
March 2016 | Volume 3 | Article 61

Original research
published: 08 March 2016

doi: 10.3389/frobt.2016.00006

Frontiers in Robotics and AI | www.frontiersin.org

Edited by: 
Lorenzo Natale,  

Istituto Italiano di Tecnologia, Italy

Reviewed by: 
Ali Paikan,  

Istituto Italiano di Tecnologia, Italy  
Torbjorn Semb Dahl,  

Plymouth University, UK

*Correspondence:
Neil T. Dantam  
ntd@rice.edu; 

Lydia E. Kavraki  
kavraki@rice.edu

Specialty section: 
This article was submitted to 

Humanoid Robotics,  
a section of the journal  

Frontiers in Robotics and AI

Received: 13 October 2015
Accepted: 12 February 2016

Published: 08 March 2016

Citation: 
Dantam NT, Bøndergaard K, 

Johansson MA, Furuholm T and 
Kavraki LE (2016) Unix Philosophy 

and the Real World: Control Software 
for Humanoid Robots.  

Front. Robot. AI 3:6.  
doi: 10.3389/frobt.2016.00006

Unix Philosophy and the real World: 
control software for humanoid 
robots
Neil T. Dantam1* , Kim Bøndergaard2 , Mattias A. Johansson3 , Tobias Furuholm3 and  
Lydia E. Kavraki1*

1 Department of Computer Science, Rice University, Houston, TX, USA, 2 Prevas A/S, Aarhus, Denmark, 3 Rocktec Division, 
Altas Copco Rock Drills AB, Örebro, Sweden

Robot software combines the challenges of general purpose and real-time software, 
requiring complex logic and bounded resource use. Physical safety, particularly for 
dynamic systems such as humanoid robots, depends on correct software. General 
purpose computation has converged on unix-like operating systems  –  standardized 
as POSIX, the Portable Operating System Interface – for devices from cellular phones 
to supercomputers. The modular, multi-process design typical of POSIX applications 
is effective for building complex and reliable software. Absent from POSIX, however, 
is an interproccess communication mechanism that prioritizes newer data as typically 
desired for control of physical systems. We address this need in the Ach communication 
library which provides suitable semantics and performance for real-time robot control. 
Although initially designed for humanoid robots, Ach has broader applicability to com-
plex mechatronic devices – humanoid and otherwise – that require real-time coupling of 
sensors, control, planning, and actuation. The initial user space implementation of Ach 
was limited in the ability to receive data from multiple sources. We remove this limitation 
by implementing Ach as a Linux kernel module, enabling Ach’s high performance and 
latest-message-favored semantics within conventional POSIX communication pipelines. 
We discuss how these POSIX interfaces and design principles apply to robot software, 
and we present a case study using the Ach kernel module for communication on the 
Baxter robot.

Keywords: real-time software, middleware, robot programing, humanoid robots, software engineering

1. inTrODUcTiOn

Humanoid robot software presents a broad set of requirements. Humanoids have physical dynamics, 
requiring fast, real-time software. Humanoids have many sensors and actuators, requiring high per-
formance network code. Humanoids, ideally, operate autonomously, requiring complex application 
logic. Satisfying these three requirements is a challenging software design and development problem. 
Fortunately, there are existing solutions to many of these challenges. Unix-like operating systems 
have served over many decades as the foundation for developing complex software. The standards 
and design principles learned developing these operating systems and applications provide many 
lessons and tools for humanoids and other robots.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00006&domain=pdf&date_stamp=2016-03-08
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00006
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ntd@rice.edu
mailto:kavraki@rice.edu
http://dx.doi.org/10.3389/frobt.2016.00006
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00006/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00006/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00006/abstract
http://loop.frontiersin.org/people/172955/overview
http://loop.frontiersin.org/people/322116/overview
http://loop.frontiersin.org/people/284227/overview
http://loop.frontiersin.org/people/136640/overview
http://loop.frontiersin.org/people/320069/overview


March 2016 | Volume 3 | Article 62

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

Humanoid robotics would benefit by building on the sig-
nificant design and engineering effort employed in unix develop-
ment.1 These operating systems are codified in POSIX, the IEEE 
standard for a Portable Operating System Interface (POSIX, 
2008). POSIX provides a vendor neutral interface for systems 
programing, and there are numerous high-quality implementa-
tions that run on all major computer architectures. However, 
POSIX is more than just a standard for accessing filesystems and 
networks. Many POSIX applications follow a common design 
approach based on composing multiple, independent, modular 
processes. The multiprocess design promotes rapid development 
of robust and flexible software by isolating errors to a single 
process and enabling composition of existing tools to address 
new requirements (Raymond, 2003; Tanenbaum and Bos, 2014), 
a lesson already largely adopted by the robotics community with 
frameworks that often, though not always, compose applications 
from multiple processes (Bruyninckx et  al., 2003; Brugali and 
Scandurra, 2009; Quigley et al., 2009). Unix-like systems are also 
pervasive in network-intensive applications, leading to powerful 
communication capabilities. Moreover, the widespread use and 
long history of unix has bred a variety of tools and conventions 
to aid system integration – a major challenge for robotics – by 
producing and configuring software that is flexible and portable. 
These features and corresponding design approaches present in 
Unix-like systems address many, though not all, the needs of 
humanoid robot software.

While Unix-like operating systems have been phenomenally 
successful for general purpose computing, they are less prevalent 
in real-time control of physical processes. Typically, a physical 
process such as a robot is viewed as a set of continuous, time-
varying signals. To control this physical process with a digital 
computer, one must sample the signal at discrete time intervals 
and perform control calculations using the sampled value. To 
achieve high-performance control of a physical system, we must 
process the latest sample with minimum latency. This differs 
from the requirements of general computing which focus on 
throughput over latency and favor older data over newer data. 
While nearly all POSIX communication favors the older data, in 
robot control, the newest data are critical. However, some parts of 
the system, such as logging, may need to access older samples, so 
this also should be permitted at least on a best-effort basis. In this 
paper, we address the need for real-time communication within 
the larger context of POSIX programing. We demonstrate a Linux 
kernel module for high performance, real-time communication, 
and discuss its use in the application of POSIX programing practice 
to humanoid robots.

The Ach interprocess communication library provides fast 
communication that favors latest message data as typically 
desired for real-time control of physical systems. Ach is not a new 

1 Historically, the capitalized, trademarked “Unix™” referred to operating systems 
based on the original code from AT&T Bell Laboratories, while the terms “unix-
like,” the lower-cased “unix,” and the wildcards “un*x,” “*nix,” etc. conventionally 
refer to the larger family of similar, often independently developed operating 
systems (Raymond, 2008). Currently, Unix™ is a trademark of The Open Group, 
which licenses the brand to certified, conforming operating systems (Gray v. 
Novell, 2011).

framework that discards or duplicates the existing and significant 
tools for systems programing. Instead, Ach is a mechanism that 
integrates and builds upon the vast useful features of the POSIX 
and Linux ecosystem. In previous work, we presented an imple-
mentation of the Ach data structure in the POSIX user space 
(Dantam and Stilman, 2012; Dantam et al., 2015). User space Ach 
was limited in the ability to receive data from multiple sources. 
Now, we present an implementation of Ach as a Linux kernel 
module. Kernel space Ach enables applications to efficiently 
receive data from many sources, a crucial feature for mechatronic 
systems such as humanoid robots which contain many sensors, 
actuators, and software modules. The Ach Linux kernel module 
presents the conventional file descriptor interface used for com-
munication in POSIX, enabling direct integration into existing 
communication systems and frameworks.

Though this work was initially developed for humanoid 
robots, it is broadly applicable to other complex mechantronic 
systems such as robot manipulators and intelligent vehicles. 
These evolving technologies all present similar requirements for 
complex software with real-time performance. The unix philoso-
phy is effective for building complex software systems, and the 
Ach library grounds this approach to real-time, physical control.

2. learning FrOM UniX

Humanoid robotics can learn from of the POSIX programing 
community. Important and challenging issues for humanoid 
robot software, such as high-performance communication, real-
time memory allocation, and software integration, are largely 
addressed by existing techniques and standards. The humanoid 
robotics community would benefit by building on this work.

2.1. communication and scalability
Humanoid robotics can benefit from the strong communication 
capabilities of unix-like operating systems. Historically, Unix 
and the Internet developed in concert (Quarterman et al., 1985). 
POSIX provides a variety of communication and networking 
approaches, which largely address the performance and scal-
ability needs of humanoid robot software. We summarize com-
munication with many other nodes in Section 2.1.1 and service 
lookup in Section  2.1.2. Later, we address the unique needs of 
humanoid robots with the Ach library in Section 3, building on 
the capabilities offered by POSIX.

2.1.1. Multiplexing Approaches
Both general network servers and humanoid robots must com-
municate with a large number of other devices, be they network 
clients or hardware sensors and actuators. There are several 
techniques to communicate with multiple different nodes, each 
having trade-offs in implementation complexity and computa-
tional efficiency.

2.1.1.1. Fixed Interval Loop
A simple method to handle multiple connections is to service each 
connection at a fixed interval. The advantages of this approach are 
that it is simple to implement and it is similar to the fixed timestep 
commonly used in discrete-time control. However, there are 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 63

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

computational disadvantages. Messages may be delayed because 
the connections are only serviced once per step. Additional 
computation may be required to check connections that have no 
new messages. Furthermore, readers may block if attempting to 
service a connection with no data to read, and writers may block 
on full write buffers. While this approach can handle a small, 
fixed number of connections, it is not a practical consideration 
for network servers because it performs poorly with a large and 
varying number of connections.

