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Effective study of ocean processes requires sampling over the duration of long (weeks 
to months) oscillation patterns. Such sampling requires persistent, autonomous under-
water vehicles that have a similarly, long deployment duration. The spatiotemporal 
dynamics of the ocean environment, coupled with limited communication capabilities, 
make navigation and localization difficult, especially in coastal regions where the majority 
of interesting phenomena occur. In this paper, we consider the combination of two 
methods for reducing navigation and localization error: a predictive approach based on 
ocean model predictions and a prior information approach derived from terrain-based 
navigation. The motivation for this work is not only for real-time state estimation but also 
for accurately reconstructing the actual path that the vehicle traversed to contextualize 
the gathered data, with respect to the science question at hand. We present an applica-
tion for the practical use of priors and predictions for large-scale ocean sampling. This 
combined approach builds upon previous works by the authors and accurately localizes 
the traversed path of an underwater glider over long-duration, ocean deployments. The 
proposed method takes advantage of the reliable, short-term predictions of an ocean 
model, and the utility of priors used in terrain-based navigation over areas of significant 
bathymetric relief to bound uncertainty error in dead-reckoning navigation. This method 
improves upon our previously published works by (1) demonstrating the utility of our 
terrain-based navigation method with multiple field trials and (2) presenting a hybrid 
algorithm that combines both approaches to bound navigational error and uncertainty 
for long-term deployments of underwater vehicles. We demonstrate the approach by 
examining data from actual field trials with autonomous underwater gliders and demon-
strate an ability to estimate geographical location of an underwater glider to <100 m 
over paths of length >2 km. Utilizing the combined algorithm, we are able to prescribe 
an uncertainty bound for navigation and instruct the glider to surface if that bound is 
exceeded during a given mission.

Keywords: terrain-based navigation, underwater gliders, persistent autonomy, localization, underwater 
navigation, ocean model
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FigUre 1 | a planned lawnmower path (black) and actual executed 
path (white) for a glider deployment near the northern tip of santa 
catalina island, ca, Usa.
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1. inTrODUcTiOn

Aquatic robots, such as Autonomous Underwater Vehicles 
(AUVs), and their supporting infrastructure play a major 
role in the collection of oceanographic data (e.g., Godin 
et al. (2006), Paley et al. (2008), and Whitcomb et al. (1999)). 
Actively actuated (propeller-driven) underwater vehicles have 
proven effective in multiple sampling scenarios; however, 
they have limited deployment endurance. The emergence of 
buoyancy-driven vehicles, i.e., underwater gliders, has enabled 
greater energy savings and thus increased endurance. With 
limited actuation, these vehicles are more susceptible to exter-
nal forces, e.g., ocean currents, resulting in poor navigational 
and localization accuracy underwater. This is exacerbated in 
coastal regions, where current velocities can be the same order 
of magnitude as the vehicle velocity. Autonomous underwater 
gliders provide an approach to observing ocean processes up 
close. These vehicles are capable of long-term deployments, 
remaining out in the ocean for periods of time ranging from 
several weeks to several months (Davis et al., 2008). Although 
their horizontal speeds are only about 1 km/h, their longevity, 
coupled with the use of multiple gliders, can be compensated 
by providing an extended temporal and spatial series of 
observations.

Our work is motivated by the desire to enable intelligent data 
collection of complex dynamics and processes that occur in a 
coastal ocean environments to further our understanding and 
prediction capabilities. Of particular interest is the formation 
and evolution of Harmful Algal Blooms (HABs) in the Southern 
California Bight (SCB), an oceanic region contained within 32° N 
to 34.5° N and −117° E to −121° E. This region is under continued 
study to uncover the connections between small-scale biophysical 
processes and large-scale events related to algal blooms, specifi-
cally blooms composed of toxin-producing species (i.e., HABs) 
(Jones et al., 2002; Schnetzer et al., 2007; Smith et al., 2010b). The 
long-term study utilizes a team of two autonomous gliders (He 
Ha Pe and Rusalka), owned and operated by the USC Center for 
Integrated Networked Aquatic PlatformS (CINAPS) team (Smith 
et  al., 2010b), to sample off the coast of southern California. 
Field data examined within this paper were gathered during mis-
sions executed by these vehicles. The Jet Propulsion Laboratory, 
California Institute of Technology, maintains a high-resolution, 
large-scale regional ocean model for the SCB, and provided 
the  model predictions used for our simulation comparisons 
(Vu, 2008).

Autonomous gliders can spend in excess of 8-h dead reckon-
ing under water, navigating by only a compass, magnetometer, 
and depth sensor. Frequent surfacing for position fixes limits the 
amount of data that is collected during a deployment by decreas-
ing the total time underwater, and by expending excess energy for 
communication and localization while on the surface. Moreover, 
surfacing in potentially hazardous locations (e.g., shipping lanes) 
puts the vehicle at risk. Maximizing time underwater significantly 
reduces the ability of the vehicle to localize. Additionally, accu-
rately reconstructing subsurface glider trajectories can be difficult 
for long underwater transects; it is generally assumed that the 
traversed path of a glider is the straight line connecting the dive 

and surface locations, which is a poor assumption most of the 
time.

To assist with energy savings, most gliders do not employ 
highly accurate (high-energy) navigation systems but rely on 
dead reckoning with a modest Inertial Measurement Unit 
(IMU). Regardless of the specifications of the IMU, sensor drift 
is unbounded and navigational error increases with time. During 
routine deployments in a coastal ocean environment in Los 
Angeles, CA, USA, it was found that typical underwater gliders 
experience roughly 650 m navigational error for each kilometer 
traveled (Smith et al., 2010c, 2012). A combination of these fac-
tors can lead to poor experimental results. For example, Figure 1 
displays a planned path in black, and an actual execution of this 
planned path by a glider in white. This poses difficulties in both 
plan execution in  situ and reconstructing the actual traversed 
path of the vehicle for analysis of scientific data. Additionally, for 
operations in cluttered environments, or near shipping lanes, this 
error may put the vehicle at serious risk (Pereira et al., 2013). With 
an Unscented Kalman Filter (UKF) and inertial dead reckoning 
augmented with ocean model predictions, the authors have 
shown that this error can be reduced to less than 500 m over a 
single kilometer of travel (Smith et al., 2010c, 2012); this is still 
significant when trying to avoid a busy shipping lane or recon-
structing a dataset. High-level planning can provide assurance 
that the vehicle will follow a prescribed trajectory (Pereira et al., 
2013); however, we are always faced with potential navigation 
error during plan execution. In Smith et al. (2013), it is shown 
that an approach solely based on ocean model predictions breaks 
down in regions of significant bathymetric relief, where ocean 
models have poor prediction capabilities. However, these regions 
of significant bathymetric relief are exactly where a terrain-based 
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navigation approach is able to perform well. Here, we examine 
the utility of integrating terrain-based navigation methods into 
an existing framework for improving the navigational accuracy 
of underwater gliders. Specifically, we propose to utilize ocean 
model predictions within a UKF to improve planning and naviga-
tion capabilities while additionally incorporating a terrain-based 
navigation method for localization during plan execution.

