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This paper discusses a novel approach to managing complexity in a large self-assembled 
system, by utilizing the self-assembling components themselves to address the com-
plexity. A particular challenge is discussed – namely the question of how to deal with 
elements that are assembled in different orientations from each other – and a solution 
based on the idea of introspective circuitry is described. A methodology for using a set 
of cells to determine a nearby cell’s orientation is given, leading to a slow (O(n)) means 
of orienting a 2D region of cells. A modified algorithm is then describe to allow parallel 
analysis of/adaption to dis-oriented cells, thus allowing re-orientation of an entire 2D 
region of cells with better-than-linear time performance (O(sqrt(n))). The significance of 
this work is discussed not only in terms of managing arrays of dis-oriented cells but also 
more importantly as an example of the usefulness of local, distributed self-configuration 
to create and use introspective circuitry.
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1. inTrODUcTiOn

It is not uncommon for modern integrated circuits to be comprised of more than one billion transis-
tors (Walker et al., 2010). In most cases, these high transistor counts are the result of implementing 
multiple cores on a single chip (Krazit, 2011). This raises the question: what could be done with, say, 
one trillion transistors in a single device? While multi-core systems provide remarkable advantages 
in small numbers (Cooper, 2014), it is unclear what a thousand- or million-core system would be 
used for.

An alternative path for utilizing extremely high transistor counts (trillion to quadrillion) is to 
exploit parallelism not at the CPU level, but directly at the hardware level. General-purpose recon-
figurable hardware platforms (FPGAs) are an example of this direction, with the Xilinx Virtex-7 
2000T – containing close to 7 billion transistors – being a prime example (Xilinx, 2011).

Traditional manufacturing techniques have generally focused on fabricating fixed-size targets 
based on a pre-designed layout of components. It is within this paradigm that Moore’s Law has 
successfully predicted the steady growth in transistor count for the past 50 years (Moore, 1965). Still, 
there is potential to break away from this “Moore’s Curve” by switching paradigms, to one where 
self-assembly is employed, thus potentially allowing manufacture of targets whose dimensions are 
not pre-defined (Thurn-Albrecht et al., 2000).
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Recent advances in self-assembly techniques point to the 
potential for assembling an extremely large-scale system comprise 
identical building blocks. Techniques such as self-folding, self-
assembling polyhedra (Gracias et al., 2000; Macias et al., 2013), 
and DNA scaffolding (Patwardhan et al., 2004) provide good fits 
for manufacturing regular, fine-grained architectures including 
cellular automata (Wolfram, 1994), systolic arrays (Kung, 2003), 
and the Cell Matrix architecture (Durbeck and Macias, 2001). 
The Cell Matrix is well suited to that challenge, on account of its 
nearest-neighbor topology, its ability to analyze nearby cells and 
its ability to assemble and disassemble circuitry on the fly. The 
Cell Matrix also functions well as a 3D architecture, which is a 
good fit to some of these self-assembly techniques.

Two significant challenges arise in implementing an extremely 
large (e.g., containing a quadrillion elements) self-assembled 3D 
system: the near certainty of defective elements being included in 
the assembly; and the question of each element’s spatial orienta-
tion relative to other elements (which is effectively random unless 
steps are taken to control elements’ orientations). For the Cell 
Matrix, architecture (Durbeck and Macias, 2002), discusses the 
former challenge in detail. The present work addresses the latter 
challenge: how to deal with elements that are randomly oriented 
after assembly.

2. BacKgrOUnD

This research is built on the idea of a self-configuring reconfigur-
able system: a system whose configuration is not only modifiable 
by an external system but also can be read and written from inside 
the system itself, using mechanisms that extend to the lowest 
levels of the system’s architecture. The advantage of such a system 
lies in the potential of having the system to manage itself.

There are reconfigurable devices such as XPP (Baumgarte 
et al., 2003) that support run-time reconfiguration, allowing these 
devices to be partially reconfigured while other parts continue to 
operate according to their existing configurations. This capacity 
has been used to create self-configuring systems (Blodget et al., 
2003) that employ an on-board microprocessor to perform the 
steps necessary for configuring the device containing the micro-
processor. Although this approach achieves the goal of having a 
system that modifies its own configuration at run-time, the inter-
nal structure still presents a subject/object dualism, i.e., there is a 
distinction between the objects being reconfigured and those that 
are doing the reconfiguring. This introduces additional challenges 
related to scalability, fault handling, and adaptive management 
of control issues at run-time. For these reasons, a system with a 
more hierarchy-free arrangement of controlling- vs. controlled-
elements seemed best suited to the ideas explored herein. One 
example of such a system is the Cell Matrix self-configurable 
architecture (Durbeck and Macias, 2001), on which the present 
work is based.

The cell matrix has a number of features that make it well 
suited to the present work. Rather than being highly heterogene-
ous, the Cell Matrix is perfectly uniform in its interconnection 
among elements, allowing it to be expanded by adding new cells 
along its borders. The system is also unique in that it is inherently 
asynchronous in its data processing mode: clocking can be added 

if desired, but by default outputs change immediately in response 
to input changes. This basic computation inside each cell is a 
simple (combinational) Boolean mapping, from the set of inputs 
to the set of outputs. This mapping is completely customizable, 
via a per-cell truth table.

This organization allows a single cell to be used as a logic gate, 
a small multiplexer, a one-bit adder, and so on. A pair of cells 
can function cooperatively as a two-bit adder, a D flip-flop, or to 
perform some other small-scale function. All of these operations 
are based on a pair of input/output lines (called “D inputs” and 
“D outputs”) on each side of each cell. A cell’s truth table directly 
maps each combination of D inputs to a set if D outputs.

