
February 2016 | Volume 3 | Article 21

Original research
published: 03 February 2016

doi: 10.3389/frobt.2016.00002

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Daniel Polani,

University of Hertfordshire, UK

Reviewed by:
Katie Bentley,

Harvard Medical School, USA
Takashi Ikegami,

The University of Tokyo, Japan
Malte Harder,

Blue Yonder, Germany

*Correspondence:
Nicholas J. Macias
nmacias@clark.edu

Specialty section:
This article was submitted to

Computational Intelligence,
a section of the journal

Frontiers in Robotics and AI

Received: 08 September 2015
Accepted: 19 January 2016

Published: 03 February 2016

Citation:
Macias NJ, Teuscher C and

Durbeck LJK (2016) Design of
Introspective Circuits for Analysis of

Cell-Level Dis-orientation in
Self-Assembled Cellular Systems.

Front. Robot. AI 3:2.
doi: 10.3389/frobt.2016.00002

Design of introspective circuits for
analysis of cell-level Dis-orientation
in self-assembled cellular systems
Nicholas J. Macias1* , Christof Teuscher2 and Lisa J. K. Durbeck3

1 Department of Engineering and Computer Science, Clark College, Vancouver, WA, USA, 2 Maseeh College of Engineering &
Computer Science, Portland State University, Portland, OR, USA, 3 College of Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA, USA

This paper discusses a novel approach to managing complexity in a large self-assembled
system, by utilizing the self-assembling components themselves to address the com-
plexity. A particular challenge is discussed – namely the question of how to deal with
elements that are assembled in different orientations from each other – and a solution
based on the idea of introspective circuitry is described. A methodology for using a set
of cells to determine a nearby cell’s orientation is given, leading to a slow (O(n)) means
of orienting a 2D region of cells. A modified algorithm is then describe to allow parallel
analysis of/adaption to dis-oriented cells, thus allowing re-orientation of an entire 2D
region of cells with better-than-linear time performance (O(sqrt(n))). The significance of
this work is discussed not only in terms of managing arrays of dis-oriented cells but also
more importantly as an example of the usefulness of local, distributed self-configuration
to create and use introspective circuitry.

Keywords: self-assembly, autonomy, self-modification, introspection, adaption

1. inTrODUcTiOn

It is not uncommon for modern integrated circuits to be comprised of more than one billion transis-
tors (Walker et al., 2010). In most cases, these high transistor counts are the result of implementing
multiple cores on a single chip (Krazit, 2011). This raises the question: what could be done with, say,
one trillion transistors in a single device? While multi-core systems provide remarkable advantages
in small numbers (Cooper, 2014), it is unclear what a thousand- or million-core system would be
used for.

An alternative path for utilizing extremely high transistor counts (trillion to quadrillion) is to
exploit parallelism not at the CPU level, but directly at the hardware level. General-purpose recon-
figurable hardware platforms (FPGAs) are an example of this direction, with the Xilinx Virtex-7
2000T – containing close to 7 billion transistors – being a prime example (Xilinx, 2011).

Traditional manufacturing techniques have generally focused on fabricating fixed-size targets
based on a pre-designed layout of components. It is within this paradigm that Moore’s Law has
successfully predicted the steady growth in transistor count for the past 50 years (Moore, 1965). Still,
there is potential to break away from this “Moore’s Curve” by switching paradigms, to one where
self-assembly is employed, thus potentially allowing manufacture of targets whose dimensions are
not pre-defined (Thurn-Albrecht et al., 2000).

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00002&domain=pdf&date_stamp=2016-02-03
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00002
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:nmacias@clark.edu
http://dx.doi.org/10.3389/frobt.2016.00002
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00002/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00002/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00002/abstract
http://loop.frontiersin.org/people/268708/overview
http://loop.frontiersin.org/people/143665/overview

February 2016 | Volume 3 | Article 22

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

Recent advances in self-assembly techniques point to the
potential for assembling an extremely large-scale system comprise
identical building blocks. Techniques such as self-folding, self-
assembling polyhedra (Gracias et al., 2000; Macias et al., 2013),
and DNA scaffolding (Patwardhan et al., 2004) provide good fits
for manufacturing regular, fine-grained architectures including
cellular automata (Wolfram, 1994), systolic arrays (Kung, 2003),
and the Cell Matrix architecture (Durbeck and Macias, 2001).
The Cell Matrix is well suited to that challenge, on account of its
nearest-neighbor topology, its ability to analyze nearby cells and
its ability to assemble and disassemble circuitry on the fly. The
Cell Matrix also functions well as a 3D architecture, which is a
good fit to some of these self-assembly techniques.

Two significant challenges arise in implementing an extremely
large (e.g., containing a quadrillion elements) self-assembled 3D
system: the near certainty of defective elements being included in
the assembly; and the question of each element’s spatial orienta-
tion relative to other elements (which is effectively random unless
steps are taken to control elements’ orientations). For the Cell
Matrix, architecture (Durbeck and Macias, 2002), discusses the
former challenge in detail. The present work addresses the latter
challenge: how to deal with elements that are randomly oriented
after assembly.

2. BacKgrOUnD

This research is built on the idea of a self-configuring reconfigur-
able system: a system whose configuration is not only modifiable
by an external system but also can be read and written from inside
the system itself, using mechanisms that extend to the lowest
levels of the system’s architecture. The advantage of such a system
lies in the potential of having the system to manage itself.

There are reconfigurable devices such as XPP (Baumgarte
et al., 2003) that support run-time reconfiguration, allowing these
devices to be partially reconfigured while other parts continue to
operate according to their existing configurations. This capacity
has been used to create self-configuring systems (Blodget et al.,
2003) that employ an on-board microprocessor to perform the
steps necessary for configuring the device containing the micro-
processor. Although this approach achieves the goal of having a
system that modifies its own configuration at run-time, the inter-
nal structure still presents a subject/object dualism, i.e., there is a
distinction between the objects being reconfigured and those that
are doing the reconfiguring. This introduces additional challenges
related to scalability, fault handling, and adaptive management
of control issues at run-time. For these reasons, a system with a
more hierarchy-free arrangement of controlling- vs. controlled-
elements seemed best suited to the ideas explored herein. One
example of such a system is the Cell Matrix self-configurable
architecture (Durbeck and Macias, 2001), on which the present
work is based.

The cell matrix has a number of features that make it well
suited to the present work. Rather than being highly heterogene-
ous, the Cell Matrix is perfectly uniform in its interconnection
among elements, allowing it to be expanded by adding new cells
along its borders. The system is also unique in that it is inherently
asynchronous in its data processing mode: clocking can be added

if desired, but by default outputs change immediately in response
to input changes. This basic computation inside each cell is a
simple (combinational) Boolean mapping, from the set of inputs
to the set of outputs. This mapping is completely customizable,
via a per-cell truth table.

This organization allows a single cell to be used as a logic gate,
a small multiplexer, a one-bit adder, and so on. A pair of cells
can function cooperatively as a two-bit adder, a D flip-flop, or to
perform some other small-scale function. All of these operations
are based on a pair of input/output lines (called “D inputs” and
“D outputs”) on each side of each cell. A cell’s truth table directly
maps each combination of D inputs to a set if D outputs.