Areas of significant productivity in the coastal ocean are highly 
correlated with locations of significant bathymetric relief, e.g., 
algal blooms (Horner et al., 1997; Anderson et al., 2002; Fulton-
Bennett, 2005; Kudela et al., 2005; Sekula-Wood et al., 2009) and 
ocean fronts (Mancho et  al., 2008; Ferrari, 2011; Zhang et  al., 
2013). In these areas, every path traversed by an AUV has a depth 
signature that is highly variable and becomes increasingly unique 
the longer the trajectory becomes. These specific deployment 
locations and science motivations enhance the utility of terrain-
based methods to increase navigation accuracy and localization 
for long-duration missions.

The use of prior information in the form of predictive ocean 
models has been shown to improve mission accuracy and 
execution during field trials (Smith et  al., 2010c, 2012). While 
these models have become quite advanced, they are still gener-
ally discrete and deterministic in nature. Specifically, there is 
no metric provided on the confidence or covariance of the 
predicted variable, and accurate interpolations of the discrete 
measurements require sophisticated data-processing algorithms 
to augment the predictions. The developers of both ROMS and 
HOPS have investigated producing ensemble forecasts for their 
model. This method perturbs initial and/or boundary conditions 
to produce a set of forecasts. This ensemble forecast provides a 
distribution of potential outcomes; however, the sample size is 
often too small (~12) to provide a meaningful variance measure 
of the prediction. These ensembles can provide an accuracy 
estimation of the model output; however, this is more related to 
the sensitivity of the numerical model to the inputs rather than 
the actual physical variability of the ocean inherent within the 
domain of the model. The size of the ensemble forecast is limited 
only by computational power and time. However, as models 
provide the most accurate predictions in the times closest to the 
observations and measurements, we cannot spend an excessive 
amount of time computing all the possible ensemble outcomes. 
So, we are forced to compromise working to produce the most 
accurate models utilizing a minimal set of resources or utilizing 
additional resources to augment the computation of model reli-
ability and variability. In current research, several assimilation 
techniques, e.g., Kalman filter-based ensemble forecasts (Rixen 
et al., 2009), and variational schemes, e.g., 4DVar (Powell et al., 
2008), are under investigation in the modeling community, with 
the goal to get the model output closer to the observed values.

Predictive models have been exploited in previous AUV mis-
sion planning efforts, where a main focus has been to compute 
energy-optimal paths, as the majority of applications utilize pro-
peller-driven, short-duration (<24 h) AUVs. The work in Garau 
et al. (2005) makes use of the A* search procedure to harness the 
inherent spatial variability of currents and minimize expended 
energy. Similarly, the authors in Alvarez et al. (2004) employ a 
genetic algorithm to generate energy-conserving trajectories for 

an AUV subject to time-varying currents. Research in Witt and 
Dunbabin (2008) explores the utility of predictive models to aid 
in avoiding land masses exposed by ebbing tides, while the inves-
tigation in Kruger et al. (2007) examines how predictions can be 
used to “ride” currents in estuarine and riverine environments. 
Although the methodologies, domains, and applications are dif-
ferent, the underlying models used are all deterministic, provid-
ing a fixed value for the current at a specified location and time. 
Much recent research in robotics leverages probabilistic planning 
and control methods, and has the potential to be applied to the 
marine domain [e.g., Ono and Williams (2008), Rao and Williams 
(2009), Hollinger et al. (2012)]. Hence, it is critical to understand 
the probabilistic nature and/or variability of the priors that will 
best enable ocean sampling, e.g., predictive ocean models.

However, even with good ocean models, underwater gliders 
still use dead reckoning while underway. As a proprioceptive 
device, an IMU is one navigation aid that can be utilized in under-
water environments without requiring external electromagnetic 
signal reception. IMU error sources and their effects on naviga-
tion performance are discussed in Flenniken et al. (2005), which 
demonstrates that even using tactical-grade sensors, the inevita-
ble drift is still too high to mitigate substantial trajectory errors. 
Navigation is not reliable using IMU data alone, especially when 
localization fixes are scarce, and sensor drift cannot be bounded.

A detailed survey of recent advances and current challenges in 
underwater navigation, summarizing existing work on Terrain-
Based Navigation (TBN) for underwater vehicles, is provided 
in Kinsey et  al. (2006). One clearly identified shortcoming of 
TBN in the aquatic environment is the lack of accurate, high-
resolution maps of the sea floor in many regions. Additionally, 
sensor limitations, especially the limitations of optical range 
sensors, substantially restrict TBN underwater. In Kinsey et al. 
(2006), it is concluded that improved navigation will enable new 
missions that would previously have been considered infeasible 
or impractical. The idea of terrain-based navigation is not new; 
significant research was carried out on the use of TBN for long-
range missile guidance prior to the development of the GPS satel-
lite network (Golden, 1980). Here, we apply a similar concept to 
an underwater glider.

Recent work by Lagadec (2010) on TBN under ice has dem-
onstrated the feasibility of using a particle filter for long-term 
glider navigation. Lower relief maps, with a resolution of 2 km, 
of regions above the arctic circle were sufficient to navigate with 
reasonable accuracy (~1 km accuracy, with a mean accuracy of 
approximately 8 km in one simulation). The study suggests that 
for real deployments, technological advances would be necessary 
to achieve the required navigation performance. However, higher 
relief bathymetric maps could facilitate the implementation of a 
TBN that operates online, in real time. The primary limitation 
of the technique presented in Lagadec (2010) was the lack of an 
accurate terrain map, which does not invalidate the methodol-
ogy used. A significant difference between this method and 
the proposed is that the use of a particle filter relies both on an 
accurate terrain map and a dynamic model to propagate the 
state. Our proposed TBN method does not rely on an underlying 
dynamic model, although adding a dynamic vehicle model to our 
TBN approach will improve the presented results.
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FigUre 2 | a cinaPs (smith et al., 2010b) slocum glider preparing 
to start a mission off the northeast coast of santa catalina island, 
ca, Usa.
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A number of other studies have utilized particle filters as part of 
a TBN framework for underwater vehicles (Gustafsson et al., 2002; 
Anonsen and Hallingstad, 2006, 2007; Lagadec, 2010). The parti-
cle filter is suitable as a solution to the TBN problem because it is 
probabilistic (and therefore captures environmental uncertainty), 
and because it naturally incorporates the property that the longer 
a path is traversed, the more likely a single solution will emerge. 
Again, filtering requires a known motion model for the vehicle, 
in order to weight possible trajectories according to the dynamics 
achievable by the system. A simple motion model has limitations 
when applied to underwater gliders, as a significant portion of the 
glider motion is driven by ocean currents that can be of the same 
order of magnitude as the nominal vehicle velocity. Hence, the 
accuracy of a glider motion model depends heavily on an ability 
to predict ocean currents, which can be difficult in highly dynamic 
environments such as the coastal ocean. The method proposed 
herein is developed as a model-free approach to the TBN problem, 
using only the acquired water depth data and the initial heading 
to the next prescribed waypoint. Although this approach is deter-
ministic in nature, it does not rely on a vehicle or ocean model.

