edited by:
Fabrizio Riguzzi,
Universita degli Studi di Ferrara, Italy

Reviewed by:

Raul Vicente,

Max-Planck Institute for Brain
Research, Germany

Kate Cerqueira Revoredo,

Federal University of the State of Rio
de Janeiro, Brazil

*Correspondence:
David Balduzzi
david.balduzzi@vuw.ac.nz

Specialty section:

This article was submitted to
Computational Intelligence,
a section of the journal
Frontiers in Robotics and Al

Received: 30 September 2015
Accepted: 21 December 2015
Published: 18 January 2016

Citation:

Balduzzi D (2016) Grammars

for Games: A Gradient-

Based, Game-Theoretic Framework
for Optimization in Deep Learning.
Front. Robot. Al 2:39.

doi: 10.3389/frobt.2015.00039

CrossMark

Grammars for Games: A Gradient-
Based, Game-Theoretic Framework
for Optimization in Deep Learning

David Balduzzi*

School of Mathematics and Statistics, Victoria University Wellington, Wellington, New Zealand

Deep learning is currently the subject of intensive study. However, fundamental concepts
such as representations are not formally defined — researchers “know them when they
see them” — and there is no common language for describing and analyzing algorithms.
This essay proposes an abstract framework that identifies the essential features of current
practice and may provide a foundation for future developments. The backbone of almost
all deep learning algorithms is backpropagation, which is simply a gradient computation
distributed over a neural network. The main ingredients of the framework are, thus, unsur-
prisingly: (i) game theory, to formalize distributed optimization; and (i) communication
protocols, to track the flow of zeroth and first-order information. The framework allows
natural definitions of semantics (as the meaning encoded in functions), representations
(as functions whose semantics is chosen to optimized a criterion), and grammars (as
communication protocols equipped with first-order convergence guarantees). Much of
the essay is spent discussing examples taken from the literature. The ultimate aim is to
develop a graphical language for describing the structure of deep learning algorithms
that backgrounds the details of the optimization procedure and foregrounds how the
components interact. Inspiration is taken from probabilistic graphical models and factor
graphs, which capture the essential structural features of multivariate distributions.

Keywords: deep learning, representation learning, optimization, game theory, neural networks

1. INTRODUCTION

Deep learning has achieved remarkable successes in object and voice recognition, machine transla-
tion, reinforcement learning, and other tasks (Hinton et al., 2012; Krizhevsky et al., 2012; Sutskever
et al., 2014; LeCun et al.,, 2015; Mnih et al., 2015). From a practical standpoint, the problem of
supervised learning is well-understood and has largely been solved — atleast in the regime where both
labeled data and computational power are abundant. The workhorse underlying most deep learning
algorithms is error backpropagation (Werbos, 1974; Rumelhart et al., 1986a,b; Schmidhuber, 2015),
which is simply gradient descent distributed across a neural network via the chain rule.

Gradient descent and its variants are well-understood when applied to convex or nearly convex
objectives (Robbins and Monro, 1951; Nemirovski and Yudin, 1978; Nemirovski, 1979; Nemirovski
etal., 2009). In particular, they have strong performance guarantees in the stochastic and adversarial
settings (Zinkevich, 2003; Cesa-Bianchi and Lugosi, 2006; Bousquet and Bottou, 2008; Shalev-
Shwartz, 2011). The reasons for the success of gradient descent in non-convex settings are less clear,
although recent work has provided evidence that mostlocal minima are good enough (Choromanska
et al., 2015a,b); that modern convolutional networks are close enough to convex for many results

Frontiers in Robotics and Al | www.frontiersin.org 1

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2015.00039
https://creativecommons.org/licenses/by/4.0/
mailto:david.balduzzi@vuw.ac.nz
http://dx.doi.org/10.3389/frobt.2015.00039
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2015.00039&domain=pdf&date_stamp=2016-01-18
http://www.frontiersin.org/Journal/10.3389/frobt.2015.00039/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2015.00039/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2015.00039/abstract
http://loop.frontiersin.org/people/118640/overview
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

on rates of convergence apply (Balduzzi, 2015); and that the rate
of convergence of gradient descent can control generalization
performance, even in non-convex settings (Hardt et al., 2015).

Taking a step back, gradient-based optimization provides a
well-established set of computational primitives (Gordon, 2007),
with theoretical backing in simple cases and empirical backing in
others. First-order optimization, thus, falls in broadly the same
category as computing an eigenvector or inverting a matrix: given
sufficient data and computational resources, we have algorithms
that reliably find good enough solutions for a wide range of
problems.

This essay proposes to abstract out the optimization algo-
rithms used for weight updates and focus on how the compo-
nents of deep learning algorithms interact. Treating optimization
as a computational primitive encourages a shift from low-level
algorithm design to higher-level mechanism design: we can shift
attention to designing architectures that are guaranteed to learn
distributed representations suited to specific objectives. The goal
is to introduce a language at a level of abstraction where designers
can focus on formal specifications (grammars) that specify how
plug-and-play optimization modules combine into larger learning
systems.

1.1. What Is a Representation?

Let us recall how representation learning is commonly under-
stood. Bengio et al. (2013) describe representation learning as
“learning transformations of the data that make it easier to extract
useful information when building classifiers or other predic-
tors” More specifically, “a deep learning algorithm is a particular
kind of representation learning procedure that discovers multi-
ple levels of representation, with higher-level features represent-
ing more abstract aspects of the data® (Bengio, 2013). Finally,
LeCun et al. (2015) state that multiple levels of representations
are obtained “by composing simple but non-linear modules that
each transform the representation at one level (starting with
the raw input) into a representation at a higher, slightly more
abstract level. With the composition of enough such transforma-
tions, very complex functions can be learned. For classification
tasks, higher layers of representation amplify aspects of the input
that are important for discrimination and suppress irrelevant
variations.”

The quotes describe the operation of a successful deep learn-
ing algorithm. What is lacking is a characterization of what
makes a deep learning algorithm work in the first place. What
properties must an algorithm have to learn layered represen-
tations? What does it mean for the representation learned
by one layer to be useful to another? What, exactly, is a
representation?

In practice, almost all deep learning algorithms rely on error
backpropagation to “align” the representations learned by dif-
ferent layers of a network. This suggests that the answers to
the above questions are tightly bound up in first-order (that is,
gradient-based) optimization methods. It is, therefore, unsurpris-
ingly that the bulk of the paper is concerned with tracking the
flow of first-order information. The framework is intended to
facilitate the design of more general first-order algorithms than
backpropagation.

1.1.1. Semantics

To get started, we need a theory of the meaning or semantics
encoded in neural networks. Since there is nothing special about
neural networks, the approach taken is inclusive and minimalistic.
Definition 1 states that the meaning of any function is how it
implicitly categorizes inputs by assigning them to outputs. The
next step is to characterize those functions whose semantics
encode knowledge, and for this we turn to optimization (Sra et al.,
2012).

1.1.2. Representations from Optimizations

Nemirovski and Yudin (1983) developed the black-box compu-
tational model to analyze the computational complexity of first-
order optimization methods (Agarwal et al., 2009; Raginsky and
Rakhlin, 2011; Arjevani et al, 2016). The black-box model is
a more abstract view on optimization than the Turing machine
model: it specifies a communication protocol that tracks how
often an algorithm makes queries about the objective. It is useful
to refine Nemirovski and Yudin’s terminology by distinguish-
ing between black-boxes, which respond with zeroth-order infor-
mation (the value of a function at the query-point), and gray-
boxes,' which respond with zeroth- and first-order information
(the gradient or subgradient).

With these preliminaries in hand, Definition 4 proposes that a
representation is a function that is a local solution to an optimiza-
tion problem. Since we do not restrict to convex problems, finding
global solutions is not feasible. Indeed, recent experience shows
that global solutions are often not necessary practice (Hinton et al.,
2012; Krizhevsky et al., 2012; Sutskever et al., 2014; LeCun et al,,
2015; Mnih et al., 2015). The local solution has similar semantics
to — that is, it represents — the ideal solution. The ideal solution
usually cannot be found: due to computational limitations, since
the problem is non-convex, because we only have access to a finite
sample from an unknown distribution, etc.

To see how Definition 4 connects with representation learning
as commonly understood, it is necessary to take a detour through
distributed optimization and game theory.

1.2. Distributed Representations

Game theory provides tools for analyzing distributed optimization
problems where a set of players aim to minimizes losses that
depend not only on their actions but also the actions of all other
players in the game (von Neumann and Morgenstern, 1944; Nisan
et al., 2007). Game theory has traditionally focused on convex
losses since they are more theoretically amenable. Here, the only
restriction imposed on losses is that they are differentiable almost
everywhere.

Allowing non-convex losses means that error backpropaga-
tion can be reformulated as a game. Interestingly, there is enor-
mous freedom in choosing the players. They can correspond to
individual units, layers, entire neural networks, and a variety of
other, intermediate choices. An advantage of the game-theoretic
formulation is, thus, that it applies at many different scales.

Non-convex losses and local optima are essential to developing
a scale-free formalism. Even when it turns out that particular units

!Gray for gradient.

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

or a particular layer of a neural network are solving a convex
problem, convexity is destroyed as soon as those units or layers
are combined to form larger learning systems. Convexity is not
a property that is preserved in general when units are combined
into layers or layers into networks. It is, therefore, convenient to
introduce the computational primitive arglocopt to denote the
output of a first-order optimization procedure, see Definition 4.