Configuration of cells occurs via a second set of I/O lines,
called “C inputs” and “C outputs.” Setting a cell’s C input to 1
places the cell into configuration mode, during which time its D
inputs are used to read a new truth table. Unlike input-to-output
processing, this operation is synchronized to a system-wide
clock (which is the only signal shared by all cells). The clock is
used only for reading and writing truth tables, though this func-
tion can be used to cause the generation of local clock signals
derived from the system clock. Various distribution schemes
exist for this global clock signal, the simplest being cell-to-cell
transmission.

While a new truth table is being loaded, the cell’s previous
truth table is supplied via its D output(s). In this way, one cell can
read, modify, and write a neighboring cell’s truth table by:

 1. placing the target cell into C mode by asserting one of its C
inputs;

 2. reading the target cell’s D output to determine its current truth
table contents; and

 3. placing desired new values on the cell’s D input to specify new
truth table contents.

The fact that each cell can control its neighbors’ C inputs means
that any cell can analyze and modify circuitry inside the matrix.
This is useful because it allows operations to be performed in
parallel throughout the matrix, under local control.

Figure 1 shows some typical C-mode operations performed
by cells on neighboring cells.

From the above description, it should be no surprise that a
cell is a relatively expensive piece of hardware: to tile a 2D matrix
with cells connected with von Neumann neighborhoods requires
4-sided cells, thus each cell’s truth table contains 16 rows (16
combinations of 4 D inputs) and 8 columns (4 D and 4 C outputs),
or 128 bits of storage per cell. With additional logic, this means
a single cell contains roughly one thousand transistors, yet this
single cell may be acting as nothing more complex than a simple
wire, conveying a single bit of data from one of its sides to another.
This raises an important question: why work with an architecture
that requires spending thousands of transistors to create a simple
wire?

The answer is that the resulting wire is much more than just
a wire: it is an element that, in addition to acting as a wire, can
be analyzed, relocated, modified, isolated; and whose constituent
cells can be used to analyze, relocate, modify, or isolate nearby
elements (Macias, 2011).

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

A B

C

FigUre 1 | examples of c-mode operations within a cell Matrix. (a) shows a single source cell (on the left) configuring an adjacent target cell (labeled “*”).
(B) shows a source cell configuring a non-adjacent target cell “*” via an intermediary cell adjacent to both the source and the target. (c) shows a source cell
configuring a more remote target cell via a number of intermediate cells. The source cell’s DE output is be generated by other cells (not shown), and supplied to the
source cell for transmission to the target.

February 2016 | Volume 3 | Article 23

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

One area where this comes into play is in bootstrapping
an initial configuration of cells – a task especially relevant
for self-assembled systems, since self-assembly usually sup-
poses identical elements whose differentiation will occur
post-assembly.

Bootstrapping requires loading initial truth tables into each
of a set of cells. On other reconfigurable devices, this may be
accomplished, for example, by serially loading in each truth table.
The device would contain circuitry for directing each truth table’s
bits into the appropriate cell’s configuration memory, according
to a pre-defined ordering. Alternatively, the serial configuration
information can include a cell ID with each configuration bit-
stream, thus directing the device’s configuration circuitry to load
the bits into the proper cells (Soni et al., 2013).

One disadvantage of these approaches is speed: configuration
information is supplied sequentially, and thus the length of the
total configuration stream increases as the number of configured
elements increases. Another potential disadvantage is that a
rigidly defined boot sequence may be wasteful time-wise if only
certain cells are in need of configuring.

On the Cell Matrix, bootstrapping works very differently, as
there is no pre-defined bootstrap mechanism for loading a collec-
tion of truth tables into a set of cells. Instead, the circuitry for
loading these configurations is itself built from cells (which must
themselves be configured, via another bootstrap mechanism,
which is itself built from configured cells; and so on). Note that
this process is reminiscent of the use of the term “bootstrapping”
in describing the startup process for early programmable com-
puters (Buchholz, 1953).

Here again, it could at first seem to be a disadvantage that there
is no pre-existing bootstrap mechanism in the Cell Matrix; and
in terms of quickly loading a configuration from scratch, this
does complicate the process by requiring additional steps. But
in terms of flexibility, it is actually a significant advantage over a
fixed bootstrap mechanism. For example, bootstrap circuitry can
be built in whichever regions of the matrix require bootstrapping;
multiple bootstrap circuits can be built and operated in differ-
ent parts of the circuit, at different times (or simultaneously),
as dictated by the particular task at hand. Moreover, if a desired
configuration employs numerous identical (or systematically
differentiated) copies of a smaller sub-circuit, a custom bootstrap
circuit can be designed to perform massively multiple simultane-
ous configurations (Macias, 2011).

This ability to design a bootstrap circuit from scratch – a unique
aspect of the Cell Matrix relative to most other reconfigurable
systems – will play a central role in the present work, as it provides
a mechanism for dealing with potential complications in the manu-
facture of a large-scale reconfigurable system via self-assembly.

3. selF-asseMBlY

Whereas much of today’s manufacturing is performed via exter-
nally directed assembly (for example, in a factory), self-assembly
creates a system that, once built to a certain initial stage, begins
acting autonomously to further construct itself (Whitesides
and Grzybowski, 2002). To a large degree, this idea is inspired
by examples from the natural world. For example, a 6-mm seed

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

February 2016 | Volume 3 | Article 24

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

contains the instructions and machinery necessary to grow into
a sequoia tree 100 m high and 9 m in diameter (Efloras, 2015).

In biological systems, self-assembly needs to proceed under a
wide range of possible conditions. For example, the orientation of
the seed in the ground cannot be predicted, yet the initial sprout
must grow upwards, to emerge into sunlight. If there is a rock or
other obstruction above the seed, the sprout may work its way
around the obstruction until it can grow through soil to reach
the surface, or it may break through the obstruction (for example,
an area of pavement) if routing around it is not feasible. The
mechanics for these operations – for assessing and responding to
the situation – must also be present within the seed.

Examples of self-assembled systems abound in nature, and
include the development of living systems as well as the growth of
inorganic crystals. Human-made examples include self-assembly
of mechanical structures (Mao et al., 2002); self-assembly of 3D
polyhedra (Leong et al., 2007); and self-assembly of electronic
circuits (James and Tour, 2005). Algorithmic work on self-
assembly includes directed self-assembly (Grzelczak et al., 2010)
and applications to nanofabrication (Ozin et al., 2009), as well as
research into autonomous self-repairing/differentiating systems
on a Cell Matrix (Macias and Athanas, 2007).

Self assembly offers the following advantages over externally
directed assembly:

• the assembly process itself is effectively contained within the
system being assembled, meaning simple control structures
can first be self-assembled and used to build more-complex
control structures, which can then be used to control further
self-assembly;

• being primarily self-contained, a self-assembling system can
be placed effectively anywhere inside its growth medium,
as opposed to needing to be placed near specifically located
external control structures; and

• multiple copies of a self-assembling system can be installed
throughout a growth medium, allowing for parallel assembly
of multiple copies of the system. This is advantageous for fast
assembly, as well as for situations where some of the systems
may not assembly to their desired end state (for example, when
defects are present).

