
May 2016 | Volume 3 | Article 261

Original research
published: 25 May 2016

doi: 10.3389/frobt.2016.00026

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Natale,

Istituto Italiano di Tecnologia, Italy

Reviewed by:
Matthias Rolf,

Oxford Brookes University, UK
Nikolaus Vahrenkamp,

Karlsruhe Institute of Technology,
Germany

Giovanni Saponaro,
Instituto Superior Técnico, Portugal

*Correspondence:
Jürgen Leitner

j.leitner@roboticvision.org

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 29 November 2015
Accepted: 15 April 2016
Published: 25 May 2016

Citation:
Leitner J, Harding S, Förster A and

Corke P (2016) A Modular Software
Framework for Eye–Hand

Coordination in Humanoid Robots.
Front. Robot. AI 3:26.

doi: 10.3389/frobt.2016.00026

a Modular software Framework for
eye–hand coordination in humanoid
robots
Jürgen Leitner1*, Simon Harding2, Alexander Förster3 and Peter Corke1

1 Australian Centre for Robotic Vision, Queensland University of Technology, Brisbane, QLD, Australia, 2 Machine Intelligence
Ltd., South Zeal, UK, 3 Institute for Artificial Intelligence, Universität Bremen, Bremen, Germany

We describe our software system enabling a tight integration between vision and control
modules on complex, high-DOF humanoid robots. This is demonstrated with the iCub
humanoid robot performing visual object detection and reaching and grasping actions.
A key capability of this system is reactive avoidance of obstacle objects detected from
the video stream while carrying out reach-and-grasp tasks. The subsystems of our
architecture can independently be improved and updated, for example, we show that
by using machine learning techniques we can improve visual perception by collecting
images during the robot’s interaction with the environment. We describe the task and
software design constraints that led to the layered modular system architecture.

Keywords: humanoid robots, software framework, robotic vision, eye–hand coordination, reactive reaching,
machine learning

1. inTrODUcTiOn

In the last century, robots have transitioned from science fiction to science fact. When interacting
with the world around them robots need to be able to reach for, grasp, and manipulate a wide range
of objects in arbitrary positions. Object manipulation, as this is referred to in robotics, is a canonical
problem for autonomous systems to become truly useful. We aim to overcome the limitations of
current robots and the software systems that control them, with a focus on complex bi-manual
robots. It has previously been suggested that better perception and coordination between sensing
and acting are key requirements to increase the capabilities of current systems (Kragic and Vincze,
2009; Ambrose et al., 2012). Yet with the increasing complexity of the mechanical systems of modern
robots programing these machines can be tedious, error prone, and inaccessible to non-experts.
Roboticists are increasingly considering learning over time to “program” motions into robotic
systems. In addition, continuous learning increased the flexibility and provides the means for self-
adaptation, leading to more capable autonomous systems. Research in artificial intelligence (AI)
techniques has led to computers that can play chess on a level good enough to win against (and/or
tutor) the average human player (Sadikov et al., 2007). Robotic manipulation of chess pieces on a
human-level of precision and adaptation is still beyond current systems.

The problem is not with the mechanical systems. Sensory feedback is of critical importance for
acting in a purposeful manner. For humans particularly, vision is an important factor in the develop-
ment of reaching and grasping skills (Berthier et al., 1996; McCarty et al., 2001). The essential challenge
in robotics is to create a similarly efficient perception system. For example, NASA’s Space Technology
Roadmap is calling for the development of autonomously calibrating hand-eye systems enabling
successful off-world robotic manipulation (Ambrose et al., 2012). This ability is fundamental for

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00026&domain=pdf&date_stamp=2016-05-25
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00026
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:j.leitner@roboticvision.org
http://dx.doi.org/10.3389/frobt.2016.00026
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00026/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00026/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00026/abstract
http://loop.frontiersin.org/people/54973/overview
http://loop.frontiersin.org/people/51579/overview
http://loop.frontiersin.org/people/302969/overview

2

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

humans and animals alike, leading to many experimental studies
on how we perform these actions (Posner, 1989; Jeannerod, 1997).
The process is still not fully understood but basic computational
models for how humans develop their reaching and grasping
skills during infancy exist (Oztop et al., 2004). Where 14-month-
old infants can imitate and perform simple manipulation skills
(Meltzoff, 1988), robots can only perform simple, pre-programed
reaching and grasping in limited scenarios. Our ability to adapt
during motion execution to changing environments is lacking in
robots right now. Yet this adaptation is important as even if the
environment can be perceived precisely, it will not be static in
most (interesting) settings.