This paper examines the combination of two methods for 
improving both navigation and localization, not only for real-
time state estimation but also for accurately reconstructing the 
actual path that the vehicle traversed to contextualize the gath-
ered data. The overarching goal is to provide an online method for 
autonomous gliders to accurately navigate in coastal regions. We 
combine a predictive approach that incorporates glider motion 
derived from an IMU and ocean model predictions into an UKF 
with a real-time, terrain-based navigation (TBN) algorithm. 
The UKF algorithm provides mission planning and a navigation 
strategy, while the TBN algorithm provides accurate localization 
during mission execution. The UKF integrates data from an IMU, 
and the TBN algorithm utilizes only the depth, altitude, and 
initial compass heading from start to goal; thus, the entire system 
operates model-free. Practically, TBN for underwater vehicles is 
limited by the altitude sensor’s ability to see the ground, which 
is not a limiting factor for most coastal and shallow (<200 m) 
operations.

The presented approach builds upon prior work by the authors 
in both the incorporation of ocean models for planning and the 
use of terrain-based navigation for real-time localization and path 
reconstruction (Stuntz et al., 2015). The primary contributions of 
this paper combine these approaches into a single, implementable 
algorithm, as well as extend existing results in the following four 
ways.

 1. We apply our TBN algorithm to multiple glider missions with 
varying trajectory length, mission time, and bathymetric relief, 
further demonstrating the utility of the proposed method.

 2. The additional results from extended applications of the TBN 
algorithm demonstrate the capability of the proposed method 
to accurately reconstruct the actual paths that gliders followed 
during mission execution.

 3. We present an algorithm that combines the predictive ocean 
model-based UKF method with the TBN algorithm to provide 
a robust methodology for maintaining a fixed navigational 
uncertainty for underwater gliders.

 4. We demonstrate that the combination of our two methods 
into a single algorithm can (a) be run in real time, on-board an 
underwater glider and (b) maintains a prescribed navigational 
error for all executed missions.

The proposed methodologies have been tested with data from 
multiple deployments of Slocum autonomous gliders off the 
coast of California, USA. Results are presented that demonstrate 
a significant increase in navigational accuracy compared with 
previously reported results.

2. BacKgrOUnD

2.1. autonomous Underwater gliders
The vehicle for this study is a Webb Slocum autonomous 
underwater glider (Webb Research Corporation, 2008) as seen 
in Figure 2. A Slocum glider is a 1.5-m (length) by 21.3 cm (diam-
eter), torpedo-shaped vehicle designed for long-term (~1 month) 
ocean sampling and monitoring (Griffiths et al., 2007; Schofield 
et al., 2007). These vehicles fly through the water driven entirely 
by a variable buoyancy system. Wings convert the buoyancy-
dependent vertical motion into forward velocity. Inflection points 
occur at depths and altitudes set in the user-defined mission plan. 
Thus, the glider navigates by dead reckoning between waypoints 
with a sequence of dives and climbs (yo-yos), forming a vertical 
sawtooth pattern.

Gliders are utilized for their deployment endurance, as they 
provide an optimal method for generating high-resolution spatial 
and temporal data with minimal energy expense. Sophisticated 
and power-hungry navigational instruments are not common 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


5

Stuntz et al. Persistent Autonomy for Gliders with Priors and Predictions

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 23

due to the reduction in deployment duration resulting from their 
increased power consumption. For similar reasons, on-board 
decision making and computation are generally not performed. 
A Slocum glider includes a GPS receiver for localization at each 
surfacing. In addition to the GPS receiver, a typical glider carries 
a PNI TCM2 attitude sensor and a SBE 41CP pressure sensor on-
board. The TCM2 incorporates an electronic compass, a three-
axis magnetometer, and a two-axis tilt sensor, and it is able to 
provide attitude data at a user-selectable rate of 1–30 Hz, heading 
accuracy of ±1° RMS, and roll/pitch accuracy of approximately 
±0.2° RMS. The SBE measures pressure with an RMS accuracy of 
2 dbar or depth with an RMS accuracy of 2.03 m near the water 
surface, at a rate of 1 Hz. In addition, each glider incorporates a 
Sea Bird non-pumped, low drag conductivity, temperature, and 
depth package. A 500-psi pressure transducer is used for the depth 
measurement. An Airmar altimeter, 0–100 m range transducer, 
and electronics are supported on the Displacement Piston Pump 
Cylinder. The transducer is mounted such that it is parallel to a 
flat sea bottom at a dive angle of nominally 26°.

2.2. Dead-reckoning error estimation
Based on the results of initial tests presented in Smith et  al. 
(2010b), we are motivated to further investigate the improvement 
of navigational capabilities of gliders by use of TBN. Since a glider 
depends solely upon dead reckoning for subsurface navigation, 
the uncertainty in the estimated state will grow without bound. 
For our applications in the coastal regions of Southern California, 
we generally require the vehicle to surface frequently (every 
3–6 h), see, e.g., Smith et al. (2010a,b, 2011a). Since we acquire 
GPS ground truth relatively frequently, we are able to bound the 
growth of the state estimation error. This provides a baseline 
expected error for the assessment of navigational accuracy and 
precision. In this paper, we are interested in better localization, 
while underwater between waypoints to enable more accurate 
reconstructions of executed trajectories.

During a deployment, a Slocum glider navigates by the follow-
ing method: when navigating to a new waypoint, the present loca-
tion L of the vehicle is compared to the next prescribed waypoint 
in the mission file (Wi), and a bearing and range are computed for 
execution of the next segment of the mission. The geographical 
location at the extent of the computed bearing and range from L is 
the aiming point Ai. The vehicle dead-reckons with the computed 
bearing and range toward Ai, with the intent of surfacing at Wi. 
The computed bearing is not altered, and the glider must surface 
to make any corrections or modifications to its dive plan. When 
the glider determines that it has traveled the requested range at 
the specified bearing (based on speed over ground estimation 
from the previous dive), it surfaces and acquires a GPS fix. If 
the vehicle surfaces within a given range of Wi, the waypoint is 
determined to be achieved. Positional error between the actual 
surfacing location and Wi is computed, and is fully attributed 
to environmental disturbances, i.e., ocean currents. A depth-
averaged current vector is computed, and this is factored in when 
computing the range and bearing to Wi+1. Hence, Ai is in general 
not in the same physical location as Wi and rarely does the glider 
ever surface at Wi. It is of interest to note that Ai is computed from 
the error observed in the previously executed leg and does not 

make a prediction or take into account the fact that the vehicle 
may not be moving through a similar current regime.

2.3. Terrain-Based navigation
Prior to satellite-based navigation, e.g., GPS, long-distance 
navigation systems were developed for missiles (Golden, 1980). 
Data from an embedded altimeter were compared to ground 
elevations that were provided in a stored map or look-up table. 
The navigational accuracy of this method is dependent upon the 
resolution of the underlying topography map and the accuracy 
of the elevation measurement; both very good for terrestrial 
applications. This system became redundant after the introduc-
tion of GPS, although it is still a useful navigational aid for 
GPS-denied environments, e.g., underwater. Until recently, the 
utility of terrain-based navigation for underwater vehicles was 
low due to the poor resolution of bathymetric maps. Updated 
bathymetry maps with higher resolution provide motivation for 
revisiting the application of this method for low-power, accurate 
navigation underwater. Here, we utilize publicly available maps 
provided by the Southern California Coastal Ocean Observing 
System (SCCOOS) which provide 30 arc second grid resolution 
(SCCOOS, 2009). A detailed representation of the SCCOOS 
bathymetry map for the southern California region of interest is 
presented in Figure 3. Additionally, given the increase in accuracy 
of low-cost sensors for dead reckoning, e.g., IMUs, and increased 
skill of ocean models, it is of interest to investigate a combined 
approach to increasing underwater navigation.