Configuration of cells occurs via a second set of I/O lines, 
called “C inputs” and “C outputs.” Setting a cell’s C input to 1 
places the cell into configuration mode, during which time its D 
inputs are used to read a new truth table. Unlike input-to-output 
processing, this operation is synchronized to a system-wide 
clock (which is the only signal shared by all cells). The clock is 
used only for reading and writing truth tables, though this func-
tion can be used to cause the generation of local clock signals 
derived from the system clock. Various distribution schemes 
exist for this global clock signal, the simplest being cell-to-cell 
transmission.

While a new truth table is being loaded, the cell’s previous 
truth table is supplied via its D output(s). In this way, one cell can 
read, modify, and write a neighboring cell’s truth table by:

 1. placing the target cell into C mode by asserting one of its C 
inputs;

 2. reading the target cell’s D output to determine its current truth 
table contents; and

 3. placing desired new values on the cell’s D input to specify new 
truth table contents.

The fact that each cell can control its neighbors’ C inputs means 
that any cell can analyze and modify circuitry inside the matrix. 
This is useful because it allows operations to be performed in 
parallel throughout the matrix, under local control.

Figure 1 shows some typical C-mode operations performed 
by cells on neighboring cells.

From the above description, it should be no surprise that a 
cell is a relatively expensive piece of hardware: to tile a 2D matrix 
with cells connected with von Neumann neighborhoods requires 
4-sided cells, thus each cell’s truth table contains 16 rows (16 
combinations of 4 D inputs) and 8 columns (4 D and 4 C outputs), 
or 128 bits of storage per cell. With additional logic, this means 
a single cell contains roughly one thousand transistors, yet this 
single cell may be acting as nothing more complex than a simple 
wire, conveying a single bit of data from one of its sides to another. 
This raises an important question: why work with an architecture 
that requires spending thousands of transistors to create a simple 
wire?

The answer is that the resulting wire is much more than just 
a wire: it is an element that, in addition to acting as a wire, can 
be analyzed, relocated, modified, isolated; and whose constituent 
cells can be used to analyze, relocate, modify, or isolate nearby 
elements (Macias, 2011).
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FigUre 1 | examples of c-mode operations within a cell Matrix. (a) shows a single source cell (on the left) configuring an adjacent target cell (labeled “*”).  
(B) shows a source cell configuring a non-adjacent target cell “*” via an intermediary cell adjacent to both the source and the target. (c) shows a source cell 
configuring a more remote target cell via a number of intermediate cells. The source cell’s DE output is be generated by other cells (not shown), and supplied to the 
source cell for transmission to the target.
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One area where this comes into play is in bootstrapping 
an initial configuration of cells  –  a task especially relevant 
for self-assembled systems, since self-assembly usually sup-
poses identical elements whose differentiation will occur 
post-assembly.

Bootstrapping requires loading initial truth tables into each 
of a set of cells. On other reconfigurable devices, this may be 
accomplished, for example, by serially loading in each truth table. 
The device would contain circuitry for directing each truth table’s 
bits into the appropriate cell’s configuration memory, according 
to a pre-defined ordering. Alternatively, the serial configuration 
information can include a cell ID with each configuration bit-
stream, thus directing the device’s configuration circuitry to load 
the bits into the proper cells (Soni et al., 2013).

One disadvantage of these approaches is speed: configuration 
information is supplied sequentially, and thus the length of the 
total configuration stream increases as the number of configured 
elements increases. Another potential disadvantage is that a 
rigidly defined boot sequence may be wasteful time-wise if only 
certain cells are in need of configuring.

On the Cell Matrix, bootstrapping works very differently, as 
there is no pre-defined bootstrap mechanism for loading a collec-
tion of truth tables into a set of cells. Instead, the circuitry for 
loading these configurations is itself built from cells (which must 
themselves be configured, via another bootstrap mechanism, 
which is itself built from configured cells; and so on). Note that 
this process is reminiscent of the use of the term “bootstrapping” 
in describing the startup process for early programmable com-
puters (Buchholz, 1953).

Here again, it could at first seem to be a disadvantage that there 
is no pre-existing bootstrap mechanism in the Cell Matrix; and 
in terms of quickly loading a configuration from scratch, this 
does complicate the process by requiring additional steps. But 
in terms of flexibility, it is actually a significant advantage over a 
fixed bootstrap mechanism. For example, bootstrap circuitry can 
be built in whichever regions of the matrix require bootstrapping; 
multiple bootstrap circuits can be built and operated in differ-
ent parts of the circuit, at different times (or simultaneously), 
as dictated by the particular task at hand. Moreover, if a desired 
configuration employs numerous identical (or systematically 
differentiated) copies of a smaller sub-circuit, a custom bootstrap 
circuit can be designed to perform massively multiple simultane-
ous configurations (Macias, 2011).

This ability to design a bootstrap circuit from scratch – a unique 
aspect of the Cell Matrix relative to most other reconfigurable 
systems – will play a central role in the present work, as it provides 
a mechanism for dealing with potential complications in the manu-
facture of a large-scale reconfigurable system via self-assembly.

3. selF-asseMBlY

Whereas much of today’s manufacturing is performed via exter-
nally directed assembly (for example, in a factory), self-assembly 
creates a system that, once built to a certain initial stage, begins 
acting autonomously to further construct itself (Whitesides 
and Grzybowski, 2002). To a large degree, this idea is inspired 
by examples from the natural world. For example, a 6-mm seed 
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contains the instructions and machinery necessary to grow into 
a sequoia tree 100 m high and 9 m in diameter (Efloras, 2015).

In biological systems, self-assembly needs to proceed under a 
wide range of possible conditions. For example, the orientation of 
the seed in the ground cannot be predicted, yet the initial sprout 
must grow upwards, to emerge into sunlight. If there is a rock or 
other obstruction above the seed, the sprout may work its way 
around the obstruction until it can grow through soil to reach 
the surface, or it may break through the obstruction (for example, 
an area of pavement) if routing around it is not feasible. The 
mechanics for these operations – for assessing and responding to 
the situation – must also be present within the seed.