There are also some disadvantages to the self-assembled
approach, including the following:

• a self-assembled system may be more complex, since necessary
mechanisms for controlling the assembly process may need to
be embedded in the self-assembling units;

• since the assembly proceeds autonomously, process
errors – defects, misconnections between units, etc. – need to
be detected locally and handled appropriately, without exter-
nal intervention; and

• lacking centralized control, global tasks must be re-framed in a
way that supports their execution using only local information.

The present work explores a self-assembled system for imple-
menting a Cell Matrix (Macias and Durbeck, 2013). The Cell
Matrix was chosen for the following reasons:

• The Cell Matrix is an extremely fine-grained system: each
cell is a simple 4-input 4-output logic block, suitable for

implementing basic functions such as an AND gate, an inverter,
a 1-bit adder, or a 2-1 selector. This presents a relatively simple
initial build target for a self-assembling technology, yet once
assembled, more-complex elements (such as flip flops, ALUs,
or CPUs) can be built from a collection of these fine-grained
cells.

• Once a matrix of simple cells has been built via self-assembly,
complex control structures necessary for further self-assembly
can be built from these simple cells via configuration of the
already-assembled simple cells, rather than via physical assem-
bly of more-complex blocks.

• Details of these control structures can be changed without
modifying the underlying self-assembly process. To imple-
ment, for example, a new algorithm for managing differenti-
ation of identical coarse-grained blocks, one need not change
the basic simple cell definition; rather, one simply uses the
same cells in a different configuration.

• Since a central feature of the Cell Matrix architecture is the
ability of cells to interrogate and modify nearby cells, it is
feasible to build circuits (again, from simple cells) that can
check nearby cells for defects, and re-configure circuits to
avoid those defective cells. This means that as complex control
systems are being built, in-system testing can be performed
and faulty cells identified and worked-around as the control
systems expand.

Another advantage of a Cell Matrix over other possible target
architectures is that its architecture is flat – there is no inherent
hierarchy among the cells of the matrix. This has significant
advantages in terms of scalability: since all cells are identical,
simply adding more cells to the edge of an existing matrix creates
a larger matrix. With proper management of configuration tasks
in such a system, not only will the hardware scale well, but the
algorithms involved in managing the system can exhibit better
than O(n) performance, by allowing multiple control circuits to
be built throughout the matrix. This can also help with re-framing
global tasks (such as differentiation of identical blocks into spe-
cialized units) into distributed, parallel, local operations.

3.1. Key challenge to be addressed
Despite the advantages of a Cell Matrix as a build-target, its sim-
plicity presents a significant challenge with respect to how cells
are placed within the matrix. Each cell has a natural orientation:
for a 2D 4-sided cell, its sides are addressed internally as North,
South, West, and East (N, S, W, E respectively). In order for two
cells to interact correctly with each other – for example, for one
cell to correctly configure a neighboring cell – these cells need a
common sense of orientation. If cell A intends to send data out its
eastern edge to cell B (which is located on A’s eastern edge), cell A
needs to know which of cell B’s edges is adjacent to cell A’s eastern
edge. If cells A and B are oriented identically, then cell B’s western
edge will sit adjacent to cell A’s eastern edge. But if cell B is rotated
relative to cell A’s orientation, then it may be (for example) that cell
B’s northern edge is adjacent to A’s eastern edge (Figure 2). These
orientation differences will affect how cell A must configure cell B.

The problem is similar to trying to build a circuit using ICs
whose pins have unknown connections to the chip’s internal

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

FigUre 2 | effect of dis-orientation on inter-cell behavior. In (a), cells A
and B are oriented the same, so cell A can send data to B’s western edge. In
(B), cell B is rotated relative to cell A, so cell A has access only to cell B’s
northern edge.

February 2016 | Volume 3 | Article 25

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

circuitry (but where one still knows which pins are inputs and
which are outputs). To connect the output of one IC to the input
of another, one needs to know which pins correspond to which
functions of the chip. If that mapping is unknown, then the chips
cannot reliably be connected together without first somehow
determining that mapping.

4. MaTerials anD MeThODs

This issue of mis-oriented cells is a particular concern with self-
assembly, since some processes may not guarantee the physical
orientation of blocks as they are assembled into a larger structure.
There are at least three approaches to deal with potential mis-
orientation of elements in a self-assembled system:

 1. correct the physical orientation of blocks as they are being
assembled, so that there is no dis-orientation in the final
assembly;

 2. endow the blocks with the ability to sense their own orienta-
tion, and have them re-adjust their internal wiring so that
their faces are effectively oriented normally; or

 3. allow the physical matrix to be assembled with mis-oriented
cells, but then somehow determine post-manufacture what
each cell’s orientation is, and use that information to adjust
how the matrix is used.

The first approach may be feasible by, for example, weighting
the faces of each block unequally, so that the blocks orient them-
selves as they fall slowly through a viscous liquid. Alternatively,
ferrous coatings on certain faces could help orient the blocks in
the presence of a strong magnetic field, applied along one axis
of the intended assembly (Tousley et al., 2014). Some work has
been done using chemically directed self-assembly (Diehl et al.,
2002). While these approaches address the problem of properly
orienting elements, they are somewhat contrary to the spirit
of self-assembly, falling more in the realm of directed assembly

(Grzelczak et al., 2010). Moreover, they require adjusting the
physical design of the building blocks based on this particular
issue. This runs contrary to the goal of having fixed hardware and
modifying behavior only through software changes.

The second approach seems straightforward. One can
re-design the basic Cell Matrix cell’s architecture to include
orientation-detecting circuitry, as well as an intra-cell routing
network to change which sides are connected to which parts of
the cell’s internal circuitry. Following assembly, a one-time, post-
manufacture orientation step can be performed, during which
the cells effectively re-orient themselves (not physically, but by
changing their internal notion of sidedness). This could work
well, but requires a significantly more complex cell architecture.
Moreover, it violates a fundamental principle of Cell Matrix
design, which is to maintain the simplest possible cell architec-
ture, and introduce greater complexity by building circuits from
the cells themselves.

The third approach is very much in the spirit of the Cell Matrix,
being based on the concept of introspective circuitry, running
potentially in parallel at multiple sites throughout the substrate.
Moreover, because it is based on analysis performed from within
the system itself, it requires correctly-functioning hardware
adjacent to the locations where problems (mis- orientation) are
being detected, analyzed, and corrected. On many platforms, this
is a classic quandary: how to analyze potentially faulty hardware
using circuitry built on hardware that is itself potentially faulty.
With its distributed, localized control, its ability to read and write
configuration information, and the interchangeability of the
source and target of configuration operations, the Cell Matrix is
well suited for exactly this kind of situation.

While each approach has its merits, it is this third approach
that is employed in the present work. This choice is motivated
by the goal of taking an existing self-assembly technique (self-
assembling self-folding polyhedra) and using it to implement
previously defined cells (constituents of a Cell Matrix). Approach
1 requires re-design of the former, which approach 2 requires
re-designing the latter.