3. UnscenTeD KalMan FilTer 
anD Ocean MODel PreDicTiOn 
algOriThM

Through previous research efforts, we have developed a simula-
tion tool for glider missions in the SCB that incorporates the 
ROMS predictions of the 3D velocity field (Smith et al., 2010c, 
2012). We fuse the measurements from the sensors (either actual 
in real-time or simulated post priori) into an Unscented Kalman 
Filter (UKF) to estimate the position, attitude, and velocity of the 
vehicle over time (Julier and Uhlmann, 2004).

The UKF is a Bayesian filtering algorithm which employs a 
statistical local linearization procedure to propagate and update 
the system state. For non-linear systems, this approach typically 
produces significantly more accurate estimates than the analytic 
local linearization employed by the well-known Extended 
Kalman filter (EKF) (Huster and Rock, 2003). In our case, the 
10 × 1 state vector is

 
x p v( ) ( ) ( ) ( )t t q t t

TTW
T

B
W TB= ( ) ( ) ( )




,  (1)

where pW(t) is the position of the glider in the world (UTM) 
frame, B

Wq t( ) is the unit quaternion that defines the attitude of the 
glider body relative to the world frame, and vB(t) is the velocity 
of the glider in the body frame. This simple kinematic model is 
sufficient for this application of long-range planning. A primary 
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motivation for our choice of the UKF is its performance with a 
more sophisticated (and non-linear) dynamic model of the glider, 
which we are exploring in a parallel effort.

For our simulation, we assume that the glider follows a 
nominal, linear sawtooth trajectory, and that the vehicle angular 
rotation rate and linear acceleration are driven by white, zero-
mean Gaussian noise processes represented by the vectors ηq(t) 
and ηv(t), with covariance matrices Qq and Qv, respectively. The 
system state evolves in continuous time according to

 
W

B
W Bt q t tp C v( ) ( ) ( )= ( ) ,  (2)

     
B

W
q B

Wq t t q t ( ) ( ) ( )= ( ) ,
1
2
Ω η  (3)

                                     
B

vt t
v ( ) ( )= ,η   (4)

where C B
Wq t( )( ) is the direction cosine matrix correspond-

ing to the unit quaternion B
Wq t( ), and Ω(ηq(t)) is the quaternion 

kinematic matrix, relating the rate of change of the orientation 
quaternion to the body frame angular velocity (Stevens and 
Lewis, 2003).

The effects of the currents on the glider are incorporated as a 
concatenation of the contributions from the velocity of the glider 
in the water column and the velocity of the water column itself 
(i.e., the ocean currents). The modified process model for the 
glider position is then

 
W

B
W Bt q t t tp C v v( ) ( ) ( ) ( )= ( ) + ,ROMS  (5)

where vROMS(t) is the predicted water current velocity, found by 
spatiotemporally interpolating the ROMS (or other ocean model) 
prediction.

Our improved navigation strategy involves attempting to 
predict, based on the kinematic model and the ROMS data, how 

far the glider will drift away from the desired trajectory. We aim to 
limit the drift such that the distance between the glider’s position 
and the planned trajectory is never larger than the primary axis 
of the UKF 3σ uncertainty ellipse. Equivalently, at least one point 
on the trajectory should lie within the 3σ uncertainty ellipse. For 
the simulations here, 3σ corresponds to ~600 m.

The initial steps follow those for a normal mission as discussed 
in Section 2. We run a prediction step using a deterministic, 
discrete kinematic model incorporating ROMS prediction data, 
for a given surfacing time. The glider begins on the surface, and 
computes a heading and bearing location Ai to reach Wi based 
on the depth-averaged currents experienced during the previous 
leg. The glider dives, and surfaces upon reaching Wi or after a 
duration T hours has elapsed.

To begin the simulated mission, we compute an initial depth-
averaged current by running for T hours and finding the offset 
from the prescribed path as a one-time initialization. This initial 
drift offset is then used to adjust the glider heading (in the oppo-
site direction) as the difference in the angle between our expected 
and (simulated) trajectory.

Next, we simulate the full dive profile, using ROMS current 
predictions and the kinematic model above, using the UKF. 
This provides an expected surfacing location with an associated 
uncertainty ellipse. If, at the end of T hours, the glider surfaces 
more than 3σ away from the desired trajectory, the mission ter-
minates. Otherwise, the simulation continues with another dive 
as outlined in Section 2.

We iteratively simulate the execution of a segment 25 times; 
Tj = {2, 2.25, 2.5, …, 7.75, 8} hours. For each j, a path segment 
with T = Tj, represented by γi(Tj), is considered successful when 
the final surfacing on a segment is within δ = 1000 m of the goal 
waypoint, and at all surfacing along the segment, the distance 
from the glider to the prescribed path remains less than the 3σ 
uncertainty ellipse, i.e., the glider remained within 600 m of the 
prescribed path. For each γi, we compute S =  {∪jγi(Tj)| γj(Tj) is 
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algOriThM 1 | lse/TBn algorithm.

  Total Distance ← Distance between Start Latitude and Longitude and Ending 
Latitude and Longitude

 while i ≤ TotalDistance do

  Discretize bathymetry data

  xc ← find closest grid value to Starting Longitude

  yc ← find closest grid value to Starting Latitude

  DP ← distance to closest edge of grid

  for n ≤ −90 + Starting Direction + 90 do

   T(n) ← Generate Paths around starting location

   D1 ← Distance traveled in step

   Points ← Depth data based on length of D1

   Tw(n) ← Weight the paths based on trajectory

  end for

  while n ≤ length(Po) do

   R2 ← (T(n)- Points)2

   Po(n) = Twi(n) × WT + R2(n) × WR

   P ← min(Po, 0)

   n ← n + 1

  end while

  Start Latitude ← Latitude at end of P

  Start Longitude ← Longitude at end of P

  i ← i + D1

 end while
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successful}, the set of all successful executions. Then, for the 
entire path, we compute the desired surfacing interval S to be

 
S T T

i j j i j= |minmax ( ){ is successful}γ  (6)

Thus, for a prescribed mission, the UKF Algorithm outputs 
a proposed surfacing interval S, which may define intermediate 
waypoints between the initially prescribed path waypoints. For 
each of the computed waypoints, the UKF Algorithm provides (1) 
a predicted surfacing location, which is given by the computed 3σ 
uncertainty ellipse and (2) an aiming point Ai based on the ocean 
model predictions to aid in improving navigation to the next 
waypoint. Further details and implementations of this approach 
are presented in Smith et al. (2010c, 2012, 2013).

4. Terrain-BaseD naVigaTiOn 
algOriThM

To address the issues of poor ocean model predictions along the 
shelf-break region, and to provide a method for localization while 
underwater, we present a least-squares optimization method for 
determining the path traversed by the glider based on gathered 
depth data, a terrain-based navigation approach. We utilize pub-
licly available maps provided by the Southern California Coastal 
Ocean Observing System (SCCOOS), which provides 30 arc 
second grid resolution (SCCOOS, 2009). The data are accurate to 
the grids of 0.0008° of latitude and longitude.