2.1.1.2. Process-Per-Connection
One approach to handle varying numbers of connections is to 
create a separate worker process or thread for each connection. 
Creating worker processes was traditionally popular because it 
is easy to implement, process creation on unix-like systems is 
inexpensive, and separating connections in different processes 
provides isolation between them. The inetd superserver is 
based entirely on the approach of starting a handler process 
for each new connection. In addition, on modern multi-core 
machines, separate processes provide true concurrency. 
Separate handler processes also provide the unique feature of 
user-based access control; this is useful for low-volume and 
security-critical services such as SSH. The downside of using 
separate processes is the overhead to create and maintain the 
additional processes (Tanenbaum and Bos, 2014). Each con-
nection requires memory for the process’s function call stack, 
and context switching between processes introduces overhead. 
Consequently, this approach does not scale to very large num-
bers of connections.

2.1.1.3. Asynchronous I/O
Asynchronous I/O promises to allow applications to initiate 
operations, which are performed in the background with the 
application notified on completion. This would seem to address 
the scalability issues of the process-per-connection approach. 
However, current implementations of asynchronous I/O are not 
mature. The implementation on GNU/Linux uses threads to 
handle background I/O and scales poorly (Kerrisk, 2014).

2.1.1.4. Event-Driven I/O
Event-based methods allow efficient handling of many connec-
tions through a synchronous interface that notifies applications 
when a connection is ready for I/O. These methods use the 
traditional select call from System V UNIX and poll from 
BSD. The more recent kqueue call on FreeBSD and epoll on 
Linux reduce the overhead for very large numbers of connec-
tions. Though all these calls differ slightly in their semantics, 
the underlying premise is the same. The application provides 
the kernel with a list of file descriptors, and the kernel noti-
fies the application when one of those descriptors is ready for 
a requested I/O operation. While this approach does require 
explicitly managing lists of active connections, it efficiently 
scales to large numbers of connections.

A rough benchmark for network servers is the ability to handle 
10 thousand concurrent network connections (C10K) (Kegel, 
2006). Though at one point this was a challenging problem, it is 
now easily handled through event-based methods such as epoll 

and kqueue. The popular and efficient Nginx2 webserver uses 
event-based methods as does the libevent3 library, which under-
lies communication in memcached and the Google Chrome web 
browser, among others. For handling many concurrent connec-
tions, event-based methods are widely used and scale on ordinary 
hardware to thousands of concurrent connections.

2.1.2. Name Resolution and Service Discovery
Another important issue in communication is name resolution 
and service discovery. Humanoid robots have many distinct 
software modules that need to locate the underlying mechanism 
for communication. Many middlewares provide their own form 
of service discovery: CORBA (CORBA, 2011) provides its nam-
ing service to locate remote objects, ONC RPC provides the 
port mapper (Srinivasan, 1995) to resolve the port numbers to 
connect to a desired program, and ROS resolves topic names in 
the rosmaster process (Quigley et al., 2009). However, name 
resolution and service discovery are addressed in a standard and 
general way via multicast DNS (mDNS) (Cheshire and Krochmal, 
2013), a peer-to-peer variation of the traditional, hierarchical 
domain name system (DNS). DNS and mDNS are flexible pro-
tocols and can even store arbitrary information in TXT records 
(Rosenbaum, 1993). Of course, non-naming features such as con-
nection monitoring are outside the scope of DNS. Multicast DNS 
is a standard protocol with existing implementations, so using 
mDNS instead of a specialized resolution method reduces the 
number of separate daemons which must run as well as separate 
code which must be maintained. Consequently, we use mDNS in 
Ach to locate communication channels on remote hosts.

2.1.3. Lesson Learned
Humanoid robots need communication that is both scalable and 
real-time. Event-based methods impose the lowest overhead of 
the various POSIX communication approaches and are the typi-
cal choice for scalability-critical network servers (Gammo et al., 
2004). Communication for humanoid robots would benefit from 
the scalability of an event-based approach, and we discuss the 
real-time requirements next in Section 2.2. Event-based methods 
operate on kernel file descriptors (Stevens and Rago, 2013), 
which motivated the development of the Ach kernel module (see 
Section 3.2). To name and locate services, the standard mDNS 
protocol and implementations provide the necessary capabilities; 
there is no need to duplicate the features of mDNS.

2.2. real-Time software
Humanoid robot software requires not only the complex logic 
and efficient communication of general purpose software but 
also real-time response to handle physical dynamics. The soft-
ware infrastructure for humanoids should address the need for 
real-time performance without unnecessarily sacrificing the 
capabilities of general purpose systems. While it is a challenge to 
develop real-time software on general purpose systems, accept-
able performance can still be achieved.

2 http://nginx.org/ 
3 http://libevent.org/ 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://nginx.org/
http://libevent.org/


March 2016 | Volume 3 | Article 64

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

2.2.1. Real-Time Communication
POSIX provides a variety of general purpose communication 
mechanisms; however, none are ideal for robot control. Robot 
control requires the latest data sample each control cycle. General 
purpose communication, however, gives priority to older data, 
which must be read or flushed before newer data can be received. 
This is the Head of Line (HOL) Blocking problem. The specific 
issues of each POSIX communication mechanism are discussed 
in Dantam et al. (2015). It was this HOL blocking challenge that 
motivated the initial development of Ach (Dantam and Stilman, 
2012), which always provides access to the most recent data 
sample.

Though general network servers can handle thousands of 
concurrent connections (Gammo et  al., 2004), there is a key 
difference from the needs of humanoid robots. Network servers 
are primarily concerned with maximizing throughput – serving 
as many clients as possible. Robot control, on the other hand, 
requires minimizing latency  –  handling each communication 
operation in minimal and bounded time. Throughput-focused 
methods often attempt to reduce copying, e.g., by eliding a 
copy to a kernel buffer for network socket communication or 
directly mapping a buffer into another process’s addresses space 
via shared memory or relaying a file descriptor through a local 
socket. However for robots, individual real-time messages are 
typically small, e.g., a few floating point values read from a sensor, 
so the overhead of copying the data is minimal. Instead, overhead 
from system calls and process context-switching dominates. This 
shift in focus from throughput to latency is one aspect of the dif-
ference between general-purpose and real-time systems, and is a 
concern that we consider in the design of the Ach data structure 
(see Section 3.1).

Network communication uses Quality of Service (QoS) mech-
anisms to improve response for traffic with special requirements, 
for example, by reserving bandwidth or offering predictable delays 
(Huston, 2000). Linux provides queuing disciplines to prioritize 
sent traffic and reduce HOL blocking at the sending end (Siemon, 
2013). However, HOL blocking or dropped packets may still occur 
at the receiving end if the receiver does not process messages as 
quickly as they are sent. The popular, real-time Controller Area 
Network (CAN) includes a dedicated priority field in messages 
to guarantee that higher priority messages are sent first, though 
messages of equal priority are still processed first-in-first-out, 
different senders must use unique message priorities to avoid col-
lisions, and packet routing is not considered (ISO 11898-1:2015, 
2015). Higher-level communication frameworks also employ 
QoS, the improve predictability of communication (DDS 1.2, 
2007; Hammer and Bauml, 2013; Paikan et al., 2015). Appropriate 
use of QoS can improve real-time network performance, but the 
underlying queuing of network communication still presents 
challenges when one needs the most recent data sample.

The Ach library that we present in Section  3.1 is an inter-
process communication mechanism rather than a network 
protocol, resulting in a distinct set of capabilities and challenges. 
Network communication must address issues such as limited 
bandwidth, packet loss, collisions, clock skew, and security. In 
contrast, processes on a single host can access a unified physical 
memory, which provides high bandwidth and assumed perfect 

reliability; still, care must be taken to ensure memory consist-
ency between asynchronously executing processes. While 
network protocols use QoS to prioritize traffic, Ach maintains 
a specific data structure (see Figure 1B) to guarantee constant-
time access to the most recent data sample. Furthermore, Ach 
communication is compatible with process priorities and prior-
ity inheritance, so higher priority processes gain first access to 
read from and write to an Ach channel. Overall, we view Ach is 
complementary to network communication. The low latency and 
fast latest-message-access of Ach make it well suited for real-time 
interprocess communication.

2.2.2. Real-Time Kernels
The trade-off between throughput and latency exists also at the 
level of the operating system kernel. General purpose kernels 
such as Linux and XNU (used in MacOSX) focus on maximizing 
throughput while real-time kernels focus on minimizing latency. 
QNX and VxWorks are POSIX kernels that focus on real-time 
performance, but both are proprietary. Open source kernels 
provide greater flexibility for the user, which is important for 
research where requirements are initially uncertain. There are 
two real-time variants of the open source Linux kernel. The 
Linux PREEMPT_RT patch (Dietrich, 2005) seamlessly runs 
Linux applications with significantly reduced latency compared 
to vanilla Linux, and work is ongoing to integrate it into the main-
line kernel. However, it is far from providing formally guaranteed 
bounds on latency. Xenomai runs the real-time Adeos hypervisor 
alongside a standard Linux kernel (Gerum, 2004). It typically 
offers better latency than PREEMPT_RT but is less polished 
(Brown, 2010; Dantam et al., 2015) and its dual kernel approach 
complicates development. Because of the maturity, positive 
roadmap, and open source code base of Linux PREEMPT_RT 
(Fayyad-Kazan et al., 2013), we initially implement multiplexable 
Ach channels within this kernel.