The approach will be detailed in three pieces:

 1. detection and handling of a single mis-oriented cell;
 2. linear (O(n)) detection and handling of mis-orientation in a

2D region of cells; and
 3. sublinear (O(()n)) detection and handling of mis-orientation

in a 2D region of cells.

4.1. Detection and handling of a single
cell’s Orientation
Detecting the orientation of a cell adjacent to a working cell is
straightforward. Consider the four possible situations shown in
Figure 3. In each case, the cell’s truth table has been loaded with
the equation DN = S, which copies data from its southern D input
to its northern D output. In the leftmost case (where the cell is
oriented as expected), the cell behaves as expected; but in the
other cases (where there is a mis-orientation of the cell), the cell’s
behavior is different from what was expected.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

A B

C D

FigUre 6 | Four possibilities for reading an echo from a neighboring
cell. each part (a–D) shows a different orientation of the cell on the
right. in each case, there is a unique configuration of the cell that will
produce an echo.

FigUre 5 | configuring a cell with the equation DW → DW produces
one of four circuits, depending on the orientation of the cell on the
right. Only a normally oriented cell will produce a circuit that echos its DW
input.

FigUre 3 | Four possible orientations of a cell. The cell is configured
with the equation DS → DN, but depending on its orientation, the actual
function may be DS → DN, DW → DE, DN → DS or DE → DW.

FigUre 4 | effect of dis-orientation on a multi-cell circuit. Two cells are
used to build a wire, but depending on the orientation of the cell on the right,
the resulting circuit may not function correctly. In the above examples, only
the first circuit works correctly as a wire.

February 2016 | Volume 3 | Article 26

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

Even though a cell may be mis-oriented, it can still be pro-
gramed from any chosen side: the problem is that the program
loaded into a cell will likely act differently from what is expected.
Fortunately, it is this very fact that makes it possible to detect a
cell’s orientation.

For example, suppose one has access to the actual western
edge of a target cell, as shown in Figure 4. Here, the cell
labeled “*” is able to be configured in a controlled way (i.e.,
its orientation is known and has been corrected for). “*” may
wish (under the direction of a larger, multi-celled circuit) to
use this neighboring target cell to send information to a more
remote cell, so it will try to load the truth table correspond-
ing to DE = W (which configures a cell to send data from its
western input to its eastern output) into the target cell. But
depending on its orientation, the target cell will end up in
one of the four configurations shown. Only one of these is the
desired configuration: the other three read data from a cell
other than “*.”

Figure 5 shows the results of configuring a different truth
table: one for DW = W (which echos data from the cell’s west-
ern input back to its western output). As can be seen, only in
the first case – where the cell is oriented as expected – results
in a circuit whose input and output are accessible from cell
“*.” Figure 6 shows four target cells, each in a different
orientation, each configured to allow access from cell “*.” In
Figure 6A, the normally oriented target cell is configured
with the truth table DW = W. In Figure 6B, the target cell is
configured with the truth table DS = S; in Figure 6C, the cell
is configured with DE = E; and in Figure 6D the equation is
DN = N.

Since cell “*” can write and read data form the target cell on
its right, it is possible for it to determine the orientation of the
target cell as follows:

• configure the cell with DW = W, then send a bit pattern out
cell “*”’s eastern output, and look for the same bit pattern to be
returned by the target cell. If the sent pattern is detected, then
the target cell is oriented with North to the top;

• configure the cell with DS = S; a successful echo means the cell
is oriented with North to the right;

• configure the cell with DE = E; a successful echo means the cell
is oriented with North at the bottom;

• configure the cell with DN = N; a successful echo means the
cell is oriented with North at the left.

Note that if none of these tests returns the expected data,
then there is an error in the cell’s behavior. Assuming there are
no defects, one of the above tests should reveal the target cell’s
orientation.

The above technique allows determination of a single target
cell’s orientation. This is of little use though unless the target
cell can subsequently be used despite its mis-orientation. This is
straightforward in practice: given a Boolean equation expressing
each side’s output in terms of inputs from each side, a permuta-
tion of the sides {N, S, W, E} → {W, E, S, N} will compensate for a
90° clockwise rotation of the cell.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

FigUre 7 | layout of cells within a matrix. Given direct access to cells
[0,0] and [1,0], indirect access is available to cells [0,1] and [1,1].

February 2016 | Volume 3 | Article 27

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

As an example, consider the equation DS = WN + WE (which
specifies that the southern output is the logical OR of two product
terms: one being the AND of the west and north inputs; the other
being the AND of the west and east inputs). Under a 90° clockwise
rotation of a cell, the northern edge now faces east, the eastern
edge faces south, and so on. The permutation can be described as
N → E, E → S, S → W, and W → N. Under this permutation, the
equation DS = WN + WE translates to DE = SW + SN. In other
words, by loading this latter equation into the rotated cell, the
cell will act the same as a properly oriented cell whose program
is DS = WN + WE. Rotations of more than 90° are handled
by successively applying permutations for each 90° rotation.
Counter-clockwise rotations are treated by considering their
corresponding clockwise rotation.

4.2. Detection and handling of a 2D
region of cells
Orienting (and bootstrapping) an entire 2D region of cells
requires a sequence of steps, beginning with a small initial set
of cells (with known orientation), which comprise circuitry for
analyzing other regions of the matrix (using the steps described
above). This requires some intermediate machinery though.

To utilize the above algorithm for determining a target cell’s
orientation, it is necessary to have access to the target cell’s C and
D inputs and outputs. While cells in the Cell Matrix have direct
access only to their immediate neighbors, it is relatively straight-
forward to use a set of cells to gain access to a non-adjacent cell,
using a construct called wire building (Macias and Durbeck,
2013).

Wire building begins by having an original cell configure a
neighboring cell in such a way that the neighbor will configure one
of its neighbors (which is non-adjacent to the original cell). This
is straightforward, and works well for configuring cells that are
almost adjacent. Using this to configure, more-remote cells is not
practical though as it requires repeated forward-and-backward
steps (similar to solving Towers of Hanoi): the time complexity
for a cell n steps away is O(2n).

Practical wire building requires cooperation between cells
so as to effectively reposition the region of cells that are directly
accessible. This is accomplished by first configuring a 2 × 1
(sometimes 3 × 1) column of cells, in such a way that they can
be used to configure an adjacent column identically. The pair of
columns can then be used to configure a third column, and so
on. This 2 × n structure is called a multi-channel wire, and can be
extended in linear time: three fixed-length programing cycles per
cell extension. Using a 3 × n wire allows the wire to carry a break
signal, which can be used to retract the wire.

Building these columns that comprise a multi-channel wire
involve sending repeated sequences of 1’s and 0’s into the wire
so as to control the target cell’s C and D inputs, causing it (and
nearby cells) to configure other cells, thus extending the wire.
This is easily controlled by simple circuits, allowing circuits
within the matrix to extend control over non-adjacent cells.
Additional sequences also exist for building corners (comprising
12 programing cycles), and, combined with sequences for build-
ing linear wires, allow movement throughout the matrix in linear

time. Further details of these sequences can be found in Macias
and Durbeck (2013), as well as in a series of online tutorials (Cell
Matrix Corporation, 2013).

