
April 2016 | Volume 3 | Article 131

Code
published: 04 April 2016

doi: 10.3389/frobt.2016.00013

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Fabrizio Riguzzi,

Università di Ferrara, Italy

Reviewed by:
Nicos Angelopoulos,

Imperial College London, UK
Amanda Clare,

Aberystwyth University, UK

*Correspondence:
Peter Banda

peter.banda@uni.lu

Specialty section:
This article was submitted to

Computational Intelligence,
a section of the journal

Frontiers in Robotics and AI

Received: 07 December 2015
Accepted: 14 March 2016

Published: 04 April 2016

Citation:
Banda P and Teuscher C (2016)
COEL: A Cloud-Based Reaction

Network Simulator.
Front. Robot. AI 3:13.

doi: 10.3389/frobt.2016.00013

CoeL: A Cloud-Based Reaction
Network Simulator
Peter Banda1* and Christof Teuscher2

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg, 2 Department of Electrical
and Computer Engineering, Portland State University, Portland, OR, USA

Chemical Reaction Networks (CRNs) are a formalism to describe the macroscopic
behavior of chemical systems. We introduce COEL, a web- and cloud-based CRN sim-
ulation framework, which does not require a local installation, runs simulations on a large
computational grid, provides reliable database storage, and offers a visually pleasing and
intuitive user interface. We present an overview of the underlying software, the technol-
ogies, and the main architectural approaches employed. Some of COEL’s key features
include ODE-based simulations of CRNs and multicompartment reaction networks with
rich interaction options, a built-in plotting engine, automatic DNA-strand displacement
transformation and visualization, SBML/Octave/Matlab export, and a built-in genetic-al-
gorithm-based optimization toolbox for rate constants. COEL is an open-source project
hosted on GitHub (doi:10.5281/zenodo.46544), which allows interested research groups
to deploy it on their own sever. Regular users can simply use the web instance at no cost
at coel-sim.org. The framework is ideally suited for a collaborative use in both research
and education.

Code available at: 10.5281/zenodo.46544

Keywords: CoeL, chemical reaction network, chemical modeling tool, web tool, computational grid, dNA-strand
displacement, code: java,scala,groovy

1. INTRodUCTIoN ANd ReLATed WoRK

In this paper, we introduce COEL, the first web- and cloud-based framework for modeling and
simulating Chemical Reaction Networks (CRNs). COEL’s web client is accessible without any installa-
tion or download. Simulations are performed on a grid rather than the client’s machine, which allows
to run significantly larger systems very quickly. Remote teams can share and manipulate chemical
models in real time. Data are stored remotely and safely in COEL’s database, which is backed up
daily. In developing COEL, we emphasized platform-wide visualization, allowing quick and easy
data analysis for users. The platform also focuses on collaboration and transparency. Individuals can
work on different facets of the same project and see each other’s modifications in real time. This has
allowed us to study the same system and modify its simulation dynamics from separate campuses.
We have successfully applied COEL (Banda et al., 2014a) as a sole tool to model and evaluate various
chemical perceptrons (Banda et al., 2013, 2014b; Banda and Teuscher, 2014b), chemical delay lines,
and time-series learners (Banda and Teuscher, 2014a; Moles et al., 2015).

A study by Vines et al. (2014) found that 80% of scientific data are lost within two decades, disap-
pearing into old email addresses and obsolete storage devices. Alarmingly, the authors found that the
average rate of data loss is 17% per year. Similarly, only 11% of the academic research was reproducible

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00013&domain=pdf&date_stamp=2016-04-04
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00013
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:peter.banda@uni.lu
http://dx.doi.org/10.3389/frobt.2016.00013
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00013/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00013/abstract
http://loop.frontiersin.org/people/300555/overview
http://loop.frontiersin.org/people/143665/overview
http://dx.doi.org/10.5281/zenodo.46544
http://coel-sim.org
http://dx.doi.org/10.5281/zenodo.46544

FIGURe 1 | details of a CoeL interaction series showing its
programing capabilities. Left arrows denote the setting of species
concentrations and right arrows indicate assignments of user-defined
variables. The interaction at time 100 does the following (note that at time 0,
the variable IN is set to 3): first, the variables X1_inj and X2_inj are randomly
set to 0 or 3 with equal probability. The concentration of Sin is set to 3. Then,
both the concentrations of X1 and X2 are set to their respective injection
variables. Finally, Y is flushed from the system. The bottommost interaction
injects species B at concentration 0.5 if the output species Y does not match
AND of the original input concentrations X1_inj and X2_inj.