2.2.3. Memory Allocation
Memory allocation is a particularly critical part of software devel-
opment, even more so for real-time software. The ubiquitous 
malloc and free pose issues for real-time performance. Typical 
implementations are tuned for throughput over latency. The 
allocator in the GNU C Library (glibc) commonly used on Linux 
lazily batches manipulation of free lists. Calls to glibc’s free are 
usually fast but sometimes take very long to complete (Lea, 2000). 
In contrast, the real-time focused Two-Level Segregate Fit (TLSF) 
allocator (Masmano et  al., 2004) promises O(1) performance, 
though it is not tuned for multi-threaded applications. For garbage 
collected languages, latency is even more severe. Collection cycles 
introduce pause times that are unacceptable for real-time perfor-
mance on humanoid robots (Johnson et al., 2015). Research on 
real-time garbage collection is ongoing (Yuasa, 1990; Bacon et al., 
2003; Kalibera et al., 2011), while (Smith et al., 2014) use Java for 
real-time control by disabling garbage collection in the real-time 
module. If we can constrain the ordering of allocations and frees, 
then the situation improves. Region-based allocators impose a 
last-allocated, first-freed constraint, and operate in O(1) time 
with low overhead (Hanson, 1990). In addition, they provide the 
software-engineering advantage that all objects allocated from a 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


Circular Array
Data

writer
reader

A

Ach
Index

Ach
Data

6 1

3

2

2

index_head
data_head

reader_0
reader_1
reader_2

B

FigUre 1 | logical memory structure for a conventional circular buffer (a) and an ach channel (B). (a) shows a single writer, single reader circular buffer. 
(B) shows the Ach data structure with separate index and data buffers. The index buffer records metadata on the messages, enabling multiple readers, and 
detection of overwritten messages.

March 2016 | Volume 3 | Article 65

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

region can be freed with a single call, potentially reducing the 
bookkeeping necessary to avoid memory leaks. Though none of 
these memory allocation approaches are the universal solution 
for real-time constraints, each has advantages and is useful in the 
appropriate circumstances.

2.2.4. Lesson Learned
Wringing real-time performance out of a general purpose system 
is a careful balancing act. It requires understanding the overheads 
introduced by low-level calls and avoiding those with the poten-
tial to cause unacceptable resource usage. Selecting appropriate 
kernels and runtime support helps, but universal and guaranteed 
solutions are rare. A fundamental challenge is that general 
purpose computation considers time not in terms of correctness 
but only as a quality metric – faster is better – whereas real-time 
computation depends on timing for correctness (Lee, 2009). This 
is one area where continuing research is needed.

2.3. system integration
System integration is a major challenge in robotics (Johnson 
et  al., 2015; Zucker et  al., 2015). While this is a broad issue 
covering algorithms, software, hardware, and operating envi-
ronments, there are still lessons from the unix community that 
inform integration of humanoid robot software. In this regard, 
the humanoid robotics community mirrors the general open 
source world, depending on a wide variety of software packages 
from globally distributed authors and running on a wide variety 
of underlying platforms. We discuss design issues for software 
extensibility and compatibility in this section. In Appendix B, we 
discuss how build systems and package managers help integrate 
the many software packages required by humanoids. These 
general approaches for extensible design and software manage-
ment are useful for similar software integration problems on 
humanoids.

2.3.1. Compatibility and Extensibility
Flexible and adaptable software is crucial to humanoid robots, 
where requirements and platforms are continually evolving. 
Tools and design principles from the POSIX programing com-
munity enable software that gracefully handles both the constant 
churn of ongoing development and the larger shifts of evolving 
platforms.

2.3.1.1. Mechanism vs. Policy
A key consideration in designing flexible software is the Separation 
of Mechanism and Policy (Silberschatz et al., 2009). Flexible soft-
ware helps both in development by making it easier to prototype 
new systems and in long-term maintenance by making it easier to 
adapt to changing requirements. Software is more flexible when it 
provides mechanisms to perform some activity, but does not dic-
tate overly restrictive policies over when or how to execute those 
activities. A canonical example of this approach is the X Window 
System (X11), which provides a mechanism for handling the dis-
play, but defers on policies for window management and “look-
and-feel” (Scheifler, 2004). Compared to other, more integrated 
windowing systems, X11 has been extraordinarily long-lived, 
surviving various alternatives, e.g., Gosling et al. (1989), Linton 
and Price (1993), and Thomas et  al. (2003), through changing 
graphics platforms. For research in particular, the separation of 
concerns is critically important to handling requirements that 
evolve as understanding of the project grows. We have followed 
this approach also in Ach by providing a communication mecha-
nism but not dictating policies for message encoding or event 
handling. This separation of policy from mechanism is important 
for flexibility.

2.3.1.2. Binary Compatibility
When we modify a library on the robot, it is desirable to avoid 
the need to modify or recompile programs using that library. This 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 66

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

requires maintaining binary compatibility. Preserving binary com-
patibility requires the library to export a compatible Application 
Binary Interface (ABI). Maintaining ABI compatibility helps users 
by avoiding the requirement to install multiple library versions and 
by reducing the need to recompile applications. Drepper (2011) 
provides a detailed explanation of shared libraries and compat-
ibility. In general, preserving binary compatibility requires that 
symbol names not be changed or removed and that client-visible 
structures preserve both their total size and the offsets of their fields. 
In C++, changes to the class hierarchy or virtual methods break 
binary compatibility. These requirements present challenges as 
new features are added to software. Adding new functions will not 
break compatibility; however, changes to structures may. There are 
some options to change structures while still preserving the ABI. 
One option, used in Ach, is to reserve space in structure declara-
tions for fields to be added in the future. Reserving space maintains 
the total size of the structure when new fields are added. The cost is 
additional memory usage for the reserved space. Another option is 
to encapsulate all structure allocation and access within the library, 
exposing structures only as opaque pointers along with functions 
to access their fields. Encapsulating allocation permits changes to 
the underlying structure. The cost is the additional indirection and 
function call overhead to access the structure. When breaking the 
ABI is necessary, it is desirable to permit multiple ABI versions of 
the library to be installed together. Installing multiple ABI versions 
can be done by changing the library name, typically by includ-
ing the version number in the library name; however, this may 
unnecessarily create different ABI versions when the new library 
version actually maintains binary compatibility. The alternative is 
to maintain a separate ABI version from the library version num-
ber. ABI versioning is handled differently on different operating 
systems; however, the Libtool component of Autotools provides 
a uniform interface for library versioning (GNU Libtool, 2015). 
While preserving ABI compatibility requires care and planning, it 
is generally possible and benefits library users.

2.3.1.3. Source Compatibility
If we cannot maintain binary compatibility when we modify 
a library, it is desirable to at least require only a recompilation 
of programs using the library rather than modifications to the 
programs’ source code. This requires maintaining source com-
patibility. Preserving source compatibility requires a library to 
export a compatible Application Programing Interface (API). 
Maintaining API compatibility helps users by avoiding or reduc-
ing the need for them to modify their code to accommodate 
API changes. API compatibility is easier to maintain than ABI 
compatibility, generally requiring only that symbols not be 
removed or renamed and that argument lists remain the same. 
If such changes are necessary, there are some options to reduce 
the burden on users. One can give users time to change their 
code by first deprecating symbols before they are removed. For 
example, the gets function, vulnerable to buffer overflows, was 
deprecated in ISO/IEC 9899:1999 (1999) and removed in ISO/
IEC 9899:2011 (2011). When structure fields must be renamed, 
one can preserve API compatibility by including both names 
within an anonymous union field. The old name can then be 
marked as deprecated. If it is possible that additional arguments 

may at some point be needed for a function, one can pass multiple 
arguments as fields within a structure or as items in a bitmasked 
integer. This allows additional arguments to be later included as 
fields in the structure or bits of the integer. This approach is used 
by the POSIX theads API (pthreads) in their various attribute 
structure arguments (POSIX, 2008). Several functions in Ach 
also take a similar attribute structure as an argument. Taking 
these precautions to preserve API compatibility eases the task of 
software maintenance for library users.

2.3.1.4. Language Selection
Programing language selection is an important, though contentious 
issue, and no language is universally ideal for the diverse needs 
of humanoid robots. Developing complex applications is easier 
in high-level, garbage-collected languages, while strict real-time 
requirements preclude garbage-collection, leaving lower-level lan-
guages such as C and C++. Though C++ has many features over C 
that are sometimes useful, it comes at a cost which should be consid-
ered. C is often preferred by performance-sensitive projects, e.g., the 
Linux kernel, because it is easier for the programmer to understand 
and control important, low-level details such as error handling and 
memory allocations which C++ abstracts through exceptions and 
constructors. C++ also presents compatibility issues. Because C 
identifiers map directly to assembly language symbols, it is gener-
ally possible to link C code built with different compilers. C++, on 
the other hand, uses implementation-specific name mangling on 
identifiers, e.g., to handle overloaded functions, so linking C++ 
code built with different compilers may not be possible. Changes 
to operating systems ABIs for C++, though still infrequent, occur 
more often than for C. When performance requirements permit 
high-level, garbage-collected languages, binding low-level libraries 
written in C is generally easier than for C++. C is universally sup-
ported among high-level languages for foreign function bindings, 
e.g., JNI for Java, CFFI for Lisp, and ctypes for Python, whereas the 
ability to directly interact with C++ classes is less common. Because 
Ach is performance sensitive and real-time, it is implemented in C. 
To interface with high-level, non-real-time modules, Ach provides 
foreign function bindings for Common Lisp, Python, and Java. 
Given the trade-offs among programing languages, one should be 
judicious in selecting languages for implementations and interfaces.