1.2.1. A Concern about Excessive Generality

A potential criticism is that the formulation is too broad. Very little
can be said about non-convex optimization in general; introduc-
ing games where many players jointly optimize a set of arbitrary
non-convex functions only compounds the problem.

Additional structure is required. A successful case study can
be found in Balduzzi (2015), which presents a detailed game-
theoretic analysis of rectifier neural networks. The key to the
analysis is that rectifier units are almost convex. The main result is
that the rate of convergence of a neural network to alocal optimum
is controlled by the (waking-)regret of the algorithms applied to
compute weight updates in the network.

Whereas Balduzzi (2015) relied heavily on specific properties
of rectifier non-linearities, this paper considers a wide-range of
deep learning architectures. Nevertheless, it is possible to carve
out an interesting subclass of non-convex games by identifying the
composition of simple functions as an essential feature common
to deep learning architectures. Compositionality is formalized via
distributed communication protocols and grammars.

1.2.2. Grammars for Games

Neural networks are constructed by composing a series of ele-
mentary operations. The resulting feedforward computation is
captured via as a computation graph (Griewank and Walther,
2008; Bergstra et al., 2010; Bastien et al., 2012; Baydin and Pearl-
mutter, 2014; Schulman et al, 2015; van Merriénboer et al,
2015). Backpropagation traverses the graph in reverse and recur-
sively computes the gradient with respect to the parameters at
each node.

Section 3 maps the feedforward and feedback computations
onto the queries and responses that arise in Nemirovski and
Yudin’s model of optimization. However, queries and responses
are now highly structured. In the query phase, players feed param-
eters into a computation graph (the Query graph Q) that performs
the feedforward sweep. In the response phase, oracles reveal first-
order information that is fed into a second computation graph (the
Response graph R).

In most cases, the Response graph simply implements back-
propagation. However, there are examples where it does not.
Three are highlighted here, see Section 3.5, and especially Sections
3.6 and 3.7. Other algorithms where the Response graphs do not
simply implement backprop include difference target propagation
(Lee et al., 2015) and feedback alignment (Lillicrap et al., 2014)
[both discussed briefly in Section 3.7] and truncated backprop-
agation through time (Elman, 1990; Williams and Peng, 1990;
Williams and Zipser, 1995), where a choice is made about where
to cut backprop short. Examples where the query and response
graph differ are of particular interest, since they point toward more
general classes of deep learning algorithms.

A distributed communication protocol is a game with addi-
tional structure: the Query and Response graphs, see Defini-
tion 7. The graphs capture the compositional structure of the
functions learned by a neural network and the compositional
structure of the learning procedure, respectively. It is important
for our purposes that (i) the feedforward and feedback sweeps
correspond to two distinct graphs and (ii) the communication
protocol is kept distinct from the optimization procedure. That
is, the communication protocol specifies how information flows
through the networks without specifying how players make use of
it. Players can be treated as plug-and-play rational agents that are
provided with carefully constructed and coordinated first-order
information to optimize as they see fit (Russell and Norvig, 2009;
Gershman et al.,, 2015).

Finally, a grammar is a distributed communication protocol
equipped with a guarantee that the response graph encodes suf-
ficient information for the players to jointly find a local optimum
of an objective function. The paradigmatic example of a grammar
is backpropagation. A grammar is a, thus, a game designed to
perform a task. A representation learned by one (p)layer is useful
to another if the game is guaranteed to converge on a local solution
to an objective — that is, if the players interact though a grammar.
It follows that the players build representations that jointly encode
knowledge about the task.

1.3. Contribution

The content of the paper is sketched above. In summary, the main
contributions are as follows:

1. A characterization of representations as local solutions to func-
tional optimization problems, see Definition 4.

2. An extension of Nemirovski and Yudin’s first-order (Query-
Response) protocol to deep learning, see Definition 7.

3. Grammars, Definition 8, which generalize the first-order guar-
antees provided by the error backpropagation to Response
graphs that do not implement the chain rule.

4. Examples of grammars that do not reduce to the chain rule, see
Sections 3.5, 3.6, and 3.7.

The essay presents a provisional framework; see Balduzzi
(2015), Balduzzi and Ghifary (2015), Balduzzi et al. (2015) for
applications of the ideas presented here. The essay is not intended
to be comprehensive. Many details are left out and many impor-
tant aspects are not covered: most notably, probabilistic and
Bayesian formulations, and various methods for unsupervised
pre-training.

1.3.1. A Series of Worked Examples

In line with its provisional nature, much of the essay is spent apply-
ing the framework to worked examples: error backpropagation as
a supervised model (Rumelhart et al., 1986a); variational autoen-
coders (Kingma and Welling, 2014) and generative adversarial
networks (Goodfellow et al., 2014) for unsupervised learning;
the deviator-actor-critic (DAC) model for deep reinforcement
learning (Balduzzi and Ghifary, 2015); and kickback, a biologically
plausible variant of backpropagation (Balduzzi et al., 2015). The
examples were chosen, in part, to maximize variety and, in part,
based on familiarity. The discussions are short; the interested

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

reader is encouraged to consult the original papers to fill in the
gaps.

The last two examples are particularly interesting since their
Response graphs differ substantially from backpropagation. The
DAC model constructs a zeroth-order black-box to estimate gradi-
ents rather than querying a first-order gray-box. Kickback prunes
backprop’s Response graph by replacing most of its gray-boxes
with black-boxes and approximating the chain rule with (primar-
ily) local computations.

1.3.2. Related Work

Bottou and Gallinari (1991) proposed to decompose neural net-
works into cooperating modules (Bottou, 2014). Decomposing
more general algorithms or models into collections of interact-
ing agents dates back to the shrieking demons that comprised
of Selfridge’s Pandemonium (Selfridge, 1958) and a long line of
related work (Klopf, 1982; Barto, 1985; Minsky, 1986; Baum, 1999;
Kwee et al., 2001; von Bartheld et al., 2001; Seung, 2003; Lewis
and Harris, 2014). The focus on components of neural networks
as players, or rational agents, in their own right developed here
derives from work aimed at modeling biological neurons game-
theoretically, see Balduzzi and Besserve (2012), Balduzzi (2013,
2014), Balduzzi and Tononi (2013), and Balduzzi et al. (2013).

A related approach to semantics based on general value func-
tions can be found in Sutton et al. (2011), see Remark 1. Computa-
tion graphs applied to backprop are the basis of the deep learning
library Theano (Bergstra et al., 2010; Bastien et al., 2012; van Mer-
riénboer et al., 2015) among others and provide the backbone for
algorithmic differentiation (Griewank and Walther, 2008; Baydin
and Pearlmutter, 2014).

Grammars are a technical term in the theory of formal lan-
guages relating to the Chomsky hierarchy (Hopcroft and Ull-
man, 1979). There is no apparent relation between that notion
of grammar and the one presented here, aside from both relating
to structural rules governing composition. Formal languages and
deep learning are sufficiently disparate fields that there is little
risk of terminological confusion. Similarly, the notion of seman-
tics introduced here is distinct from semantics in the theory of
programing languages.

Although game theory was developed to model human interac-
tions (von Neumann and Morgenstern, 1944), it has been pointed
out that it may be more directly applicable to interacting pop-
ulations of algorithms, the so-called machina economicus (Lay
and Barbu, 2010; Abernethy and Frongillo, 2011; Storkey, 2011;
Frongillo and Reid, 2015; Parkes and Wellman, 2015; Syrgkanis
et al., 2015). This paper goes one step further to propose that
games played over first-order communication protocols are a key
component of the foundations of deep learning.

A source of inspiration for the essay is Bayesian networks and
Markov random fields. Probabilistic graphical models and factor
graphs provide simple, powerful ways to encode a multivariate
distribution’s independencies into a diagram (Pearl, 1988; Kschis-
chang et al., 2001; Wainwright and Jordan, 2008). They have
greatly facilitated the design and analysis of algorithms for proba-
bilistic inference. However, there is no comparable framework for
distributed optimization and deep learning. The essay is intended
as a first step in this direction.

2. SEMANTICS AND REPRESENTATIONS

This section defines semantics and representations. In short, the
semantics of a function is how it categorizes its inputs; a function
is a representation if it is selected to optimize an objective. The
connection between the definition of representation below and
“representation learning” is clarified in Section 3.3.

Possible world semantics was introduced by Lewis (1986) to
formalize the meaning of sentences in terms of counterfactuals.
Let P be a proposition about the world. Its truth depends on its
content and the state of the world. Rather than allowing the state
of the world to vary, it is convenient to introduce the set W of all
possible worlds.

Let us denote proposition P applied in world w € W by P(w).
The meaning of P is then the mapping vp: W — {0,1} which
assigns 1 or 0 to each w € W according to whether or not proposi-
tion P(w) is true. Equivalently, the meaning of the proposition is
the ordered pair consisting of: all worlds, and the subset of worlds
where it is true:

w D vp'(1)

set of possible worlds subset of worlds where P is true

For example, the meaning of Py, (that) = “that is blue” is the
subset v;blm(l) of possible worlds where I am pointing at a blue
object. The concept of blue is rendered explicit in an exhaustive
list of possible examples.