While wire building has been well-understood for many years,
trying to deploy these circuits in a dis-oriented matrix poses new
challenges: each cell must be analyzed, and any rotation com-
pensated for, before it can be used to configure other cells. This
is achieved by incorporating the techniques from the previous
section during the sequencing process.

Configuration of a 2D region is likewise accomplished by suc-
cessive application of single-cell orientation detection and cor-
rection, interspersed throughout a standard bootstrap protocol as
described in Macias (2011). For a m × n region of cells as shown
in Figure 7, a typical protocol proceeds as follows:

 1. A 2 × n − 3 (i.e,. two-channel) wire is built across the top two
rows of the region (initiated from the two cells for which direct
access is available);

 2. a 2 × 2 corner is built near the upper-right corner of the region,
allowing;

 3. the two-channel wire to extend further to the south;
 4. as this wire extends, target cells are configured to the east of

the wire’s head;
 5. after reaching the bottom of the region, the rightmost column

of the region has now been configured with the intended final
target configurations.

The wire is then broken at its beginning (the cells over which
direct access is available), and the above steps repeated but the
initial wire is extended to a length of n − 4. This allows the second
column from the right to be configured.

This repeats until all but the leftmost 2 columns have been
configured. These are then configured in the front of a southern-
extending wire. Finally, the upper-left 2 × 2 region is configured
using a one-off set of sequences.

At the conclusion of this entire set of configuration sequences
(a so-called “super-sequence”), the entire m × n region will have
been configured as desired. While this works well for modest-
sized regions, the time complexity grows like O(nm), which

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

FigUre 8 | Medusa Wire. C and D information is sent into the wire from the
upper left, and delivered in parallel to each wire head, thus allowing parallel
configuration of the target cells marked “*.” The wire itself may be 2-, 3-, or
more-generally k-channeled, depending on how it is to be used. Typically a
Medusa wire is used to build and extend wires orthogonal to the major axis
of the Medusa wire itself.

FigUre 9 | control circuit for local management of cell dis-
orientation. The PC and CC signals are normally routed to the D and C
inputs of the target cell, as usual. R1 and R0 code one of four possible
rotations. SetR is used to record the result of a successful orientation test on
a target cell. TestR is used to block the CC signal unless R1R0 match the
saved R1R0 that were recorded when SetR was asserted. By pairing
configuration information with R1R0 and TestR, bitstreams will be processed
or ignored locally, based on the results of prior analysis.

February 2016 | Volume 3 | Article 28

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

makes it impractical for configuring extremely large regions. To
bootstrap in a way that scales well with the number of cells, it is
necessary to take advantage of the inherent parallelism of hard-
ware, to not only achieve multiple simultaneous configurations,
but to increase the multiplicity of configuration sites as the number
of configured sites increases.

4.3. sublinear handling of a 2D region
The linear configuration time of the process described above
is impractical for large-scale configuration. For certain types
of circuits, it contains a high-degree of homogeneity, parallel
configuration can significantly improve this situation. For exam-
ple: a regularly tiled neural network; a cellular automata-based
processor; and a distributed simulation of heat flow each involve
circuity comprised of a large, regular collection of identical cir-
cuits. Configuring a Cell Matrix with these repeated patterns of
digital circuitry can be done efficiently by first building a parallel
configuration circuit, and then using that circuit to configure the
desired target cells in parallel.

Circuits that employ this kind of parallel operation are called
Medusa Circuits (Macias and Durbeck, 2016). To a first order,
a Medusa circuit is simply a multi-channel wire with multiple
heads (Figure 8). By copying D and C inputs to multiple cells
instead of a single cell, multiple cells can be configured in parallel.
This approach is well suited for configuring a large number of
copies of identical circuits by building multiple wires orthogonal
to the Medusa wire. Thus, once a one-dimensional wire has been
built (which takes O(n) for a wire with n heads), it can be used
to build n orthogonal wires, extending those in parallel in a fixed
amount of time (independent of n).

Like simple multi-channel wires, Medusa wires have also
been well-understood for some time, and their use for parallel
configuration is nothing novel. In the present situation though,
where dis-oriented cells must be contended with, there is a bit of
a catch-22:

• to minimize configuration time, configuration of multiple
regions should be done in parallel; but

• in order to deal with the dis-orientation (which may be dif-
ferent from cell to cell), each cell being configured must be
analyzed, and different configuration information (rotated
based on the degree of rotation of the target cell) must be
delivered to different cells.

These requirements would seem to be at odds with each other:
how can parallel operation be maintained when different regions
require different configuration instructions? The solution is to
move part of the processing so that it is done locally, next to each
head of the Medusa wire. This requires some care.

Figure 9 shows the circuitry used to locally manage dis-
orientation of cells. There are two separate but related tasks to be
accomplished while extending a wire:

 1. run a series of tests, checking each possible orientation of the
target cell, and record the true orientation of the cell; and

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

February 2016 | Volume 3 | Article 29

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

 2. select and apply the appropriate configuration string for the
discerned orientation.

The circuit in Figure 9 – which sits at the head of each wire
coming from the Medusa wire – manages both of these tasks.
The PC line carries bidirectional information to each target cells’
D input and output. This transfer occurs regardless of any other
signals related to the circuit. The CC line drives the target cell’s
C input, provided TestR is not asserted. Thus, PC and CC can be
used to load test patterns into the target cells; to stimulate the test
circuits; and to read the target cells’ responses.

Recall that to determine a cell’s orientation, a feedback circuit
is loaded into the cell, a signal is sent to the cell’s D input, and
an echo is listened for. During the echo test, the SetR signal is
asserted, while R1R0 carry a coded representation of the rotation
currently being tested for. If an echo is detected on the PC signal
(coming from the target cell), it will cause the Rotation Memory
to record the current values of R1R0; otherwise the memory is left
unchanged. Thus, at the conclusion of all 4 tests, the true rotation
of the target cell will be saved in the Rotation Memory of each
wire being used to configure a target cell. However many wires are
being used, it requires only 4 tests to set the Rotation Memory
for each wire.

Following this diagnostic step, the desired configuration infor-
mation is then sent to the target cells, four times: once for each
possible rotation. Along with the configuration information, the
corresponding R1R0 (indicating the rotation ofthe current con-
figuration information) is sent, and the TestR signal is asserted.
With TestR = 1, the CC signal is only allowed to pass to a target
cell if the Rotation Memory matches the current value of R1R0.
Thus, all four possible configuration strings are delivered – one at
a time – to all cells in parallel, but each cell will only make use of
the one corresponding to that cell’s orientation.

Thus, the circuit in Figure 9 restores the ability to configure
multiple target cells in parallel, which tailoring the configuration
to each cells particular orientation. The added cost is a small
(14 × 13 cells) additional circuit near the beginning of each wire.
This changes the time complexity of configuring a square region of
n cells from linear (O(n)) to sublinear (O(()n)).

