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Cognitive robotics research draws inspiration from theories and models on cognition, 
as conceived by neuroscience or cognitive psychology, to investigate biologically plau-
sible computational models in artificial agents. In this field, the theoretical framework 
of Grounded Cognition provides epistemological and methodological grounds for the 
computational modeling of cognition. It has been stressed in the literature that sim-
ulation, prediction, and multi-modal integration are key aspects of cognition and that 
computational architectures capable of putting them into play in a biologically plausible 
way are a necessity. Research in this direction has brought extensive empirical evidence, 
suggesting that Internal Models are suitable mechanisms for sensory–motor integration. 
However, current Internal Models architectures show several drawbacks, mainly due 
to the lack of a unified substrate allowing for a true sensory–motor integration space, 
enabling flexible and scalable ways to model cognition under the embodiment hypoth-
esis constraints. We propose the Self-Organized Internal Models Architecture (SOIMA), 
a computational cognitive architecture coded by means of a network of self-organized 
maps, implementing coupled internal models that allow modeling multi-modal sensory–
motor schemes. Our approach addresses integrally the issues of current implementations 
of Internal Models. We discuss the design and features of the architecture, and provide 
empirical results on a humanoid robot that demonstrate the benefits and potentialities of 
the SOIMA concept for studying cognition in artificial agents.

Keywords: internal models, cognitive robotics, self-organized maps, sensory–motor schemes, computational 
architecture

1. inTrODUcTiOn

Cognitive robotics is an active research field in the cognitive sciences since the role of embodiment 
has been acknowledged as crucial to understand and reproduce natural cognition, showing as well a 
stance against the classic theory of cognition as symbolic processing. Research in cognitive robotics 
draws inspiration from theories and models on cognition, as conceived by neuroscience or cognitive 
psychology, to investigate biologically plausible computational models in artificial agents. Scientific 
aims include studying the implications of these models under controlled conditions and providing 
agents with basic cognitive skills (Pfeifer and Scheier, 2001).
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In this research field, Grounded Cognition (Barsalou, 2008) 
constitutes a theoretical reference framework, including the 
account of embodied cognition, which stresses the importance 
of the body–environment interaction for the structuring and 
emergence of cognitive skills (Wilson, 2002).

Under this perspective, we are committed to investigate 
biologically plausible computational architectures in which to 
model cognition effectively. This issue has not trivial answers 
since there are several constraints on the nature, the role, and the 
architectural integration of the underlying artificial mechanisms 
by means of which we shall achieve computationally effective 
ways to model cognition. Some of these most relevant constraints 
are revised now.

In Grounded Cognition, all aspects of experience, perceptual 
states (for instance, those produced by vision, hearing, touching, 
tasting), together with internal bodily states and action, have neu-
ral correlates in the brain that are stored in memory. These neural 
activation patterns constitute multi-modal representations that 
are re-enacted during perception, memory, and reasoning. Modal 
re-enactments of these patterns constitute internal simulation 
processes (Barsalou, 2003) and are considered to lie at the heart 
of the off-line characteristics of cognition (Wilson, 2002). Thus, 
the theory of simulation is at the core of the embodied cognition 
hypothesis.

This shift in the paradigm about cognition has necessarily 
brought new design considerations on computer models in 
order to achieve embodied or grounded cognition, which have 
taken center stage in Artificial Intelligence [e.g., Grush (2004), 
Svensson and Ziemke (2004), and Pezzulo et al. (2011, 2013a)]. 
Thus, emphasis has been made on the predictive learning and 
internal modeling capabilities of the sensory–motor system 
(Pezzulo et al., 2013b).

Furthermore, in the embodied cognition framework, the 
acquisition of sensory–motor schemes is central (Pfeifer and 
Bongard, 2007), for they underlie cognition (Lungarella et  al., 
2003) and are grounded in the regularities of the sensory–motor 
system interactions with its environment. The cerebral cortex 
provides the necessary substrate for the development of these 
sensory–motor schemes as it constitutes the locus of the integra-
tion of multi-modal information.

All these considerations point to the fact that simulation, pre-
diction, and multi-modal integration are key aspects of cognition 
and it has been stressed in the literature the necessity to achieve 
cognitive architectures capable of putting them into play in a 
biologically plausible way (Pezzulo et al., 2011). This paper is an 
attempt in this direction.

Based on extensive empirical evidence of its putative function-
ality in the Central Nervous System (Kawato, 1999; Blakemore 
et  al., 2000; Wolpert et  al., 2001), Forward and Inverse Models 
provide arguably a sound epistemological basis to understand 
cognitive processes at a certain level of description under the 
embodied cognition framework.

A thorough review of the implementations of internal models 
is out of the scope of this work. However, it is worth noting that 
most of the implementations show shortcomings in light of our 
previous discussion [e.g., see Arceo et al. (2013)]. First, we find 
that current implementations of internal models lack of flexibility 

as a consequence of the computational tools used. This translates 
into the fact that learning plasticity is highly reduced or even 
absent [e.g., see Lara and Rendon-Mancha (2006), Dearden 
(2008), Möller and Schenck (2008), and Schenck et al. (2011)]. 
Second, the implementations redound in ad  hoc inverse and 
forward models, not easily scalable, and in some cases, using dif-
ferent networks for different motor commands [e.g., Möller and 
Schenck (2008)]. Finally, in the literature, there is an abstract and 
high-level coding of inverse models as in Dearden (2008), where 
inverse models are coded as direct actions.

We propose a new computational architecture for building 
cognitive tasks under the paradigm of Grounded Cognition: the 
Self-Organized Internal Models Architecture (SOIMA), a com-
putational cognitive architecture coded by means of a network of 
self-organized maps, implementing coupled internal models that 
allow multi-modal associations. The SOIMA tackles integrally 
the issues of current implementations as will be discussed in the 
sequel.