A simple extension of possible world semantics from proposi-
tions to arbitrary functions is as follows (Balduzzi, 2011):

DEFINITION 1 (semantics).
Given function f: X — Y, the semantics or meaning of output
y €Y is the ordered pair of sets:

X D
——

set of possible inputs

')
——

subset causing fto output y

Functions implicitly categorize inputs by assigning outputs to
them; the meaning of an output is the category.

Whereas propositions are true or false, the output of a function
is neither. However, if two functions both optimize a criterion,
then one can refer to how accurately one function represents the
other. Before we can define representations, we therefore need to
take a quick detour through optimization:

DEFINITION 2 (optimization problem).

An optimization problem is a pair (©, R) consisting of
parameter-space © C R? and objective R: © — R that is differen-
tiable almost everywhere.

The solution to the global optimization problem is:

0" = argoptR(9),
6co

which is either a maximum or minimum according to the nature
of the objective.

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

The solution may not be unique; it also may not exist unless
further restrictions are imposed. Such details are ignored here.

Next recall the black-box optimization framework introduced
by Nemirovski and Yudin (1983) (Agarwal et al., 2009; Raginsky
and Rakhlin, 2011; Arjevani et al., 2016).

DEFINITION 3 (communication protocol).

A communication protocol for optimizing an unknown objec-
tive R: © — R consists in a User (or Player) and an Oracle. On each
round, User presents a query 6 € ©. Oracle can respond in one of
two ways, depending on the nature of the protocol:

e Black-box (zeroth-order) protocol.
Oracle responds with the value R(0).

Payer}—

e Gray-box (first-order) protocol.
Oracle responds with either the gradient 7R (8) or with the
gradient together with the value.

Player}— R

The protocol specifies how Player and Oracle interact without
specifying the algorithm used by Player to decide which points
to query. The next section introduces distributed communication
protocols as a general framework that includes a variety of deep
learning architectures as special cases — again without specifying
the precise algorithms used to perform weight updates.

Unlike Nemirovski and Yudin (1983), Raginsky and Rakhlin
(2011), we do not restrict to convex problems. Finding a global
optimum is not always feasible, and in practice often unnecessary.

[Payer |

DEFINITION 4 (representation).
Let F C {f: X — Y} be a function space and:

f:O=F:0— fy(e)

be a map from parameter space to functions. Further suppose that
objective function R: 7 — R is given.

A representation is a local solution to the optimization
problem:

fg where 6 € arglocopt R(fp),
6c©

corresponding to a local maximum or minimum according to
whether the objective is minimized or maximized.

Intuitively, the objective quantifies the extent to which func-
tions in F categorize their inputs similarly. The operation arglo-
copt applies a first-order method to find a function whose seman-
tics resembles the optimal solution fg« where 6* =argoptgco

R(fg).

In short, representations are functions with useful semantics,
where usefulness is quantified using a specific objective: the lower
the loss or higher the reward associated with a function, the more
useful it is. The relation between Definition 4 and representa-
tions as commonly understood in the deep learning literature is
discussed in Section 3.3 below.

REMARK 1 (value function semantics).

In related work, Sutton et al. (2011) proposed that seman-
tics — i.e., knowledge about the world - can be encoded in gen-
eral value functions that provide answers to specific questions
about expected rewards. Definition 1 is more general than their
approach since it associates a semantics to any function. How-
ever, the function must arise from optimizing an objective for its
semantics to accurately represent a phenomenon of interest.

2.1. Supervised Learning
The main example of a representation arises under supervised
learning.

REPRESENTATION 1 (supervised learning).

Let X and Y be an input space and a set of labels and
£:Y x Y — R be a loss function. Suppose that {f¢: X — Y|0 € ©}
is a parameterized family of functions.

e Nature which samples labeled pairs (x,y) i.i.d. from distribution
Pxy, singly or in batches.

e Predictor chooses parameters 0 € ©.

e Objective is

R(0) = [€(fo(x): 7))

(x 7}’) ~Pxy

The query and responses phases can be depicted graphically as

0
[Predictor f—————R = Byy[£0 5]

R

Vo

The predictor f4 = arglocming cgR(0) is then a representation of
the optimal predictor f g+ = argming cgR(8).

A commonly used mapping from parameters to functions is
f:O0=F: 0 fy(e) :=(4(e),6)

where a feature map ¢: X — R is fixed.

The setup admits a variety of complications in practice. First, it
is typically infeasible even to find a local optimum. Instead, a solu-
tion that is within some small € > 0 of the local optimum suffices.
Second, the distribution Pxy is unknown, so the expectation is
replaced by a sum over a finite sample. The quality of the resulting
representation has been extensively studied in statistical learning
theory (Vapnik, 1995). Finally, it is often convenient to modify
the objective, for example, by incorporating a regularizer. Thus, a
more detailed presentation would conclude that

6 ~ arglocmin Z (fo(xi),y,) +2(0)
oco

yields a representation f; of the solution to
argmingEp,, [£(fg(x),)]. To keep the discussion and notation
simple, we do not consider any of these important details.

It is instructive to unpack the protocol, by observing that the
objective R is a composite function involving f(0, x), £(fy),

and Efe]:
[Response| Oracler
T v wf
[pror——[t————T2] eitor - Orade

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

The notation dg is borrowed from backpropagation. It is short-
hand for the derivative of the objective with respect to parame-
ters 6.

Nature is not a deterministic black-box since it is not queried
directly: nature produces (x,y) pairs stochastically, rather than
in response to specific inputs. Our notion of black-box can be
extended to stochastic black-boxes, see Schulman et al. (2015).
However, once again we prefer to keep the exposition as simple
as possible.

2.2. Unsupervised Learning

The second example concerns fitting a probabilistic or generative
model to data. A natural approach is to find the distribution under
which the observed data is most likely:

REPRESENTATION 2 (maximum likelihood estimation).
Let X be a data space.

e Nature samples points from distribution Px.

e Estimator chooses parameters 6 € ©.

o Operator Q(x; 8) = Qg(x) computes a probability density on X
that depends on parameter 6.

e Operator —log(-) acts as a loss. The objective is to minimize

R(9) = — E [logQo(x)].

R

Vo

The estimate Q(x; 8), where 6 ¢ arglocming g R(9), is a
representation of the optimal solution, and can also be considered
a representation of Px. The setup extends easily to maximum a
posteriori estimation.

As for supervised learning, the protocol can be unpacked by
observing that the objective has a compositional structure:

R —E[-logQ(x)]

* Vo Q
4 0
Esti @ —log Y ;0@ q_ lu(, Oracle_ 1,

2.3. Reinforcement Learning

The third example is taken from reinforcement learning (Sutton
and Barto, 1998). We will return to reinforcement learning in
Section 3.6, so the example is presented in some detail. In rein-
forcement learning, an agent interacts with its environment, which
is often modeled as a Markov decision process consisting of state
space S C R™, action space A C RY, initial distribution PP;(s) on
states, stationary transition distribution P(s;1|ss,ar) and reward
function r: S x A— R. The agent chooses actions based on a
policy: a function pg: S — A from states to actions. The goal is
to find the optimal policy.

Actor-critic methods break up the problem into two pieces
(Barto etal., 1983). The critic estimates the expected value of state-
action pairs given the current policy, and the actor attempts to find
the optimal policy using the estimates provided by the critic. The
critic is typically trained via temporal difference methods (Sutton,
1988; Dann et al., 2014).

Let P; (s—s’, p) denote the distribution on states s’
at time ¢ given policy p and initial state s at t=0 and let

() = [X APi)Pi(s — s, p)ds. Let 1] =

322, 47 'r(sr,ar) be the discounted future reward. Define the
value of a state-action pair as
Q“(sv a) = E[r’ly‘sl =s,A1 =a; l"’]

Unfortunately, the value-function Q*(s,a) cannot be queried.
Instead, temporal difference methods take a bootstrapped
approach by minimizing the Bellman error:

/ v 2

u(s)) — Q(s,a))]

£35(v) = E [(r(s,a) +7Q"(s

(s,:2)~(pH,p)
where s’ is the state subsequent to s.

REPRESENTATION 3 (temporal difference learning).

Critic interacts with black-boxes Actor and Nature.”

o Critic plays parameters v.

e Operator Q and £pg estimates the value function and compute
the Bellman error. In practice, it turns out to clone the value-
estimate periodically and compute a slightly modified Bellman
error:

eBE(V) - (573) NI(EPH)/-")

\s \4 2
[(r(s,2) + 7 Q7' (s) - Q'(s,))]
where Q¥ is the cloned estimate. Cloning improves the sta-
bility of TD-learning (Mnih et al., 2015). A nice conceptual
side-effect of cloning is that TD-learning reduces to gradient

descent.
Q"‘”y Response
Vw @
Vo lse

The estimate is a representation of the true value function.

REMARK 2 (on temporal difference learning as first-order
method).

Temporal difference learning is not strictly speaking a gradient-
based method (Dann et al., 2014). The residual gradient method
performs gradient descent on the Bellman error, but suffers from
double sampling (Baird, 1995). Projected fix point methods min-
imize the projected Bellman error via gradient descent and have
nice convergence properties (Sutton et al., 2009a,b; Maei et al,,
2010). An interesting recent proposal is implicit TD-learning
(Tamar et al., 2014), which is based on implicit gradient descent
(Toulis et al., 2014).