2

Banda and Teuscher COEL: A Cloud-Based Reaction Network Simulator

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 13

by the original research groups, as reported by Begley and Ellis
(2012). To address the “data loss” and “reproducibility crisis,” the
way we conduct research must dramatically change. We believe
that COEL is a step in that direction: storing all experiments as
well as the final and intermediate models in a centralized database
that provides reliable and long-term storage will help to address
the challenges. In addition, the data and models can easily be
made accessible to the collaborators and to the public.

COEL is an open-source project hosted on GitHub: https://
github.com/peterbanda/coel. That allows interested research
groups to deploy it on their own sever. Regular users can simply
use the web instance at no cost at http://coel-sim.org. The frame-
work is ideally suited for a collaborative use in both research and
education. Since COEL’s user interface is entirely web-based, it is
platform-independent and supports any operating system with a
web browser, including tablets and smartphones.

Out of all CRN simulators, COPASI (Hoops et al., 2006) is
probably the most advanced and widely used tool. It simulates
a variety of chemical objects and provides many options for the
design of experiments and the statistical analysis. Other tools
include the MATLAB Systems Biology Toolbox (Schmidt and
Jirstrand, 2006) and CellDesigner (Funahashi et al., 2008). The
majority of these tools, including COEL, share support for the
SBML language (Hucka et al., 2003) for describing chemical
systems, which enable cross-platform migration. Beyond deter-
ministic ODE integration of CRNs and stochastic reactions,
it is common to offer parameter optimization to help in the
design of the networks themselves. COPASI and CellDesigner
can simulate a number of other biochemical objects, such as
cellular compartments, and support various chemical kinetic
models. The primary reason for developing COEL was not to
introduce new simulation algorithms or methods of analysis
but to integrate the most common and practical features among
other CRN simulators into an intuitive and modern web-based
package.

2. FeATUReS ANd FUNCTIoNALITY

COEL’s main feature is the definition and simulation of CRNs.
A CRN consists of a finite set of chemicals and reactions. The
state of a CRN is represented by a vector of chemical species
concentrations. Reactions can also involve catalysts or inhibi-
tors, which accelerate or slow down the reaction without being
consumed. Reaction rates define the strength or speed of reac-
tions, as prescribed by kinetic laws: Michaelis–Menten kinetics
for catalytic reactions, non-competitive inhibitory kinetics for
inhibitory reactions, and mass-action kinetics otherwise. Based
on the reaction type, COEL automatically computes appropri-
ate rate functions with given numeric rate constants. But it also
allows to define arbitrary rate functions using custom expressions
over species labels giving users a full control over the system’s
dynamics. Reactions can be uni- or bidirectional. Bidirectional
reactions can have independent forward and backward rates.

Inspired by biochemical cells and membranes, COEL’s CRNs
support hierarchical, tree-like compartmentalization. Each com-
partment hosts an independent reaction set and vector of chemi-
cal concentrations. Compartments communicate with each other

through permeation, which are formalized and implemented in
the form of “channels.”

A unique feature of COEL is the so-called interaction series.
An interaction series allows the user to directly manipulate con-
centrations of species in the CRN, while the ODE solver carries
out an execution. This feature is analogous to – though more
capable than – the automatic chemical injections into a reaction
chamber. For compartment-extended CRNs, interaction series
can be identically hierarchical, thus allowing for specific interac-
tion with each component in the network. Concentrations can
be modified multiple times, as opposed to just being set initially.
For example, it is useful to define a set of periodic injections for
iterative processes. In specifying interactions, a user can define
custom concentration-setting expressions based on the extended
Java Math Expression Parser syntax with custom predefined
variables. A basic expression validation is also implemented
to prevent errors. The interaction series expressions are in fact
a scripted language that can describe a variety of complicated
experimental scenarios without modifying the underlying
framework code (Figure 1). As a consequence, end users have
the ability to manipulate the chemical system in an easy, flex-
ible, and dynamic way. COEL’s basic tool for interpreting and
observing CRN’s is the “translation series.” A single translation
is a straightforward function of the current concentrations and
of any predefined constants with a Boolean or numeric output.