The structure of the paper is as follows: in Section 2, we intro-
duce the SOIMA architecture, explaining its theoretical founda-
tions, justifying the Internal Models approach for modeling 
cognition and detailing the SOIMA’s structure. Also, the features 
that make of it a suitable cognitive architecture tackling current 
implementations’ shortcomings are introduced in this section. In 
Section 3, we provide two experimental case studies to demon-
strate the architecture’s functionality. We first introduce a case 
study for saccadic control in order to demonstrate the SOIMA 
features in detail. Then, we show a Hand–Eye Coordination task 
allowing us to demonstrate a scaling-up of the architecture, show-
ing how the connectivity enhancements enable flexible and effec-
tive ways to model more complex tasks. In Section 4, we conclude 
by discussing the results and perspectives for future research.

2. selF-OrganiZeD inTernal MODels 
archiTecTUre: sOiMa

2.1. Biological Foundations
Brain plasticity regulates our capability to learn and to modify 
our behavior. Plastic changes are induced in neural pathways and 
synapses by the bodily experience with the external environment.

In the neurosciences literature, it has been proposed that the 
rich multi-modal information flowing through the sensory and 
motor streams is integrated in a sort of body schema, or body rep-
resentation. Fundamental for action planning and for efficiently 
interacting with the environment (Hoffmann et al., 2010), such 
a body representation would be acquired and refined over time, 
already during pre-natal developmental stages.

For example, Rochat (1998) showed that infants exhibit, at 
the age of 3 months, systematic visual and proprioceptive self-
exploration. The authors also report that infants, by the age of 
12 months, possess a sense of a calibrated intermodal space of 
their body, that is a perceptually organized entity which they 
can monitor and control (Rochat and Morgan, 1998). As dis-
cussed by Maravita et al. (2003) and Maravita and Iriki (2004), 
converging evidence from animal and human studies suggests 
that the primate brain constructs various body-part-centered 
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FigUre 1 | internal models canonical representation. (a) Inverse 
model: given the current sensory state St and a desired sensory state for 
time t + 1, St+1 this model suggests the motor command Mt

∗ that brings 
about the change in the sensory state of the agent. (B) Forward model: given 
the current sensory state St and a motor command Mt, the forward model 
predicts the resulting sensory state prediction St+

∗
1, were the command 

executed. It is worth noting the difference between St+
∗

1 and St+1. The former is 
the actual expected state for the next time-step, but the latter may require 
several time-steps in order to be attained.

3

Escobar-Juárez et al. A Self-Organized Internal Models Architecture

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 22

representations of space, based on the integration of different 
motor and sensory signals, such as visual, tactile, and propriocep-
tive information.

Sensory receptors and effector systems seem to be organized 
into topographic maps that are precisely aligned both within and 
across modalities (Udin and Fawcett, 1988; Cang and Feldheim, 
2013). Such topographic maps self-organize throughout the brain 
development in a way that adjacent regions process spatially close 
sensory parts of the body. Kaas (1997) reports a number of stud-
ies showing the existence of such maps in the visual, auditory, 
olfactory, and somatosensory systems, as well as in parts of the 
motor brain areas.

All this evidence suggests thus that cognition relies on self-
organized body-mapping structures integrating sensory–motor 
information. But how does this integration takes place?

The work of Damasio (1989) and Meyer and Damasio (2009) 
proposes a functional framework for multi-modal integration 
supported by the theory of convergence-divergence zones (CDZ) 
of the cerebral cortex. This theory holds that specific cortical areas 
can act as sets of pointers to other areas and, therefore, relate vari-
ous cortical networks to each other.

CDZ integrate low level cortical area networks (close to the 
sensory or motor modalities) with high level amodal constructs, 
which solves the problem of multi-modal integration since it ena-
bles the extraction of complex pure and non-segmented sensory 
information units and sensory–motor contingencies.

In the CDZ convergence process, modal information spreads 
to the multi-modal integration areas; while in the divergence 
process, multi-modal information propagates to modal networks 
generating the re-enactment of sensory or motor states. It is in 
this sense that the propagation bi-directionality provides the 
mechanism of mental imagery and the re-enactment of sensory–
motor states.

This bi-directional capability is, thus, fundamental for 
multi-modal integration and, hence, for cognition. The lack of 
this property is precisely one of the main limitations of current 
cognitive architectures that our model tackles as will be shown in 
subsequent sections.

2.2. internal Models
Internal models merge in a natural way sensory and motor 
information and create a multi-modal representation (Wolpert 
and Kawato, 1998). These models also provide agents with antici-
pation, prediction, and motor planning capabilities by means of 
internal simulations (Schillaci et al., 2012b).

We are particularly interested in the pair formed by Inverse-
Forward models. The inverse model (IM) is a controller 
(Figure 1A), which generates the motor command ( Mt

∗ ) needed 
to achieve a desired sensory state (St+1) given a current sensory 
state (St). The forward model (FM) is a predictor (Figure 1B) that 
predicts the sensory state entailed ( St+

∗
1 ) by some action of the 

agent (Mt) given a current sensory state (St).
While the IM is mainly required for motor control, the FM 

has been proposed as a possible model for a number of important 
issues, among which are sensory cancelation (Blakemore et al., 
2000), state estimation (Wolpert et  al., 1995), and body map 
acquisition (Schillaci et al., 2012a).

The coupled pair IM–FM has been introduced by Jordan and 
Rumelhart (1992) from control theory. In neuroscience, one of 
the first proposals was the MOSAIC architecture by Wolpert and 
Kawato (1998) and has been used in action recognition (Demiris 
and Khadhouri, 2006; Arceo et  al., 2013), own body distinc-
tion (Schillaci et al., 2013), and mental simulation (Möller and 
Schenck, 2008).