Coming back to the chess example, for an autonomous system
to pick up a chess piece, it needs to be able to perceive the board,
detect the right piece, and locate the position accurately, before
executing a purposeful motion that is safe for the robot and its
environment. These sub-problems have turned out to be much
harder than expected a few decades ago. With the progress in
mechanical design, motion control, and computer vision, it is
time to revisit the close coupling between those systems to create
robots that perform actions in day-to-day environments.

1.1. Motion and action: interacting with
the environment
In the chess example, even if the state of the board and its loca-
tion are known perfectly, moving a certain chess piece from one
square to another without toppling other pieces is a non-trivial
problem. Children, even at a very young age, have significantly
better (more “natural,” smoother) hand movements than almost
all currently available humanoid robots. In humans, the develop-
ment of hand control starts at an early age, albeit clumsily, and
the precision grasp is not matured until the age of 8–10 years
(Forssberg et al., 1991). Even after manipulation skills have been
learnt, they are constantly adapted by a perception–action loop
to yield desired results during action execution. Vision and action
are closely integrated in the human brain. Various specializations
develop also in the visual pathways of infants related to extracting
and encoding information about the location and graspability of
objects (Johnson and Munakata, 2005).

To enable robots to interact with objects in unstructured,
cluttered environments, a variety of reactive approaches have
been investigated. These quickly generate control commands
based on sensory input – similar to reflexes – without sampling
the robot’s configuration space and deliberately searching for a
solution (Khatib, 1986; Brooks, 1991; Schoner and Dose, 1992).
Generally such approaches apply a heuristic to transform local
information (in the sensor reference frame) to commands sent
to the motors, leading to fast, reflex-like obstacle avoidance.
Reactive approaches have become popular in the context of
safety and human-robot interaction (De Santis et al., 2007;
Dietrich et al., 2011) but are brittle and inefficient at achieving
global goals. A detailed model of the world enables the planning
of coordinated actions. Finding a path or trajectory is referred
to as the path planning problem. This search for non-colliding
poses is generally expensive and increasingly so with higher DOF.
Robots controlled this way are typically slow and appear cautious

in their motion execution. These reactive approaches started to
appear in the 1980s as an alternative to the “think first, act later”
paradigm. Current robotic systems operate in a very sequential
manner. After a trajectory is planned, it is performed by the robot,
before the actual manipulation begins. We aim to move away
from such brittle global planner paradigms and have these parts
overlap and have continuous refining based on visual feedback.
The framework provides quick and reactive motions, as well as,
interfaces to these for so higher-level agents or ‘‘opportunistic’’
planners can control the robot safely.

Once the robot has moved its end-effector close enough to
an object, it can start to interact with it. In recent years, good
progress has been made in this area thanks to the development
of robust and precise grippers and hands and the improvement
of grasping techniques. In addition, novel concepts of “grippers”
appeared in research, including some quite ingenious solutions,
such as the granular gripper (Brown et al., 2010). As alternative
to designing a grasping strategy, it may be possible to learn it
using only a small number of real-world examples, where good
grasping points are known, and these could be generalized or
transferred to a wide variety of previously unseen objects (Saxena
et al., 2008). An overview of the state of research in robot grasping
is found in Carbone (2013). Our framework provides an interface
to “action repertoires.” In one of the examples later on, we show
how we use a simple grasping module that is triggered when the
robot’s end-effector is close to a target object. While vision may
be suitable for guiding a robot to an object, the very last phase of
object manipulation – the transition to contact – may require the
use of sensed forces.

1.2. robotic Vision: Perceiving the
environment
For a robot to pick a chess piece, for example, finding the chess
board and each of the chess pieces in the camera image or even
just to realize that there is a chess board and pieces in the scene
is critical. An important area of research is the development of
artificial vision systems that provide robots with such capabili-
ties. The robot’s perception system needs to be able to determine
whether the image data contain some specific object, feature, or
activity. While closely related to computer vision, there are a few
differences mainly in how the images are acquired and how the
outcome will provide input for the robot to make informed deci-
sions. For example, visual feedback has extensively been used in
mobile robot applications for obstacle avoidance, mapping, and
localization (Davison and Murray, 2002; Karlsson et al., 2005).
Especially in the last decade, there has been a surge of computer
vision research. A focus is put on the areas relevant for object
manipulation1 and the increased interest in working around and
with humans.