COEL has a convenient web interface for visualizing DNA
strands specified by the Microsoft Visual DSD syntax (Lakin
et al., 2011). By implementing the methods of Soloveichik
et al. (2010), COEL can transform any CRN based on mass-
action kinetics into a DNA-strand displacement circuit. In
strand displacement systems, the populations of single-
stranded DNA molecules interact with double-stranded gate

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/peterbanda/coel
https://github.com/peterbanda/coel
http://coel-sim.org

FIGURe 2 | A high-level overview of CoeL’s architecture. It consists of
web and console clients, web servlet, services, business logic, persistence
layer, and computational grid. The application (IoC) container holding the
server side of the application is implemented in the Spring framework.

3

Banda and Teuscher COEL: A Cloud-Based Reaction Network Simulator

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 13

complexes, which mediate transformations between free
signals. Once applied to a reaction set, the transformation
produces a new CRN, describing displacements of single
strands from partial or full double strands, along with the
DNA structure of each species with numerically labeled
domains. This allows for an automatic translation of abstract
systems into wet chemistries.

Other features include performance evaluation, system
dynamics analysis, evolutionary optimization of rate constants,
random CRNs, Octave/Matlab export, and platform-wide fea-
tures, such as CSV export and integrated web charting.

3. ARCHITeCTURe ANd TeCHNoLoGY

COEL was implemented as a Java Enterprise application with a
modular architecture that uses a strict separation of the business
logic and technological application aspects. The absence of strict
inter-modular/inter-layer dependencies enables quick and easy
customization of components and providers.

With our decomposed application, only the domain objects,
the data holders of business data, implemented as POJOs (Plain
Java Objects), are shared among all application parts and layers.
Figure 2 presents a high-level overview of COEL’s architecture
with call request and pathways. On the very top, we have two
clients representing the only entry points to the application:
the web client backed by Grails (Official Grails website, 2015)
framework (discussed in Section 3.3) and the plain console client
implemented in standard Java for “headless” scripting.

Based on user’s requests, the clients call the ser-
vices, such as ArtificialChemistryService and
EvolutionService, living in the application container
(Section 3.1), which then redirects either to a computational grid
implemented on the top of the GridGain In-Memory Data Fabric
(Grid Gain website, 2015) (Section 3.2) or to the persistence layer
with Data-Access Objects (DAOs) and Object-Relation Mapping
(ORM) provided by Hibernate (Official Hibernate website, 2015)
(Section 3.4). In addition, the web client controllers have a direct
link to the persistence layer, which is beneficial especially for
basic CRUD operations. At the bottom, a PostgreSQL (Official
PostgreSQL website, 2015) database stores and provides data on
demand of the persistence layer. The business logic, such as the
chemistry simulation and the GA optimization, is implemented
mainly in the Scala language, leveraging both object-oriented and
functional programing approaches. All technologies and libraries
integrated into COEL are either open source or free to use.

COEL’s components, such as services, views, database tables,
and computational tasks, are easily extensible. For instance,
to add a new function called flattenCompartment, we
need to first add a function signature to the service interface
ArtificialChemistryService and then add an implemen-
tation to ArtificialChemistryServiceImpl. To access
the compartments stored in the COEL database, we can use the
get method of acCompartmentDAO that is already provided in
the service class through dependency injection (Section 3.1). The
service function ArtificialChemistryService.flat-
tenCompartment can then be called in a client’s controller with
appropriate views, such as AcCompartmentController.

To build COEL and to maintain its library dependencies,
we use Apache Maven (Official Apache Maven website,
2015). For a new application version, we run a set of JUnit
tests, which guarantee that the core functionality works as
expected. If users want to report a production issue or rec-
ommend a new feature, they can submit a report through a
Jira issue tracking system. COEL is deployed to the Tomcat
application server.

3.1. Application Container
The Spring Framework (Walls, 2014; Official Spring Project
website, 2015) provides COEL’s core application infrastructure.
Spring is a leading enterprise solution for Java consisting of
several sub-projects, which can be used separately or together.
Spring does not enforce strict dependencies, and it detaches
technical and business concerns.