Section 3.6 presents the Deviator-Actor-Critic model, which
simultaneously learns a value-function estimate and a locally
optimal policy.

3. PROTOCOLS AND GRAMMARS

It is often useful to decompose complex problems into simpler
subtasks that can handled by specialized modules. Examples

*Nature’s outputs depend on Actor’s actions, so the Query graph should technically
have an additional arrow from Actor to Nature.

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

include variational autoencoders, generative adversarial networks,
and actor-critic models. Neural networks are particularly well-
adapted to modular designs, since units, layers, and even entire
networks can easily be combined analogously to bricks of lego
(Bottou and Gallinari, 1991).

However, not all configurations are viable models. A method-
ology is required to distinguish good designs from bad. This
section provides a basic language to describe how bricks are glued
together that may be a useful design tool. The idea is to extend
the definitions of optimization problems, protocols, and represen-
tations from Section 2 from single to multi-player optimization
problems.

DEFINITION 5 (game).

A distributed optimization problem or game ([N], ©, £) is a
set [N] ={1,... N} of players, a parameter space © = Hf’zl O
andloss vector £= ({1, . . .,0n): © = RN, Player i picks moves from
©; C R% and incurs loss determined by ¢;: © — R. The goal of
each player is to minimize its loss, which depends on the moves of

the other players.

The classic example is a finite game (von Neumann and Mor-
genstern, 1944), where player i has a menu of d;-actions and
chooses a distribution over actions, 8; € ©; = A; =
{(61,...,0y) - . 0 = land§; > 0} on each round.
Losses are spec1ﬁe(f for 1nd1v1dual actions, and extended lin-
early to distributions over actions. A natural generalization of
finite games is convex games where the parameter spaces are
compact convex sets and each loss ¢; is a convex function in
its iM-argument (Stoltz and Lugosi, 2007). It has been shown
that players implementing no-regret algorithms are guaranteed
to converge to a correlated equilibrium in convex games (Foster
and Vohra, 1997; Blum and Mansour, 2007; Stoltz and Lugosi,
2007).

The notion of game in Definition 5 is too general for our
purposes. Additional structure is required.

DEFINITION 6 (computation graph).
A computation graph is a directed acyclic graph with two kinds
of nodes:

e Inputs are set externally (in practice by Players or Oracles).
e Operators produce outputs that are a fixed function of their
parents’ outputs.

Computation graphs are a useful tool for calculating deriva-
tives (Griewank and Walther, 2008; Bergstra et al., 2010; Bastien
etal.,, 2012; Baydin and Pearlmutter, 2014; van Merriénboer et al.,
2015). For simplicity, we restrict to deterministic computation
graphs. More general stochastic computation graphs are studied
in Schulman et al. (2015).

A distributed communication protocol extends the communi-
cation protocol in Definition 3 to multiplayer games using two
computation graphs.

DEFINITION 7 (distributed communication protocol).
A distributed communication protocol is a game where each
round has two phases, determined by two computation graphs:

e Query phase. Players provide inputs to the Query graph (Q) that
Operators transform into outputs.

e Response phase. Operators in Q act as Oracles in the Response
graph (R): they input subgradients that are transformed and
communicated to the Players.

The moves chosen by Players depend only on their prior moves
and the information communicated to them by the Response
graph.

The protocol specifies how Players and Oracles communi-
cate without specifying the optimization algorithms used by the
Players. The addition of a Response graph allows more general
computations than simply backpropagating the gradients of the
Query phase. The additional flexibility allows the design of new
algorithms, see Sections 3.6 and 3.7 below. It is also sometimes
necessary for computational reasons. For example, backpropaga-
tion through time on recurrent networks typically runs over a
truncated Response graph (Elman, 1990; Williams and Peng, 1990;
Williams and Zipser, 1995).

Suppose that we wish to optimize an objective function
R: © — R that depends on all the moves of all the players. Finding
a global optimum is clearly not feasible. However, we may be able
to construct a protocol such that the players are jointly able to find
local optima of the objective. In such cases, we refer to the protocol
as a grammar:

DEFINITION 8 (grammar).

A grammar for objective R: © — R is a distributed commu-
nication protocol where the Response graph provides sufficient
first-order information to find a local optimum of (R, ©).

The guarantee ensures that the representations constructed by
Players in a grammar can be combined into a coherent distributed
representation. That is, it ensures that the representations con-
structed by the Players transform data in a way that is useful for
optimizing the shared objective R.

The Players’ losses need not be explicitly computed. All that is
necessary is that the Response phase communicates the gradient
information needed for Players to locally minimize their losses —
and that doing so yields a local optimum of the objective.

3.1. Basic Building Blocks: Function
Composition (Q) and the Chain Rule (R)

Functions can be inserted into grammars as lego-like building
blocks via function composition during queries and the chain
rule during responses. Let G(0, F) be a function that takes inputs
0 and F, provided by a Player and by upstream computations,
respectively. The output of G is communicated downstream in the
Query phase:

Response ‘ ‘ Player ‘
6 (Vo G) - dc | de
F e G oF oc
G
.
(Vp G) RNYel n
VorG

Oracleg

The chain rule is implemented in the Response phase as follows.
Oracleg reports the gradient Vgr G:=(Vg G, Vi G) in the

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

Response phase. Operator “*” computes the products (Vg G- dg,
VG- §) via matrix multiplication. The projection of the product
onto the first and second components® is reported to Player and
upstream, respectively.

3.2. Summary of Guarantees
A selection of examples is presented below. Guarantees fall under
the following broad categories:

1. Exact gradients: under error backpropagation the Response
graph implements the chain rule, which guarantees that Players
receive the gradients of their loss functions; see Section 3.3.

2. Surrogate objectives: the variational autoencoder uses a sur-
rogate objective: the variational lower bound. Maximizing the
surrogate is guaranteed to also maximize the true objective,
which is computational intractable; see Section 3.4.

3. Learned objectives: in the case of generative adversarial net-
work and the DAC-model, some of the players learn a loss
that is guaranteed to align with the true objective, which is
unknown; see Sections 3.5 and 3.6.

4. Estimated gradient: in the DAC-model and kickback, gradient
estimates are substituted for the true gradient; see Sections 3.5
and 3.6. Guarantees are provided on the estimates.

REMARK 3 (fine- and coarse-graining).

There is considerable freedom regarding the choice of players.
In the examples below, players are typically chosen to be layers
or entire neural networks to keep the diagrams simple. It is worth
noting that zooming in, such that players correspond to individ-
ual units, has proven to be a useful tool when analyzing neural
networks (Balduzzi, 2015; Balduzzi and Ghifary, 2015; Balduzzi
etal., 2015).

The game-theoretic formulation is thus scale-free and can be
coarse or fine grained as required. A mathematical language for
tracking the structure of hierarchical systems at different scales is
provided by operads, see Spivak (2013) and the references therein,
which are the natural setting to study the composition of operators
that receive multiple inputs.

3.3. Error Backpropagation
The main example of a grammar is a neural network using
error backpropagation to perform supervised learning. Layers in
the network can be modeled as players in a game. Setting each
(p)layer’s objective as the network’ loss, which it minimizes using
gradient ascent, yields backpropagation.

SyzyaGy 1 (backpropagation).
An L-layer neural network can be reformulated as a game played
between L + 1 players, corresponding to Nature and the Layers of
the network. The query graph for a 3-layer network is:

=
0 6, 03 y
z S, Ss S:
T, SR S S S W N1

wx»

? Alternatively, to avoid having “*” produce two outputs, the entire vector can be
reported in both directions with the irrelevant components ignored.

e Nature plays samples data points (x, y) i.i.d. from Px » y and acts
as the zeroth player.

e Layer; plays weight matrices 6;.

e Operators compute Si(0;, Si—1):=Si(0;-Si—1) for each layer,
along with loss £(S¢, y).

The response graph performs error backpropagation:

Layer; Layery Layers
(Veo, S1) - ds, | 96, (Vo, S2) - s, | d6, (Ve, S3) - ds, | da,
ds, Js, ds, [yl
2 (Vs, ;2) -0y (Vs, »;z) - 03 V:‘ £ [Qmadee|
Vo, S1 Veo,.s, S2 Veo,.s, 53
[Oracles | [Oracles | [Oracles |

The protocol can be extended to convolutional networks by
replacing the matrix multiplications performed by each operator,
Si(6;-Si—1), with convolutions and adding parameterless max-
pooling operators (LeCun et al., 1998).

Guarantee. The loss of every (p)layer is

20,x,y) =€, 0 Sg, o --- o Sp,(x)
where Sg,(®) := Si(6; -).

where

£y(e) = £(e,y)

It follows by the chain rule that R communicates Vg, ¢ to
player i. O

3.3.1. Representation Learning

We are now in a position to relate the notion of representation in
Definition 4 with the standard notion of representation learning
in neural networks. In the terminology of Section 2, each player
learns a representation. The representations learned by the dif-
ferent players form a coherent distributed representation because
they jointly optimize a single objective function.

Abstractly, the objective can be written as

79L)_

R(O,,...,0;) =
(x,y) ~Pxy

[£(S(6y,...,01,%),)],
where §(01,...,01,x) = Sg,0- - -08g, (x). The goal is to minimize
the composite objective.