Robots are required to detect objects in their surround-
ings even if they were previously unknown. In addition, we
require them to be able to build models so they can re-identify

1 In recent years, various challenges have emerged around this topic, such as the
Amazon Picking Challenge and RoboCup@Home.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 1 | During a stereotypical manipulation task, object detection is a hard but critical problem to solve. These images collected during our
experiments show the changes in lighting, occlusions, and pose of complex objects. (Note: best viewed in color) We provide a framework that allows for the easy
integration of multiple, new detectors (Leitner et al., 2013a).

3

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

and memorize them in the future. Progress has been made
on detecting objects – especially when limiting the focus on
specific settings – the interested reader is referred to current
surveys (Cipolla et al., 2010; Verschae and Ruiz-del Solar, 2015).
A solution for the general case, i.e., detecting arbitrary objects
in arbitrary situations, is elusive though (Kemp et al., 2007).
Environmental factors, including changing light conditions,
inconsistent sensing, or incomplete data acquisition seem to be
the main cause of missed or erroneous detection (Kragic and
Vincze, 2009) (see also the environmental changes in Figure 1).
Most object detection applications have been using hand-crafted
features, such as SIFT (Lowe, 1999) or SURF (Bay et al., 2006), or
extensions of these for higher robustness (Stückler et al., 2013).
Experimental robotics still relies heavily on artificial landmarks
to simplify (and speed-up) the detection problem, though there
is recent progress specifically for the iCub platform (Ciliberto
et al., 2011; Fanello et al., 2013; Gori et al., 2013). Many AI and
learning techniques have been applied to object detection and
classification over the past years. Deep-learning has emerged
as a promising technology for extracting general features from
ever larger datasets (LeCun et al., 2015; Schmidhuber, 2015). An
interface to such methods is integrated in our framework and
has been applied to autonomously learn object detectors from
small datasets (only 5–20 images) (Leitner et al., 2012a, 2013a;
Harding et al., 2013).

Another problem relevant to eye–hand coordination is
estimating the position of an object with respect to the robot
and its end-effector. “Spatial Perception,” as this is known, is
a requirement for planning useful actions and build cohesive
world models. Studies in brain- and neuro-science have uncov-
ered trends on what changes, when we learn to reason about
distances by interacting with the world, in contrast how these
changes happen is not yet clear (Plumert and Spencer, 2007). In
robotics, to obtain a distance measure multiple camera views
will provide the required observations. Projective geometry and
its implementation in stereo vision systems are quite common
on robotic platforms. An overview of the theory and techniques
can be found in Hartley and Zisserman (2000). While projec-
tive geometry approaches work well under carefully controlled
experimental circumstances, they are not easily transferred to

robotics applications though. These methods are falling short
as there are either separately movable cameras (such as in the
case of the iCub, which can be seen in the imprecise out-of-
the-box localization module (Pattacini, 2011)) or only single
cameras available (as with Baxter). In addition, the method
needs to cope with separate movement of the robot’s head, gaze,
and upper body. A goal for the framework was also to enable
the learning of depth estimation from separately controllable
camera pairs, even on complex humanoid robots moving about
(Leitner et al., 2012b).

1.3. integration: sensorimotor
coordination
Although there exists a rich body of literature in computer vision,
path planning, and feedback control, wherein many critical sub-
problems are addressed individually, most demonstrable behav-
iors for humanoid robots do not effectively integrate elements
from all three disciplines. Consequently, tasks that seem trivial
to humans, such as picking up a specific object in a cluttered
environment, remain beyond the state-of-the-art in experimental
robotics. A close integration of computer vision and control is of
importance, e.g., it was shown that to enable a 5 DOF robotic arm
to pick up objects just providing a point-cloud generated model of
the world was not sufficient to calculate reach and grasp behaviors
on-the fly (Saxena et al., 2008). The previously mentioned work
by Maitin-Shepard et al. (2010) was successful, manipulating
towels due to a sequence of visually guided re-grasps. “Robotics,
Vision, and Control” (Corke, 2011) puts the close integration
of these components into the spotlight and describes common
pitfalls and issues when trying to build systems with high levels
of sensorimotor integration.

Visual Servoing (Chaumette and Hutchinson, 2006) is a com-
monly used approach to create a tight coupling of visual percep-
tion and motor control. The closed-loop vision-based control can
be seen as a very basic level of eye–hand coordination. It has been
shown to work as a functional strategy to control robots without
any prior calibration of camera to end-effector transformation
(Vahrenkamp et al., 2008). A drawback of visual servoing is that
it requires the robust extraction of visual features; in addition,

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

the final configuration of these features in image space needs to
be known a priori.