In Cognitive Robotics, internal models have been used for 
action execution and recognition (Dearden, 2008), safe naviga-
tion planning (Lara and Rendon-Mancha, 2006; Möller and 
Schenck, 2008), and saccades control (Schenck et al., 2011). On 
the other hand, several works have proposed IM–FM couplings 
to perform different tasks. For example, in Schillaci et al. (2012b), 
several IM–FM pairs are used to recognize an action when com-
paring the output of each pair with the real situation. In the case 
of Schenck (2008), each pair is used in order to produce the motor 
command enabling an agent to reach a desired position, where 
the FM acts as the desired position monitor.

Internal Models are thus a suitable mechanism for multi-modal 
representations. They constitute a sound basis for modeling cogni-
tion and they also provide a coherent epistemological framework 
for studying it under the embodied cognition framework.

In our work, we propose an architecture that preserves the 
structural ideas put forward by Damasio along with the self-
organizing and multi-modal integration properties of the brain, 
in the framework of internal models. This allows for building 
a mechanism for the integration and generation of multi-
modal sensory–motor schemes in the framework of Grounded 
Cognition.

The SOIMA relies on two main learning mechanisms. The first 
one consists in Self-Organizing Maps (SOMs) that create clusters 
of modal information coming from the environment. The second 
one codes the internal models by means of connections between 
the first maps using Hebbian learning. This Hebbian association 
process generates sensory–motor patterns that represent actual 
sensory–motor schemes.

This coding approach of internal models using SOMs and 
Hebbian learning allows for a modular implementation, and 
constitutes the main contribution of our work. The architecture 
allows for an integrated learning strategy and provides means for 
building coupled sensory–motor schemes in a flexible way. Most of 
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the previous approaches of internal models  implementations, 
as reported in the literature, provide different computational 
substrates that connect to each other in order to synthesize 
the coupled model. The substrates may even be of different 
nature (e.g., different kinds of neural networks), which obligates 
to use distinct learning strategies for each model. In many cases 
also, the resulting models are ad hoc for the task. Our approach 
synthesizes the coupled model on the same substrate, conferring 
connectivity enhancements that allow for modular and flexible 
internal models implementations and sensory–motor scheme 
maps. This mapping capability may be exploited in interesting 
ways as will be discussed in the conclusions.

We now discuss the implementation details of these two learn-
ing mechanisms in the SOIMA.

2.3. sOiMa’s structure
2.3.1. Modal Information Clustering
In the SOIMA, the basic units are SOMs (Kohonen, 1990) that 
generate clusters of information coming from different modali-
ties (sensory or motor) or from other SOMs.

When training a SOM, a topological organization occurs in a 
space of lower dimension (2D or 3D) than the modal input space. 
This organization corresponds to a partition of the input space 
into regions that reveal the similarities of the input data.

A SOM is an artificial neural network endowed with an 
unsupervised learning mechanism based on vector quantization. 
Vector quantization refers to the fitness of a probability density 
function to a discrete set of prototype vectors.

In our case, we are interested in evaluating the differences 
between the vectors not only in terms of their relative distance 
but also in terms of their orientation. The cosine similarity can 
be used to obtain the differences in orientation, so we use both 
measures for clustering data in the SOM. Thus in our design, 
when a vector x occurs at the input, the activation Aj of each node 
in the SOM is defined as

 

Aj j
j

j

= − + −
⋅











1
2

1x w
x w

x w
 (1)

where wj is the vector of weights between the input and the node 
j, the first term is the Euclidean distance between x and wj and the 
second term is the cosine similarity. The winning node is the one 
with the lowest activation.

Once the winning node is computed, the weights of the neu-
rons are updated according to the following equation

 ∆ = −w x wj j jt hα( ) ( )  (2)

where wj is the weight between the input vector x and node j, hj is 
the neighborhood function of node j defined as

 h ej

j
n=

−
( )

β

2  (3)

where βj is the distance between node j and the winning unit, and 
n is the total number of nodes in the map. If βj is greater than the 
size of the neighborhood v then hj = 0, v decreases monotonically 

from vi
1 to vf = 1, where vi and vf are the initial and final neighbor-

hood sizes, respectively.
And finally α(t) is the learning rate that increases as a function 

of time, defined by:

 
α α

α α( ) ( )
( )

t t
v v

i
f i

i f

= +
−
−









  (4)

where αi and α f are the initial and final learning rates, respectively, 
and t is the current learning period.

2.3.2. Modal Maps Association
The association between SOMs of different modalities has been 
reported in recent work. In Westerman and Miranda (2002), the 
association between vocalization and hearing maps can be used 
for modeling the emergence of vocal categories. In Li et al. (2007), 
clues about the vocabulary development age in infants, using a 
similar association scheme, were found. In Mayor and Plunkett 
(2010), an association between visual and hearing maps was used 
to determine the taxonomic response in early learning of words. 
Morse et al. (2010a) integrates different sensory and motor modal 
maps through a changing network with Hebbian learning to build 
a semantic meaning acquisition system.

In our work, we create the modal association between different 
SOMs through weights connected using the well-known Hebbian 
learning rule (Hebb, 1949). The rule states

When an axon of cell A is near enough to excite a cell 
B and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place 
in one or both cells such that A’s efficiency, as one of the 
cells firing B, is increased (Hebb, 1949).

In this respect, the Hebbian rule establishes that the connec-
tion between neurons is reinforced according to the activation of 
neurons that participate in the connection. In our model, we use 
the following positive Hebbian rule for modulating connections 
between nodes of different maps:

 ∆ =w u uij i jα  (5)

where wij is the weight of the connection between the node the 
node i, and j α is the learning rate, ui is the activation of the node 
i as uj is the activation of the node j.