Examples of self-assembled systems abound in nature, and 
include the development of living systems as well as the growth of 
inorganic crystals. Human-made examples include self-assembly 
of mechanical structures (Mao et al., 2002); self-assembly of 3D 
polyhedra (Leong et  al., 2007); and self-assembly of electronic 
circuits (James and Tour, 2005). Algorithmic work on self-
assembly includes directed self-assembly (Grzelczak et al., 2010) 
and applications to nanofabrication (Ozin et al., 2009), as well as 
research into autonomous self-repairing/differentiating systems 
on a Cell Matrix (Macias and Athanas, 2007).

Self assembly offers the following advantages over externally 
directed assembly:

• the assembly process itself is effectively contained within the 
system being assembled, meaning simple control structures 
can first be self-assembled and used to build more-complex 
control structures, which can then be used to control further 
self-assembly;

• being primarily self-contained, a self-assembling system can 
be placed effectively anywhere inside its growth medium, 
as opposed to needing to be placed near specifically located 
external control structures; and

• multiple copies of a self-assembling system can be installed 
throughout a growth medium, allowing for parallel assembly 
of multiple copies of the system. This is advantageous for fast 
assembly, as well as for situations where some of the systems 
may not assembly to their desired end state (for example, when 
defects are present).

There are also some disadvantages to the self-assembled 
approach, including the following:

• a self-assembled system may be more complex, since necessary 
mechanisms for controlling the assembly process may need to 
be embedded in the self-assembling units;

• since the assembly proceeds autonomously, process 
errors – defects, misconnections between units, etc. – need to 
be detected locally and handled appropriately, without exter-
nal intervention; and

• lacking centralized control, global tasks must be re-framed in a 
way that supports their execution using only local information.

The present work explores a self-assembled system for imple-
menting a Cell Matrix (Macias and Durbeck, 2013). The Cell 
Matrix was chosen for the following reasons:

• The Cell Matrix is an extremely fine-grained system: each 
cell is a simple 4-input 4-output logic block, suitable for 

implementing basic functions such as an AND gate, an inverter, 
a 1-bit adder, or a 2-1 selector. This presents a relatively simple 
initial build target for a self-assembling technology, yet once 
assembled, more-complex elements (such as flip flops, ALUs, 
or CPUs) can be built from a collection of these fine-grained 
cells.

• Once a matrix of simple cells has been built via self-assembly, 
complex control structures necessary for further self-assembly 
can be built from these simple cells via configuration of the 
already-assembled simple cells, rather than via physical assem-
bly of more-complex blocks.

• Details of these control structures can be changed without 
modifying the underlying self-assembly process. To imple-
ment, for example, a new algorithm for managing differenti-
ation of identical coarse-grained blocks, one need not change 
the basic simple cell definition; rather, one simply uses the 
same cells in a different configuration.

• Since a central feature of the Cell Matrix architecture is the 
ability of cells to interrogate and modify nearby cells, it is 
feasible to build circuits (again, from simple cells) that can 
check nearby cells for defects, and re-configure circuits to 
avoid those defective cells. This means that as complex control 
systems are being built, in-system testing can be performed 
and faulty cells identified and worked-around as the control 
systems expand.

Another advantage of a Cell Matrix over other possible target 
architectures is that its architecture is flat – there is no inherent 
hierarchy among the cells of the matrix. This has significant 
advantages in terms of scalability: since all cells are identical, 
simply adding more cells to the edge of an existing matrix creates 
a larger matrix. With proper management of configuration tasks 
in such a system, not only will the hardware scale well, but the 
algorithms involved in managing the system can exhibit better 
than O(n) performance, by allowing multiple control circuits to 
be built throughout the matrix. This can also help with re-framing 
global tasks (such as differentiation of identical blocks into spe-
cialized units) into distributed, parallel, local operations.

3.1. Key challenge to be addressed
Despite the advantages of a Cell Matrix as a build-target, its sim-
plicity presents a significant challenge with respect to how cells 
are placed within the matrix. Each cell has a natural orientation: 
for a 2D 4-sided cell, its sides are addressed internally as North, 
South, West, and East (N, S, W, E respectively). In order for two 
cells to interact correctly with each other – for example, for one 
cell to correctly configure a neighboring cell – these cells need a 
common sense of orientation. If cell A intends to send data out its 
eastern edge to cell B (which is located on A’s eastern edge), cell A 
needs to know which of cell B’s edges is adjacent to cell A’s eastern 
edge. If cells A and B are oriented identically, then cell B’s western 
edge will sit adjacent to cell A’s eastern edge. But if cell B is rotated 
relative to cell A’s orientation, then it may be (for example) that cell 
B’s northern edge is adjacent to A’s eastern edge (Figure 2). These 
orientation differences will affect how cell A must configure cell B.

The problem is similar to trying to build a circuit using ICs 
whose pins have unknown connections to the chip’s internal 
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FigUre 2 | effect of dis-orientation on inter-cell behavior. In (a), cells A 
and B are oriented the same, so cell A can send data to B’s western edge. In 
(B), cell B is rotated relative to cell A, so cell A has access only to cell B’s 
northern edge.
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circuitry (but where one still knows which pins are inputs and 
which are outputs). To connect the output of one IC to the input 
of another, one needs to know which pins correspond to which 
functions of the chip. If that mapping is unknown, then the chips 
cannot reliably be connected together without first somehow 
determining that mapping.