If we set 6., € arglocmingg g)coR(61,...,0L) then the
function S5 : X — Yfits the definition of representation above.
Moreover, the compositional structure of the network implies
that Se,, i composed of subrepresentations corresponding to the
optimizations performed by the different players in the gram-
mar: each function Sé](o) is a local optimum - where éj €

arglocmingjeij(él, 05, éL) is optimized to transform its
inputs into a form that is useful to network as a whole.

3.3.2. Detailed Analysis of Convergence Rates

Little can be said in general about the rate of converge of the layers
in a neural network since the loss is not convex. However, neural
networks can be decomposed further by treating the individual
units as players. When the units are linear or rectilinear, it turns
out that the network is a circadian game. The circadian structure
provides a way to convert results about the convergence of convex
optimization methods into results about the global convergence a
rectifier network to a local optimum, see Balduzzi (2015).

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

3.4. Variational Autoencoders

The next example extends the unsupervised setting described in
Section 2.2. Suppose that observations {x()}}Y_, are sampled i.i.d.
from a two-step stochastic process: a latent value z'”) is sampled
from P(z), after which x) is sampled from IP’(X|z(i)).

The goal is to (i) find the maximum likelihood estimator for
the observed data and (ii) estimate the posterior distribution on
z conditioned on an observation x. A straightforward approach is
to maximize the marginal likelihood

N
0* .= argmax | | Qo(x), where
gr 1T @x)

Qo(x) = / Qo (x|2)Q6 (2)dz, 1)

and then compute the posterior

@9* (Z‘X) — QB* (X‘Z)QO* (Z) .
Qo- (x)

However, the integral in equation (1) is typically untractable, so
a more roundabout tactic is required. The approach proposed in
Kingma and Welling (2014) is to construct two neural networks,
a decoder Dy (x|z) that learns a generative model approximating
P(x|z), and an encoder E¢(z|x) that learns a recognition model or
posterior approximating P(z|x).

It turns out to be useful to replace the encoder with a deter-
ministic function, G4(€,x), and a noise source, Pyisc(€) that are
compatible. Here, compatible means that sampling z ~ E 4 (z|x) is
equivalent to sampling € ~ Pyis(€) and computing Z := Gy (€, x).

SyzyGy 2 (variational autoencoder).
A variational autoencoder is a game played between Encoder,
Decoder, Noise, and Environment. The query graph is

‘ Query ‘ | Encoder ‘
® J d
. D]

Proise

e Environment plays i.i.d. samples from P(x).

e Noise plays i.i.d. samples from Pyis(€). It also communicates
its density function P ;s (€), which is analogous to a gradient -
and the reason that Noise is gray rather than black-box.

e Encoder and Decoder play parameters ¢ and 0, respectively.

o Operator z= G (€, x) is a neural network that encodes samples
into latent variables.

e Operator Dg(z,x) is a neural network that estimates the proba-
bility of x conditioned on z.

e The remaining operators compute the (negative) variational
lower bound

IPvnoise(e)
L(0, ¢;x :/Pnoisee log ————
(6, :%) e ()
L,
+_ LB [-logDe(Ge(e;x),x)].

L,

The response graph implements backpropagation:

Encoder

(VD) - dp [dg

(VaD)-dp VgeoD

Oraclep

Ve £y

Vel
l

o
Vb L:

Guarantee. The guarantee has two components:

1. Maximizing the variational lower bound yields (i) a maximum
likelihood estimator and (ii) an estimate of the posterior on the
latent variable (Kingma and Welling, 2014).

2. The chain rule ensures that the correct gradients are commu-
nicated to Encoder and Decoder.

The first guarantee is that the surrogate objective computed by
the query graph yields good solutions. The second guarantee is
that the response graph communicates the correct gradients. [

3.5. Generative-Adversarial Networks
A recent approach to designing generative models is to construct
an adversarial game between Forger and Curator (Goodfellow
et al, 2014). Forger generates samples; Curator aims to discrim-
inate the samples produced by Forger from those produced by
Nature. Forger aims to create samples realistic enough to fool
Curator.

If Forger plays parameters 6 and Curator plays ¢ then the game
is described succinctly via

arglocmin arglocmax
6

X E

log Dy (x)] + E
x~]P(x)[g ¢()]

[log(1 — Dy (Ge(€)))]| »
P (€
where Gg(€) is a neural network that converts noise in samples

and D (x) classifies samples as fake or not.

SYzYGY 3 (generative adversarial networks).
Construct a game played between Forger and Curator, with
ancillary players Noise and Environment:

Environment samples images i.i.d. from P(x).

Noise samples i.i.d. from P(e).

Forger and Curator play parameters 6 and ¢, respectively.

Operator Gg(e) is a neural network that produces fake image

x = Gg(e€).

o Operator Dg(X) is a neural network that estimates the proba-
bility that an image is fake.

e The remaining operators compute a loss that Curator mini-

mizes and Forger maximizes

£0.6)= E_[ogDy(x)
£,
+_ E_ log(1 = Dy(Go(e))]

Lgen

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

Curator f—— D |
[]
[(Noisc BN} D

Note there are two copies of Operator D in the Query graph.
The response graph implements the chain rule, with a tweak that
multiplies the gradient communicated to Forger by (—1) to ensure
that Forger maximizes the loss that Curator is minimizing.

% (Vg D) - e VoD s Vo Laisc
* *

a Vg Laise .1
s 5 s9en 1
Forger o B < 2

* 3
(Ve G)-ds7yG4 —(VaD)- 65" 4V 4 DVD byen Vb Lyen

Guarantee. For a fixed Forger that produces images with probabil-
ity Prorger(X), the optimal Curator would assign

]PNature(X)
D} X) = 2
IPForgcn]PNaturc()]P)Nature(x) PForger(X) ()

The guarantee has two components:

1. For fixed Forger, the Curator in equation (2) is the global
optimum for L.

2. The chain rule ensures the correct gradients are communicated
to Curator and Forger.

It follows that the network converges to a local optimum where
Curator represents [equation (2)] and Forger represents the “ideal
Forger” that would best fool Curator. a

The generative-adversarial network is the first example where
the Response graph does not simply backpropagate gradients: the
arrow labeled 6 is computed as —(V¢ D) - p, whereas backprop-
agation would use (Vg D) - p. The minus sign arises due to the
adversarial relationship between Forger and Curator - they do not
optimize the same objective.

3.6. Deviator-Actor-Critic (DAC) Model

As discussed in Section 2.3, actor-critic algorithms decompose the
reinforcement learning problem into two components: the critic,
which learns an approximate value function that predicts the total
discounted future reward associated with state-action pairs, and
the actor, which searches for a policy that maximizes the value
approximation provided by the critic. When the action-space is
continuous, a natural approach is to follow the gradient (Sutton
et al., 2000; Deisenroth et al., 2013; Silver et al., 2014). In Sutton
et al. (2000), it was shown how to compute the policy gradient
given the true value function. Furthermore, sufficient conditions
were provided for an approximate value function learned by
the critic to yield an unbiased estimator of the policy gradient.

More recently, Silver et al. (2014) provided analogous results for
deterministic policies.

The next example of a grammar is taken from Balduzzi and
Ghifary (2015), which builds on the above work by introducing
a third algorithm, Deviator, that directly estimates the gradient of
the value function estimated by Critic.

SyzyGy 4 (DAC model).
Construct a game played by Actor, Critic, Deviator, Noise, and
Environment:

0 A\ Foas
Actor (1] ’6‘ Critic
s s
S T
W
Deviator @ 1£] <

o Nature samples states from P(s; 11 |ss,a¢) and announces rewards

r(srar) that are a function of the prior state and action; Noise

samples € ~ N(0, o 1y).

Actor, Critic, and Deviator play parameters 8, V, and W, respec-

tively.

Operator pis a neural network that computes actionsa = pg(s).

Operator Q'(s, pg(s)) is a neural network that estimates the

value of state-action pairs.

Operator GV (s, ng(s)) is a neural network that estimates the

gradient of the value function.

e The remaining Operator computes the Bellman gradient error
(BGE) which Critic and Deviator minimize

Ls6p(r1, Q,Q, G, €) = (Tt +7Q-Q- (G, €>)2-

The response graph backpropagates the gradient of £gg to
Critic and Deviator, and communicates the output of Operator G,
which is a gradient estimate, to Actor:

d

-Actor — <—W Oracleq Critic
-(vgu).% Von - I: Vv Q (VvQ)-dg
ou |G

m

Vw G
ow e}
Deviator g
B B¢

Note that instead of backpropagating first-order information in
the form of gradient V, G, the Response graph instead backprop-
agates zeroth-order information in the form of gradient-estimate
G, which is computed by the Query graph during the feedfor-
ward sweep. We therefore write d,, and dg (instead of §,, and
0g) to emphasize that the gradients communicated to Actor are
estimates.

As in Section 2.3, an arrow from Actor to Nature is omitted
from the Query graph for simplicity.

Guarantee. The guarantee has the following components:

1. Critic estimates the value function via TD-learning (Sutton and
Barto, 1998) with cloning for improved stability (Mnih et al.,
2015).

2. Deviator estimates the value gradient via TD-learning and the
gradient perturbation trick (Balduzzi and Ghifary, 2015).