Figure 2 depicts the proposed architecture showing two maps 
(S and M) corresponding to the modalities of the agent. We 
consider M as a modality so that, together with S, the top map 
forms a multi-modal representation (MMR). The idea of Hebbian 
training is to modulate a network of connections between the top 
SOM and each modality SOM. Each node of the top SOM is con-
nected to every node of the modality SOMs. These connections 
are originally set to 0.

The association process takes place as follows. The two maps 
S and M are fed with the sensory and motor data generated 

1 This initial value is oftentimes taken as the 15% of the size of the map.
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integrates the modalities coding, thus, sensory–motor schemes in a 
Multi-Modal Representation (MMR).
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throughout the interaction of the agent with the environment. 
Every time an input pattern is introduced, there is a winning 
node in S and M, respectively. Then the inputs to the top map are 
the coordinates of these winning units, so that a corresponding 
winning unit occurs at the top SOM. A Hebbian modulation 
is then applied to the connection between these nodes. In this 
way, a sensory–motor scheme is coded on the MMR through the 
Hebbian mechanism. Once the system has being trained, this 
association allows for retrieving all the modalities when any of 
them is present.

As can be seen in Figure 2, each winning unit of the MMR 
map receives one connection coming from the M map and two 
connections coming from the S map, representing two differ-
ent time steps (a change in the sensory situation); the motor 
command is the one associated with that change in the sensory 
situation. Thus, the trained system associates a triplet formed 
by a sensory situation, a motor command, and a correspond-
ing predicted sensory situation associated with these two. It 
could be said then that the MMR codes the associated triplet, 
as each node in this map codes for a specific sensory–motor 
experience of the agent. The MMR map is coded as a cube 
in order to better represent the multi-modal space. In this 
configuration, each triplet has 26 direct neighbors providing 
a richer structure.

We now discuss the main attributes of the SOIMA.

2.4. sOiMa’s Features
One of the main advantages of the SOIMA resides in its 
 bi-directional functionality, since it can work either as a forward 
or as an inverse model, depending on the inputs that are fed to the 
system. In other words, the system integrates the sensory–motor 
scheme in such a way that it is now independent of the direction-
ality of the modal information flow.

When a forward model is required, an S and M signal for the 
time t should be present, activating the corresponding maps and 
their connections toward the MMR of the system2 (see Figure 2). 
Thence, the signal would spread back to the map S, producing with 
its activation the prediction of the sensory state at the time t + 1.

If, on the contrary, an inverse model is needed, then the required 
inputs are two sensory situations, coded in S corresponding to 
times t and t + 1, in turn triggering the activation of the MMR 
map and, thence, activating the node in M corresponding to the 
pair in S.

Some interesting features of the MMR are noteworthy. The 
MMR allows the bi-directional feature to be functional all 
the time. In other words, any model (IM or FM) can be easily 
implemented by instantiating the corresponding inputs for the 
required functionality. In this way, both internal models are 
coded on the same substrate, enabling the design of integrated 
learning strategies.

Moreover, the MMR allows for the construction of coupled 
IM–FM pairs in a modular way. Indeed, as either model (IM or 
FM) can be instantiated at any time, the output of one of them 
can be used as input to the other, constituting thus an IM–FM 
coupling. Thus, several IM–FM couplings can be instantiated 
sequentially, so as to build a simulation process for instance. 
Hence, it is possible to feed sequentially in time the IM or FM, 
either with data coming from the environment or produced 
by the system itself. Also, the MMR allows for the integration 
of other MMRs, which enables the coupling of distinct sen-
sory–motor schemes. These features will be illustrated in the 
experiments.

Last, but not least, the MMR is not built from an abstract 
representation, in the sense of being defined by the programmer 
of the system as in the classical AI paradigm. Rather, it constitutes 
a representation grounded in the bodily constrained interaction of 
the agent with its surrounding environment.

The online learning ability of the architecture is also notewor-
thy. While running, the system is able to acquire new knowledge 
in order to improve its performance on an ongoing basis. This 
capability is achieved through the updating of the weights 
interconnecting the SOMs, so the system can adapt to unfamiliar 
situations as they arrive. This feature will be made clearer in the 
next section.

3. eXPeriMenTs anD resUlTs

In order to demonstrate the functionality of the SOIMA, we 
introduce two case studies using a NAO3 humanoid robot. The 
first experiment is intended to demonstrate the SOIMA’s func-
tionality by modeling saccadic movements of the eye in order 
to center a stimulus. This experiment was designed to describe 
the detailed workings of the SOIMA implementation and shows 
also that the SOIMA approach allows to cope with typical 
dimensionality issues of the visual input space. The second case 

2 The activation of the top map constitutes the integration and multi-modal repre-
sentation of the event.
3 Developed by Aldebaran Robotics.
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study introduces an example of how the SOIMA can be scaled 
upwardly to model more complex cognitive tasks. In this second 
experiment, we aim at implementing a Hand–Eye Coordination 
(HEC) strategy using the SOIMA. Here, the architecture is used 
as a building block, allowing for exploiting previously acquired 
knowledge.

3.1. saccadic control
3.1.1. Visuomotor Schemes Modeling
Rapid eye motions, the so-called saccadic movements (Leigh and 
Zee, 1999), are intended to project the image of the visual area of 
interest in the most sensitive part of the retina, called the fovea. 
Saccadic control is a canonical problem involving sensory predic-
tive and fine-tuning motor control capabilities.

It is worth mentioning a brief comment on the work of Kaiser 
et al. (2013) that introduces a saccadic control system based on 
internal models and asserts that addressing the image prediction 
problem is rather highly complex due to the input high dimen-
sionality. For this reason, in their proposal predictions are not 
made, rather inverse mappings are computed from the output 
image to the input image.

The implementation of internal models can be made with 
any of the available learning techniques in artificial intelligence. 
However, there are serious limitations to the use of images, 
because they increase the dimensionality of the problem as well 
as the difficulty on finding regularities in the inputs. As an end 
result, the coding and learning of visuomotor schemes becomes 
a major difficulty.