The Inversion of Control (IoC) container is a central part
of the Spring Framework. It controls the creation, the number
of instances (singleton and prototype scopes), the lifecycle,
interdependencies (loose-coupling or wiring), and the general
configuration of application components, modules, adapters,
specific utility classes, or in general any POJO, the creation and
use of which should be maintained in the application context.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Banda and Teuscher COEL: A Cloud-Based Reaction Network Simulator

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 13

Spring IoC is a simple and transparent integrator of various
components and frameworks.

IoC encourages the best practices of programing with inter-
faces, i.e., a bean (object in the IoC container) should consist of
an interface and an implementation class. Therefore, each bean
knows that it can talk to a different bean that does something
specific, but not which type of object, how its functionality is
implemented, or how the call is carried out. The IoC container
injects the dependencies at runtime, and so beans take care
only about their business purpose, not the creation and main-
tenance of their relationships. This approach is superior to the
factory design pattern because all dependencies get injected
through the application container and configured by annota-
tions and/or XML. Beans are not aware of the container’s exist-
ence, i.e., unlike the factory pattern they do not need to call the
application container in order to get their dependencies. IoC is
often described with the Hollywood principle: “Don’t call us,
we call you.”

Other popular containers include GUICE and Pico, which
are not as feature-rich and instead strictly focus on IoC and
dependency injection. We opted for Spring because it offers other
functionality, e.g., for persistence and services, which we could
easily integrate out of the box.

The IoC abstraction results in modular, lightweight, and
layered architecture with loose coupled and pluggable compo-
nents. We also aimed to implement beans as thread-safe and
stateless if possible, so several callers could safely query the same
component without worrying about timing and/or call history.
Spring IoC enables COEL to become a truly test-driven project.
Because of dependency injections, our JUnit tests could switch to
test (rather than production) application context and substitute
for, e.g., classes that require remote access to production systems
with mock objects.

3.2. Cloud Computing
COEL’s computational grid has been built on top of the GridGain
In-Memory Computing Platform (Grid Gain website, 2015), which
implements a scalable, low-latency, and zero task-deployment
computational grid fitting seamlessly into our Spring-backed IoC
container (Section 3.1).

Complex tasks, such as evolutionary optimizations of rate
constants, performance evaluations, and dynamics analyses,
might run for months on a single core. To address that challenge,
COEL uses a scalable computational grid that currently consists
of 30 nodes with about 800 cores. The grid, which is partially
shared with researchers and students in Teuscher’s group, is
maintained and hosted by the Computer Action Team (CAT) at
Portland State University (PSU). The grid technology also allows
us to add any geographically remote resource because the com-
munication is carried out by TCP/IP protocol with optimized
serialization of exchanged data. We plan to utilize existing grid
technology to pool the resources with other remote teams.

COEL’s grid acts transparently, as a single computing resource.
GridGain enables COEL’s users to be more productive by elimi-
nating the complexity of distributed computing. Regardless of a
geographic location, users can add tasks to the grid from COEL’s
web client. When a user submits a task, the request is received by

the grid master and the task splits into many partial jobs, which
are distributed over the grid.

GridGain provides zero task-deployment technology that can
stream a new task’s byte code, i.e., a compiled class, to the nodes
without restart if it is not provided in the user libraries. Further,
the grid’s topology might change freely during its lifetime. A new
(slave) node can be added to the grid on-the-fly by registering the
IP address with the master node. COEL’s grid supports several
enterprise features, contributing to the effective and robust execu-
tion of jobs. The grid keeps track of various node statistics, such
as CPU performance, execution time, and availability, which are
constantly updated and utilized for adaptive job distribution, thus
leading to an increased overall job throughput. Also, if a node
disconnects from the grid, the exception is noted by a periodic
heartbeat. The node’s jobs are then redistributed across the grid.
If a node finishes its execution sooner than expected, it attempts
to steal jobs from other nodes.

3.3. Web Client
COEL’s web client is implemented in Grails (Official Grails
website, 2015), which is a powerful web 2.0 framework based on
the Groovy dynamic language for the JVM. JVM compatibility
means that Java, Groovy, and Scala source code compiles into
Java byte code and are therefore inter-callable. Grails follows the
“convention over configuration” approach, which emphasizes
standard naming, binding, and data flow. The structure of the
application is simply implied if it is not explicitly configured. This
approach is heavily utilized in a function called scaffolding. Based
on a domain object structure, Grails generates the controller with
basic CRUD operations and associated web pages dynamically at
runtime.