5. resUlTs

The proposed approach to managing a dis-oriented array was
implemented, simulated, and show to work as expected, for
single-cell, multi-cell, and parallel operations. Verifying this
required the following steps:

 1. a simulator of the Cell Matrix needed to be modified to simu-
late mis-oriented cells throughout the matrix;

 2. the unusability of this matrix was verified by performing
simple configuration operations and observing the incorrect
behavior;

 3. the ability to detect orientation was then tested in different
regions of the Matrix by running the prescribed tests and
observing target cell responses;

 4. these tests/observations were incorporated into a 2D boot-
strap sequence, and used to produce an orientation map for

the entire 2D region, and the discerned orientations were
confirmed to match the simulated dis-orientation;

 5. orientation test/correction circuitry was designed, imple-
mented in cells, and loaded into the simulator, and its behavior
was verified; and

 6. a Medusa wire was built, with multiple copies of this test/
correction circuitry (one per head), and successful parallel
extension of the wires – despite random orientations of the
underlying cells – was observed.

5.1. simulation
The standard Cell Matrix simulator is normally used interactively
by a user, but was modified for this work to allow inputs to be
driven from/outputs delivered to an analyzer program running
on a PC, thus allowing the above algorithms to be driven from
high-level code.

The simulator itself employs an internal cell-to-cell connec-
tion map, in order to allow various dimensions and topologies to
be used with a single set of simulator code. During the execution
of the simulator, outputs are conveyed to inputs by consulting
this connection map, discovering which cell/input is connected
to a changed output, and adding the corresponding (new) input
change to an event queue. This simulates signaling from cell to
cell as the simulation progresses.

Normally, this map connects together nearest neighbors in the
expected way: N–S and W–E. For these experiments, a random
orientation was assigned to each cell in the simulated matrix, and
the connection map was modified accordingly to reflect the local
dis-orientations. As a result, the simulated matrix was effectively
unusable: configuring a cell with the equation “DN = S” could
result in any of the 4 configurations shown in Figure 3.

Since initially the entire matrix is dis-oriented, the first steps of
the analysis algorithm must be performed on an external system
(in this case, the analyzer program). Subsequent steps utilize the
cells themselves, as they are (effectively) re-oriented.

5.2. Orientation Determination
The analyzer program was used to apply the above algorithm to
discern the orientation of each cell, beginning with edge cells, and
using that information to move further into the interior of the
matrix, sweeping out a 2D pattern using the bootstrap sequence
described above.

While cells were analyzed, the discerned rotations were
conveyed to the analyzer program, and written to a file, which
was compared to the simulator’s own orientation map. Figure 10
shows the resulting map, which was randomly generated by
the simulation code and used to direct internal cell I/O traffic.
This was for a 16 × 16 matrix. Each digit corresponds to a single
cell, and its value indicates the cell’s orientation in terms of how
many clockwise 90° turns the cell has undergone from its normal
orientation.

This map was then subsequently discovered by the analyzer
algorithm, which printed it at the end of its analysis, and it was
confirmed to match the simulator’s own orientation information.
Thus, successful discovery of cell orientation was confirmed,
albeit from an inherently sequential, O(n) algorithm.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

FigUre 10 | Orientation map for test run. A 16 × 16 simulated matrix
was given random orientations, to allow testing of the orientation-detection
algorithm. Each digit corresponds to a single cell; the value shows the
number of 90° clockwise turns of the cell from its normal orientation.

February 2016 | Volume 3 | Article 210

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

5.3. adaption to Dis-Orientation
No additional work was required to test the approach’s ability to
handle dis-oriented cells: in order for the detection algorithm to
work throughout a 2D region, it was necessary for the circuitry
to construct wires, corners, and other circuits throughout the
2D region. This is not possible unless the system is able to suc-
cessfully compensate for each cell’s random rotation. Successful
completion of the above orientation map confirms not only the
ability to detect orientation but also the ability to utilize cells
despite their mis-orientation.

5.4. Parallel algorithm and scalability
Finally, the fully parallel algorithm was tested, using local cop-
ies of the orientation detection/handling circuit (Figure 9).
Figures 11A–E show the graphical output from the simulator
while it was working on three regions in parallel.

If Figure 11A, a target cell (circled in the figure) is being
configured in the middle region of cells. The configuration
information is being delivered to target cells in each of the three
regions, but only the middle region is allowing the CC signal
to reach the target cell (based on that region’s saved orientation
information).

In Figure 11B, it is the target in the 3rd region that is being
configured, while the CC signal to the top two regions is blocked.
Then in Figure 11C, the target in the top region is configured.
There was also a 4th configuration string sent (corresponding to
a 4th orientation) that was not used for any of the regions in this
step.

In Figure 11D, the orientation of the next target cell in
the lower region now matches the orientation of the delivered
configuration string, so the CC signal is routed to the target cell
only in that region, while it is blocked in the first two regions.
In Figure 11E, the orientation of the target cell in the upper two
regions matches the delivered string’s orientation, and thus the
CC signal is routed to the target cell in both of those regions. Here,
we thus have two targets being configured simultaneously.

In general, roughly 25% of target cells will be configured in
parallel (assuming a uniform distribution of cell rotations),
though which particular cells will be configured at each step is
effectively unpredictable.

Subsequent testing was done on 32 parallel wires, and success-
ful operation was confirmed via the simulator’s graphical output.
An online video is available at (Cell Matrix Corporation, 2015).

Table 1 shows the number of timesteps required for re-
orienting and configuring an n × n region of blocks in this way.

For a square array of n × n blocks, this means it takes roughly
n × k + n × j = n × (k + j) timesteps, where k and j are inde-
pendent if n. In other words, configuring n2 blocks has a time
complexity of O(n); or, equivalently, configuring n blocks has a
time complexity of O(()n) This is far superior to O(n) (linear
performance), and makes tractable the question of configuring,
say, 1018 blocks (which, under this approach, requires the same
time-order as linearly configuring 109 blocks).

6. cOnclUsiOn

As fabrication of large-scale reconfigurable systems moves from
traditional top-down assembly to next-generation bottom-up
self-assembly, a number of technical challenges will arise. Given
the lack of centralized control in a self-assembly process, new
hurdles are anticipated, including the issue of un-regulated ori-
entation of building blocks prior to their inter-connection. While
circuitry can be added to such blocks specifically for detecting
and correcting their orientation, this complicates the design,
potentially increasing the likelihood of defects and failures, as
well as further complicating the assembly process. In general,
adding task-specific features by modifying the hardware design
may produce a more-optimal solution for that given task, but at
the expense of introducing non-general-purpose hardware. If
extremely rapid orientation/assembly were a concern, this might
make sense; but in general, incorporating only hardware that can
be re-used for whatever purpose is desired post-assembly avoids
over-complicating the cell design and diminishing the cell density
in the matrix.