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

3. Actor follows the correct gradient by the policy gradient theo-
rem (Sutton et al., 2000; Silver et al., 2014).

4. The internal workings of each neural network are guaranteed
correct by the chain rule.

It follows that Critic and Deviator represent the value func-
tion and its gradient; and that Actor represents the optimal
policy. d

Two appealing features of the algorithm are that (i) Actor is
insulated from Critic, and only interacts with Deviator and (ii)
Critic and Deviator learn different features adapted to represent-
ing the value function and its gradient, respectively. Previous
work used the derivative of the value-function estimate, which is
not guaranteed to have compatible function approximation, and
can lead to problems when the value-function is estimated using
functions such as rectifiers that are not smooth (Prokhorov and
Wunsch, 1997; Hafner and Riedmiller, 2011; Heess et al., 2015;
Lillicrap et al., 2015).

3.7. Kickback (Truncated Backpropagation)
Finally, we consider Kickback, a biologically motivated variant
of Backprop with reduced communication requirements (Bal-
duzzi et al, 2015). The problem that kickback solves is that
backprop requires two distinct kinds of signals to be communi-
cated between units - feedforward and feedback - whereas only
one signal type — spikes - are produced by cortical neurons.
Kickback computes an estimate of the backpropagated gradi-
ent using the signals generated during the feedforward sweep.
Kickback also requires the gradient of the loss with respect
to the (one-dimensional) output to be broadcast to all units,
which is analogous to the role played by diffuse chemical neu-
romodulators (Schultz et al., 1997; Pawlak et al., 2010; Dayan,
2012).

Syzyay 5 (kickback).

The query graph is the same as for backpropagation, except
that the Operator for each layer produces the additional output
Wﬂ 3

Ti—1 ‘= 0111 15
TLayer; TLayer,; IET
Yy
[e]
92 1s, CH lls

e Nature samples labeled data (x, y) from Py y.

o Layers by weight matrices 8;. The output of the neural network
is required to be one-dimensional.

e Operators for each layer compute two outputs: S; = max(0,
0;-Si_1) and 1i_1 = 6,~T- 15, where 1,=1if a>0 and 0
otherwise.

o The task is regression or binary classification with loss given by
the mean-squared or logistic error. It follows that the derivative

of the loss with respect to the network’s output § = Vg, £isa
scalar.

x+1:

The response graph contains a single Oracle that broadcasts the
gradient of the loss with respect to the network’s output (which is
a scalar). Gradient estimates for each Layer are computed using a

mixture of Oracle and local zeroth-order information referred to
as Kicks:

Kick; is computed using locally available zeroth-order information
as follows

Kick computation

1s,

i+1

-
it+1
"
/41 1s

Si—
Si1 - B ick;
where © is coordinatewise multiplication and ® is the outer

product. If i=1 then Nature is substituted for S;_;. If i=L then
Sit1 is replaced with the scalar value 1.

The loss functions for the layers are not computed in the query
graph. Nevertheless, the gradients communicated to the layers by
the response graph are exact with respect to the layers’ losses, see
Balduzzi et al. (2015). For our purposes, it is more convenient to
focus on the global objective of the neural network and treat the
gradients communicated to the layers as estimates of the gradient
of the global objective with respect to the layers’ weights.

Guarantee. Define unit j to be coherent if 7; > 0. A network is
coherent if all its units are coherent. A sufficient condition for a
rectifier to be coherent is that its weights are positive.

The guarantee for Kickback is that, if the network is coherent,
then the gradient estimate g, computed using the zeroth-order
Kicks has the same sign as the backpropagated error dg, com-
puted using gradients, see Balduzzi et al. (2015) for details. As a
result, small steps in the direction of the gradient estimates are
guaranteed to decrease the network’s loss. d

REMARK 4 (biological plausibility of kickback).

Kickback uses a single oracle, analogous to a neuromodu-
latory signal, in contrast to Backprop which requires an ora-
cle per layer. The rest of the oracles are replaced by kicks -
zeroth-order information from which gradient estimates are con-
structed. Importantly, the kick computation for layer i only
requires locally available information produced by its neighboring
layers i — 1 and i + 1 during the feedforward sweep. The feedback
signals 7; are analogous to the signals transmitted by NMDA
synapses.

Finally, rectifier units with non-negative weights (for which
coherence holds) can be considered a simple model of excita-
tory neurons (Glorot et al.,, 2011; Balduzzi and Besserve, 2012;
Balduzzi, 2014).

Two recent alternatives to backprop that also do not rely
on backpropagating exact gradients are target propagation (Lee
et al,, 2015) and feedback alignment (Lillicrap et al., 2014). Tar-
get propagation makes do without gradients by implementing

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

autoencoders at each layer. Unfortunately, optimization problems
force the authors to introduce a correction term involving differ-
ences of targets. As a consequence, and in contrast to Kickback,
the information required by layers in difference target propaga-
tion cannot be computed locally but instead requires recursively
backpropagating differences from the output layer.

Feedback alignment solves a different problem: that feedback
and forward weights are required to be equal in backprop (and also
in kickback). The authors observe that using random feedback
weights can suffice. Unfortunately, as for difference target propa-
gation, feedback alignment still requires separate feedforward and
recursively backpropagated training signals, so weight updates are
not local.

Unfortunately, at a conceptual level kickback, target propaga-
tion and feedback alignment all tackle the wrong problem. The
cortex performs reinforcement learning: mammals are not pro-
vided with labels, and there is no clearly defined output layer from
which signals could backpropagate. A biologically plausible deep
learning algorithm should take advantage of the particularities of
the reinforcement learning setting.

4. CONCLUSION

Backpropagation was proposed by Rumelhart et al. (1986a) as a
method for learning representations in neural networks. Gram-
mars are a framework for distributed optimization that includes
backprop as a special case. Grammars abstract two essential
features of backprop:

o distributing first-order information about the objective to
nodes in a graph (generalizing the backpropagation algorithm
itself) such that,

REFERENCES

Abernethy, J. D., and Frongillo, R. M. (2011). “A collaborative mechanism for
crowdsourcing prediction problems,” in Advances in Neural Information Process-
ing Systems 24, eds J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger (Curran Associates, Inc.), 2600-2608.

Agarwal, A., Bartlett, P. L., Ravikumar, P. K., and Wainwright, M. J. (2009).
“Information-theoretic lower bounds on the oracle complexity of convex opti-
mization,” in Advances in Neural Information Processing Systems 22, eds Y.
Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta (Curran
Associates, Inc.), 1-9.

Arjevani, Y., Shalev-Shwartz, S., and Shamir, O. (2016). On Lower and Upper Bounds
for Smooth and Strongly Convex Optimization Problems. J. Mach. Learn. Res.
arXiv:1503.06833.

Baird, L. C. III. (1995). “Residual algorithms: reinforcement learning with function
approximation,” in Machine Learning, Proceedings of the Twelfth International
Conference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995,
30-37.

Balduzzi, D. (2011). “Falsification and future performance,” in Algorithmic Proba-
bility and Friends. Bayesian Prediction and Artificial Intelligence - Papers from the
Ray Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, Novem-
ber 30 - December 2, 2011, Vol. 7070, ed. D. Dowe (Springer), 65-78. doi:10.
1007/978-3-642-44958-1_5

Balduzzi, D. (2013). “Randomized co-training: from cortical neurons to machine
learning and back again,” in Randomized Methods for Machine Learning Work-
shop, Neural Inf Proc Systems (NIPS).

the first-order information is sufficient to find a local optimum
of the objective (generalizing the guarantee that follows from
the chain-rule).

Generative-adversarial networks, the deviator-actor-critic
model, and kickback are examples of grammars that do not
straightforwardly implement backprop, but nevertheless perform
well since they communicate the necessary gradient information.

Grammars enlarge the design space for deep learning. A
potential application of the framework is to connect deep learn-
ing with cortical learning. Thirty years after backpropagation’s
discovery, no evidence for backpropagated error signals has
been found in cortex (Crick, 1989; Lamme and Roelfsema,
2000; Roelfsema and van Ooyen, 2005). Nevertheless, back-
propagation is an essential ingredient in essentially all state-of-
the-art algorithms for supervised, unsupervised, and reinforce-
ment learning. This suggests investigating algorithms with sim-
ilar guarantees to backprop that do not directly implement the
chain rule.

AUTHOR CONTRIBUTIONS

DB wrote the article.

ACKNOWLEDGMENTS

I am grateful to Marcus Frean, J. P. Lewis, and Brian McWilliams
for useful comments and discussions.

FUNDING

Research funding in part by VUW Research Establishment Grant.

Balduzzi, D. (2014). “Cortical prediction markets,” in International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris, France, May
5-9, 2014, 1265-1272.

Balduzzi, D. (2015). Deep Online Convex Optimization by Putting Forecaster to Sleep.
arXiv:1509.01851.

Balduzzi, D., and Besserve, M. (2012). “Towards a learning-theoretic analysis of
spike-timing dependent plasticity,” in Advances in Neural Information Processing
Systems 25, eds E. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Curran Associates, Inc.), 2456-2464.

Balduzzi, D., and Ghifary, M. (2015). Compatible Value Gradients for Reinforcement
Learning of Continuous Deep Policies. arXiv:1509.03005.