4. MaTerials anD MeThODs

This issue of mis-oriented cells is a particular concern with self-
assembly, since some processes may not guarantee the physical 
orientation of blocks as they are assembled into a larger structure. 
There are at least three approaches to deal with potential mis-
orientation of elements in a self-assembled system:

 1. correct the physical orientation of blocks as they are being 
assembled, so that there is no dis-orientation in the final 
assembly;

 2. endow the blocks with the ability to sense their own orienta-
tion, and have them re-adjust their internal wiring so that 
their faces are effectively oriented normally; or

 3. allow the physical matrix to be assembled with mis-oriented 
cells, but then somehow determine post-manufacture what 
each cell’s orientation is, and use that information to adjust 
how the matrix is used.

The first approach may be feasible by, for example, weighting 
the faces of each block unequally, so that the blocks orient them-
selves as they fall slowly through a viscous liquid. Alternatively, 
ferrous coatings on certain faces could help orient the blocks in 
the presence of a strong magnetic field, applied along one axis 
of the intended assembly (Tousley et al., 2014). Some work has 
been done using chemically directed self-assembly (Diehl et al., 
2002). While these approaches address the problem of properly 
orienting elements, they are somewhat contrary to the spirit 
of self-assembly, falling more in the realm of directed assembly 

(Grzelczak et  al., 2010). Moreover, they require adjusting the 
physical design of the building blocks based on this particular 
issue. This runs contrary to the goal of having fixed hardware and 
modifying behavior only through software changes.

The second approach seems straightforward. One can 
re-design the basic Cell Matrix cell’s architecture to include 
orientation-detecting circuitry, as well as an intra-cell routing 
network to change which sides are connected to which parts of 
the cell’s internal circuitry. Following assembly, a one-time, post-
manufacture orientation step can be performed, during which 
the cells effectively re-orient themselves (not physically, but by 
changing their internal notion of sidedness). This could work 
well, but requires a significantly more complex cell architecture. 
Moreover, it violates a fundamental principle of Cell Matrix 
design, which is to maintain the simplest possible cell architec-
ture, and introduce greater complexity by building circuits from 
the cells themselves.

The third approach is very much in the spirit of the Cell Matrix, 
being based on the concept of introspective circuitry, running 
potentially in parallel at multiple sites throughout the substrate. 
Moreover, because it is based on analysis performed from within 
the system itself, it requires correctly-functioning hardware 
adjacent to the locations where problems (mis- orientation) are 
being detected, analyzed, and corrected. On many platforms, this 
is a classic quandary: how to analyze potentially faulty hardware 
using circuitry built on hardware that is itself potentially faulty. 
With its distributed, localized control, its ability to read and write 
configuration information, and the interchangeability of the 
source and target of configuration operations, the Cell Matrix is 
well suited for exactly this kind of situation.

While each approach has its merits, it is this third approach 
that is employed in the present work. This choice is motivated 
by the goal of taking an existing self-assembly technique (self-
assembling self-folding polyhedra) and using it to implement 
previously defined cells (constituents of a Cell Matrix). Approach 
1 requires re-design of the former, which approach 2 requires 
re-designing the latter.

The approach will be detailed in three pieces:

 1. detection and handling of a single mis-oriented cell;
 2. linear (O(n)) detection and handling of mis-orientation in a 

2D region of cells; and
 3. sublinear (O( ( )n )) detection and handling of mis-orientation 

in a 2D region of cells.

4.1. Detection and handling of a single 
cell’s Orientation
Detecting the orientation of a cell adjacent to a working cell is 
straightforward. Consider the four possible situations shown in 
Figure 3. In each case, the cell’s truth table has been loaded with 
the equation DN = S, which copies data from its southern D input 
to its northern D output. In the leftmost case (where the cell is 
oriented as expected), the cell behaves as expected; but in the 
other cases (where there is a mis-orientation of the cell), the cell’s 
behavior is different from what was expected.
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FigUre 6 | Four possibilities for reading an echo from a neighboring 
cell. each part (a–D) shows a different orientation of the cell on the 
right. in each case, there is a unique configuration of the cell that will 
produce an echo.

FigUre 5 | configuring a cell with the equation DW → DW produces 
one of four circuits, depending on the orientation of the cell on the 
right. Only a normally oriented cell will produce a circuit that echos its DW 
input.

FigUre 3 | Four possible orientations of a cell. The cell is configured 
with the equation DS → DN, but depending on its orientation, the actual 
function may be DS → DN, DW → DE, DN → DS or DE → DW.

FigUre 4 | effect of dis-orientation on a multi-cell circuit. Two cells are 
used to build a wire, but depending on the orientation of the cell on the right, 
the resulting circuit may not function correctly. In the above examples, only 
the first circuit works correctly as a wire.
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Even though a cell may be mis-oriented, it can still be pro-
gramed from any chosen side: the problem is that the program 
loaded into a cell will likely act differently from what is expected. 
Fortunately, it is this very fact that makes it possible to detect a 
cell’s orientation.

For example, suppose one has access to the actual western 
edge of a target cell, as shown in Figure  4. Here, the cell 
labeled “*” is able to be configured in a controlled way (i.e., 
its orientation is known and has been corrected for). “*” may 
wish (under the direction of a larger, multi-celled circuit) to 
use this neighboring target cell to send information to a more 
remote cell, so it will try to load the truth table correspond-
ing to DE = W (which configures a cell to send data from its 
western input to its eastern output) into the target cell. But 
depending on its orientation, the target cell will end up in 
one of the four configurations shown. Only one of these is the 
desired configuration: the other three read data from a cell 
other than “*.”

Figure 5 shows the results of configuring a different truth 
table: one for DW = W (which echos data from the cell’s west-
ern input back to its western output). As can be seen, only in 
the first case – where the cell is oriented as expected – results 
in a circuit whose input and output are accessible from cell 
“*.” Figure  6 shows four target cells, each in a different 
orientation, each configured to allow access from cell “*.” In 
Figure  6A, the normally oriented target cell is configured 
with the truth table DW = W. In Figure 6B, the target cell is 
configured with the truth table DS = S; in Figure 6C, the cell 
is configured with DE = E; and in Figure 6D the equation is 
DN = N.