While the present work is potentially useful for the task at
hand – that of orienting a collection of cells – its significance is
something beyond that particular goal. The real significance of
this work is to demonstrate – by specific example – how system-
level problems that might otherwise be solved by the use of external
machinery can instead be solved using distributed, locally acting,
internal circuits that are built on-the-fly. This echoes themes
found in similar works (Durbeck and Macias, 2002; Macias and
Athanas, 2007; Macias, 2011). There are two underlying concepts
here:

 1. using a bootstrap-style approach to problem solving, wherein
a large-scale problem is solved for a small subset of cells,
which are then used to solve the problem on a larger set, and
so on. This approach can be used to address, for example, the
challenge of building a circuit to detect faults when the sub-
strate containing the test circuit may itself be faulty (Macias
and Athanas, 2007); and

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

FigUre 11 | Orientation Test results. These images show the graphical output from the simulator running this algorithm on 3 regions in parallel. In (a), a target
cell in the second region (from the top) is being configured, because its orientation corresponds to the currently delivered configuration string (the target cell is circled
in each figure). In (B), the target cell in the third region is configured; and finally, the target in the first region is configured in (c). In (D), a new target in the third region
is configured. In (e), a pair of targets – one in each of the top two regions – are configured, as they each have the same orientation as the delivered configuration
string.

February 2016 | Volume 3 | Article 211

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

 2. in many large-scale systems, increasing the system size
increases the difficulty of managing the system; but in a
system that has an inherent self-duality – where cells can
interchangeably be the controller of or the target of con-
figuration operations – an increase in the ability to control
the system’s complexity can accompany the increase in the
complexity itself, thus making it feasible to scale the system
to an arbitrarily large size.

Even though this entire process may be driven by circuitry
external to the reconfigurable substrate itself, and the system-
wide clock represents an external signal, this external driver is a
small, fixed-sized/fixed-complexity piece of the entire solution.
The key innovation of this work is that critical pieces of the
process – the pieces that represent an ever-increasing workload
as the system scales – are handled from within the substrate itself,
being developed and deployed as more and more of the substrate
is made usable.

7. FUTUre WOrK

Presently, the basic parallel detection and effective re-orientation
of 2D cells has been tested using a cell-level simulation, but

much of the control of the circuitry has been done above the
cell-level, via a program running outside the simulator. A fully
self-contained version of this work – comprised entirely of digital
circuitry made from (simulated) cells – remains to be built. This
is a fairly mechanical process though laborious process and is
not expected to add to the overall significance of this work. As
a further proof-of-concept though, it is a step that should still
be taken.

The present work allows efficient determination of cellular ori-
entation, providing information that can be used by configuration
circuitry to effectively re-orient dis-oriented cells. An alternate
way of utilizing this information is to store orientation data in
a small set of cells near each block of circuitry; assigning local
addresses to these blocks thus making them row/column address-
able; and using that stored information to adjust configuration
strings on the fly. This would effectively place an intermediate
layer between the target circuitry and the low-level cells of the
Matrix, thus reducing density and, to some degree, speed, but
in exchange for being able to act as if the cells are all normally
oriented.

Yet another approach to efficiently managing the cell-level
dis-orientation is to utilize super self-duality, wherein a collection
of cells are used to implement a circuit that acts like a single cell

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

TaBle 1 | number of configured blocks vs. total number of timesteps
required for configuration.

number of stages/blocks Timesteps

1 stage of Medusa wire k
2 stages of Medusa wire 2 × k
3 stages of Medusa wire 3 × k
… …
n stages of Medusa wire n × k
n orthogonal blocks n × k + j
2n orthogonal blocks n × k + 2 × j
3n orthogonal blocks n × k + 3 × j
4n orthogonal blocks n × k + 4 × j
… …
n2 orthogonal blocks n × k + n × j

The first set of entries represents configuration of the Medusa wire, assuming each
block requires k timesteps to configure. This is a linear process (O(1)). The second set
of entries reflects parallel-configuration via orthogonal wires, assuming each extension
requires j timesteps to configure.

February 2016 | Volume 3 | Article 212

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

(a “supercell”). This shifts the challenge of re-orienting cells to a
one-time task during the construction of each supercell.

While these and other embellishments will be explored at
a future date, none of them would seem to add significantly
to the central tenet of this work, which is that there is benefit

to shifting control from a single centralized external location
to numerous distributed, internal sites, specifically in a way
that allows the control to scale along with the scaling of the
problem size itself.

aUThOr cOnTriBUTiOns

LD was involved in the early stages of this research, particularly
those areas related to autonomous operation of circuits in the
given substrate. CT was involved in research related to self-
assembly, and the particular question of cellular orientation. CT
also contributed significantly to the editing of the manuscript.
NM was responsible for developing and implementing the specif-
ics of the presented algorithm, and wrote the initial draft of the
manuscript. All authors have reviewed the manuscript and agree
to be accountable for all aspects of the work.

FUnDing

This work was supported by the Cross-Disciplinary Semi-
conductor Research (CSR) Program award G15173 from the
Semiconductor Research Corporation (SRC).

reFerences

Baumgarte, V., Ehlers, G., May, F., Nückel, A., Vorbach, M., and Weinhardt,
M. (2003). Pact xppa self-reconfigurable data processing architecture.
J. Supercomput. 26, 167–184. doi:10.1023/A:1024499601571

Blodget, B., James-Roxby, P., Keller, E., McMillan, S., and Sundararajan, P. (2003). “A
self-reconfiguring platform,” in Field Programmable Logic and Applications,13th
International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003
Proceedings, eds P. Y. K. Cheung, and G. A. Constantinides (Springer), 565–574.

Buchholz, W. (1953). The system design of the IBM type 701 computer. Proc. IRE
41, 1262–1275. doi:10.1109/JRPROC.1953.274300

Cell Matrix Corporation. (2013). Cell Matrix Course, Wire Building. Available at:
https://cellmatrixcourse.wordpress.com/2013/06/26/u008-2-channel-wires/
[accessed December 13, 2015].

Cell Matrix Corporation. (2015). Parallel-Differentiating Medusa. Available at:
https://www.youtube.com/watch?v=GNLJ-0mmhqA [accessed December 14,
2015]

Cooper, K. D. (2014). Making effective use of multicore systems a software per-
spective: the multicore transformation (Ubiquity symposium). Ubiquity 2014,
1–8. doi:10.1145/2618407

Diehl, M. R., Yaliraki, S. N., Beckman, R. A., Barahona, M., and Heath, J. R. (2002).
Self-assembled, deterministic carbon nanotube wiring networks. Angew. Chem.
Int. Ed. 41, 353–356.

Durbeck, L. J., and Macias, N. J. (2002). “Defect-tolerant, fine-grained
parallel testing of a cell matrix,” in Reconfigurable Technology: FPGAs and
Reconfigurable Processors for Computing and Communications IV, eds
J. Schewel, P. B. James-Roxby, H. H. Schmit, and J. T. McHenry (Boston:
International Society for Optics and Photonics), 71–85.