Active vision investigates how controlling the motion of the
camera, i.e., where to look at, can be used to create additional
information from a scene. (Welke et al., 2010), for example,
presented a method that creates a segmentation out of multiple
viewpoints of an object. These are generated by rotating an object
in the robot’s hand in front of its camera. These exploratory
behaviors are important to create a fully functioning autonomous
object classification system and are highlighting one of the big
differences between computer and robotic vision.

Creating a system that can improve actions by using visual
feedback, and vice versa improve visual perception by performing
manipulation actions, necessitates a flexible way of representing,
learning, and storing visual object descriptions. We have devel-
oped a software framework for creating a functioning eye–hand
coordination system on a humanoid robot. It covers quite distinct
areas of robotics research, namely machine learning, computer
vision, and motion generation. Herein, we describe and showcase
this modular architecture that combines those areas into an inte-
grated system running on a real robotic platform. It was started as
a tool for iCub humanoid but thanks to its modular design it can
and has been used with other robots, most recently on a Baxter
robot as well.

1.3.1. Robotic Systems Software Design and Toolkits
Current humanoid robots are stunning feats of engineering.
With the increased complexity of these systems, the software
to run these machines is increasing in complexity as well. In
fact, programing today’s robots requires a big effort and usu-
ally a team of researchers. To reduce the time needed to setup
robotics experiments and to stop the need to repeatedly invent
the wheel, good system level tools are needed. This has led to
the emergence of many open source projects in robotics (Gerkey
et al., 2003; van den Bergen, 2004; Metta et al., 2006; Jackson,
2007; Diankov and Kuffner, 2008; Fitzpatrick et al., 2008; Quigley
et al., 2009). State-of-the art software development methods have
also been translated into the robotics domain. Innovative ideas
have been introduced in various areas to promote the reuse of
robotic software “artifacts,” such as components, frameworks,
and architectural styles (Brugali, 2007). To build more general
models of robot control, robotic vision and their close integration
robot software needs to be able to abstract certain specificities
of the underlying robotic system. There exists a wide variety of
middleware systems that abstract the specifics of each robot’s sen-
sors and actuators. Furthermore, such systems need to provide
the ability to communicate between modules running in parallel
on separate computers.

ROS (Robot Operating System) (Quigley et al., 2009) is one
of the most popular robotics software platforms. At heart, it is a
component-based middleware that allows computational nodes
to publish and subscribe to messages on particular topics, and
to provide services to each other. Nodes communicate via “mes-
sages,” i.e., data blocks of pre-defined structure, and can execute
a networked distributed computer system and the connections
can be changed dynamically during runtime. ROS also contains a
wider set of tools for computer vision (OpenCV and point-cloud

library PCL), motion planning, visualization, data logging and
replay, debugging, system startup as well as drivers for a mul-
titude of sensors, and robot platforms. For the iCub YARP (Yet
Another Robotics Platform) (Metta et al., 2006) is the middleware
of choice. It is largely written in C++ and uses separately running
code instances, titled “modules.” These can be dynamically and
flexibly linked and communicate via concise and pre-defined
messages called “bottles,” facilitating component-based design.
There is a wide range of other robotic middleware systems
available, such as ArmarX (Vahrenkamp et al., 2015), OROCOS
(Soetens, 2006), and OpenRTM (Ando et al., 2008), all with their
own benefits and drawbacks, see (Elkady and Sobh, 2012) for a
comprehensive comparison.

The close integration of vision and control has been addressed
by VISP (Visual Servoing Platform) developed at INRIA
(Marchand et al., 2005). It provides a library for controlling
robotic systems based on visual feedback. It contains a multitude
of image processing operations, enabling robots to extract useful
features from an image. By providing the desired feature values,
a controller for the robot’s motion can be derived (Hutchinson
et al., 1996; Chaumette and Hutchinson, 2006). The framework
presented here is building on these software systems to provide
a module-based approach to tightly integrate computer vision
and motion control for reaching and grasping on a humanoid
robot. The architecture grew naturally over the last few years
and was initially designed for the iCub and, hence, used YARP.
While there exists also a “bridge” component in YARP allowing
it to communicate with ROS topics and nodes, it was easy to port
it to ROS and Baxter. Furthermore, there is currently a branch
being developed aimed to be fully agnostic to the underlying
middleware.