Balduzzi, D., Ortega, P. A., and Besserve, M. (2013). Metabolic cost as an organizing
principle for cooperative learning. Adv. Complex Syst. 16, 1350012. doi:10.1142/
$0219525913500124

Balduzzi, D., and Tononi, G. (2013). What can neurons do for their brain? Com-
municate selectivity with spikes. Theory Biosci. 132, 27-39. doi:10.1007/s12064-
012-0165-0

Balduzzi, D., Vanchinathan, H., and Buhmann, J. M. (2015). “Kickback cuts Back-
prop’s red-tape: biologically plausible credit assignment in neural networks,”
in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, 485-491.

Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-
like computing elements. Hum. Neurobiol. 4, 229-256.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adapative
elements that can solve difficult learning control problems. IEEE Trans. Syst.
Man. Cybern. 13, 834-846. doi:10.1109/TSMC.1983.6313077

Frontiers in Robotics and Al | www.frontiersin.org

12

January 2016 | Volume 2 | Article 39

http://dx.doi.org/10.1007/978-3-642-44958-1_5
http://dx.doi.org/10.1007/978-3-642-44958-1_5
http://dx.doi.org/10.1142/S0219525913500124
http://dx.doi.org/10.1142/S0219525913500124
http://dx.doi.org/10.1007/s12064-012-0165-0
http://dx.doi.org/10.1007/s12064-012-0165-0
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

Bastien, F, Lamblin, P, Pascanu, R., Bergstra, J., Goodfellow, L. J., Bergeron, A.,
et al. (2012). Theano: new features and speed improvements. CoRR.

Baum, E. B. (1999). Toward a model of intelligence as an economy of agents. Mach.
Learn. 35, 155-185. doi:10.1023/A:1007593124513

Baydin, A. G., and Pearlmutter, B. A. (2014). “Automatic differentiation of algo-
rithms for machine learning,” in Journal of Machine Learning Research: Workshop
and Conference Proceedings, 1-7.

Bengio, Y. (2013). “Deep learning of representations: looking forward,” in Statistical
Language and Speech Processing - First International Conference, SLSP 2013,
Tarragona, Spain, July 29-31, 2013. Proceedings, eds A.-H. Dediu, C. Martin-
Vide, R. Mitkov, and B. Truthe (Springer) 1-37. doi:10.1007/978-3-642-39593-
21

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828.
doi:10.1109/TPAMI.2013.50

Bergstra, J., Breuleux, O., Bastien, E, Lamblin, P., Pascanu, R., Desjardins, G., et al.
(2010). “Theano: a CPU and GPU math expression compiler,” in Proceedings of
the Python for Scientific Computing Conference (SciPy), Austin.

Blum, A., and Mansour, Y. (2007). From external to internal regret. J. Mach. Learn.
Res. 8,1307-1324.

Bottou, L. (2014). From machine learning to machine reasoning: an essay. Mach.
Learn. 94, 133-149. doi:10.1007/s10994-013-5335-x

Bousquet, O., and Bottou, L. (2008). “The tradeoffs of large scale learning,” in
Advances in Neural Information Processing Systems 20, eds J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis (Curran Associates, Inc.) 161-168.

Bottou, L., and Gallinari, P. (1991). “A framework for the cooperation of learning
algorithms,” in Advances in Neural Information Processing Systems 3, eds R. P.
Lippmann, J. E. Moody, and D. S. Touretzky (Morgan-Kaufmann) 781-788.

Cesa-Bianchi, N., and Lugosi, G. (2006). Prediction, Learning and Games. Cam-
bridge, UK: Cambridge University Press.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015a).
“The loss surface of multilayer networks,” in Proceedings of the Eighteenth Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2015, San
Diego, California, USA, May 9-12, 2015.

Choromanska, A., LeCun, Y., and Arous, G. B. (2015b). “Open problem: the
landscape of the loss surfaces of multilayer networks,” in Proceedings of The
28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015,
1756-1760.

Crick, F. (1989). The recent excitement about neural networks. Nature 337,129-132.
doi:10.1038/33712920

Dann, C., Neumann, G., and Peters, J. (2014). Policy evaluation with temporal
differences: a survey and comparison. . Mach. Learn. Res. 15, 809-883.

Dayan, P. (2012). Twenty-five lessons from computational neuromodulation. Neu-
ron 76, 240-256. doi:10.1016/j.neuron.2012.09.027

Deisenroth, M. P,, Neumann, G., and Peters, J. (2013). A survey on policy search
for robotics. Found. Trends in Robotics 2, 1-142. doi:10.1561/2300000021

Elman, J. (1990). Finding structure in time. Cogn. Sci. 14, 179-211. doi:10.1207/
$15516709cog1402_1

Foster, D. P, and Vohra, R. V. (1997). Calibrated learning and correlated equilib-
rium. Games Econ. Behav. 21, 40-55. doi:10.1006/game.1997.0595

Frongillo, R., and Reid, M. (2015). “Convergence analysis of prediction markets via
randomized subspace descent,” in NIPS.

Gershman, S. J., Horvitz, E. J., and Tenenbaum, J. (2015). Computational rationality:
a converging paradigm for intelligence in brains, minds, and machines. Science
349, 273-278. d0i:10.1126/science.aac6076

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural net-
works,” in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, 315-323.

Goodfellow, I, Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.
(2014). “Generative adversarial nets,” in Advances in Neural Information Process-
ing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (Curran Associates, Inc.), 2672-2680.

Gordon, G. J. (2007). “No-regret algorithms for online convex programs,” in
Advances in Neural Information Processing Systems 19, eds B. Scholkopf, J. C.
Platt, and T. Hoffman (MIT Press), 489-496.

Griewank, A., and Walther, A. (2008). “Society for industrial and applied math-
ematics,” in Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Philadelphia: SIAM.

Hafner, R., and Riedmiller, M. (2011). Reinforcement learning in feedback control:
challenges and benchmarks from technical process control. Mach. Learn. 84,
137-169. doi:10.1007/s10994-011-5235-x

Hardt, M., Recht, B., and Singer, Y. (2015). Train Faster, Generalize Better: Stability
of Stochastic Gradient Descent. arXiv:1509.01240.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and Erez, T. (2015).
“Learning continuous control policies by stochastic value gradients,” in Advances
in Neural Information Processing Systems 28, eds A. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Curran Associates, Inc.), 2926-2934.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012).
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal
Process. Mag. 29, 82-97. d0i:10.1109/MSP.2012.2205597

Hopcroft, J. E., and Ullman, J. D. (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Reading, MA: Addison-Wesley.

Kingma, D. P, and Welling, M. (2014). “Auto-encoding variational Bayes,” in ICLR.

Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning and
Intelligence. Washington, DC: Hemisphere Pub. Corp.

Krizhevsky, A., Sutskever, I, and Hinton, G. E. (2012). “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, eds E Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (Curran Associates, Inc.), 1097-1105.

Kschischang, F, Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs and the
sum-product algorithm. IEEE Trans. Inf. Theory 47, 498-519. doi:10.1109/18.
910572

Kwee, 1., Hutter, M., and Schmidhuber, J. (2001). “Market-based reinforcement
learning in partially observable worlds,” in Artificial Neural Networks - ICANN
2001, International Conference Vienna, Austria, August 21-25, 2001 Proceedings,
865-873. d0i:10.1007/3-540-44668-0_120

Lamme, V., and Roelfsema, P. (2000). The distinct modes of vision offered by
feedforward and recurrent processing. Trends Neurosci. 23, 571-579. doi:10.
1016/S0166-2236(00)01657-X

Lay, N., and Barbu, A. (2010). “Supervised aggregation of classifiers using artificial
prediction markets,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, 591-598.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436-444.
doi:10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278-2324. doi:10.1109/5.
726791

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). “Difference Target Propa-
gation,” in European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD).

Lewis, D. (1986). On the Plurality of Worlds. Oxford: Basil Blackwell.

Lewis, S. N., and Harris, K. D. (2014). The Neural Market Place: 1. General Formalism
and Linear Theory. bioRxiv.

Lillicrap, T. P,, Cownden, D., Tweed, D. B., and Ackerman, C. J. (2014). Random
Feedback Weights Support Learning in Deep Neural Networks. arXiv:1411.0247.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. CoRR.

Maei, H. R., Szepesviri, C., Bhatnagar, S., and Sutton, R. S. (2010). “Toward off-
policy learning control with function approximation,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, 719-726.

Minsky, M. (1986). The Society of Mind. New York, NY: Simon and Schuster.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, ., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518,
529-533. doi:10.1038/nature14236

Nemirovski, A. (1979). “Efficient methods for large-scale convex optimization
problems,” in Ekonomika i Matematicheskie Metody, 15.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochas-
tic approximation approach to stochastic programming. SIAM J. Optim. 19,
1574-1609. doi:10.1137/070704277

Nemirovski, A., and Yudin, D. B. (1978). On Cezari’s convergence of the steepest
descent method for approximating saddle point of convex-concave functions.
Sov. Math. Dokl. 19.

Nemirovski, A. S., and Yudin, D. B. (1983). Problem Complexity and Method
Efficiency in Optimization. New York, NY: Wiley-Interscience.

Nisan, N., Roughgarden, T., Tardos, E, and Vazirani, V. (eds) (2007). Algorithmic
Game Theory. Cambridge: Cambridge University Press.