By contrast, the scheme that we propose addresses the 
prediction problem using images of high dimensionality, 
which enables the development of more versatile models. 
Our system allows for learning the relationship between the 
camera motions and the corresponding sensory changes. 
Once learned, the model works as a mechanism that retrieves 
the  motor command required to take some stimulus in the 
image to any desired area in the same image. In particular, we 
want the model to focus on some salient stimulus. A similar 
implementation is presented in Karaoguz et al. (2009) where a 
SOM is used for gaze fixation.

We use as input an image grabbed from one of the cameras in 
the NAO humanoid robot. Our experiment on saccadic control 
is an instance of a modular system that implements different 
coupled internal models pairs (FM–IM). We use the simulations 
provided by the FM–IM pair to provide the motor commands 
necessary to place some stimulus present in the image at any 
specified position. In Figure 3, we show the schematic functional 
diagram of the system.

At this point, it is worth mentioning that an important feature 
of the architecture is the ability to learn the Hebbian connections 
online. Initially, there is no association between the maps in the 
system, i.e., all connections have a value of 0; therefore, no motor 
command may be suggested aiming at focusing the St stimulus by 
means of the inverse model. Hence, when a motor command can-
not be retrieved from the system, a motor-babbling mechanism 
generates a random movement. This command is then executed, 
obtaining thus the St+1 image. This information is integrated into 
the connections between SOMs using on-line Hebbian learning. 

The final result is the association of two nodes from the S map, 
one representing St and one representing St+1 with one node in the 
M map representing the motor command that brings about this 
change in the sensory space.

Thus, in the first part of the forward-inverse coupling, input 
St represents the current visual sensory input, i.e., the image 
with a stimulus appearing at some arbitrary position. Input St+1 
represents the desired visual sensory state, i.e., the image with 
the stimulus in the desired position (this image is built or taken 
from a database). With these inputs, the inverse model suggests 
an initial motor command Mt

∗  aiming at the desired sensory 
change4.

This motor command along with the image St is fed to the for-
ward model to predict the sensory outcome St+

∗
1 . This predicted 

image is compared with the desired one St+1 to compute the error. 
In turn, the error is used to decide whether this output should 
be fed back as St, so that a corrective saccadic movement can be 
performed. In other words, supplementary control commands 
may be stacked together with the first Mt

∗  in order to reach the 
desired situation St+1.

Finally, once the motor commands required to bring St to the 
desired St+1 are found, they are executed in the system with actual 
movements.

The details of the clustering of the modal maps and their 
Hebbian connections are discussed now.

Experiments were carried out on a simulated NAO humanoid 
robot endowed with 21 degrees of freedom (DOF) and two 
cameras. The Webots v8.0.3 was used to test the saccadic move-
ments system. The experimental setup consisted in the robot 
facing a wall, situated at a distance of 40 cm, where a single visual 
stimulus was displayed, as shown in Figure 4. The model showed 
in Figure 3 was used to control the saccadic movements toward 
the visual stimulus.

The two DOF associated to the agent’s head movement were 
used: yaw (rotation around the vertical axis) and pitch (rotation 
around the horizontal axis); the camera is situated in the upper 
part of the head and has an image resolution of 640 × 480 pixels.

3.1.2. Sensory Input Processing
Learning requires a set of training patterns, each containing an 
image for St, one for St+1 and a motor command that brings the 

4 Recall that once the system is trained, it can be used as an inverse or a forward 
model.
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FigUre 5 | input image processing, (a) original image 640 × 480,  
(B) foveated image 320 × 240, and (c) saliency image 40 × 30.

FigUre 4 | experimental setup.
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system from St to St+1. The motor command is defined as a pair 
(Δ Yaw, Δ Pitch).

To build the images, two stages of processing are necessary. 
In the first stage, a fovealized image is obtained from the original 
camera image (640 × 480 pixels). To foveate the images, we apply 
a radial mapping with high resolution toward the center of the 
image and low toward the periphery. The mapping emulates 
the human retina properties containing high concentration of 
photoreceptors in the fovea. It fulfills a special function in our 
design, because when a stimulus is located near the central part of 
the image (fovea) a small change in Yaw or Pitch corresponds to 
a large position change of the stimulus in the image. This enables 
a more accurate detection of the position of the stimulus nearby 
the central region of the image. As a result, the task of center-
ing a stimulus in the image is more accurate. The fovealization 
algorithm delivers a 320 × 240 image.

The second processing phase is intended to facilitate the 
identification of salient stimuli in the image captured by the 
camera. This is achieved through binary thresholding and 
gaussian smoothing. At this stage, the image size is 40  ×  30 
pixels, reducing the sensory input space dimensionality. In 
Figure 5, we can see the visual stimuli at the different stages 
of processing.

In our system, a motor command Mt is a change (Δ) in the 
orientation (in degrees) on the horizontal and vertical axes of the 
robot’s head. Any change between two positions depends on the 
resolution of the motors. This resolution in our case was built 
using a mapping mechanism similar to that applied to the visual 
modality. This motor mapping consisted in a variable yaw–pitch 
movement resolution, being this higher in the center than in the 
periphery.

To visualize the motor space, a motor resolution image (IRM) 
was made from a total of 5000 head joints configurations. Initially, 
IRM is an image where all its pixels are set to 0. Then for each 
position, the center of mass of the visual stimulus in the image 
is computed. According to the location of the center of mass, the 
value of the corresponding pixel in IRM is increased. This gave rise 
to an intensity image where each pixel value is proportional to the 
number of positions in each location.

The IRM image is depicted in Figure 6. As it can be seen, the 
highest visual stimulus density on camera positions is located in 
the central region of the image.