2.3.2. Lesson Learned
The unix programing tradition provides many tools and con-
ventions to assist with system integration of humanoid robot 
software. Following established conventions to preserve ABI and 
API compatibility makes software easier to use by reducing the 
system administration and software maintenance task for users. 
Appropriate languages ease software development and mainte-
nance while still providing acceptable performance. Though this 
is far from covering the full range of system integration issues for 
humanoid robots, it goes a long way toward addressing software-
specific system integration.

3. eXTenDing linUX cOMMUnicaTiOn

POSIX provides a rich variety of communication methods that 
are well suited for general purpose information processing, but 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 67

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

none are ideal for real-time robot control. General computation 
favors throughput over latency. POSIX communication favors 
older data over newer. In contrast, real-time control requires low 
latency access to the newest data. Dantam et al. (2015) discusses 
the challenges of POSIX communication in detail. This gap has 
made it difficult to develop real-time applications in the multi-
process POSIX style. To address this communication need, we 
developed the Ach library.

3.1. The ach iPc library
Ach provides a message bus or publish-subscribe style of com-
munication between multiple writers and multiple readers 
(Dantam et al., 2015). Robots using Ach have multiple channels 
across which individual data samples are published. Messages are 
sent as byte arrays, so arbitrary data may be transmitted such as 
floating point vectors, text, images, and binary control messages. 
The primary unique feature of Ach is that newer messages always 
supersede older messages whereas POSIX communication gives 
priority to older data and will block or drop newer messages when 
buffers are full. Ach’s latest-message semantics are appropriate for 
continuous, time-varying signals such as reference velocities or 
position measurements. In other cases where reliable messaging 
is required, such as updating a PID gain value, Ach may provide 
sufficient reliability by using a separate channel with a large 
buffer; however, this is a secondary consideration. Ach’s primary 
focus on latest-information, publish-subscribe messaging give it 
unique capabilities for real-time communication of physical data 
samples.

3.1.1. Relation to Robotics Middleware
There are many other communication systems developed for 
robotics; however, Ach provides a unique set of features and 
capabilities. First, many other systems operate as frameworks 
(Bruyninckx et al., 2003; Metta et al., 2006; Quigley et al., 2009) 
that impose specific structure on the application. Sometimes this 
structure is helpful when it fits the desired application, and other 
times such imposed structure may impede development if the 
requirements are outside the particular framework’s model. In 
contrast, Ach strictly adheres to the idea of mechanism, not policy 
(see Section 2.3.1.1), providing a flexible communication method 
that is easily integrated with other approaches (see Appendix 
A). One could also view Ach as providing low-level capabilities 
that could serve as a useful building-block for such higher-level 
frameworks. Second, many other systems focus on network 
communication (Metta et al., 2006; Quigley et al., 2009; Huang 
et al., 2010; Hammer and Bauml, 2013). In contrast, Ach focuses 
on local, interprocess communication. This focus enables it to 
achieve superior performance in its domain (Dantam et al., 2015), 
and we view Ach as complementary to various network protocols. 
Finally, Ach provides unique semantics that make it especially 
suited to real-time communication of continuously varying data. 
Similar to multicast methods (Huang et al., 2010), Ach efficiently 
supports multiple senders and receivers. Ach implicitly supports 
process priorities whereas network-based methods use QoS (DDS 
1.2, 2007; Hammer and Bauml, 2013). Crucially, Ach eliminates 
any possibility HOL blocking (see Section  2.2.1). Network-
based methods can handle HOL blocking at the sending and 

receiving ends (Metta et al., 2006), but dealing with assumptions 
in intermediate infrastructure and code is a difficult challenge 
(Gettys and Nichols, 2012). Overall, the unique design decisions 
underlying Ach result in special advantages for local, real-time 
communication, and we consider Ach as a key component within 
a larger robot software system.

3.1.2. Design of Ach
The data structure for each channel, shown in Figure  1B, is 
a pair of circular buffers, (1) a data buffer with variable sized 
entries and (2) an index buffer with fixed-size elements indi-
cating the offsets into the data buffer. Ach provides additional 
capabilities compared to a typical circular buffers, such as in 
Figure 1A:

•	 Ach allows multiple receivers;
•	 Ach always allows access to the newest data;
•	 Ach drops the oldest data – instead of the newest data – when 

the buffer is full.

Two procedures compose the core of ach: ach_put and 
ach_get. Detailed pseudocode is provided in Dantam and 
Stilman (2012), and their use is discussed in the Ach manual 
(Dantam, 2015b) and programing reference (Dantam, 2015a).

The procedure ach_put inserts new messages into the 
channel. It is analogous to the POSIX write, sendmsg, and 
mq_send functions. The procedure is given a pointer to the 
shared memory region for the channel and a byte array contain-
ing the message to post.

Algorithm 1 (ach_put). There are four broad steps to the 
ach_put procedure:

 1. Get an index entry. If there is at least one free index entry, use 
it. Otherwise, clear the oldest index entry and its correspond-
ing message in the data array.

 2. Make room in the data array. If there is enough room already, 
continue. Otherwise, repeatedly free the oldest message until 
there is enough room.

 3. Copy the message into data array.
 4. Update the offset and free counts in the channel structure.

The procedure ach_get receives a message from the chan-
nel. It is analogous to read, recvmsg, and mq_receive. 
The procedure takes a pointer to the shared memory region, a 
storage buffer to copy the message to, the last message sequence 
number received, the next index offset to check for a message, 
and option flags indicating whether to block waiting for a new 
message and whether to return the newest message bypassing 
any older unseen messages.

Algorithm 2 (ach_get). There are four broad steps to the 
ach_get procedure:

 1. If given the option argument to wait for a new message and 
there is no new message, then wait. Otherwise, if there are no 
new messages, return a status code indicating this fact.

 2. Find the index entry to use. If given the option argument to 
return the newest message, use the newest entry. Otherwise, if 
the next entry we expected to use contains the next sequence 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


Ke
rn

el
 S

pa
ce

U
se

r 
Sp

ac
e

Process
Heap

POSIX Shared Memory

Virtual
Device

Process A Process B Process C

FigUre 2 | Backing memory locations for ach channels. Channels in 
the process heap are private to the process. Channels in POSIX shared 
memory are accessible by multiple processes. The kernel channels 
presented in this paper are available through per-channel virtual devices and 
are also accessible by multiple processes. The virtual devices are accessed 
from user space through file descriptors, meaning the kernel channels can be 
multiplexed via select, poll, etc. Because kernel channels are in 
protected kernel memory, they cannot be corrupted by rogue processes.

March 2016 | Volume 3 | Article 68

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

number, we expect to see, use that entry. Otherwise, use the 
oldest entry.

 3. According to the offset and size from the selected index entry, 
copy the message from the data array into the provided stor-
age buffer.

 4. Update the sequence number count and next index entry 
offset for this receiver.

Ach provides unique semantics compared to traditional 
POSIX communication. Processes on a single host can access a 
unified physical memory, which provides high bandwidth and 
assumed perfect reliability; still, care must be taken to ensure 
memory consistency between asynchronously executing pro-
cesses. In contrast, real-time communication across a network 
need not worry about memory consistency, but must address 
issues such as limited bandwidth, packet loss, collisions, clock 
skew, and security.

3.1.3. User Space Limitations
The initial implementation of Ach located the data structure 
shown in Figure 1B in POSIX shared memory and synchronized 
access using a mutex and a condition variable. This presented 
a few potential error modes and limitations: a rogue or faulty 
process could deadlock or corrupt a channel and each thread was 
limited to waiting for data on single channel at a time. We discuss 
these potential issues next and resolve them with the kernel space 
implementation described in Section 3.2.

While the formal verification of Ach (Dantam et  al., 2015) 
guarantees that it will not deadlock with regular use of the library 
calls, deadlock may still occur if a reader or writer dies, e.g., with 
a kill -9, inside a library call. This is partially mitigated by the 
use of robust POSIX mutexes, which detect this condition and 
handle interrupted reads. Additional code could be added, which 
would rollback an interrupted write.

Because all processes accessing the channel must have read and 
write access to the shared memory region, a rogue process could 
corrupt the channel data structures. Currently, unintentional 
corruption is weakly detected with guard bytes. This could be 
improved with better sanity checks of the channel and automatic 
recreation of corrupted channels.

The use of POSIX threads synchronization primitives limits 
each thread to wait for new messages on a single channel at a 
time. Readers wait for new messages on a per-channel POSIX 
condition variable and are notified by the writer when a new 
message is posted. POSIX threads are limited to waiting on only 
a single condition variable at a time; thus, there is no way in this 
implementation for a thread to simultaneously wait for data on 
multiple channels. Alternative file-based notification, e.g., using 
pipes or sockets, would allow multiplexing but may cause extra 
context-switching and additional logic would be required to 
ensure that tasks run in priority order. This semantic limitation 
was the primary motivation for the development of the kernel 
space Ach implementation.