2. The eYe–hanD FraMeWOrK

The goal of our research is to improve the autonomous skills of
humanoid robots by providing a library giving a solid base of
sensorimotor coordination. To do so, we developed a modular
framework that allows to easily run and repeat experiments on
humanoid robots. To create better perception and motion, as
well as a coordination between those, we split the system into
two subsystems: one focusing on action and the other one on
vision (our primary sense). To deal with uncertainties, various
machine learning (ML) and artificial intelligence (AI) techniques
are applied to support both subsystems and their integration. We
close the loop and perform grasping of objects, while adapting
to unknown, complex environments based on visual feedback,
showing that combining robot learning approaches with
computer vision improves adaptivity and autonomy in robotic
reaching and grasping.

Our framework, sketched in Figure 2A, provides an integrated
system for eye–hand coordination. The Perception (green) and
Action (yellow) subsystems are supported by Memory (in blue)
that enables the persistent modeling of the world. Functionality
has grown over time and the currently existing modules that have
been used in support of eye–hand coordination framework for
cognitive robotics research (Leitner, 2014, 2015) are as follows:

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 2 | (a) Overview of the common subsystems for a functional eye–hand coordination on humanoid robots. In broader terms, one can separate the (visual)
perception side (in green) from the action side (yellow). In addition to these, a memory subsystem (blue) allows to build-up an action repertoire and a set of object
models. (B) The presented framework herein consists of a modular way of combining perception tasks, encapsulated in the icVision subsystem [green, as in (a)],
with the action side and a world model, represented by the MoBeE subsystem (in yellow and blue). In addition, agents can interface these systems to generate
specific behaviors or to learn from the interaction with the environment (see Results). To allow portability, the system uses a communication layer and a robot
abstraction middleware, e.g., ROS or YARP.

5

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

•	 Perception: Object Detection and Identification: as mentioned
above, the detection and identification of objects is a hard
problem. To perform object detection and identification, we
use a system called icVision. It provides a modular approach
for the parallel execution of multiple object detectors and
identifiers. While these can be hard-coded (e.g., optical flow
segmentation of moving object, or simple color thresholding),
the main advantage of this flexible system is that it can be
interfaced by a learning agent (sketched in Figure 2B). In our
case, we have successfully used Cartesian Genetic Programing
for Image Processing (CGP-IP) (Harding et al., 2013) as an
agent to learn visual object models in both a supervised and
unsupervised fashion (Leitner et al., 2012a). The resulting
modules perform specific object segmentation of the camera
images.

•	 Perception: Object Localization: icVision also provides a module
for estimating the location of an object detected by multiple
cameras – i.e., the two eyes in the case of the iCub. In this case,
again the flexibility of the perception framework allows for
a learning agent to predict object positions with a technique
based on genetic programing and an artificial neural network
estimators (Leitner et al., 2012b). These modules can be easily
swapped or run in parallel, even on different machines.

•	 Action: Collision Avoidance and Motion Generation: MoBeE is
used to safeguard the robot from collisions both with itself and
the objects detected. This is implemented as a low-level inter-
face to the robot and uses virtual forces based on the robot
kinematics to generate the robot’s motion. A high-level agent
or planner can provide the input to this system (more details
in the next section).

•	 Memory: World Model: In addition to modeling the kinematics
of the robot to MoBeE also keeps track of the detected object
in operational space. It is also used as a visualization for the
robot’s current belief state by highlighting (impeding) colli-
sions (see Section 2.2).

•	 Memory: Action Repertoire: a light-weight, easy-to-use, one-
shot grasping system is used. It can be configured to perform
a variety of grasps, all requiring to close the fingers in a coor-
dinated fashion. The iCub incorporates touch sensors on the
fingertips, but due to the high noise, we use the error reported
by the PID controllers of the finger motors to know when they
are in contact with the object.

Complex, state-of-the art humanoid robots are controlled by
a distributed system of computers most of which are not onboard
the robot. On the iCub (and similarly on Baxter), an umbilical
provides power to the robot and a local-area-network (LAN)
connection. Figure 3 sketches the distributed computing system
used to operate a typical humanoid robot: very limited on-board
computing, which mainly focuses on the low-level control and
sensing, is supported by networked computers for computational
intensive tasks. The iCub, for example, employs an on-board
PC104 controller that communicates with actuators and sensors
using CANBus. Similarly, Baxter has an on-board computing
system (Intel i7) acting as the gateway to joints and cameras.
More robot-specific information about setup and configuration,
as well as the code base, can be found on the iCub and Baxter Wiki
pages,2 where researchers, from a large collection of research labs
using the robot, contribute and build up a knowledge base.