Durbeck, L. J. K., and Macias, N. J. (2001). The cell matrix: an architecture for nano-
computing. Nanotechnology 12, 217–230. doi:10.1088/0957-4484/12/3/305

Efloras. (2015). Sequoia Sempervirens in Flora of North America. Available at:
http://www.efloras.org [accessed May 22, 2015]

Gracias, D. H., Tien, J., Breen, T. L., Hsu, C., and Whitesides, G. M. (2000).
Forming electrical networks in three dimensions by self-assembly. Science 289,
1170–1172. doi:10.1126/science.289.5482.1170

Grzelczak, M., Vermant, J., Furst, E. M., and Liz-Marzán, L. M. (2010). Directed
self-assembly of nanoparticles. ACS Nano 4, 3591–3605. doi:10.1021/nn100869j

James, D. K., and Tour, J. M. (2005). “Self-assembled molecular electronics,” in
Nanoscale Assembly, ed. W. T. S. Huck (Cambridge: Springer), 79–98.

Krazit, T. (2011). Intel shows off 80-core processor. CNET News, Processors &
Semiconductors.

Kung, H. T. (2003). “Systolic array,” in Encyclopedia of Computer Science (4th ed.),
eds A. Ralston, E. D. Reilly, and D. Hemmendinger (Chichester: John Wiley
and Sons Ltd), 1741–1743.

Leong, T. G., Lester, P. A., Koh, T. L., Call, E. K., and Gracias, D. H. (2007). Surface
tension-driven self-folding polyhedra. Langmuir 23, 8747–8751. doi:10.1021/
la700913m

Macias, N., and Durbeck, L. (2016). “Self-awareness in digital systems: augmenting
self-modification with introspection to create adaptive, responsive circuitry,”
in Advances in Unconventional Computing (to appear), Emergence, Complexity,
Computation Series, ed. Adamatzky A. (Springer).

Macias, N. J. (2011). Self-Modifying Circuitry for Efficient, Defect-Tolerant Handling
of Trillion-element Reconfigurable Devices. PhD thesis, Blacksburg, VA: Virginia
Polytechnic Institute and State University.

Macias, N. J., and Athanas, P. M. (2007). “Application of self-configurability for
autonomous, highly-localized self-regulation,” in Adaptive Hardware and
Systems, 2007. AHS 2007. Second NASA/ESA Conference on (Edinburgh: IEEE),
397–404.

Macias, N. J., and Durbeck, L. J. K. (2013). “Self-organizing computing systems:
song line processors,” in Advances in Applied Self-organizing Systems, ed. M.
Prokopenko (NSW Australia: Springer), 211–262.

Macias, N. J., Pandey, S., Deswandikar, A., Kothapalli, C. K., Yoon, C. K., Gracias,
D. H., et al. (2013). “A cellular architecture for self-assembled 3D computa-
tional devices,” in Nanoscale Architectures (NANOARCH), 2013 IEEE/ACM
International Symposium on (Brooklyn, NY: IEEE), 116–121.

Mao, C., Thalladi, V. R., Wolfe, D. B., Whitesides, S., and Whitesides, G. M.
(2002). Dissections: self-assembled aggregates that spontaneously reconfigure
their structures when their environment changes. J. Am. Chem. Soc. 124,
14508–14509. doi:10.1021/ja021043d

Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics 38, 114–117.

Ozin, G. A., Hou, K., Lotsch, B. V., Cademartiri, L., Puzzo, D. P., Scotognella,
F., et al. (2009). Nanofabrication by self-assembly. Mater. Today 12, 12–23.
doi:10.1016/S1369-7021(09)70156-7

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1109/JRPROC.1953.274300
https://cellmatrixcourse.wordpress.com/2013/06/26/u008-2-channel-wires/
https://www.youtube.com/watch?v=GNLJ-0mmhqA
http://dx.doi.org/10.1145/2618407
http://dx.doi.org/10.1088/0957-4484/12/3/305
http://www.efloras.org
http://dx.doi.org/10.1126/science.289.5482.1170
http://dx.doi.org/10.1021/nn100869j
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1021/la700913m
http://dx.doi.org/10.1021/ja021043d
http://dx.doi.org/10.1016/S1369-7021(09)70156-7

February 2016 | Volume 3 | Article 213

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

Patwardhan, J. P., Dwyer, C., Lebeck, A. R., and Sorin, D. J. (2004). “Circuit and
system architecture for DNA-guided self-assembly of nanoelectronics,” in
Proceedings of Foundations of Nanoscience: Self-Assembled Architectures and
Devices, Snowbird, 344–358.

Soni, R. K., Steiner, N., and French, M. (2013). “Open-source bitstream
generation,” in Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on (Seattle, WA: IEEE),
105–112.

Thurn-Albrecht, T., Schotter, J., Kästle, G., Emley, N., Shibauchi, T., Krusin-
Elbaum, L., et al. (2000). Ultrahigh-density nanowire arrays grown in self-as-
sembled diblock copolymer templates. Science 290, 2126–2129. doi:10.1126/
science.290.5499.2126

Tousley, M. E., Feng, X., Elimelech, M., and Osuji, C. O. (2014). Aligned nanostruc-
tured polymers by magnetic-field-directed self-assembly of a polymerizable
lyotropic mesophase. ACS Appl. Mater. Interfaces 6, 19710–19717. doi:10.1021/
am504730b

Walker, J. A., Hilder, J. A., and Tyrrell, A. M. (2010). “Measuring the performance
and intrinsic variability of evolved circuits,” in ICES, Volume 6274 of Lecture
Notes in Computer Science, eds Tempesti G., Tyrrell A. M., and Miller J. F.
(Berlin: Springer), 1–12.

Whitesides, G. M., and Grzybowski, B. (2002). Self-assembly at all scales. Science
295, 2418–2421. doi:10.1126/science.1070821

Wolfram, S. (1994). Cellular Automata and Complexity: Collected Papers, Vol. 1.
Champlain: Addison-Wesley Reading.

Xilinx. (2011). Xilinx ships world’s highest capacity FPGA and shatters industry
record for number of transistors by 2X. Press Release, PR Newswire.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer Malte Harder and the handling Editor Daniel Polani declared a past
supervisory relationship with each other, and the handling Editor states that the
process nevertheless met the standards of a fair and objective review.

Copyright © 2016 Macias, Teuscher and Durbeck. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://dx.doi.org/10.1126/science.290.5499.2126
http://dx.doi.org/10.1126/science.290.5499.2126
http://dx.doi.org/10.1021/am504730b
http://dx.doi.org/10.1021/am504730b
http://dx.doi.org/10.1126/science.1070821
http://creativecommons.org/licenses/by/4.0/

	Design of Introspective Circuits for Analysis of Cell-Level Dis-orientation in Self-Assembled Cellular Systems
	1. Introduction
	2. Background
	3. Self-assembly
	3.1. Key Challenge to be Addressed

	4. Materials and Methods
	4.1. Detection and Handling of a Single Cell’s Orientation
	4.2. Detection and Handling of a 2D Region of Cells
	4.3. Sublinear Handling of a 2D Region

	5. Results
	5.1. Simulation
	5.2. Orientation Determination
	5.3. Adaption to Dis-Orientation
	5.4. Parallel Algorithm and Scalability

	6. Conclusion
	7. Future Work
	Author Contributions
	Funding
	References