3.1.3 SOMs Training
For the training of the SOMs, 5000 random patterns with different 
initial (St) and final (St+1) camera positions and their correspond-
ing Mt were taken with the following structure:

• St: it was formed by a 1200 values vector normalized from 0 to 
1, taken from a 40 × 30 pixel salient features image.

• St+1: it was formed with the same procedure as for St but with a 
different camera position.

• Mt: it consists of two values (ΔYaw, ΔPitch) built in accordance 
with the following:

 
∆ = −

+
Yaw Yaw YawS St t

( )
1

 (6)

 
∆ = − .

+
Pitch Pitch PitchS St t

( )
1  (7)

normalized from 0 to 1. With the robot placed at 40 cm from the 
stimulus, the Yaw axis of the camera covers an angle of 43.5° and 
the Pitch axis 37.8°, assuring that the stimulus is always on sight. 
The value of 1 represents the biggest positive possible change 
above the corresponding axis and 0 represents the biggest pos-
sible change in the other direction. Values of (0.5, 0.5)  represent 
absence of movement in both axes.

The SOIMA used is shown in Figure 2. We used a 30 × 30 
SOM to code S, and a 40 × 40 for M, finally for the MMR a three-
dimensional 30 × 30 × 30 SOM was used. These maps were trained 
individually using the respective collected modal information 
patterns using the procedure described in Section 2.3.
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FigUre 6 | Visual stimulus distribution on different positions of the camera.
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3.1.4. Online Hebbian Learning
As mentioned in Section 3.1.1, the online learning capability 
gradually increases sensory–motor knowledge on saccadic 
movements, which decreases the use of the random mechanism 
(Figure 7A). In turn, the system reduces the error as it focuses the 
visual stimulus (Figure 7B).

Figure 7B depicts the quartiles of 11 subsets of the available 
data on the online learning error. Red lines show the medians 
of each subset. The figure shows that the variability of the error 
reduces with time. The mean value of each subset stabilizes quickly 
and falls within the third quartile, showing that the distributions 
of these data sets are not gaussian.

When the motor command is suggested by the system (i.e., 
when the SOIMA already contains a multi-modal association and 
is able to act as IM and FM), learning also occurs:

• when the architecture generates a sequence of two or more 
simulated saccadic movements to reach from St to St+1, a single 
motor command is learned as the association between the two 
sensory situations.

• in those cases, when after running a motor command the 
position error is greater than a certain threshold, another 
motor command is calculated and executed by re-enacting 
the system with St+

∗
1

5. This new motor command is added to 

5 The reader must bear in mind that the system codes the FM–IM coupling. In other 
words, it is possible to generate new motor commands from the FM predicted 
sensory output ( St+

∗
1

), by using it as input again to the IM. This new motor com-
mand can in turn be used once again to generate a new prediction.

the previous motor command, so that this new association is 
integrated into the system as if it were a single execution.

3.1.5. Saccadic Control Execution
3.1.5.1. Prediction
For illustration purposes, we want the system to center the stimu-
lus on the image in a foveation-like process.

In principle, training data covers the whole of the visual field of 
the camera, so it would be possible to give another location of the 
stimulus as desired sensory situation St+1. However, the desired 
stimulus St+1 is built from a repository of images containing a 
single object in the center of the image.

A typical test example is depicted in Figure  8, in this two 
prediction steps are conducted:

• Step 1: the current camera image is fed into the system and 
processed according to areas of salient features to form St. The 
desired image St+1 is also fed into, with the stimulus located 
at the center. These inputs go through the inverse model and 
generate a suggestion for the motor command Mt

∗ . The latter 
is in turn applied together with St to the forward model to 
generate a prediction St+

∗
1 . This output is compared with the 

St+1, the desired situation, to compute the error.
• Step 2: if the error is greater than a threshold, St+

∗
1  is fed back 

into the system again, as the new St, to obtain an additional 
motor command in order to achieve the marked position 
accurately.

It is worth noting that for both steps, the error is calculated 
between the prediction of the forward model and the desired 
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FigUre 7 | Performance of the system during training. (a) Average 
percentage of random motor commands used as learning occurs. (B) Error 
in pixels between final position and center of image.

FigUre 8 | Typical prediction example.
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situation. Only when the error between the prediction and the 
desired state is lower than the threshold, a motor command is 
executed. This could mean that more than two internal simula-
tions are run.

Ninety-five tests were performed on the saccadic control 
model (Figure  9) from different robot’s head positions, with 
the initial stimulus located at distinct locations on the captured 
camera image (blue squares). After two internal simulations, the 
position of the stimulus is shown with red crosses with a mean 
error of 35.72 pixels (red disk), which means a 1.3% of the total 
image size and 3° of robot’s motion.

The error coming from the saccadic movements are chiefly 
due to the visual fovealization since it reduces the information 
available around the image periphery, which causes precision loss 
in determining the initial stimulus location.

3.1.5.2. Execution
It is known that two components of a motoneuronal control 
signal generate the saccadic eye movement in humans (Bahill 
et al., 1975). These components correspond to an initial saccade 
and a corrective saccade.

Based on this fact, after realizing the sequence of moves sug-
gested by the model (initial or approaching saccade), a second 
tuning or corrective motion is executed (see Figure 10). These 
two execution steps are described next.

• Approaching saccadic movement: the current image of the cam-
era, St, and the target image St+1, with the stimulus at the center, 
are fed into the system. These inputs go through SOIMA and 
generate a suggested motor command Mt

∗  that is applied to 
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FigUre 10 | execution algorithm for saccadic movements. See text for explanation.

FigUre 9 | Prediction performance: position of the stimulus after two 
predictions for 95 random initial positions.
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the Nao Robot. The error of the resulting stimulus location in 
the picture is calculated in order to know whether a second 
movement, for better accuracy, is necessary.