Since cell “*” can write and read data form the target cell on 
its right, it is possible for it to determine the orientation of the 
target cell as follows:

• configure the cell with DW = W, then send a bit pattern out 
cell “*”’s eastern output, and look for the same bit pattern to be 
returned by the target cell. If the sent pattern is detected, then 
the target cell is oriented with North to the top;

• configure the cell with DS = S; a successful echo means the cell 
is oriented with North to the right;

• configure the cell with DE = E; a successful echo means the cell 
is oriented with North at the bottom;

• configure the cell with DN = N; a successful echo means the 
cell is oriented with North at the left.

Note that if none of these tests returns the expected data, 
then there is an error in the cell’s behavior. Assuming there are 
no defects, one of the above tests should reveal the target cell’s 
orientation.

The above technique allows determination of a single target 
cell’s orientation. This is of little use though unless the target 
cell can subsequently be used despite its mis-orientation. This is 
straightforward in practice: given a Boolean equation expressing 
each side’s output in terms of inputs from each side, a permuta-
tion of the sides {N, S, W, E} → {W, E, S, N} will compensate for a 
90° clockwise rotation of the cell.
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FigUre 7 | layout of cells within a matrix. Given direct access to cells 
[0,0] and [1,0], indirect access is available to cells [0,1] and [1,1].
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As an example, consider the equation DS = WN + WE (which 
specifies that the southern output is the logical OR of two product 
terms: one being the AND of the west and north inputs; the other 
being the AND of the west and east inputs). Under a 90° clockwise 
rotation of a cell, the northern edge now faces east, the eastern 
edge faces south, and so on. The permutation can be described as 
N → E, E → S, S → W, and W → N. Under this permutation, the 
equation DS = WN + WE translates to DE = SW + SN. In other 
words, by loading this latter equation into the rotated cell, the 
cell will act the same as a properly oriented cell whose program 
is DS  =  WN  +  WE. Rotations of more than 90° are handled 
by successively applying permutations for each 90° rotation. 
Counter-clockwise rotations are treated by considering their 
corresponding clockwise rotation.

4.2. Detection and handling of a 2D 
region of cells
Orienting (and bootstrapping) an entire 2D region of cells 
requires a sequence of steps, beginning with a small initial set 
of cells (with known orientation), which comprise circuitry for 
analyzing other regions of the matrix (using the steps described 
above). This requires some intermediate machinery though.

To utilize the above algorithm for determining a target cell’s 
orientation, it is necessary to have access to the target cell’s C and 
D inputs and outputs. While cells in the Cell Matrix have direct 
access only to their immediate neighbors, it is relatively straight-
forward to use a set of cells to gain access to a non-adjacent cell, 
using a construct called wire building (Macias and Durbeck, 
2013).

Wire building begins by having an original cell configure a 
neighboring cell in such a way that the neighbor will configure one 
of its neighbors (which is non-adjacent to the original cell). This 
is straightforward, and works well for configuring cells that are 
almost adjacent. Using this to configure, more-remote cells is not 
practical though as it requires repeated forward-and-backward 
steps (similar to solving Towers of Hanoi): the time complexity 
for a cell n steps away is O(2n).

Practical wire building requires cooperation between cells 
so as to effectively reposition the region of cells that are directly 
accessible. This is accomplished by first configuring a 2  ×  1 
(sometimes 3 × 1) column of cells, in such a way that they can 
be used to configure an adjacent column identically. The pair of 
columns can then be used to configure a third column, and so 
on. This 2 × n structure is called a multi-channel wire, and can be 
extended in linear time: three fixed-length programing cycles per 
cell extension. Using a 3 × n wire allows the wire to carry a break 
signal, which can be used to retract the wire.

Building these columns that comprise a multi-channel wire 
involve sending repeated sequences of 1’s and 0’s into the wire 
so as to control the target cell’s C and D inputs, causing it (and 
nearby cells) to configure other cells, thus extending the wire. 
This is easily controlled by simple circuits, allowing circuits 
within the matrix to extend control over non-adjacent cells. 
Additional sequences also exist for building corners (comprising 
12 programing cycles), and, combined with sequences for build-
ing linear wires, allow movement throughout the matrix in linear 

time. Further details of these sequences can be found in Macias 
and Durbeck (2013), as well as in a series of online tutorials (Cell 
Matrix Corporation, 2013).

While wire building has been well-understood for many years, 
trying to deploy these circuits in a dis-oriented matrix poses new 
challenges: each cell must be analyzed, and any rotation com-
pensated for, before it can be used to configure other cells. This 
is achieved by incorporating the techniques from the previous 
section during the sequencing process.

Configuration of a 2D region is likewise accomplished by suc-
cessive application of single-cell orientation detection and cor-
rection, interspersed throughout a standard bootstrap protocol as 
described in Macias (2011). For a m × n region of cells as shown 
in Figure 7, a typical protocol proceeds as follows:

 1. A 2 × n − 3 (i.e,. two-channel) wire is built across the top two 
rows of the region (initiated from the two cells for which direct 
access is available);

 2. a 2 × 2 corner is built near the upper-right corner of the region, 
allowing;

 3. the two-channel wire to extend further to the south;
 4. as this wire extends, target cells are configured to the east of 

the wire’s head;
 5. after reaching the bottom of the region, the rightmost column 

of the region has now been configured with the intended final 
target configurations.

The wire is then broken at its beginning (the cells over which 
direct access is available), and the above steps repeated but the 
initial wire is extended to a length of n − 4. This allows the second 
column from the right to be configured.

This repeats until all but the leftmost 2 columns have been 
configured. These are then configured in the front of a southern-
extending wire. Finally, the upper-left 2 × 2 region is configured 
using a one-off set of sequences.