The web front-end relies on Javascript provided by the jQuery
library (jQuery website, 2015), which makes the UI interactive
and intuitive. It also moves a part of the data processing and
visualization directly to the web browser. For instance, although
COEL runs all simulations server side, if a user wishes to see a
chart, e.g., of concentration traces, COEL sends raw data to the
client, which is then transformed into a chart by using the Google
Charts API. For styling and for some widgets, we used the Twitter
Bootstrap library (Bootstrap website, 2015).

3.4. Persistence
The persistence layer consists of Data-Access Objects (DAOs),
which wrap storing, retrieving, deleting, and filtering functional-
ity for domain objects. To map an object-oriented domain model
to a traditional, relational database we use Hibernate (Official
Hibernate website, 2015), an Object-Relational Mapper (ORM)
for the Java language. DAOs and Hibernate are widely supported
by Spring, which offers hooks for a fast integration.

Hibernate solves object-relational impedance mismatch by
replacing direct persistence-related database accesses with high-
level object handling functions. Hibernate provides a declarative
strategy for data persistence. We defined a mapping of columns,
reference metadata, and inheritance strategy mapping. Based on
that information, Hibernate handles details about persistence
implementation, such as the generation of SQL statements, JDBC
connection, and the translation from the POJO to the JDBC result

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Banda and Teuscher COEL: A Cloud-Based Reaction Network Simulator

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 13

set, automatically. Hibernate also supports various advanced
features, such as cache and DB access optimization.

COEL’s approach is to store data in a structured database,
thereby enabling prompt retrieval, searching, and post-processing.
We have chosen PostgreSQL (Official PostgreSQL website, 2015)
because it is a mature open-source database providing standard
SQL/PLSQL language support, a comprehensive console as well
as a graphical-based administration UI (PgAdmin), and support
for array data types, which is handy for storing scientific vector
data. The database model currently contains 83 tables. To assure
compatibility for each version of COEL, we migrate data by a set
of SQL scripts. Also, every day, the entire database is backed up.

4. CoNCLUSIoN

COEL is a web-based chemistry simulation framework with a
modern layered architecture. It includes a scalable computational
grid, a stylish and interactive web UI, and the safe and transactive
persistence of chemistry models and results. We paid particular
attention to the overall usability, the fluid layout, and to the
embedded data visualization. COEL can be accessed without
installation from any web browser. As such, it is easier to start
using and has a larger potential target audience than existing
CRN desktop applications. Also, keeping COEL in the cloud
allows for easy collaboration and sharing of models and results.

In addition to chemical simulations, COEL also offers limited
capabilities to simulate more generic unconventional compute
models that are based on complex, spatial, random, and layered
networks with configurable node functions and interaction series.

Future work will include the addition of priorities and user
privileges for running tasks and for sharing models and results.
We are exploring the possibility to expose certain services
through a RESTful API that 3rd party applications could call and
tailor COEL’s functionality as needed.

AUTHoR CoNTRIBUTIoNS

PB and CT wrote the paper. PB developed the presented frame-
work (COEL). CT supervised the project.

FUNdING

This material is based upon work supported by the National
Science Foundation under grant no. 1028120.

SUPPLeMeNTARY MATeRIAL

The Supplementary Material for this article can be found online at
http://journal.frontiersin.org/article/10.3389/frobt.2016.00013

ReFeReNCeS

Banda, P., Blount, D., and Teuscher, C. (2014a). “COEL: a web-based chemistry
simulation framework,” in CoSMoS 2014: Proceedings of the 7th Workshop on
Complex Systems Modelling and Simulation, eds Stepney S. and Andrews P.
(Frome: Luniver Press), 35–60.

Banda, P., Teuscher, C., and Stefanovic, D. (2014b). Training an asymmetric signal
perceptron through reinforcement in an artificial chemistry. J. R. Soc. Interface
11. doi:10.1098/rsif.2013.1100

Banda, P., and Teuscher, C. (2014a). “An analog chemical circuit with parallel-ac-
cessible delay line for learning temporal tasks,” in ALIFE 14: The Fourteenth
Conference on the Synthesis and Simulation of Living Systems, Vol. 14, eds
Sayama H., Rieffel J., Risi S., Doursat R., and Lipson H. (Cambridge, MA: MIT
Press), 482–489.