• Tuning saccadic movement: if the error is greater than a 
threshold of 10 pixels (0.1% of image surface and 0.8° of robot’s 
movement), the actual image is fed back again to SOIMA to 
obtain an additional tuning motor command in order to reach 
the desired position accurately.

As opposed to the control described in Section 3.1.5, in this 
case motor commands are actually executed in both movements. 

In practice, this means that both movements in this strategy 
could contain more than one simulation step.

The system was tested on 84 patterns and it was found an aver-
age error of 36.1 pixels on the original 640 × 480 pixels image, 
which corresponds to a 3.1° error on approaching saccadic move-
ments. For the tuning motion, a mean error of 19.3 pixels was 
obtained corresponding to a 1.6° error (see Figure 11).

3.1.5.3. Tracking of Stimulus
In addition, we realized a tracking experiment. The stimulus was 
moved around the wall plane facing the robot, while the latter 
executed a centering or foveation task by means of the acquired 
saccadic control model. The purpose of this experiment is to 
show that even when the stimulus spatial reference with respect 
to the robot changes, and so do the perspective, the agent is able 
to effectively use the saccadic controller.

In Figure  12, we depict a path following task. Red arrows 
show the sequence of the path followed by the stimulus. Numbers 
associated with each arrow correspond to the saccadic move-
ments executed to center the stimulus on the image. Finally, blue 
numbers and circles show the centering task error in pixels over 
every point of the path.

3.2. hand–eye coordination
Coordination of visual perception with body movements is an 
important prerequisite for the development of complex motor 
abilities.

Visuomotor coordination refers to the process of mapping 
visuospatial information into patterns of muscular activation. 
Such mapping is learned through the interaction of the agent with 
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FigUre 12 | Path followed by the stimulus on the robot’s image plane. 
Red arrows and numbers show the path sequence and the number of 
saccadic movements in each centering task. Blue circles and numbers depict 
the error in pixels after centering the stimulus.

FigUre 11 | execution performance, including coarse and fine 
motions: initial stimulus locations in the picture through 84 test 
patterns (blue squares), ending stimulus locations during the 
approaching saccadic movement (red crosses), mean error (red 
circle), and final stimulus locations during the tuning saccadic 
movement (green crosses).
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his environment. In particular Hand–Eye Coordination (HEC) 
refers to the coordinated use of the eyes with one or both hands 
to perform a task.

Here, we propose an implementation of the SOIMA for the 
learning of a sensory–motor scheme that allows HEC in a NAO 
humanoid robot. Once this coordination is learned then, given 
a particular posture (i.e., arm and hand postures) of the robot, 
the system should provide a head posture such that the hand 
appears in the visual field. It is worth mentioning that a posture 
is determined by absolute joint angles.

The SOIMA structure proposed can be seen in Figure  13, 
showing the integration of a HEC Multi-Modal Representation, 

together with the saccadic control presented in the previous 
section.

Here, V is an 80  ×  80 SOM coding the coordinates of the 
position of the robot’s hand in the image plane. The image was 
obtained from the lower camera in the head of the robot. The 
coordinates were estimated with the use of the ARToolkit library,6 
using a fiduciary marker in the hand of the robot.

Head is a 100 × 100 SOM coding the values of the two degrees 
of freedom of the head (yaw and pitch). Arm is a 80 × 80 SOM 
coding shoulder pitch, shoulder roll, elbow yaw, and elbow roll of 
the left robot arm. Finally, MMReh is a 150 × 150 SOM that codes 
the Multi-modal Representation of the sensory–motor scheme. 
The SOMs were trained using 6453 random patterns. The sac-
cadic control used the same SOMs described in the previous 
experiment.

In this experiment, the system for saccadic control was used 
only as a tool for the training and testing of the HEC system. 
Given that both the HEC and the saccadic control system use the 
same visual input, the map V was the same as previously defined.

The experiments were carried out using the simulated NAO in 
an empty arena as shown in Figure 14.

Motor babbling was used in order to train the Hebbian associa-
tions for the HEC system. The general procedure for training was:

• Execution of random head and arm movements.
• Verify whether the marker was detected. When detected, the 

positions of head and arm as well as the visual information 
were fed into the system.

• The connection between the winning units in each of the three 
maps was reinforced.

During training, the saccadic control system was used to 
increase the variability and precision of the patterns used for the 
Hebbian associations. In the cases where the marker was found 
in the image, but not in the fovea, the saccadic control system was 
used to center the stimulus.

Two tests were carried out to assess the full system:

• First, the robot performed random arm movements and 
these were fed into the system; the head would then follow 
successfully the hand position, centering the stimulus in the 
foveal area.

• Second, a pointing test was implemented. A marker was ran-
domly placed in the arena, the system would then perform a 
random exploration of the visual space. Once the maker was in 
sight, the saccadic control system would center the stimulus. 
The HEC system would then successfully position the hand 
before the marker.

Video material on both tests is available at the following url 
links: Test 1 on simulated robot7; Test 1 on real robot8; Test 2 on 
simulated robot9; Test 2 on real robot.10

6 www.hitl.washington.edu/artoolkit
7 https://youtu.be/agrkeUxiQZA
8 https://youtu.be/7h_luKEre5s
9 https://www.youtube.com/watch?v=BrFS7EWz4kc
10 https://www.youtube.com/watch?v=ed7WkMgjybo
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FigUre 14 | hand–eye coordination task experimental setup. Given 
particular arm and hand postures of the robot, the system provides a head 
posture such that the hand appears in the visual field.

FigUre 13 | The sOiMa up-scaled when implementing a hand–eye coordination strategy, including the saccadic control presented in the previous 
section. Two Multi-Modal Representations (sensory–motor schemes) are coupled together through modal maps. See explanation in text.