The Least Squares Error-Terrain-Based Navigation (LSE/
TBN) algorithm is presented in detail in Stuntz et al. (2015) and 
reproduced here in Algorithm 1. The LSE/TBN Algorithm takes 
as input the start location, heading to proposed ending location 
or aiming point Ai, and gathered vehicle depth and altitude data. 

The output is predicted latitude and longitude at each time epoch 
the algorithm is executed.

Acquired depth data are smoothed over time to handle sensor 
noise and hysteresis. Some of the errors are a result of the fixed 
angle of the altimeter, causing altitude measurements to be inac-
curate during the ascent portion of the yo-yo trajectory path that 
gliders execute. These data were smoothed using a SD rejection 
algorithm (Taylor, 1996). During real-time implementation, we 
break the deployment into pieces consisting of only the segments 
when the vehicle is diving. These segments are then concatenated 
to reconstruct the actual path. This implementation method allows 
for computation to occur during each ascent along the path.

Within Algorithm 1, path options are generated by sweeping 
the area around the starting location to generate 180 different path 
options, generating one path option for every compass degree 
from −90° of the expected direction to +90° of the expected 
direction. Equations (7a–9b) describe how this is done. First, the 
point (x, y) is translated to the origin (xo, yo).

 x x startlongo = | − | (7a)

 y y startlato = | − | (7b)

Then, using a rotation formula, the points are rotated about 
(x′, y′).

 xa cos x sin yo o= × + ×( ) ( )θ θ  (8a)

 ya sin x cos yo o= − × + × ;( ) ( )θ θ  (8b)

Each point is then sent back (translated back) to its original 
location by adding it to the original point (x, y).

 ′ = +x xa startlong  (9a)

 ′ = +y ya startlat  (9b)

The length of each possible segment is chosen by picking the 
closest point of the bathymetric grid to the startlat and startlong. 
This keeps the step size lengths between 0.0001° and 0.0008°, 
which is less than or equal to the resolution of the SCCOOS 
bathymetric maps for each step. The expected direction to initial-
ize the iterative algorithm is taken to be the azimuth from the 
projected trajectory. An example of the generated path options 
can be seen in Figure 4. Each path segment length is computed 
using the Haversine formula. Using this length, we determine the 
number of data points (DP) within the segment.

A linear least-squares approximation is used to compute the 
error for each path segment between the measured water depth 
values and an interpolated bathymetric map. The linear least-
squares method solves an over-determined system by minimiz-
ing the error of the data points to a given line, f(x) = m × x + b, 
as shown in equation (10).

 
R y f x x x x

i

n

i n
2

1
1 2 3

2= − , , ...
=
∑[ ( )]  (10)

The R2 values are normalized between 0 and 1 to provide a 
weighting for each path segment.
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FigUre 4 | The 180 path options generated around the start latitude and longitude by the lse/TBn algorithm.
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Given the prescribed trajectory, we additionally assign a weight 
(Tw) to each path segment, based on how close the azimuth is to 
the initially prescribed trajectory. Assume the prescribed trajec-
tory has an azimuth of 92° from starting point to goal location. 
The computed path segments then have an azimuth range from 1° 
to −1°. We assign the preferred direction a value of Tw = 902 and 
decrease as the segments diverge away from this direction. Thus, 
an azimuth of 92 would have a weight of Tw = 902, an azimuth 
of 91 or 93 would have a weighting of Tw = 892, an azimuth of 2 
would have a weighting of Tw = 12, etc. The path segments at each 
epoch are then weighted using the weighting function Twi  shown 
in equation (11).

 
T T min T max T min Tw w w w wi i

= − − / −1 [( ( ) ( ( ) ( )]  (11)

Since Twi
 is maximized about the trajectory, it is normalized 

between 0 and 1 and then subtracted from one to get a minimiza-
tion criterion.

Finally, a path segment is chosen based on the cost function 
shown in equation (12). The parameter α is initially set to 0.5 
and seeds the algorithm. Altering α allows for emphasizing a 
preferred heading, e.g., close to the compass heading between 
the start location and goal location, in regions of minimal 
bathymetric relief, regions where multiple path segments have 
identical R2 values from the least-squares optimization. As 
the bathymetric relief approaches zero over the path, α  →  1 
since the R2 values for all paths will approach equality and will 
not contribute meaningful information to the optimization 
criterion.

 
P T Ro wi
= × + × −α α2 1( )  (12)

Since both Twi and R2 are normalized between zero and one, 
the weighting factors also stay between zero and one so that 
neither Twi nor R2 dominate.

The algorithm then initializes the end of the chosen path seg-
ment as the new start point, and the process repeats itself until 
it has utilized all of the available depth data. Further details are 
presented in Stuntz et al. (2015).

5. FielD eXPeriMenTs

Hundreds of glider missions have been successfully completed 
off the California coast over the last few years by the University 
of Southern California CINAPS team (Smith et al., 2010b). For 
this paper, we utilize data gathered from multiple deployments 
of Slocum gliders in both Monterey Bay and off the coast of Los 
Angeles, CA, USA. These data are used to validate the proposed 
methods to better reconstruct executed trajectories for science 
analysis and provide better real-time localization while under-
water. Commonly, glider trajectories are represented as straight 
lines underwater by connecting adjacent surfacing locations. 
The fact is that glider motion is hardly a straight line, as they are 
continually moved underwater by ocean currents and continual 
correction with poor navigation systems. The proposed method 
will provide better mission planning, navigation, and trajectory 
reconstruction, thus enabling a clearer understanding and con-
textualization of the data that these vehicles collect.
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FigUre 5 | a plot of the absolute surfacing error (in km) versus the length of the prescribed trajectory for the actual field trials.
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The experiments in this study were conducted in southern 
California between July 14 and August 3, 2011 and in Monterey 
Bay during October 2010. During these times, multiple gliders 
were deployed that were executing predefined sampling missions 
and yo-yoing between 2 and 100 m. Further details of these stand-
ard missions can be found in Smith et al. (2011a,b). From all of 
the surfacing locations during the mission executions, we selected 
those where the subsequent surfacing hit a waypoint. Thus, we 
selected the dives for which we knew the start location at the sur-
face L, the desired waypoint Wi, the aiming point Ai, and the actual 
surfacing location S of the vehicle for each segment examined. For 
southern California, these selected mission segments comprise 34 
surfacing events over a span of 21  days. For Monterey Bay, we 
present one mission demonstrating the proposed TBN algorithm.

6. UnscenTeD KalMan FilTer anD 
Ocean MODel PreDicTiOn resUlTs

For each of the 34 missions considered in the SCB, Figure  5 
displays the surfacing error (distance between the desired way-
point and the actual surfacing location) versus the length of the 
 trajectory. Note the linear trend of the data; the longer the glider 
dead reckons underwater, the greater is the surfacing error. Given 
that the surfacing error is directly correlated with the distance 
that the vehicle traveled underwater, we normalize this by use of 
equation (13) for an equivalent comparison across all 34 missions.

 
ErrorNormalized =

,

,

d S W
d L W

g i

g i

( )
( )

 (13)

Here dg (x, y) is the geographical distance between x and y. 
Figure 6 displays a heat-map surface plot of this normalized sur-
facing error within the SCVB for each of the 34 actual surfacing 
instances. Regions in blue indicate small error, while red regions 
are indicative of large error. The stars represent the waypoints that 
the two gliders were trying to achieve. The heat map is computed 
using a cubic interpolation of the 34 data points.