All the modules described communicate with each other
using a middleware framework (depicted in Figure 2B). The
first experiments were performed on the iCub; therefore, the first
choice for the middleware was YARP. A benefit of using a robotic
middleware is that actuators and sensors can be abstracted, i.e.,
the modules that connect to icVision and MoBeE do not require to
know the robot specifics. Another benefit of building on existing
robotics middleware is the ability to distribute modules across

2 iCub Wiki URL: http://wiki.icub.org Baxter Wiki URL: http://api.rethinkrobotics.
com

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://wiki.icub.org
http://api.rethinkrobotics.com
http://api.rethinkrobotics.com

FigUre 3 | a sketch of the computing setup we used to operate the
iCub at the iDsia robotics lab. The pc104 handles the on-board data
processing and controls the motors via CAN-bus. The icubServer is
running the YARP server and is the router into the IDSIA-wide network and
the internet. Dedicated computers for vision (icubVision) and collision
avoidance (MoBeeBox) are used.

6

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

multiple computers. In our setup, the various computational
tasks were implemented as nodes, which were then distributed
throughout the network of computers. For the experiments
on the iCub, a separate computer was used to run multiple
object detection modules in parallel, while another computer
(MoBeEBox) performed the collision avoidance and visualizing
the world model. During the development of new modules, an
additional user PC was connected via Ethernet to run and debug
the new modules. Component-level abstraction using middle-
ware increases portability across different robotic systems. For
example, running MoBeE with different robot arms is easily done
by simply providing the new arm’s kinematic model as an XML
file. Transferring to other middleware systems is also possible,
though a bit more intricate. We have ported various parts of the
architecture to ROS-based modules allowing to interact with
ROS-based robots, such as Baxter.

Humanoid robots, and the iCub in particular, have a high DOF,
which allows for complex motions. To perform useful actions,
many robots need to be controlled in unison requiring robust
control and planning algorithms. Our framework consists of an
action subsystem, which in turn contains collision avoidance and
grasping capabilities.

2.1. Object Detection and localization
Modules: icVision
Our humanoid robot should be able to learn how to perceive and
detect objects from very few examples, in a manner similar to
humans. It should have the ability to develop a representation that
allows it to detect the same object again and again, even when the
lighting conditions change, e.g., during the course of a day. This is
a necessary prerequisite to enable adaptive, autonomous behav-
iors based on visual feedback. Our goal is to apply a combination
of robot learning approaches, artificial intelligence, and machine
learning techniques, with computer vision, to enable a variety of
proposed tasks for robots.

icVision (Leitner et al., 2013c) was developed to support cur-
rent and future research in cognitive robotics. This follows a “pas-
sive” approach to the understanding of vision, where the actions

of the human or robot are not taken into account. It processes
the visual inputs received by the cameras and builds (internal)
representations of objects. This computation is distributed over
multiple modules. It facilitates the 3D localization of the detected
objects in the 2D image plane and provides this information
to other systems, e.g., a motion planner. It allows to create
distributed systems of loosely coupled modules and provides
standardized interfaces. Special focus is put on object detection
in the received input images. Figure 4 shows how a simple red
detection can be added as a separate running module. Specialized
modules, containing a specific model, are used to detect distinct
patterns or objects. These specialized modules can be connected
and form pathways to perform, e.g., object detection, similarly to
the hierarchies in the visual cortex. While the focus herein is on
the use of single and stereo camera images, we are confident that
information from RGB-D cameras (such as the Microsoft Kinect)
can be easily integrated.

The system consists of different modules, with the core module
providing basic functionality and information flow. Figure 5
shows separate modules for the detection and localization and
their connection to the core, which abstract the robot’s cameras
and the communication to external agents. These external agents
are further modules and can do a wide variety of tasks, for exam-
ple, specifically test and compare different object detection or
localization techniques. icVision provides a pipeline that connects
visual perception with world modeling in the MoBeE module
(dashed line in Figure 5). By processing the incoming images
from the robot with a specific filter for each “eye,” the location of
the specific object can be estimated by the localization module
and then communicated to MoBeE (Figure 6 depicts the typical
information flow).