At the conclusion of this entire set of configuration sequences 
(a so-called “super-sequence”), the entire m × n region will have 
been configured as desired. While this works well for modest-
sized regions, the time complexity grows like O(nm), which 
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FigUre 8 | Medusa Wire. C and D information is sent into the wire from the 
upper left, and delivered in parallel to each wire head, thus allowing parallel 
configuration of the target cells marked “*.” The wire itself may be 2-, 3-, or 
more-generally k-channeled, depending on how it is to be used. Typically a 
Medusa wire is used to build and extend wires orthogonal to the major axis 
of the Medusa wire itself.

FigUre 9 | control circuit for local management of cell dis-
orientation. The PC and CC signals are normally routed to the D and C 
inputs of the target cell, as usual. R1 and R0 code one of four possible 
rotations. SetR is used to record the result of a successful orientation test on 
a target cell. TestR is used to block the CC signal unless R1R0 match the 
saved R1R0 that were recorded when SetR was asserted. By pairing 
configuration information with R1R0 and TestR, bitstreams will be processed 
or ignored locally, based on the results of prior analysis.
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makes it impractical for configuring extremely large regions. To 
bootstrap in a way that scales well with the number of cells, it is 
necessary to take advantage of the inherent parallelism of hard-
ware, to not only achieve multiple simultaneous configurations, 
but to increase the multiplicity of configuration sites as the number 
of configured sites increases.

4.3. sublinear handling of a 2D region
The linear configuration time of the process described above 
is impractical for large-scale configuration. For certain types 
of circuits, it contains a high-degree of homogeneity, parallel 
configuration can significantly improve this situation. For exam-
ple: a regularly tiled neural network; a cellular automata-based 
processor; and a distributed simulation of heat flow each involve 
circuity comprised of a large, regular collection of identical cir-
cuits. Configuring a Cell Matrix with these repeated patterns of 
digital circuitry can be done efficiently by first building a parallel 
configuration circuit, and then using that circuit to configure the 
desired target cells in parallel.

Circuits that employ this kind of parallel operation are called 
Medusa Circuits (Macias and Durbeck, 2016). To a first order, 
a Medusa circuit is simply a multi-channel wire with multiple 
heads (Figure  8). By copying D and C inputs to multiple cells 
instead of a single cell, multiple cells can be configured in parallel. 
This approach is well suited for configuring a large number of 
copies of identical circuits by building multiple wires orthogonal 
to the Medusa wire. Thus, once a one-dimensional wire has been 
built (which takes O(n) for a wire with n heads), it can be used 
to build n orthogonal wires, extending those in parallel in a fixed 
amount of time (independent of n).

Like simple multi-channel wires, Medusa wires have also 
been well-understood for some time, and their use for parallel 
configuration is nothing novel. In the present situation though, 
where dis-oriented cells must be contended with, there is a bit of 
a catch-22:

• to minimize configuration time, configuration of multiple 
regions should be done in parallel; but

• in order to deal with the dis-orientation (which may be dif-
ferent from cell to cell), each cell being configured must be 
analyzed, and different configuration information (rotated 
based on the degree of rotation of the target cell) must be 
delivered to different cells.

These requirements would seem to be at odds with each other: 
how can parallel operation be maintained when different regions 
require different configuration instructions? The solution is to 
move part of the processing so that it is done locally, next to each 
head of the Medusa wire. This requires some care.

Figure  9 shows the circuitry used to locally manage dis-
orientation of cells. There are two separate but related tasks to be 
accomplished while extending a wire:

 1. run a series of tests, checking each possible orientation of the 
target cell, and record the true orientation of the cell; and
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 2. select and apply the appropriate configuration string for the 
discerned orientation.

The circuit in Figure 9 – which sits at the head of each wire 
coming from the Medusa wire  –  manages both of these tasks. 
The PC line carries bidirectional information to each target cells’ 
D input and output. This transfer occurs regardless of any other 
signals related to the circuit. The CC line drives the target cell’s 
C input, provided TestR is not asserted. Thus, PC and CC can be 
used to load test patterns into the target cells; to stimulate the test 
circuits; and to read the target cells’ responses.

Recall that to determine a cell’s orientation, a feedback circuit 
is loaded into the cell, a signal is sent to the cell’s D input, and 
an echo is listened for. During the echo test, the SetR signal is 
asserted, while R1R0 carry a coded representation of the rotation 
currently being tested for. If an echo is detected on the PC signal 
(coming from the target cell), it will cause the Rotation Memory 
to record the current values of R1R0; otherwise the memory is left 
unchanged. Thus, at the conclusion of all 4 tests, the true rotation 
of the target cell will be saved in the Rotation Memory of each 
wire being used to configure a target cell. However many wires are 
being used, it requires only 4 tests to set the Rotation Memory 
for each wire.

Following this diagnostic step, the desired configuration infor-
mation is then sent to the target cells, four times: once for each 
possible rotation. Along with the configuration information, the 
corresponding R1R0 (indicating the rotation ofthe current con-
figuration information) is sent, and the TestR signal is asserted. 
With TestR = 1, the CC signal is only allowed to pass to a target 
cell if the Rotation Memory matches the current value of R1R0. 
Thus, all four possible configuration strings are delivered – one at 
a time – to all cells in parallel, but each cell will only make use of 
the one corresponding to that cell’s orientation.

Thus, the circuit in Figure 9 restores the ability to configure 
multiple target cells in parallel, which tailoring the configuration 
to each cells particular orientation. The added cost is a small 
(14 × 13 cells) additional circuit near the beginning of each wire. 
This changes the time complexity of configuring a square region of 
n cells from linear (O(n)) to sublinear (O( ( )n )).