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://dx.doi.org/10.1023/A:1007593124513
http://dx.doi.org/10.1007/978-3-642-39593-2_1
http://dx.doi.org/10.1007/978-3-642-39593-2_1
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1007/s10994-013-5335-x
http://dx.doi.org/10.1038/337129a0
http://dx.doi.org/10.1016/j.neuron.2012.09.027
http://dx.doi.org/10.1561/2300000021
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1006/game.1997.0595
http://dx.doi.org/10.1126/science.aac6076
http://dx.doi.org/10.1007/s10994-011-5235-x
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1007/3-540-44668-0_120
http://dx.doi.org/10.1016/S0166-2236(00)01657-X
http://dx.doi.org/10.1016/S0166-2236(00)01657-X
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1137/070704277
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Balduzzi

Grammars for Games

Parkes, D. C., and Wellman, M. P. (2015). Economic reasoning and artificial
intelligence. Science 349, 267-272. doi:10.1126/science.aaa8403

Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr, J. N. D. (2010). Timing is not
everything: neuromodulation opens the STDP gate. Front. Syn. Neurosci. 2:146.
doi:10.3389/fnsyn.2010.00146

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

Prokhorov, D. V., and Wunsch, D. C. (1997). Adaptive critic designs. IEEE Trans.
Neural. Netw. 8, 997-1007. doi:10.1109/TNN.1997.641481

Raginsky, M., and Rakhlin, A. (2011). Information-based complexity, feedback
and dynamics in convex programming. IEEE Trans. Inf. Theory 57, 7036-7056.
doi:10.1109/TIT.2011.2154375

Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann. Math.
Stat. 22, 400-407. doi:10.1214/aoms/1177729586

Roelfsema, P. R., and van Ooyen, A. (2005). Attention-gated reinforcement learning
of internal representations for classification. Neural Comput. 17, 2176-2214.
doi:10.1162/0899766054615699

Rumelhart, D., Hinton, G., and Williams, R. (1986a). Parallel Distributed Processing.
Vol I: Foundations. Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning representa-
tions by back-propagating errors. Nature 323, 533-536. d0i:10.1038/323533a0

Russell, S., and Norvig, P. (2009). Artificial Intelligence: A Modern Approach, 3rd
Edn. Upper Saddle River, NJ: Prentice Hall.

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural
Netw. 61, 85-117. doi:10.1016/j.neunet.2014.09.003

Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015). “Gradient estimation
using stochastic computation graphs,” in Advances in Neural Information Pro-
cessing Systems 28, eds C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R.
Garnett, and R. Garnett (Curran Associates, Inc.), 3510-3522.

Schultz, W., Dayan, P,, and Montague, P. (1997). A neural substrate of prediction
and reward. Science 275, 1593-1599. doi:10.1126/science.275.5306.1593

Selfridge, O. G. (1958). “Pandemonium: a paradigm for learning,” in Mechanisation
of Thought Processes: Proc Symposium Held at the National Physics Laboratory.

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of
stochastic synaptic transmission. Neuron 40, 1063-1073. doi:10.1016/S0896-
6273(03)00761-X

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Found.
Trends Mach. Learn. 4, 107-194. doi:10.1561/2200000018

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. A.
(2014). “Deterministic policy gradient algorithms,” in Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, 387-395.

Spivak, D. L. (2013). The Operad of Wiring Diagrams: Formalizing a Graphical
Language for Databases, Recursion, and Plug-and-Play Circuits. arXiv:1305.0297.

Sra, S., Nowozin, S., and Wright, S. J. (2012). Optimization for Machine Learning.
Cambridge, MA: MIT Press.

Stoltz, G., and Lugosi, G. (2007). Learning correlated equilibria in games with
compact sets of strategies. Games Econ. Behav. 59, 187-208. doi:10.1016/j.geb.
2006.04.007

Storkey, A. J. (2011). “Machine learning markets,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011,
Fort Lauderdale, USA, April 11-13, 2011, 716-724.

Sutskever, ., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning with
neural networks,” in Advances in Neural Information Processing Systems 27, eds
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger
(Curran Associates, Inc.), 3104-3112.

Sutton, R. (1988). Learning to predict by the method of temporal differences. Mach.
Learn. 3, 9-44. doi:10.1007/BF00115009

Sutton, R. S., Maei, H. R, Precup, D., Bhatnagar, S., Silver, D., Szepesvari, C., et al.
(2009a). “Fast gradient-descent methods for temporal-difference learning with
linear function approximation,” in Proceedings of the 26th Annual International
Conference on Machine Learning, (ICML) 2009, Montreal, Quebec, Canada, June
14-18, 2009, 993-1000. doi:10.1145/1553374.1553501

Sutton, R. S., Szepesvari, C., and Maei, H. R. (2009b). “A convergent O(n)
temporal-difference algorithm for off-policy learning with linear function

approximation,” in Advances in Neural Information Processing Systems 21,
eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Curran Associates,
Inc.), 1609-1616.

Sutton, R. S., McAllester, D. A., Singh, S. P, and Mansour, Y. (2000). “Policy
gradient methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems 12, eds S. A. Solla, T. K. Leen,
and K. Miiller (MIT Press), 1057-1063.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., et al.
(2011). “Horde: a scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction,” in The 10th International Conference
on Autonomous Agents and Multiagent Systems — Volume 2 AAMAS ’11, (Taipei:
International Foundation for Autonomous Agents and Multiagent Systems),
761-768.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire, R. E. (2015). “Fast convergence
of regularized learning in games,” in Advances in Neural Information Processing
Systems 28, eds C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett,
and R. Garnett (Curran Associates, Inc.), 2971-2979.

Tamar, A., Toulis, P, Mannor, S., and Airoldi, E. M. (2014). “Implicit temporal dif-
ferences,” in NIPS Workshop on Large-Scale Reinforcement Learning and Markov
Decision Problems.

Toulis, P, Airoldi, E. M., and Rennie, J. (2014). “Statistical analysis of stochastic
gradient methods for generalized linear models,” in Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, 667-675.

van Merriénboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D.,
Chorowski, J., et al. (2015). Blocks and Fuel: Frameworks for Deep Learning.
arXiv:1506.00619.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY:
Springer.

von Bartheld, C. S., Wang, X., and Butowt, R. (2001). Anterograde axonal trans-
port, transcytosis, and recycling of neurotrophic factors: the concept of trophic
currencies in neural networks. Mol. Neurobiol. 24, 1-28. d0i:10.1385/MN:24:1-
3:001

von Neumann, J., and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Princeton, NJ: Princeton University Press.

Wainwright, M. J., and Jordan, M. L. (2008). Graphical models, exponential families,
and variational inference. Found. Trends Mach. Learn. 1, 1-305. doi:10.1561/
2200000001

Werbos, P. . (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. thesis, Cambridge, MA: Harvard.

Williams, R. J., and Peng, J. (1990). An efficient gradient-based algorithm for on-
line training of recurrent network trajectories. Neural Comput. 2, 490-501.
doi:10.1162/neco.1990.2.4.490

Williams, R. J., and Zipser, D. (1995). “Gradient-based learning algorithms for
recurrent networks and their computational complexity,” in Backpropagation:
Theory, Architectures, and Applications, eds Y. Chauvin and D. Rumelhart
(Lawrence Erlbaum Associates).

Zinkevich, M. (2003). “Online convex programming and generalized infinitesimal
gradient ascent,” in Machine Learning, Proceedings of the Twentieth Interna-
tional Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA,
928-936.

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Balduzzi. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Robotics and Al | www.frontiersin.org

January 2016 | Volume 2 | Article 39

http://dx.doi.org/10.1126/science.aaa8403
http://dx.doi.org/10.3389/fnsyn.2010.00146
http://dx.doi.org/10.1109/TNN.1997.641481
http://dx.doi.org/10.1109/TIT.2011.2154375
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1162/0899766054615699
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1126/science.275.5306.1593
http://dx.doi.org/10.1016/S0896-6273(03)00761-X
http://dx.doi.org/10.1016/S0896-6273(03)00761-X
http://dx.doi.org/10.1561/2200000018
http://dx.doi.org/10.1016/j.geb.2006.04.007
http://dx.doi.org/10.1016/j.geb.2006.04.007
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1145/1553374.1553501
http://dx.doi.org/10.1385/MN:24:1-3:001
http://dx.doi.org/10.1385/MN:24:1-3:001
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1162/neco.1990.2.4.490
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Grammars for Games: A Gradient-Based, Game-Theoretic Framework for Optimization in Deep Learning
	1. Introduction
	1.1. What Is a Representation?
	1.1.1. Semantics
	1.1.2. Representations from Optimizations

	1.2. Distributed Representations
	1.2.1. A Concern about Excessive Generality
	1.2.2. Grammars for Games

	1.3. Contribution
	1.3.1. A Series of Worked Examples
	1.3.2. Related Work

	2. Semantics and Representations
	2.1. Supervised Learning
	2.2. Unsupervised Learning
	2.3. Reinforcement Learning

	3. Protocols and Grammars
	3.1. Basic Building Blocks: Function Composition (Q) and the Chain Rule (R)
	3.2. Summary of Guarantees
	3.3. Error Backpropagation
	3.3.1. Representation Learning
	3.3.2. Detailed Analysis of Convergence Rates

	3.4. Variational Autoencoders
	3.5. Generative-Adversarial Networks
	3.6. Deviator-Actor-Critic (DAC) Model
	3.7. Kickback (Truncated Backpropagation)

	4. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References