2.2. robot and World Modeling for
collision avoidance: MoBee
MoBeE (Modular Behavior Environment for Robots) is at the
core of the described framework for eye–hand coordination. It is
a solid, reusable, open-source3 toolkit for prototyping behaviors
on the iCub humanoid robot. MoBeE represents the state-of-the-
art in humanoid robotic control and is similar in conception
to the control system that runs DLR’s Justin (De Santis et al.,
2007; Dietrich et al., 2011). The goal of MoBeE is to facilitate the
close integration of planning and motion control (sketched in
Figure 2B). Inspired by Brooks (1991), it aims to embody the
planner, provide safe and robust action primitives, and perform
real-time re-planning. This facilitates exploratory behavior using
a real robot with MoBeE acting as a supervisor preventing col-
lisions, even between multiple robots. It consists of three main
parts all implemented in C++: a kinematic library with a visuali-
zation, and a controller, running in two separate modules. These
together provide the “collision avoidance” (yellow) and “world
model” (blue) as depicted in Figure 2A. Figure 5 shows the con-
nections between the various software entities required to run the
full eye–hand coordination framework. MoBeE communicates

3 URL: https://github.com/kailfrank/MoBeE

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/kailfrank/MoBeE

FigUre 4 | little coding is required for a new module to be added as filter to icVision. This shows a simple red filter being added. The image acquisition,
connection of the communication ports, and cleanup are all handled by the superclass.

7

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

with the robot and provides an interface to other modules. One
of these is the perception side icVision.

In its first iteration, MoBeE provided virtual feedback for a
reinforcement learning experiment. This was necessary as most
current robotic systems lack a physical skin that would provide
sensory information to perform reflexive motions. It was intended
to enforce constraints in real time while a robot is under the
control of any arbitrary planner/controller. This led to a design
based on switching control, which facilitated experimentation
with pre-existing control modules. A kinematic model is loaded
from an XML file using “Zero Position Displacement Notation”
(Gupta, 1986).

When the stochastic or exploratory agent/controller (light gray
at the top in Figure 5) does something dangerous or undesirable,
MoBeE intervenes. Collision detection is performed on the loaded
kinematic robot model consisting of a collection of simple geom-
etries to form separate body parts (see Figure 7). These geom-
etries are created as C++ objects that inherit functionality from
both the fast geometric intersection library and the visualization
in OpenGL. The joint encoders provided by the robot abstraction
layer are used to calculate collisions, i.e., intersecting body parts.
In the first version, this collision signal was used to avoid colli-
sions by switching control, which was later abandoned in favor
of a second-order dynamical system (Frank, 2014). Constraints,
such as impeding collisions, joint limits, or cable lengths, can be

addressed by adding additional forces to the system. Due to the
dynamical system, many of the collisions encountered in practice
no longer stop the robot’s action, but rather deflect the requested
motion, bending it around an obstacle.

MoBeE continuously mixes control and constraint forces to
generate the robot motion in real time and results in smoother,
more intuitive motions in response to constraints/collisions
(Figure 8). The effects of sensory noise are mitigated passively
by the controller. The constraint forces associated with collisions
are proportional to their penetration depth; in the experimenta-
tion, it was observed that the noise in the motor encoder signal
has a minimal effect on collision response. The sporadic shallow
collisions, which can be observed when the robot is operating
close to an obstacle, such as the other pieces of a chess board,
generate tiny forces that only serve to nudge the robot gently away
from the obstacle. MoBeE in addition can be used for adaptive
roadmap planning (Kavraki et al., 1996; Stollenga et al., 2013), the
dynamical approach means that the planner/controller is free to
explore continuous spaces, without the need to divide them into
safe and unsafe regions.

The interface for external agents is further simplified by allow-
ing to subscribe to specific points of interest in the imported
models (seen in yellow in Figure 7). These markers can be defined
both on static or moving objects or the robots. The marker posi-
tions or events, such as the body part being in a colliding pose,

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 5 | The framework described consists of multiple software entities (indicated by cogwheels), all connected via a communication layer, such
as YarP or rOs. The provided robot abstraction is used by the main modules. On the perception side, icVision processes the incoming camera images in its core
module and sends them to (possibly multiple) separately running detection filters. Another separate entity is performing the localization based on the detected
objects and robot’s pose. The icVision Core also provides interfaces for agents to query for specific objects or agents that learn object representations (such as a
CGP-IP based learner). The interface also provides the objects location to MoBeE. There a world model is created by calculating the forward kinematics from the
incoming joint positions. The same entity performs the collision avoidance between separate body parts or the objects that have been detected by icVision. The
controller is independent and translates the virtual forces created by MoBeE or provided by higher level planning agents into motor commands.

8

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

are broadcast via the interface allowing connected agents to react,
e.g., to trigger a grasp primitive. More details about the whole
MoBeE architecture and how it was used for reach learning can be
found in Frank (2014). Additionally, we have published multiple
videos of our robotic experiments while using MoBeE foremost:
“Toward Intelligent Humanoids.”4

2.3. action repertoire: leOgrasper
Module
Robotic grasping is an active and large research area in robotics.
A main issue is that in order to grasp successfully the pose of the
object to be grasped has to be known quite precisely. This is due
to the grasp planners required to plan the precise placement and
motion of each individual “finger” (or gripper). Several methods
for robust grasp planning exploit the object geometry or tactile
sensor feedback. However, object pose range estimation intro-
duces specific uncertainties that can also be exploited to choose
more robust grasps (Carbone, 2013).