Comparing these errors with water depth, as shown in Smith 
et al. (2013), we note that the largest errors occur near shore and 
in the shelf-break portion of the region. These large errors are 
attributed to the following:

 1. Regional forcing drives upwelling across the shelf and creates 
strong and complex currents in the shelf region, which cannot 
be modeled well.

 2. Two of the northernmost waypoints are less than 1 km apart 
and are used as a holding pattern between missions. Since 
the glider must travel by executing an integer number of yos, 
overshooting the waypoint is likely due to the short baseline 
distance, the normalized error for geographically close 
waypoints.

We implemented our developed UKF model to execute all 34 
missions using the ocean current predictions from ROMS for the 
respective day and time of actual execution. Figure  7 displays 
the surfacing error versus the length of the trajectory for these 
simulations. The linear trend is not as evident in Figure  7 as 
previously seen in Figure 5, with much more dispersion in the 
shorter length missions. Figure  8 displays a heat-map surface 
plot of this normalized surfacing error within the deployment 
region for each of the 34 simulated surfacing instances. Regions 
in blue indicate small error, while red regions are indicative of 
large error. A normalized error of value >1 indicates a surfacing 
error greater than the length of the prescribed trajectory. The 
stars represent the waypoints that the two gliders were trying to 
achieve. The heat map is computed using a cubic interpolation of 
the 34 data points.

Here, the largest errors are seen directly along the shelf break, a 
region where the bathymetry changes rapidly as you move toward 
shore. Note that the scale is different from Figure 6, with the error 
along the shelf break >1; the surfacing error was larger than the 
actual length of the prescribed trajectory. It is understandable that 
a model would have trouble predicting currents in this complex 
region.
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FigUre 8 | a heat-map surface plot representing the normalized error between the surfacing location and the prescribed waypoint for the simulated 
trials.

FigUre 7 | a plot of the absolute surfacing error (in km) versus the length of the prescribed trajectory for the simulated trials.

FigUre 6 | a heat-map surface plot representing the normalized error between the surfacing location and the prescribed waypoint for the actual 
field trials.
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FigUre 9 | The start position (yellow), goal location (red), and the actual ending position (green) of a glider mission in Monterey Bay, ca, Usa. Image 
courtesy of Google Earth.
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FigUre 10 | Final results comparing the predicted ending point and 
the actual ending point. The prescribed goal location is also plotted, 
demonstrating more than 4000-m dead-reckoning error.
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A detailed comparison of these results is presented in Smith 
et al. (2013), and shows a good match between model predictions 
and the results of field trial validation for a small region within 
the SCB. This demonstrates the utility of ocean model predictions 
within our proposed UKF framework for mission planning and 
navigation in a coastal region. We note that with just this method, 
error still exists in the surfacing location. Hence, there is a need 
for a localization method to determine the actual path that the 
glider followed.

6.1. Terrain-Based navigation results
6.1.1. Monterey Bay Deployment
We demonstrate the effectiveness in localization and path 
reconstruction of our TBN algorithm on a glider deployment 
in Monterey Bay, CA, USA, executed during the Monterey Bay 
Aquarium Research Institute CANON experiments in October 
2010 (Chavez, 2010). The deployment region is focused on 
the northern shelf in Monterey Bay, referred to as the algal 
bloom incubator. The terrain in this region is varied, and the 
bathymetry maps are of high resolution. The Glider He Ha Pe 
(Smith et al., 2010b) was deployed in Monterey Bay in October 
2010. Its start position was (36.8431, −121.9204), and it was 
headed for (36.8097, −121.9041). The actual final surfacing 
location was (36.8415, −121.8694), a ~4.7-km error in surfac-
ing location. The vehicle traveled a straight line distance of 
approximately 4.5377 km from its initial position to its ending 
position. The deployment can be seen in Figure 9. Given the 
drastic difference in prescribed surfacing location and actual 
surfacing location, this mission is an excellent candidate for 
demonstrating our method. The Glider He Ha Pe started at 
the yellow pin, as shown in Figure  9. The glider surfaced at 
the green pin but was attempting to head toward the red pin, 
as shown in Figure  9. Note that the glider surfaced at the 
location that it thought was the prescribed waypoint. Thus, we 
see a navigational error in the on-board INS of approximately 
4688 m. The glider actually traversed an area with a depth relief 
of less than 0.4% with raw, recorded depth data showing a relief 
of approximately 1.7%.

Applying the LSE/TBN Algorithm to the chosen trajectory 
in Monterey Bay, CA, USA, we see a difference between the 
predicted surfacing location and the actual surfacing location 
of 55 m. This is the total navigation error over the entire 4.54-
km trajectory. The algorithm utilized a weighting factor (α) 
of 0.5. Figure  10 shows the path computed by the LSE/TBN 
Algorithm. For this path, the LSE/TBN Algorithm iterated 69 
times. A top-down view of the computed trajectory is presented 
in Figure 11.

The predicted path is laid over the bathymetry map and 
presented in Figure 10. Here, we show the actual ending point, 
predicted ending point, and initial goal. The path followed rises 
approximately 20 m over a length of 4565.7 m. This is an overall 
depth relief of approximately less than 0.5%. The distance actu-
ally traveled was 4537 m, a difference of 29 m (0.6% error) from 
the predicted distance traveled. The distance between the actual 
surfacing location and the predicted surfacing location was 
55 m. Some of these errors may be attributed to the drift a glider 
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FigUre 11 | a plot of the actual path followed by the glider as computed by the lse/TBn algorithm.

FigUre 12 | The locations of the eight missions examined with the TBn algorithm overlaid on a bathymetric heat map of the scB.

12

Stuntz et al. Persistent Autonomy for Gliders with Priors and Predictions

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 23

experiences as it sits on the surface waiting for a GPS fix. Further 
details and analysis are presented in Stuntz et al. (2015).

6.1.2. Southern California Bight Results
Further validation of the proposed TBN algorithm was 
 demonstrated by examining multiple missions from the Southern 
California Bight glider missions that were presented in Section 
3. We examined 8 of the 34 missions, which occurred in those 
regions where the ocean model prediction algorithm demon-
strated poor results, shallow water, and across the shelf break 

where there is significant bathymetric relief. The locations of 
the selected missions overlaid on a bathymetric heat map are 
presented in Figure  12. Here, red is shallow and blue is deep; 
the white stars identify the starting location for each mission 
examined. The results of the TBN algorithm applied to these 
missions are presented in Table  1. Here, the first column pre-
sents the overall length of the path given by our TBN algorithm. 
The second column provides the prescribed path length as the 
straight-line distance between start and goal waypoints. The third 
column gives the distance between the actual surfacing location 
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TaBle 1 | results of applying the TBn algorithm to multiple missions in the southern california Bight.