12

Escobar-Juárez et al. A Self-Organized Internal Models Architecture

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 22

4. DiscUssiOn anD cOnclUsiOn

The relevance of modeling sensory–motor schemes relies on the 
fact that they are considered to be the fundamental unit of analy-
sis for cognitive processes and skills under the cognitive robotics 
school of thought (Lungarella et al., 2003). Cognition relies on 
self-organized structures integrating sensory–motor information. 
As internal models create naturally a multi-modal representation 
of sensory–motor flows, they have been extensively studied as a 
suitable mechanism for sensory–motor integration.

Based on these considerations, we developed a new computa-
tional architecture called SOIMA, drawing biological inspiration 
from the theory of convergence–divergence zones of the cerebral 
cortex proposed by Damasio (1989) and Meyer and Damasio 
(2009) and from the self-organizing properties of the brain.

In order to introduce the architecture and prove its feasibil-
ity and performance, we implemented two case studies. The 
first experiment implemented a strategy of saccadic movement 
control consisting in centering a salient stimulus in the visual 
sensory space using the SOIMA. This experiment shown that the 
SOIMA approach allows to cope with vision issues regarding the 
input space dimensionality. The second case study implemented 
a Hand–Eye Coordination strategy allowing to show how the 

SOIMA can be scaled upwardly in order to model more complex 
cognitive tasks.

The SOIMA integrates important qualities of online learning 
and introduces a novel form of internal models implementation 
not reported before. Even though there exists work showing 
coupled Self-Organized Networks (Hikita et al., 2008; Luciw and 
Weng, 2010; Morse et al., 2010b; Lallee and Dominey, 2013), our 
proposal goes a step further in that we model the predictive capa-
bilities of the human cognitive machinery by means of internal 
models. However, current internal models architectures show 
major drawbacks so as to model cognition under the embodi-
ment hypothesis constraints (e.g., independent coding of the 
inverse and forward models). The main attributes of the SOIMA 
provide means for autonomous sensory–motor integration, as it 
allows for multi-modal activation patterns to organize themselves 
into a coherent structure through Hebbian association, creating 
thus a multi-modal grounded representation. The bi-directional 
capability of the SOIMA allows this representation to become a 
sensory–motor scheme available as both a forward (predictive) 
and an inverse (controlling) model. The lack of this property is 
precisely one of the main limitations of current cognitive archi-
tectures. This bi-directional mechanism provides, thus, a unified 
substrate allowing for a true sensory–motor integration space 
and for coherent sensory–motor learning strategies.

We would like to highlight five main features making the 
SOIMA stand apart from current implementations of internal 
models and sensory–motor schemes. The first three features have 
been tested in the case studies presented here, the remaining two 
represent current work:

• Modularity and scalability: the experiments reported here 
exemplify the modular character of SOIMA. This feature 
redounds in an integrated learning strategy and allows for the 
scalability of the system. The architecture is modular in that the 
logical structure of the MMR is not hardwired, but develops as 
the agent interacts with the environment. This in turn provides 
means for the construction of sensory–motor schemes that 
can be sequentially re-enacted to accomplish a particular task. 
The workings of the architecture enable the system to learn 
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online both, the FM and the IM, in an integrated way. New 
examples of sensory–motor schemes are acquired as the agent 
experiences the world; thus, incorporating new knowledge for 
later use. A first example of the scalability of the system was 
reported here. Every new sensory–motor scheme generates a 
new MMR, coding a particular IM–FM coupling. Thus, differ-
ent sensory–motor schemes can be coupled together in order 
to increase the sensory–motor capabilities of the agent. In this 
sense, the system is scalable. In summary, the SOIMA should 
be seen as a core unit for building more complex structures 
allowing to re-use previous knowledge.

• Bidirectionality: given the internal coding of the relations 
between the sensory and motor modalities, the SOIMA works 
as either a Forward or an Inverse model. The connections 
between the maps admit the bidirectional flow of information, 
therefore choosing the model depends on the question asked 
and the available input. As mentioned before, current imple-
mentations use mostly MLP networks, with one or various 
networks coding the Forward model and separately networks 
coding the Inverse model, which obligates to use different 
learning strategies for each model. Our approach synthesizes 
the coupled model on the same substrate, conferring con-
nectivity enhancements that allow for integrated learning 
strategies and sensory–motor scheme maps.

• Temporality: different moments in time for the sensory 
situation are coded in the same map. The temporal relations 
between situations are coded in the Hebbian connections 
between maps. As a consequence, several time steps can be 
integrated into the same sensory–motor scheme. Another 
concern regarding temporality is stability. That is, whether 
the system will be able to cope with environmental changing 
conditions, i.e., become stable after some perturbation. This is 
indeed a major concern that is currently being investigated. 
Future work includes experimenting with other kinds of 
self-organizing maps (e.g., Dynamic SOMs). It is expected 
that these other maps would also allow for sensory–motor 
scheme reconfiguration in the long run, if ever the available 

knowledge is not enough to properly model contingent task 
changes.

• Motor Mapping: the characterization of the information in the 
motor map should allow for trajectory generation in the motor 
space. Moving in the motor map from unit to unit would then 
have a mapping in the physical space of the agent.

• Robustness to lack of information: the structure proposed can 
be the base for capabilities such as action recognition. The 
agent codes a SOIMA based on its own experience and its 
own sensory–motor model; however, when observing the exe-
cution of an action some information would not be available 
(i.e., proprioceptive information). The lack of this information 
should not represent a problem as the activation produced by 
the available input should propagate the activation in the rest 
of the architecture.

The results presented here are encouraging and permit us to 
assert that the organization and functioning of the SOIMA is 
promising for undertaking research in further directions. In the 
context of Grounded Cognition, we consider that our work con-
stitutes a biologically plausible computational approach, effective 
for the development of complex cognitive behavior models. As 
such, we hope that the SOIMA concept will enable the study 
and test of diverse hypotheses on the underpinning processes 
of cognition and the development of artificial agents exhibiting 
coherent behavior in their environment.
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