3.2. Kernel space ach
To address the limitations of user space Ach presented in 
Section 3.1.3, we develop a new kernel space implementation of the 

Ach data structure and procedures. This implementation runs in the 
Linux kernel. The channel buffers shown in Figure 1B are located in 
kernel memory, protecting channels from corruption and deadlock 
(see Figure  2). Critically, channels are accessed from user space 
via file descriptors, enabling efficient multiplexing through event-
based poll/select style calls. This enables efficient real-time 
communication using established network programing idioms.

3.2.1. Kernel Module Implementation
Ach is implemented in kernel space as a Linux module that cre-
ates a device file for each channel. When the module is loaded, it 
creates the /dev/achctrl device to manage channel creation 
and removal. Each channel is represented with a separate virtual 
device, e.g., /dev/ach-foo for channel foo. These virtual 
devices are not accessed directly by applications but instead are 
accessed through the Ach library using the same API as user space 
channels. This provides backward source-compatibility with the 
user space implementation and allows applications to freely switch 
between user and kernel space channels. The library functions to 
create channels (ach_create) and remove channels (ach_
unlink) operate on kernel channels through ioctl system 
calls on the /dev/achctrl device. The library functions to send 
(ach_put) and receive (ach_get) messages map to write 
and read, respectively. Additional parameters for receiving mes-
sages, such as timeouts or flags to retrieve the newest message, are 
passed to the kernel via ioctls. Event-based multiplexing of ach 
channels – alongside sockets, pipes, and other file descriptors – is 
possible by passing the file descriptor for the channel device file to 
poll, select, etc; the kernel module performs the appropriate 
notification when a new message is posted to the channel. By pro-
viding this kernel-supported, file-descriptor-based interface to ach 
channels, we improve the ability to handle multiple data sources 
and to interoperate with other communication mechanisms using 
the standard POSIX event-based I/O functions.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 69

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

Multiplexing of Ach kernel channels is possible with the fol-
lowing steps:

Algorithm 3 (Ach Multiplexing).

 1. Open all channels with ach_open.
 2. Obtain the channels’ file descriptors by calling ach_chan-

nel_fd, and record the file descriptors in the struct 
pollfd.

 3. Call poll to wait for new data on any channel.
 4. Call ach_get on channels with new data.

Appendix A provides a complete example of multiplexing Ach 
channels alongside conventional POSIX streams.

3.2.2. Advantages of Kernel Space Ach
The in-kernel Ach implementation removes the limitations of the 
user space implementation discussed in Section 3.1.3. Primarily, it 
permits multiplexing of multiple channels alongside other POSIX 
communication mechanisms using standard and efficient event-
based I/O, e.g., select and poll. For humanoid robots, where a 
process may need to receive data from a large number of sources, this 
ability to conduct efficient I/O is a critical advantage. In addition, the 
potential of user space channels for corruption and deadlock from 
rogue processes is eliminated in the kernel implementation. Kernel 
channels are in kernel memory which cannot be directly accessed 
by user space processes. The kernel implementation eliminates the 
faults of user space Ach, giving it the same features and robustness 
as standard POSIX communication mechanisms.

3.2.3. Disadvantages of Kernel Space Ach
The in-kernel implementation does present some potential 
disadvantages for portability and a caveat regarding robustness.

While the user space implementation used standard POSIX 
calls, the in-kernel implementation is Linux-specific, running on 
vanilla and PREEMPT_RT kernels. This would present an issue 
if it is necessary to use a non-Linux kernel, requiring additional 
work to implement Ach within that separate kernel. However, the 
Ach code is modular and well-factored – the core code is largely 
shared between the user and Linux kernel space implementations. 
Adding an additional backend for another kernel should not be 
a major challenge, and we hope to develop a kernel module for 
Xenomai in the future.

Code in kernel space faces stricter correctness requirements than 
in user space. Software errors in the Ach kernel module – as with 
any kernel space code – can potentially crash the entire operating 
system. However, for humanoid robots, any software error, whether 
in user or kernel space, can potentially – and literally – crash the 
entire robot. Thus, moving Ach to the kernel does not significantly 
change the severity of potential errors. Still, it is important to 
understand the strict requirements on kernel space code.

3.3. Benchmarks
We provide benchmark results of message latency for Ach 
compared to a variety of other kernel communication methods.4 

4 Benchmark code available at http://github.com/golems/ach 

Latency is often more critical than bandwidth for real-time 
control as the amount of data per sample is generally small, e.g., 
state and reference values for several joint axes. Consequently, 
the actual time to copy the data is negligible compared to other 
sources of overhead such as process scheduling. The benchmark 
application performs the following steps:

 1. Initialize communication structures;
 2. fork sending and receiving processes;
 3. Sender: Post timestamped messages at the desired frequency;
 4. Receivers: Receive messages and record latency of each mes-

saged based on the timestamp.

Figure 3 shows the results of the benchmarks, run on an Intel® 
Core™ i7-4790 at 3.6 GHz under Linux 3.18.16-rt13 PREEMPT 
RT. We compare Ach with several common POSIX communica-
tion mechanisms. In contrast to Ach and these lightweight, kernel 
methods, heavyweight middleware such as ROS and CORBA 
impose several times greater communication latency (Dantam 
et al., 2015). All the methods shown in Figure 3 are similar in 
performance, indicating that the bulk of overhead is due to the 
process context switch rather than the minimal time for the actual 
communication operation. For the single receiver case, both user 
and kernel space Ach provide comparable latency to POSIX com-
munication. While the latency is similar, there are also important 
feature differences. Kernel space Ach can multiplex across mul-
tiple channels while user space Ach cannot, and unlike POSIX 
communication, Ach directly supports multiple subscribers. The 
results in Figure 3 show that Ach provides strong performance, 
along with its ability to handle multiple subscribers and its unique 
latest-message-favored semantics.

3.4. case study: Baxter robot
We use the new kernel space Ach implementation in our control 
system for the Baxter robot. The Baxter is a dual-arm manipula-
tor. Each arm has 7 degrees of freedom and a parallel jaw gripper. 
The integrated electronics enable position, velocity, and torque 
control of the robot’s axes. We implement several modes of multi-
axis control using this interface.

Figure 4 shows our Ach-based control system for the Baxter 
robot. In this system, each driver and controller runs as a separate, 
isolated operating system process. Previous ach-based systems 
ran drivers as separate processes, but multiple controllers were 
combined into a single processes (Dantam et al., 2015). Because 
kernel space Ach channels are efficiently multiplexable, we can 
run the Baxter controllers in separate processes, each outputing 
to a distinct channel. The ref process receives messages from 
all these channels, selecting the highest priority message to com-
municate to the robot. This design efficiently integrates multiple 
control modes for the robot, each running in separate processes.

In addition to the processes shown in Figure 4, we also run a 
separate, non-real-time logging process. All the control system 
processes write log messages to a single event channel. In normal 
operation, the logger waits for new messages on the event chan-
nel, stepping through each posted message and recording it to a 
log file. However, if log messages are posted faster than the logger 
can process them, for example whether due limited CPU cycles 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://github.com/golems/ach


FigUre 4 | ach-based control system for the Baxter robot. Three control pipelines run concurrently: a teleoperation pipeline for manual control (top), a camera 
registration and visual servoing pipeline (middle, Dantam et al., 2016), and a joint planning (Sucan et al., 2012) and interpolation pipeline (bottom). The ref process 
multiplexes the output of these three pipelines and selects the highest priority command to send to the robot. A non-real-time logging process (not shown) also 
receives informational and error messages from the other control system processes over a single Ach channel and records the messages in a log file.

FigUre 3 | Message latency for ach and POsiX communication. Ach has comparable performance to optimized POSIX communication, and unlike POSIX 
methods, Ach enables multiple receivers and prioritizes newer data. In the plots, “Mean” is the average latency over all messages, “99%” is the latency that 99% of 
messages beat, and “Max” is the maximum recorded latency. The long-tail of the worst-case behavior arises from the focus of general purpose platforms on 
average-case performance instead of bounded response needed by real-time systems. For example, lazy algorithms and hardware memory caches improve 
average performance, but still leave the worst-case cost to pay.

March 2016 | Volume 3 | Article 610

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

or a programing error, some messages will be skipped as they are 
overwritten in the circular buffer (see Figure 1B). The alternative 
to skipping messages would be to block the message sender until 
the logger can process messages or to buffer an unbounded num-
ber of unprocessed log messages. Neither blocking a real-time 
process nor growing a buffer without bound is desirable in a real-
time control system. Instead, Ach overwrites the oldest message 
and the system continues, missing only the skipped log messages.

The primary advantages of this multi-process control sys-
tem design are modularity and robustness to software errors. 
Separating drivers and controllers into different processes 
means they can be developed and tested independently. This 
separation is particularly useful to prototype new controllers, 
which can be developed without disturbing previously tested 
work. For example, we developed and tested the workspace 
controller described in Kingston et  al. (2015) without any 
modification to the processes in Figure 4. Failures encountered 
while developing and testing the new controller did not affect 
the other running control processes. In contrast, combining 

multiple controllers in a single process as was necessary for 
the user space Ach systems presented in Dantam et al. (2015) 
means that errors encountered while prototyping a new control-
ler will not interfere with existing control modes. In research 
applications on robot control, easing controller development 
and testing is a key advantage.