TBn path length Prescribed path length TBn to actual surface location TBn to actual goal actual surface to actual goal

Mission 1 737 722.88 16.4208 14.6689 23.9244

Mission 2 603 563.267 64.3373 187.9952 128.6411

Mission 3 1622 1592.8 30.3678 1562.5 1585.1

Mission 4 2566.2 2502.9 64.1873 132.4565 191.4795

Mission 5 1072.8 722.9 90.03 826.7 23.92

Mission 6 624 563.3 95.23 716.9 128.64

Mission 7 2520.3 2502.9 79.56 204.4 191.48

Mission 8 1717.6 1681.9 162.9 314.9 268.0

All distances are presented in meters.

FigUre 13 | a plot of the TBn predicted surfacing error in meters versus the length of the prescribed trajectory in kilometers.
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and the predicted surfacing location given by our TBN algorithm. 
The fourth column presents the distance between the predicted 
surfacing location from our TBN algorithm and the actual 
goal waypoint. The final column displays the distance between 
the actual goal waypoint and the actual surfacing location of 
the glider during field trials. Note that during the field trials, the 
glider was not executing any of the algorithms proposed in this 
manuscript; hence, it was only relying on dead-reckoning naviga-
tion, and the actual surfacing location was not biased or affected 
by the proposed methods. Figure 13 displays the surfacing error 
versus the length of the trajectory for these simulations. We note 
that there is no noticeable trend to these data, with predicted 
surfacing errors seemingly not dependent upon distance traveled 
as was the case shown in Figure 5. Most noticeably is a similar 
error in navigation for paths of 600 and 2500 m. This similarity 
is a result of the TBN algorithm depending primarily upon the 
resolution of the underlying bathymetry map, which is 0.0008° 
or approximately 88  m at the latitude of southern California 
where the missions were executed. The results from the SCB 
compare well with those presented for the Monterey Bay data set. 

This demonstrates the ability of our proposed TBN method to 
augment the UKF Algorithm for a hybrid algorithm for mission 
planning and localization to enable persistent operations.

7. cOMBining PriOrs 
anD PreDicTiOns

We have presented two methods for aiding underwater gliders 
to increase navigational accuracy, as well as reconstruct the tra-
versed path after execution. The ocean model prediction method 
utilizes predictions to aid in plan execution in the uncertain ocean 
environment. The terrain-based algorithm utilizes priors in the 
form of bathymetry maps to accurately plot the traversed path of 
the vehicle while underway. Each method has shown to increase 
overall accuracy for navigation and the ability of gliders to reach 
the designated waypoint. However, each method demonstrates 
poor results over a subset of the experimental domains that are 
complimentary to one another. Ocean model predictions are 
not able to predict the currents well over areas of large bathy-
metic relief, and the accuracy of the model degrades over time. 
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algOriThM 2| UKF Ocean Model and TBn combined algorithm.

 Given a mission with n goal waypoints, W1, …, Wn.
 Initiate algorithm upon glider surfacing.
 Acquire current GPS location and updated ROMS (or other) predictions.
 Determine GOAL location.
  Execute UKF Ocean Model Prediction Algorithm to determine a plan for 

mission execution, i.e., surfacing interval(s) S and aiming point(s) Ai for each 
waypoint Wi.

 Begin mission execution.
  Total Distance ← Distance between Start Latitude and Longitude (Wi) and 

Ending Latitude and Longitude (Wi+1).
 Execute LSE/TBN Algorithm (Alg. 1).
 if error > UKF prescribed 3σ error then
  Command a surfacing.
 else
  Remain Underwater until next waypoint.
 end if
  Determine surfacing error, and adjust computations within the UKF Ocean 

Model Prediction Algorithm and send updates to the ocean model.
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Terrain-based navigation demonstrates excellent results in areas 
of significant bathymetic relief, and accuracy improves over time 
by reducing the number of possible locations of the vehicle given 
the bathymetric history.

In this section, we present Algorithm 2, which combines both 
approaches. By the design, we rely on the accuracy of the ocean 
model predictions over short periods of time at the beginning 
of plan/mission execution and augment this with our proposed 
TBN method, which performs well in the areas with poor model 
predictions and maintains high accuracy over long periods of 
time. Additionally, we utilize each method to provide estimation 
bounds for the other to maintain a robust navigation solution. 
The primary contribution of this proposed combined algorithm is 
to provide low-power, persistent vehicles with an energy-efficient 
and accurate navigation solution. The proposed technique can be 
executed on-board gliders during mission execution and will sig-
nificantly aid in keeping them out of high-risk areas, e.g., shipping 
lanes. Additionally, the TBN portion of the algorithm is able to 
track deviations from the UKF predicted mission plan and force 
surfacing when a threshold error is exceeded. This combined 
implementation will enable better trajectory tracking by prescrib-
ing a surfacing for a GPS fix when necessary, thus maximizing 
data collection while minimizing time on the surface.

Given the method of locomotion for an underwater glider, 
slow velocities and reduced controllability, the following hybrid 
algorithm is not intended to provide a means for in situ mission 
adaptation. The UKF Algorithm functions to provide mission 
planning and reduce navigational error through the use of ocean 
model predictions. The TBN Algorithm functions to estimate 
the position of the glider during mission execution to ensure the 
vehicle does not drift too far off course. Additionally, the TBN 
Algorithm provides a method to reconstruct the actual executed 
path of the vehicle.

In the design of Algorithm 2, we utilize the predictions 
from the ocean model to provide an a  priori plan for mission 
execution, determining aiming points Ai for each waypoint Wi 
along with potential surfacing locations within the prescribed 
mission that meet the desired surfacing interval time or maintain 

a prescribed error bound as described in Section 3; see Smith 
et al. (2012) for further details. In previous work, the UKF Ocean 
Model Prediction Algorithm maintained an upper bound on 
navigational error by implementing frequent surfacing to acquire 
a GPS fix. Here, we are able to relax this constraint by incorporat-
ing the LSE/TBN Algorithm to keep navigation error bounded 
while the vehicle is underway. This enables longer duration seg-
ments underwater, as the glider is free to continue a segment as 
long as the prescribed navigational error is not violated. Once 
a prescribed time epoch has elapsed, or a deviation from the 
prescribed path exceeds a set threshold, the glider is commanded 
to surface. This method enables safer mission execution coupled 
with more time for data collection. For each segment of the 
prescribed path, the aiming point Ai from the UKF Algorithm 
is used as the initial compass heading to seed Algorithm 1, and 
this algorithm is run continuously as data are collected during 
mission execution.

The combined Ocean Model and TBN Algorithm presented 
in Algorithm 2 were implemented on the same 8 SCB missions 
used for validation of the TBN Algorithm presented in Section 
1. The UKF Ocean Model Prediction Algorithm provided (1) 
the aiming point Ai for each of the mission segments, which was 
used as the compass heading to seed the TBN Algorithm and (2) 
proposed surfacing locations along the path based on an esti-
mated navigational error. Of the eight total missions, the UKF 
Algorithm prescribed an additional surfacing location for only 
Missions 4 and 7. This surfacing interval was prescribed for 2 h, 
based on the predicted currents from ROMS in the area and the 
uncertainty computed by the UKF Algorithm. Upon execution 
of Algorithm 2, the proposed additional surfacing locations for 
Missions 4 and 7 were not requested or implemented since the 
navigational error never exceeded the prescribed 3σ bound of 
600 m based on the TBN Algorithm estimation of location over 
the duration of the trajectory. However, during Mission 3, the 
glider was prescribed to surface less than 1 h into the mission 
since the computed deviation from the prescribed path based 
on the TBN Algorithm, exceeded the prescribed 3σ bound of 
600 m.