5. resUlTs

The proposed approach to managing a dis-oriented array was 
implemented, simulated, and show to work as expected, for 
single-cell, multi-cell, and parallel operations. Verifying this 
required the following steps:

 1. a simulator of the Cell Matrix needed to be modified to simu-
late mis-oriented cells throughout the matrix;

 2. the unusability of this matrix was verified by performing 
simple configuration operations and observing the incorrect 
behavior;

 3. the ability to detect orientation was then tested in different 
regions of the Matrix by running the prescribed tests and 
observing target cell responses;

 4. these tests/observations were incorporated into a 2D boot-
strap sequence, and used to produce an orientation map for 

the entire 2D region, and the discerned orientations were 
confirmed to match the simulated dis-orientation;

 5. orientation test/correction circuitry was designed, imple-
mented in cells, and loaded into the simulator, and its behavior 
was verified; and

 6. a Medusa wire was built, with multiple copies of this test/
correction circuitry (one per head), and successful parallel 
extension of the wires  –  despite random orientations of the 
underlying cells – was observed.

5.1. simulation
The standard Cell Matrix simulator is normally used interactively 
by a user, but was modified for this work to allow inputs to be 
driven from/outputs delivered to an analyzer program running 
on a PC, thus allowing the above algorithms to be driven from 
high-level code.

The simulator itself employs an internal cell-to-cell connec-
tion map, in order to allow various dimensions and topologies to 
be used with a single set of simulator code. During the execution 
of the simulator, outputs are conveyed to inputs by consulting 
this connection map, discovering which cell/input is connected 
to a changed output, and adding the corresponding (new) input 
change to an event queue. This simulates signaling from cell to 
cell as the simulation progresses.

Normally, this map connects together nearest neighbors in the 
expected way: N–S and W–E. For these experiments, a random 
orientation was assigned to each cell in the simulated matrix, and 
the connection map was modified accordingly to reflect the local 
dis-orientations. As a result, the simulated matrix was effectively 
unusable: configuring a cell with the equation “DN = S” could 
result in any of the 4 configurations shown in Figure 3.

Since initially the entire matrix is dis-oriented, the first steps of 
the analysis algorithm must be performed on an external system 
(in this case, the analyzer program). Subsequent steps utilize the 
cells themselves, as they are (effectively) re-oriented.

5.2. Orientation Determination
The analyzer program was used to apply the above algorithm to 
discern the orientation of each cell, beginning with edge cells, and 
using that information to move further into the interior of the 
matrix, sweeping out a 2D pattern using the bootstrap sequence 
described above.

While cells were analyzed, the discerned rotations were 
conveyed to the analyzer program, and written to a file, which 
was compared to the simulator’s own orientation map. Figure 10 
shows the resulting map, which was randomly generated by 
the simulation code and used to direct internal cell I/O traffic. 
This was for a 16 × 16 matrix. Each digit corresponds to a single 
cell, and its value indicates the cell’s orientation in terms of how 
many clockwise 90° turns the cell has undergone from its normal 
orientation.

This map was then subsequently discovered by the analyzer 
algorithm, which printed it at the end of its analysis, and it was 
confirmed to match the simulator’s own orientation information. 
Thus, successful discovery of cell orientation was confirmed, 
albeit from an inherently sequential, O(n) algorithm.
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FigUre 10 | Orientation map for test run. A 16 × 16 simulated matrix 
was given random orientations, to allow testing of the orientation-detection 
algorithm. Each digit corresponds to a single cell; the value shows the 
number of 90° clockwise turns of the cell from its normal orientation.

February 2016 | Volume 3 | Article 210

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

5.3. adaption to Dis-Orientation
No additional work was required to test the approach’s ability to 
handle dis-oriented cells: in order for the detection algorithm to 
work throughout a 2D region, it was necessary for the circuitry 
to construct wires, corners, and other circuits throughout the 
2D region. This is not possible unless the system is able to suc-
cessfully compensate for each cell’s random rotation. Successful 
completion of the above orientation map confirms not only the 
ability to detect orientation but also the ability to utilize cells 
despite their mis-orientation.

5.4. Parallel algorithm and scalability
Finally, the fully parallel algorithm was tested, using local cop-
ies of the orientation detection/handling circuit (Figure  9). 
Figures  11A–E show the graphical output from the simulator 
while it was working on three regions in parallel.

If Figure  11A, a target cell (circled in the figure) is being 
configured in the middle region of cells. The configuration 
information is being delivered to target cells in each of the three 
regions, but only the middle region is allowing the CC signal 
to reach the target cell (based on that region’s saved orientation 
information).

In Figure 11B, it is the target in the 3rd region that is being 
configured, while the CC signal to the top two regions is blocked. 
Then in Figure 11C, the target in the top region is configured. 
There was also a 4th configuration string sent (corresponding to 
a 4th orientation) that was not used for any of the regions in this 
step.

In Figure  11D, the orientation of the next target cell in 
the lower region now matches the orientation of the delivered 
configuration string, so the CC signal is routed to the target cell 
only in that region, while it is blocked in the first two regions. 
In Figure 11E, the orientation of the target cell in the upper two 
regions matches the delivered string’s orientation, and thus the 
CC signal is routed to the target cell in both of those regions. Here, 
we thus have two targets being configured simultaneously.

In general, roughly 25% of target cells will be configured in 
parallel (assuming a uniform distribution of cell rotations), 
though which particular cells will be configured at each step is 
effectively unpredictable.

Subsequent testing was done on 32 parallel wires, and success-
ful operation was confirmed via the simulator’s graphical output. 
An online video is available at (Cell Matrix Corporation, 2015).

Table  1 shows the number of timesteps required for re-
orienting and configuring an n × n region of blocks in this way.

For a square array of n × n blocks, this means it takes roughly 
n × k + n ×  j = n × (k +  j) timesteps, where k and j are inde-
pendent if n. In other words, configuring n2 blocks has a time 
complexity of O(n); or, equivalently, configuring n blocks has a 
time complexity of O( ( )n ) This is far superior to O(n) (linear 
performance), and makes tractable the question of configuring, 
say, 1018 blocks (which, under this approach, requires the same 
time-order as linearly configuring 109 blocks).