4. cOnclUsiOn

We have discussed the application of unix design principles to 
robot software. Among the various unix tools and conventions, 
the multiprocess design typical of unix applications improves 
modularity and robustness, critical needs for complex systems 
such as humanoid robots. We enable this multiprocess design for 
real-time control with the efficient Ach communication library. 
This approach is general, applying to multiple types of robots and 
other complex mechatronic systems that require coordination of 
many hardware devices and software modules. Ach fills a need 
in robot software unmet by POSIX, providing a communication 

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 611

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

mechanism that supports multiple receivers and gives priority to 
newer messages. The kernel space implementation presented in 
this paper exposes a file descriptor interface, enabling multiplex-
ing of messages from many sources and efficient integration with 
other communication methods. Kernel space Ach enables devel-
opment of real-time robot software in the conventional modular, 
robust, multi-process unix style.

The approach to robot software development we have pre-
sented – advocating use of existing tools and conventions from 
the unix programing community  –  is inherently conservative. 
While building on unix provides a mature set of capabilities, new 
research in techniques to automate software development have 
the potential to radically improve the development process.

Formal methods for software verification and synthesis can 
greatly ease software development. Some tools are already in 
widespread use (Cimatti et  al., 2002; Ball et  al., 2004), and we 
used SPIN (Holzmann, 2004) to verify Ach in Dantam et  al. 
(2015). Formal methods continue to be an active research area 
in robotics (Wang et al., 2009; Dantam and Stilman, 2013; Liu 
et al., 2013; Nedunuri et al., 2014; Lignos et al., 2015), bridging the 
fields of software engineering, automatic control, and planning 
and scheduling. Though limits remain on which problems admit 

formal reasoning, further research has the potential to broaden 
the scope of formal methods for humanoid robot software, 
changing our fundamental approach to software development.

aUThOr cOnTriBUTiOns

ND, primary author of overall software, secondary author of 
additional modules described in paper. KB, primary author of 
additional modules described in paper. MJ, additional contribu-
tions to software. TB, supported work at Atlas Copco and Prevas, 
contributions to design and testing methods. LK, supported 
work at Rice University, contributions to testing and presenta-
tion of the work.

acKnOWleDgMenTs

Work at Rice University by ND and LK has been supported in 
part by NSF IIS 1317849, NSF CCF 1514372, and Rice University 
Funds. Work by KB, MJ, and TF has been supported by Atlas 
Copco Rock Drills AB. We thank Zachary K. Kingston for his 
development work and continuing maintenance of the presented 
Baxter software example.

reFerences

Bacon, D. F., Cheng, P., and Rajan, V. (2003). “A real-time garbage collector 
with low overhead and consistent utilization,” in Symposium on Principles of 
Programming Languages, Vol. 38 (New Orleans, LA: ACM), 285–298.

Ball, T., Cook, B., Levin, V., and Rajamani, S. K. (2004). “SLAM and static driver 
verifier: technology transfer of formal methods inside Microsoft,” in Integrated 
Formal Methods, Volume 2999 of Lecture Notes in Computer Science (Canterbury: 
Springer), 1–20.

Brown, J. H., and Martin, B. (2010). How Fast Is Fast Enough? Choosing between 
Xenomai and Linux for Real-time Applications. Technical Report, Rep Invariant 
Systems. Available at: https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.
pdf

Brugali, D., and Scandurra, P. (2009). Component-based robotic engineering (part 
I)[tutorial]. IEEE Rob. Autom. Mag. 16, 84–96. doi:10.1109/MRA.2009.934837 

Bruyninckx, H., Soetens, P., and Koninckx, B. (2003). “The real-time motion 
control core of the Orocos project,” in International Conference on Robotics and 
Automation, Vol. 2 (Taipei: IEEE), 2766–2771.

Catkin. (2015). Catkin Conceptual Overview. Available at: http://wiki.ros.org/
catkin/conceptual_overview

Cheshire, S., and Krochmal, M. (2013). Multicast DNS. Internet Engineering Task 
Force. Available at: https://tools.ietf.org/html/rfc6762

Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., 
et al. (2002). “Nusmv 2: an opensource tool for symbolic model checking,” in 
Computer Aided Verification, CAV ’02 (London: Springer-Verlag), 359–364.

CORBA. (2011). Common Object Request Broker Architecture (CORBA/IIOP), 3.1.1 
Edn. The Object Management Group. Available at: http://www.omg.org/spec/
CORBA/3.1.1/

Dantam, N. T. (2015a). Ach IPC Library. Available at: http://golems.github.io/ach/
api/

Dantam, N. T. (2015b). Ach IPC User Manual. Available at: http://golems.github.
io/ach/manual/

Dantam, N. T., Amor, H. B., Christensen, H., and Stilman, M. (2016). “Online 
camera registration for robot manipulation,” in Experimental Robotics. eds M. 
Ani Hsieh, O. Khatib, and V. Kumar (Switzerland: Springer), 179–194. 

Dantam, N. T., Lofaro, D., Hereid, A., Oh, P., Ames, A., and Stilman, M. (2015). The 
Ach IPC library. Rob. Autom. Mag. 22, 76–85. doi:10.1109/MRA.2014.2356937 

Dantam, N. T., and Stilman, M. (2012). “Robust and efficient communication 
for real-time multi-process robot software,” in International Conference on 
Humanoid Robots (Osaka: IEEE), 316–322.

Dantam, N. T., and Stilman, M. (2013). The motion grammar: analysis of a 
linguistic method for robot control. Trans. Rob. 29, 704–718. doi:10.1109/
TRO.2013.2239553 

DDS 1.2. (2007). Data Distribution Service for Real-time Systems, 1.2 Edn. The 
Object Management Group. Available at: http://www.omg.org/spec/DDS/1.2/

Dietrich, S.-T., and Walker, D. (2005). The evolution of real-time Linux. In 7th Real 
Time Linux Workshop.

Drepper, U. (2011). How to Write Shared Libraries. Technical Report, Red Hat. 
Available at: http://www.akkadia.org/drepper/dsohowto.pdf

Fayyad-Kazan, H., Perneel, L., and Timmerman, M. (2013). Linux PREEMPT-RT 
vs. commercial RTOSs: how big is the performance gap? J. Comput. 3, 135–142. 
doi:10.5176/2251-3043_3.1.244 

Gammo, L., Brecht, T., Shukla, A., and Pariag, D. (2004). “Comparing and evaluat-
ing epoll, select, and poll event mechanisms,” in Proceedings of the 6th Annual 
Ottawa Linux Symposium. Available at: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.215.7953

Gerum, P. (2004). Xenomai – Implementing a RTOS Emulation Framework on Gnu/
Linux. Technical Report, Xenomai.

Gettys, J., and Nichols, K. (2012). Bufferbloat: dark buffers in the internet. Commun. 
ACM 55, 57–65. doi:10.1145/2063176.2063196 

GNU Libtool. (2015). GNU Libtool – Portable Dynamic Shared Object Management. 
Free Software Foundation. Available at: https://www.gnu.org/software/libtool/
manual/

GNU Standards. (2015). GNU Coding Standards. Free Software Foundation. 
Available at: https://www.gnu.org/prep/standards/

Gosling, J., Rosenthal, D. S., and Arden, M. J. (1989). The NeWS Book: An 
Introduction to the Network/Extensible Window System. New York, NY: Springer 
Science & Business Media.

Gray v. Novell, Inc. (2011). United States Court of Appeals, Eleventh Circuit, NO. 
09-11374. Florida.

Hammer, T., and Bauml, B. (2013). “The highly performant and realtime deter-
ministic communication layer of the ardx software framework,” in 2013 16th 
International Conference on Advanced Robotics (ICAR) (Montevideo: IEEE), 
1–8.

Hanson, D. R. (1990). Fast allocation and deallocation of memory based on object 
lifetimes. Software Pract. Exp. 20, 5–12. 

Holzmann, G. (2004). The Spin Model Checker. Boston, MA: Addison Wesley.
Huang, A. S., Olson, E., and Moore, D. C. (2010). “LCM: Lightweight commu-

nications and marshalling,” in Intelligent Robots and Systems (Taipei: IEEE), 
4057–4062.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://www.osadl.org/fileadmin/dam/rtlws/12/Brown.pdf
http://dx.doi.org/10.1109/MRA.2009.934837
http://wiki.ros.org/catkin/conceptual_overview
https://tools.ietf.org/html/rfc6762
http://www.omg.org/spec/CORBA/3.1.1/
http://golems.github.io/ach/api/
http://golems.github.io/ach/manual/
http://dx.doi.org/10.1109/MRA.2014.2356937
http://dx.doi.org/10.1109/TRO.2013.2239553
http://dx.doi.org/10.1109/TRO.2013.2239553
http://www.omg.org/spec/DDS/1.2/
http://www.akkadia.org/drepper/dsohowto.pdf
http://dx.doi.org/10.5176/2251-3043_3.1.244
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.7953
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.7953
http://dx.doi.org/10.1145/2063176.2063196
https://www.gnu.org/software/libtool/manual/
https://www.gnu.org/prep/standards/


March 2016 | Volume 3 | Article 612

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

Huston, G. (2000). Next Steps for the IP QoS Architecture. Internet Engineering Task 
Force. Available at: https://tools.ietf.org/html/rfc2990