Banda, P., and Teuscher, C. (2014b). “Learning two-input linear and nonlinear
analog functions with a simple chemical system,” in Unconventional Computing
and Natural Computing Conference, Vol. 8553, eds Ibarra O. H., Kari L., and
Kopecki S. (Switzerland: Springer International Publishing), 14–26. Lecture
Notes in Computer Science.

Banda, P., Teuscher, C., and Lakin, M. R. (2013). Online learning in a chemical
perceptron. Artif. Life 19, 195–219. doi:10.1162/ARTL_a_00105

Begley, C. G., and Ellis, L. M. (2012). Drug development: raise standards for
preclinical cancer research. Nature 483, 531–533. doi:10.1038/483531a

Bootstrap website. (2015). Available at: http://getbootstrap.com
Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., and Kitano,

H. (2008). CellDesigner 3.5: a versatile modeling tool for biochemical networks.
Proc. IEEE 96, 1254–1265. doi:10.1109/JPROC.2008.925458

Grid Gain website. (2015). Available at: http://www.gridgain.com
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., et al. (2006). COPASI – a

complex pathway simulator. Bioinformatics 22, 3067–3074. doi:10.1093/
bioinformatics/btl485

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al.
(2003). The systems biology markup language (SBML): a medium for repre-
sentation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi:10.1093/bioinformatics/btg015

jQuery website. (2015). Available at: http://jquery.com
Lakin, M. R., Youssef, S., Polo, F., Emmott, S., and Phillips, A. (2011). Visual DSD:

a design and analysis tool for DNA strand displacement systems. Bioinformatics
27, 3211–3213. doi:10.1093/bioinformatics/btr543

Moles, J., Banda, P., and Teuscher, C. (2015). Delay line as a chemical reaction
network. Parallel Process. Lett. 25, 1540002. doi:10.1142/S0129626415400022

Official Apache Maven website. (2015). Available at: http://maven.apache.org
Official Grails website. (2015). Available at: http://www.grails.org
Official Hibernate website. (2015). Available at: http://hibernate.org
Official PostgreSQL website. (2015). Available at: http://www.postgresql.org
Official Spring Project website. (2015). Available at: http://spring.io
Schmidt, H., and Jirstrand, M. (2006). Systems biology toolbox for MATLAB: a

computational platform for research in systems biology. Bioinformatics 22,
514–515. doi:10.1093/bioinformatics/bti799

Soloveichik, D., Seelig, G., and Winfree, E. (2010). DNA as a universal substrate
for chemical kinetics. Proc. Natl. Acad. Sci. U.S.A. 107, 5393–5398. doi:10.1073/
pnas.0909380107

Vines, T. H., Albert, A. Y. K., Andrew, R. L., Débarre, F., Bock, D. G., Franklin, M.
T., et al. (2014). The availability of research data declines rapidly with article age.
Curr. Biol. 24, 94–97. doi:10.1016/j.cub.2013.11.014

Walls, C. (2014). Spring in Action, 4th Edn. Shelter Island, NY: Manning
Publications.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Banda and Teuscher. This is an open-access article distrib-
uted under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these
terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://journal.frontiersin.org/article/10.3389/frobt.2016.00013
http://dx.doi.org/10.1098/rsif.2013.1100
http://dx.doi.org/10.1162/ARTL_a_00105
http://dx.doi.org/10.1038/483531a
http://getbootstrap.com
http://dx.doi.org/10.1109/JPROC.2008.925458
http://www.gridgain.com
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btg015
http://jquery.com
http://dx.doi.org/10.1093/bioinformatics/btr543
http://dx.doi.org/10.1142/S0129626415400022
http://maven.apache.org
http://www.grails.org
http://hibernate.org
http://www.postgresql.org
http://spring.io
http://dx.doi.org/10.1093/bioinformatics/bti799
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1016/j.cub.2013.11.014
http://creativecommons.org/licenses/by/4.0/

	COEL: A Cloud-Based Reaction Network Simulator
	1. Introduction and Related Work
	2. Features and Functionality
	3. Architecture and Technology
	3.1. Application Container
	3.2. Cloud Computing
	3.3. Web Client
	3.4. Persistence

	4. Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References