As the data used to execute these simulations were the same 
in situ collected data used to test the TBN Algorithm in Section 
4, the performance results from the TBN portion of Algorithm 2 
are the same as those listed in Table 1. We did observe slight dif-
ferences in the computed path given by Algorithm 2 compared 
to the results by just applying Algorithm 1. These differences 
were observed during the initial portion of the trajectory, within 
the first one to three iterations of executing the TBN portion of 
Algorithm 2. The observed difference is a result of using the 
azimuth between the start and goal waypoint for Algorithm 1 
and the aiming point Ai for Algorithm 2 as the initial compass 
headings to seed the TBN Algorithm. As pointed out, this did not 
have an effect on the overall accuracy of the method, as over the 
length of the paths, the TBN Algorithm was able to converge to 
the same result.

Given the experience of multiple implementations of the UKF 
Ocean Model Prediction Algorithm over many glider missions, it 
is possible, but unlikely, that the predicted initial compass heading 
supplied to Algorithm 2 may be quite different than the azimuth 
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from prescribed start waypoint to prescribed goal waypoint, e.g., 
difference >90°. Further experiments are required to analyze the 
sensitivity of Algorithm 2 to the initial compass heading and 
are the focus of future work. Additionally, field experiments are 
planned to validate the promising results shown through these 
simulated field trials.

8. cOnclUsiOn

In this paper, we examined multiple missions that were executed 
by autonomous gliders in coastal regions in southern California. 
The results from the field experiments were compared with 
simulations of the same missions in a UKF that integrated ROMS 
current predictions and a TBN algorithm for determining loca-
tion and traversed path underwater. We found that incorporating 
ocean model predictions does improve navigational accuracy and 
plan execution; however, this method alone neither produces 
reliable predictions over long periods of time nor in regions of 
complex current structure, e.g., shelf break. We found excellent 
results for localization and path reconstruction in the shallow and 
shelf-break region using the proposed TBN algorithm. Contrary 
to the ocean model prediction incorporation, the LSE/TBN 
Algorithm has an upper bound on error based on the resolution 
of the underlying bathymetry map, regardless of the distance or 
time traveled. In the majority of areas within the deployment 
region studied, ROMS provided a prediction of the ocean current 
that corresponded well with field experiment results. This infor-
mation can be used to increase the utility of the deterministic 
model predictions by understanding what regions actually do 
have unpredictable currents.

The LSE/TBN Path Estimation algorithm provides a real-
time path estimator that provides an improved estimation of 
the route the glider took over the course of a deployment over 
existing dead-reckoning solutions. This improved path estima-
tion provides a better understanding of the position of the 
glider for scientists that utilize the instruments on the glider. It 
is clear that a combination of the proposed methodologies will 
provide increased navigational accuracy in this oceanic region for 
autonomous gliders by forcing a surfacing when a glider veers too 
far away from the prescribed path.

This paper shows the feasibility of a combined approach to 
mission planning and execution for autonomous gliders to per-
form persistent monitoring/sampling in coastal ocean regions. 
Utilizing model predictions for mission planning coupled with 
a terrain-based navigation while underway has the ability to 
provide accurate localization estimates for gliders to ~100  m, 
without the use of high-power sensors such as DVLs or acoustic 
communications. This error is approximately 1/5th the accuracy 
previously reported for similar vehicles utilizing dead-reckoning 
and minimal sensing capabilities (Nicholson and Healey, 2008; 
Davis et al., 2009; Smith et al., 2010c, 2012, 2013). The proposed, 
combined methodology provides this bound on navigational 
accuracy, regardless of trajectory length or mission duration. The 
primary application of the proposed method is to bound naviga-
tional error for gliders during mission execution, thus keeping 
them out of high-risk areas, such as shipping lanes, and enabling 

better trajectory tracking by knowing when a GPS fix is necessary 
to relocalize.

9. FUTUre WOrK

In this paper, we presented two techniques for operating autono-
mous gliders for persistent operations. It has been shown that 
real-time glider navigation accuracy can be increased through 
the incorporation of ocean model predictions and an Unscented 
Kalman Filter (UKF) (Smith et al., 2010c, 2012). However, even 
in this case, the uncertainty grows without bound. In the first step 
to implement our combined method in a real-time scenario, we 
utilized it as a means to bound the uncertainty in the UKF. We 
implemented this algorithm in simulation to demonstrate that 
we can command a surfacing when the path deviation exceeds a 
prescribed value. We plan to implement our method online and 
provide a position estimate for the UKF to compare with at each 
update epoch. We plan to implement this hybrid system onto a 
pair of autonomous gliders during field trials in the SCB during 
summer 2016 to compare with a dead-reckoning solution in situ.

Given the existing research presented earlier on the use of par-
ticle filters for TBN for underwater vehicles, we plan to develop 
a particle filter method for integration within the existing ocean 
model and UKF framework. This will hopefully provide an online 
set of navigation tools for accurate localization for underwater 
vehicles that operate for long-duration missions.

The study presented here serves as an initial investigation into 
the comparison of actual ground truth with ocean model predic-
tions. Future work will expand on this effort to include more field 
trials over longer time periods, as well as to compare other output 
variables of the model, e.g., salinity, temperature, and chlorophyll, 
with those measured by the vehicle(s). Additionally, we intend 
to examine field trials conducted during the same time period 
over multiple years to examine the ability of the model to predict 
seasonal and annual variability in the structure of the ocean cur-
rents in southern California.

Further research includes examining multiple other glider 
trajectories from USC CINAPS (Smith et  al., 2010b) to assess 
algorithm sensitivity, and formalizing and proving the proposed 
methodology for other AUVs, specifically propeller-driven vehi-
cles such as the YSI EcoMapper AUV (YSI Incorporated, 2016). 
The majority of deployments of these vehicles is much shorter 
than that of the gliders and will provide a good case study for a 
lower bound on the applicability of our methods. Also, we will 
use a YSI EcoMapper vehicle, which includes a 10-beam DVL, 
to provide accurate ground truth to further benchmark the pro-
posed method. The proposed terrain-based navigation method 
is a complement to other localization systems present for any 
vehicle. We see this as augmenting existing systems, as well as 
bounding the inherent errors of other navigation systems, i.e., 
filtering methods.

Note that the presented method is virtually model free, relying 
only on the vehicle speed for matching measured water depth 
values with bathymetric maps. In general, the exact vehicle 
velocity is not known but approximated and well-bounded. 
We propose to extend the current method by iterating through 
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reasonable velocities and optimizing over potential trajectory 
options to determine the best match with gathered data. This will 
also provide information on the actual speed of the vehicle that 
can be used in other analyses.

As eluded to earlier, many AUV deployments are routine mis-
sions carried out in bounded and known locations. We propose to 
utilize this prior knowledge to improve localization in uncertain 
environments by updating existing bathymetric maps. Amassing 
depth data over a deployment region will significantly improve 
localization for future missions. SCCOOS and the University of 
Southern California have amassed a large amount of depth data off 
the coast of Central and Southern California. By combining data 
of previous missions, better bathymetric maps can be developed 

and utilized in a TBN framework to augment navigation methods 
utilized on many vehicles.
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