ISO 11898-1:2015. (2015). Road Vehicles – Controller Area Network (CAN) – Part 
1: Data Link Layer and Physical Signalling, 2 Edn. ISO. Available at: http://www.
iso.org/iso/catalogue_detail.htm?csnumber=63648

ISO/IEC 9899:1999. (1999). Programming Languages – C, 2 Edn. ISO/IEC. Available 
at: http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.
htm?csnumber=29237

ISO/IEC 9899:2011. (2011). Programming Languages – C, 3 Edn. ISO/IEC. Available 
at: http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.
htm?csnumber=57853

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et  al. 
(2015). Team IHMC’s lessons learned from the DARPA robotics challenge 
trials. J. Field Rob. 32, 192–208. doi:10.1002/rob.21571 

Kalibera, T., Pizlo, F., Hosking, A. L., and Vitek, J. (2011). Scheduling real-time 
garbage collection on uniprocessors. ACM Trans. Comput. Syst. 29, 8. 
doi:10.1145/2003690.2003692 

Kegel, D. (2006). The C10K Problem. Available at: http://www.kegel.com/c10k.html
Kerrisk, M. (2014). aio  –  POSIX Asynchronous I/O Overview, 3.74 Edn. Linux 

Man-Pages. Available at: https://www.kernel.org/doc/man-pages/
Kingston, Z. E., Dantam, N. T., and Kavraki, L. E. (2015). “Kinematically 

constrained workspace control via linear optimization,” in International 
Conference on Humanoid Robots (Seoul: IEEE), 758–764. doi:10.1109/
HUMANOIDS.2015.7363455 

Lea, D. (2000). A Memory Allocator. Available at: http://g.oswego.edu/dl/html/
malloc.html

Lee, E. A. (2009). Computing needs time. Commun. ACM 52, 70–79. 
doi:10.1145/1506409.1506426 

Lignos, C., Raman, V., Finucane, C., Marcus, M., and Kress-Gazit, H. (2015). 
Provably correct reactive control from natural language. Auton. Robots 38, 
89–105. doi:10.1007/s10514-014-9418-8 

Linton, M., and Price, C. (1993). “Building distributed user interfaces with  
fresco,” in Proceedings of the 7th X Technical Conference (Boston, MA: O’Reilly), 
77–87.

Liu, J., Ozay, N., Topcu, U., and Murray, R. M. (2013). Synthesis of reactive switch-
ing protocols from temporal logic specifications. Trans. Autom. Control 58, 
1771–1785. doi:10.1109/TAC.2013.2246095 

Masmano, M., Ripoll, I., Crespo, A., and Real, J. (2004). “TLSF: a new dynamic 
memory allocator for real-time systems,” in Euromicro Conference on Real-Time 
Systems (Catania: IEEE), 79–88.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform. 
Int. J. Adv. Rob. Syst. 3, 43–48. doi:10.5772/5761 

Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., and Kavraki, L. E. (2014). 
“SMT-based synthesis of integrated task and motion plans from plan outlines,” 
in International Conference on Robotics and Automation (Hong Kong: IEEE), 
655–662.

Paikan, A., Pattacini, U., Domenichelli, D., Randazzo, M., Metta, G., and Natale, L. 
(2015). “A best-effort approach for run-time channel prioritization in real-time 
robotic application,” in 2015 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS) (Hamburg: IEEE), 1799–1805.

pkg-config. (2013). pkg-config. Available at: http://www.freedesktop.org/wiki/
Software/pkg-config/

Poettering, L. (2014). Revisiting How We Put Together Linux Systems. Available at: 
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html

POSIX. (2008). IEEE Std 1003.1-2008. The IEEE and The Open Group. Available 
at: http://pubs.opengroup.org/onlinepubs/9699919799/

Quarterman, J. S., Silberschatz, A., and Peterson, J. L. (1985). 4.2 BSD and 4.3 BSD 
as examples of the UNIX system. ACM Comput. Surv. (CSUR) 17, 379–418. 
doi:10.1145/6041.6043 

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et  al. (2009). 
“ROS: an open-source robot operating system,” in International Conference on 
Robotics and Automation, Workshop on Open Source Robotics (Kobe: IEEE).

Raymond, E. S. (2003). The art of Unix Programming. Boston, MA: Addison-Wesley 
Professional.

Raymond, E. S. and Landley, R. (2008). OSI Position Paper on the SCO vs. IBM 
Complaint. Available at: http://www.catb.org/~esr/hackerlore/sco-vs-ibm.html

Rosenbaum, R. (1993). Using the Domain Name System To Store Arbitrary String 
Attributes. Internet Engineering Task Force. Available at: https://tools.ietf.org/
html/rfc1464

Scheifler, R. W. (2004). X Window System Protocol. X Consortium, Inc. Available at: 
http://www.x.org/archive/X11R7.5/doc/x11proto/proto.pdf

Siemon, D. (2013). Queueing in the linux network stack. Linux J. Available at: 
http://www.linuxjournal.com/content/queueing-linux-network-stack

Silberschatz, A., Galvin, P. B., and Gagne, G. (2009). Operating System Concepts. 
Danvers, MA: J. Wiley & Sons.

Smith, J., Stephen, D., Lesman, A., and Pratt, J. (2014). “Real-time control of human-
oid robots using OpenJDK,” in International Workshop on Java Technologies for 
Real-time and Embedded Systems (Niagara Falls, NY: ACM), 29.

Srinivasan, R. (1995). Binding Protocols for ONC RPC Version 2. Internet 
Engineering Task Force. Available at: https://tools.ietf.org/html/rfc1833

Stevens, W. R., and Rago, S. A. (2013). Advanced Programming in the UNIX 
Environment. Indianapolis: Addison-Wesley.

Sucan, I., Moll, M., and Kavraki, L. E. (2012). The open motion planning library. 
Rob. Autom. Mag. 19, 72–82. doi:10.1109/MRA.2012.2205651 

Tanenbaum, A. S., and Bos, H. (2014). Modern Operating Systems. Upper Saddle 
River, NJ: Prentice Hall Press.

Thomas, M., Lupu, E., and Rükert, D. (2003). Y: A Successor to the x Window 
System. Technical Report, Imperial College London. Available at: http://www3.
imperial.ac.uk/pls/portallive/docs/1/18619743.PDF

Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., and Mahlke, S. (2009). “The theory 
of deadlock avoidance via discrete control,” in SIGPLAN Notices, Vol. 44 
(Savannah: ACM), 252–263.

Yuasa, T. (1990). Real-time garbage collection on general-purpose machines. 
J. Syst. Software 11, 181–198. doi:10.1016/0164-1212(90)90084-Y 

Zucker, M., Joo, S., Grey, M. X., Rasmussen, C., Huang, E., Stilman, M., et al. (2015). 
A general-purpose system for teleoperation of the DRC-HUBO humanoid 
robot. J. Field Rob. 32, 336–351. doi:10.1002/rob.21570 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer AP and the handling editor LN declared their shared affiliation, and 
the handling editor states that the process nevertheless met the standards of a fair 
and objective review.

Copyright © 2016 Dantam, Bøndergaard, Johansson, Furuholm and Kavraki. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://tools.ietf.org/html/rfc2990
http://www.iso.org/iso/catalogue_detail.htm?csnumber=63648
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics%.htm?csnumber=29237
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57853
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57853
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57853
http://dx.doi.org/10.1002/rob.21571
http://dx.doi.org/10.1145/2003690.2003692
http://www.kegel.com/c10k.html
https://www.kernel.org/doc/man-pages/
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363455
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363455
http://g.oswego.edu/dl/html/malloc.html
http://dx.doi.org/10.1145/1506409.1506426
http://dx.doi.org/10.1007/s10514-014-9418-8
http://dx.doi.org/10.1109/TAC.2013.2246095
http://dx.doi.org/10.5772/5761
http://www.freedesktop.org/wiki/Software/pkg-config/
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
http://pubs.opengroup.org/onlinepubs/9699919799/
http://dx.doi.org/10.1145/6041.6043
http://www.catb.org/~esr/hackerlore/sco-vs-ibm.html
https://tools.ietf.org/html/rfc1464
http://www.x.org/archive/X11R7.5/doc/x11proto/proto.pdf
http://www.linuxjournal.com/content/queueing-linux-network-stack
https://tools.ietf.org/html/rfc1833
http://dx.doi.org/10.1109/MRA.2012.2205651
http://www3.imperial.ac.uk/pls/portallive/docs/1/18619743.PDF
http://dx.doi.org/10.1016/0164-1212(90)90084-Y
http://dx.doi.org/10.1002/rob.21570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


March 2016 | Volume 3 | Article 613

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

aPPenDiX

a. ach Multiplexing example
Ach kernel channels can be multiplexed using the conven-
tional select, poll, etc. functions. We provide an example 
program that multiplexes two Ach channels along with the 

program’s standard input and echoes all data to standard 
output. This example demonstrates Ach’s efficient handling of 
multiple data sources and compatibility with other forms of 
POSIX communication.