6. cOnclUsiOn

As fabrication of large-scale reconfigurable systems moves from 
traditional top-down assembly to next-generation bottom-up 
self-assembly, a number of technical challenges will arise. Given 
the lack of centralized control in a self-assembly process, new 
hurdles are anticipated, including the issue of un-regulated ori-
entation of building blocks prior to their inter-connection. While 
circuitry can be added to such blocks specifically for detecting 
and correcting their orientation, this complicates the design, 
potentially increasing the likelihood of defects and failures, as 
well as further complicating the assembly process. In general, 
adding task-specific features by modifying the hardware design 
may produce a more-optimal solution for that given task, but at 
the expense of introducing non-general-purpose hardware. If 
extremely rapid orientation/assembly were a concern, this might 
make sense; but in general, incorporating only hardware that can 
be re-used for whatever purpose is desired post-assembly avoids 
over-complicating the cell design and diminishing the cell density 
in the matrix.

While the present work is potentially useful for the task at 
hand – that of orienting a collection of cells – its significance is 
something beyond that particular goal. The real significance of 
this work is to demonstrate – by specific example – how system-
level problems that might otherwise be solved by the use of external 
machinery can instead be solved using distributed, locally acting, 
internal circuits that are built on-the-fly. This echoes themes 
found in similar works (Durbeck and Macias, 2002; Macias and 
Athanas, 2007; Macias, 2011). There are two underlying concepts 
here:

 1. using a bootstrap-style approach to problem solving, wherein 
a large-scale problem is solved for a small subset of cells, 
which are then used to solve the problem on a larger set, and 
so on. This approach can be used to address, for example, the 
challenge of building a circuit to detect faults when the sub-
strate containing the test circuit may itself be faulty (Macias 
and Athanas, 2007); and

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


FigUre 11 | Orientation Test results. These images show the graphical output from the simulator running this algorithm on 3 regions in parallel. In (a), a target 
cell in the second region (from the top) is being configured, because its orientation corresponds to the currently delivered configuration string (the target cell is circled 
in each figure). In (B), the target cell in the third region is configured; and finally, the target in the first region is configured in (c). In (D), a new target in the third region 
is configured. In (e), a pair of targets – one in each of the top two regions – are configured, as they each have the same orientation as the delivered configuration 
string.

February 2016 | Volume 3 | Article 211

Macias et al. Introspective Circuits

Frontiers in Robotics and AI | www.frontiersin.org

 2. in many large-scale systems, increasing the system size 
increases the difficulty of managing the system; but in a 
system that has an inherent self-duality  –  where cells can 
interchangeably be the controller of or the target of con-
figuration operations – an increase in the ability to control 
the system’s complexity can accompany the increase in the 
complexity itself, thus making it feasible to scale the system 
to an arbitrarily large size.

Even though this entire process may be driven by circuitry 
external to the reconfigurable substrate itself, and the system-
wide clock represents an external signal, this external driver is a 
small, fixed-sized/fixed-complexity piece of the entire solution. 
The key innovation of this work is that critical pieces of the 
process – the pieces that represent an ever-increasing workload 
as the system scales – are handled from within the substrate itself, 
being developed and deployed as more and more of the substrate 
is made usable.

7. FUTUre WOrK

Presently, the basic parallel detection and effective re-orientation 
of 2D cells has been tested using a cell-level simulation, but 

much of the control of the circuitry has been done above the 
cell-level, via a program running outside the simulator. A fully 
self-contained version of this work – comprised entirely of digital 
circuitry made from (simulated) cells – remains to be built. This 
is a fairly mechanical process though laborious process and is 
not expected to add to the overall significance of this work. As 
a further proof-of-concept though, it is a step that should still 
be taken.

The present work allows efficient determination of cellular ori-
entation, providing information that can be used by configuration 
circuitry to effectively re-orient dis-oriented cells. An alternate 
way of utilizing this information is to store orientation data in 
a small set of cells near each block of circuitry; assigning local 
addresses to these blocks thus making them row/column address-
able; and using that stored information to adjust configuration 
strings on the fly. This would effectively place an intermediate 
layer between the target circuitry and the low-level cells of the 
Matrix, thus reducing density and, to some degree, speed, but 
in exchange for being able to act as if the cells are all normally 
oriented.

Yet another approach to efficiently managing the cell-level 
dis-orientation is to utilize super self-duality, wherein a collection 
of cells are used to implement a circuit that acts like a single cell 
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TaBle 1 | number of configured blocks vs. total number of timesteps 
required for configuration.

number of stages/blocks Timesteps 

1 stage of Medusa wire k
2 stages of Medusa wire 2 × k
3 stages of Medusa wire 3 × k
… …
n stages of Medusa wire n × k
n orthogonal blocks n × k + j
2n orthogonal blocks n × k + 2 × j
3n orthogonal blocks n × k + 3 × j
4n orthogonal blocks n × k + 4 × j
… …
n2 orthogonal blocks n × k + n × j

The first set of entries represents configuration of the Medusa wire, assuming each 
block requires k timesteps to configure. This is a linear process (O(1)). The second set 
of entries reflects parallel-configuration via orthogonal wires, assuming each extension 
requires j timesteps to configure.
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(a “supercell”). This shifts the challenge of re-orienting cells to a 
one-time task during the construction of each supercell.

While these and other embellishments will be explored at 
a future date, none of them would seem to add significantly 
to the central tenet of this work, which is that there is benefit 

to shifting control from a single centralized external location 
to numerous distributed, internal sites, specifically in a way 
that allows the control to scale along with the scaling of the 
problem size itself.
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