26 exit(EXIT_FAILURE);
27 }
28 /* Get channel file descriptor */
29 r = ach_channel_fd( &channel[i], &pfd[i].fd );
30 if( ACH_OK != r ) {
31 fprintf(stderr, "could not get file descriptor for channel ’%s’: %s\n",
32 names[i], ach_result_to_string(r));
33 exit(EXIT_FAILURE);
34 }
35 /* Set events to poll for */
36 pfd[i].events = POLLIN;
37 }
38 /* Also, poll() standard input */
39 pfd[n_channels].fd = STDIN_FILENO;
40 pfd[n_channels].events = POLLIN;
41
42
43 /***************/
44 /* poll() loop */
45 /***************/
46 for(;;) {
47 /* poll() for new data */
48 int r_poll = poll( pfd, n_pfd + 1, -1 );
49 if( r_poll < 0 ) {
50 perror("poll");
51 exit(EXIT_FAILURE);
52 }
53 /* Find file descriptors with new data */
54 for( size_t i = 0; i < n_pfd && r_poll > 0; i++ ) {
55 if( (pfd[i].revents & POLLIN) ) {
56 char buf[512];
57 size_t data_size = 0;
58 if( i < n_channels ) {
59 /* Get new data on an Ach channel */
60 enum ach_status r = ach_get( &channel[i], buf, sizeof(buf), &data_size,

1 #include <stdlib.h>
2 #include <pthread.h>
3 #include <inttypes.h>
4 #include <stdio.h>
5 #include <poll.h>
6 #include <unistd.h>
7 #include <ach.h>
8
9 int main(int argc, char **argv)

10 {
11 const char *names[] = {"channel-0", "channel-1"};
12 const size_t n_channels = sizeof(names) / sizeof(names[0]);
13 const size_t n_pfd = n_channels + 1;
14 struct ach_channel channel[n_channels];
15 struct pollfd pfd[n_pfd];
16
17 /*****************************/
18 /* Initialize pollfd structs */
19 /*****************************/
20 for( size_t i = 0; i < n_channels; i ++ ) {
21 /* Open Channel */
22 enum ach_status r = ach_open( &channel[i], names[i], NULL );
23 if( ACH_OK != r ) {
24 fprintf(stderr, "could not open channel ’%s’: %s\n",
25 names[i], ach_result_to_string(r));

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 614

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

B. configuration, Building, and Packaging
Software build systems and package managers are useful tools to 
address the system integration needs of humanoid robot software. 
Open source software distributions such as Debian and FreeBSD 
have developed approaches for integrating and maintaining 
enormous numbers of software packages. Their goal is to make 
software that is portable, that builds robustly, and that is easy to 
install, upgrade, and remove. These tools are general and suited 
to the needs of humanoids as well.

Different humanoid robots provide varying hardware 
capabilities and software environments, and it is important that 
humanoid software be adaptable across these different robots. A 
key step to achieving this portability is the configuration step of 
the build process, where the software adapts to conditions of the 
environment in which it must run. For example, configuration 
may determine whether to use the previously mentioned epoll 
or kqueue calls depending on whether it must run on Linux or 
FreeBSD, or it may determine how to interface with the fieldbus 
linking the robot’s embedded electronics. In general, configura-
tion chooses alternate implementations or optional components 
to build based on the available features of the host system. This 
adaptability is vital to building software that is portable and that 
builds robustly.

The two predominant build systems are the GNU Autotools 
and CMake. Overall, both offer similar capabilities with a 
number of superficial differences. There is, however, a difference 

in design philosophy that influences the use of these systems. 
Autotools assumes little about the host platform beyond a POSIX 
shell, testing at compile-time for essentially every other feature, 
an approach that is robust to new and changing platforms but 
requires additional time for the feature tests. In contrast, CMake 
maintains a database of modules for platforms and libraries, 
which can reduce compilation time by omitting feature tests but is 
unhelpful for differing platforms and dependencies. One can also 
maintain a build-system agnostic database of available libraries 
using pkg-config (pkg-config, 2013), which works with CMake, 
Autotools, and other build systems. Additionally, projects using 
Autotools generally follow a strict set of conventions such that 
all can be configured, built, and installed by the same procedure 
(GNU Standards, 2015). There are fewer established conventions 
for CMake so it is common for different CMake projects to require 
different steps in the build process. One should consider the need 
for adaptability, conformity, and configuration performance 
when selecting a build system.

We use Autotools to build Ach due to their maturity and strict 
conventions compared to CMake. In addition, Autotools enable 
more direct integration with the Make-based build system of the 
Linux kernel, which simplifies building and installing the Ach 
Linux kernel module (see Section 3.2).

To manage the large number of software packages on humanoid 
robots, package managers are an invaluable tool. Package manag-
ers handle the details of installation, cross-package dependencies, 

61 NULL, ACH_O_NONBLOCK | ACH_O_FIRST );
62 switch(r) {
63 case ACH_OK:
64 case ACH_MISSED_FRAME:
65 break;
66 default:
67 fprintf( stderr, "Error getting data from ’%s’: %s\n",
68 names[i], ach_result_to_string(r));
69 exit(EXIT_FAILURE);
70 }
71 } else {
72 /* Read new data on a file descriptor */
73 ssize_t r = read(pfd[i].fd, buf, sizeof(buf));
74 if( r < 0 ) {
75 perror("read()");
76 exit(EXIT_FAILURE);
77 } else {
78 data_size = r;
79 }
80 }
81 /* Echo the data to standard output */
82 ssize_t wr = write(STDOUT_FILENO, buf, data_size);
83 if( wr < 0 ) {
84 perror("write");
85 exit(EXIT_FAILURE);
86 }
87 r_poll--;
88 }
89 }
90 }
91 return 0;
92 }

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org


March 2016 | Volume 3 | Article 615

Dantam et al. Unix Philosophy and Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org

and package versioning. The two main styles of package 
managers are binary-based and source-based. Binary-based 
package managers download and install pre-compiled packages. 
Examples include Redhat’s RPM, Debian’s APT, and – if viewed 
broadly  –  “App Stores” such as that of Apple’s iOS and Google 
Play. Source-based package managers download package source 
code and build it on the local machine. Examples include FreeBSD 
ports, Gentoo Portage, and Homebrew for MacOSX. The advan-
tage of binary packages is that no time must be spent to compile 
the package on the local machine. The advantage of source-based 
package managers is that packages can be custom-configured with 
optional features based on the users preferences and fewer server 
resources are required to store the compiled binaries. The choice 
of a package manager is typically dictated by the operating system 
distribution of the user. For handling software deployment, these 
package managers are mature and useful tools.

Two new data storage tools offer the potential to improve 
existing build systems and package managers: distributed revi-
sion control – e.g., git and mercurial – and copy-on-write (COW) 
filesystems  –  e.g., ZFS and BTRFS. Existing build systems and 
package managers were developed at a time when source code 
was typically downloaded as tarballs from a scattered collection of 
servers. Today, source code is often downloaded via a distributed 
version control system. Directly accessing the revision controlled 
files is a poor fit for Autotools’ approach of generating a port-
able configuration script, and it makes some features of current 

package managers redundant, such as hosting and distributing 
multiple tarball versions and applying patches before building. 
Second, COW filesystems provide the capability to make cheap, 
writable snapshots. This could be used to maintain multiple 
concurrent images of the operating system, for example to install 
different versions of one package or two different conflicting 
packages. One view on how these new tools could change build 
systems and packages managers is given by Poettering (2014). 
These new developments show that while existing build systems 
and package managers are useful and mature, there is room for 
ongoing development and new innovation.

ROS (Quigley et al., 2009) provides a different view on build 
systems and package management, focusing on robots. ROS com-
bines the build system and package manager into a single frame-
work based on CMake (Catkin, 2015); however, binary packages 
are still distributed using the existing APT package manager. This 
approach eliminates some duplication of metadata – i.e., which 
files must be installed – necessary with the traditional distinction 
between package managers and build systems. However, this is 
unhelpful if packages are to be installed on a non-ROS system. 
Additionally, packages are also constrained to use the given 
CMake-based build system which may not always be the best 
fit, e.g., for non-C/C++ packages, or provide necessary capabili-
ties, e.g., the site-based configuration feature of Autotools. Still, 
ROS presents an interesting take on how we build and package 
software.

http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org

	Unix Philosophy and the Real World: Control Software for Humanoid Robots
	1. Introduction
	2. Learning from Unix
	2.1. Communication and Scalability
	2.1.1. Multiplexing Approaches
	2.1.1.1. Fixed Interval Loop
	2.1.1.2. Process-Per-Connection
	2.1.1.3. Asynchronous I/O
	2.1.1.4. Event-Driven I/O

	2.1.2. Name Resolution and Service Discovery
	2.1.3. Lesson Learned

	2.2. Real-Time Software
	2.2.1. Real-Time Communication
	2.2.2. Real-Time Kernels
	2.2.3. Memory Allocation
	2.2.4. Lesson Learned

	2.3. System Integration
	2.3.1. Compatibility and Extensibility
	2.3.1.1. Mechanism vs. Policy
	2.3.1.2. Binary Compatibility
	2.3.1.3. Source Compatibility
	2.3.1.4. Language Selection

	2.3.2. Lesson Learned


	3. Extending Linux Communication
	3.1. The Ach IPC Library
	3.1.1. Relation to Robotics Middleware
	3.1.2. Design of Ach
	3.1.3. User Space Limitations

	3.2. Kernel Space Ach
	3.2.1. Kernel Module Implementation
	3.2.2. Advantages of Kernel Space Ach
	3.2.3. Disadvantages of Kernel Space Ach

	3.3. Benchmarks
	3.4. Case Study: Baxter Robot

	4. Conclusion
	Author Contributions
	Acknowledgments
	References
	Appendix
	A. Ach Multiplexing Example
	B. Configuration, Building, and Packaging