A different approach is used in our implementation that does
use a more reactive approach. Grasp primitives are triggered
from MoBeE, which involve the controlling the five digit iCub
hand. These primitives consist of target points in joint space to be
reached sequentially during grasp execution. Another problem

4 Webpage: http://Juxi.net/media/ or direct video URL: http://vimeo.com/51011081

is to realize when to stop grasping. The iCub has touch sensors
on the palm and finger tips. To know when there is a successful
grasp, these sensors need to be calibrated for the material in use.
Especially for objects as varied as plastic cups, ceramic mugs, and
tin cans, the tuning can be quite cumbersome and leads to a lower
signal-to-noise ratio. We decided to overcome this by using the
errors from the joint controllers directly. This approach allows
to provide feedback whether a grasp was successful or not to a
planner or learning system.

LEOGrasper is our light-weight, easy-to-use, one-shot grasp-
ing system for the iCub. The system itself is contained in one
single module using YARP to communicate. It can be triggered
by a simple command from the command line, network, or as in
our case from MoBeE. The module can be configured for multiple
grasp types, these are loaded from a simple text file, containing
some global parameters (such as the maximum velocity) as well as
the trajectories. Trajectories are specified by providing positions
for each joint individually, containing multiple joints per digit as
well as abduction, spread, etc. on the iCub. We provide power and
pinch grasp and pointing gestures. For example, to close all digits
in a coordinated fashion, at least two positions need to be defined,
the starting and end position (see Figure 9). For more intricate
grasps, multiple intermediate points can be provided. The robot’s
fingers are controlled from the start point to each consecutive
point, when an open signal is received. For close, the points
are sent in reverse order.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://Juxi.net/media/
http://vimeo.com/51011081

FigUre 6 | To provide information about the 3D location of an object
to MoBeE, the following is performed: at first, camera images are
received by the core from the hardware via a communications layers.
The images are split into channels and made available to each individual
icVision filters that is currently active. These then perform binary
segmentation for a specific object. The objects (center) location in the image
frame, (u,v) is then communicated to a 3D localization module. Using the joint
encoder values and the object’s location in both eyes, a location estimate is
then sent to the MoBeE world model (Leitner et al., 2013a).

9

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

LEOGrasper has been used extensively in our robotics lab
and selected successful grasps are shown in Figure 10.5 The

5 Source code available at: https://github.com/Juxi/iCub/

existing trajectories and holding parameters were tuned through
 experimentation; in the future, we aim at learning these primi-
tives using human demonstrations or reward signals.

3. MeThOD OF inTegraTing acTiOn
anD VisiOn: aPPlYing The
FraMeWOrK

The framework has been extensively used over the last few years
in our experimental robotics research. Various papers have been
published during the development of the different subsystems and
their improvements. Table 1 provides an overview. MoBeE can be
pre-loaded with a robot model using an XML file that describes
the kinematics based on “Zero Position Displacement Notation”
(Gupta, 1986). Figure 11 shows a snippet from the XML describ-
ing the Katana robotic arm. In addition a pre-defined, marked-up
world model can be loaded from a separate file as well. This is
particularly useful for stationary objects in the world or to restrict
the movement space of the robot during learning operations.

Through the common interface to MoBeE object properties
of each object can be modified, through an RPC call, following
YARP standard and is accessible from the command line, a
webpage, or any other module connecting to it. These objects are
placed in the world model by either loading from a file at start-up
or during runtime by agents, such as the icVision core. Through
the interface an object can also be set as an obstacle, which means
repelling forces are calculated, or as a target, which will attract the
end-effector. In addition, objects can be defined as ghosts, leading
to the object being ignored in the force calculation.

As mentioned earlier on, previous research suggests that
connections between motor actions and observations exist in the
human brain and describes their importance to human develop-
ment (Berthier et al., 1996). To interface and connect artificial
systems performing visual and motor cortex-like operations on
robots will be crucial for the development of autonomous robotic
systems. When attempting to learn behaviors on a complex
robot, such as the iCub or Baxter, state-of-the-art AI and control
theories can be tested (Frank et al., 2014) and shortcomings of
these learning methods can be discovered (Zhang et al., 2015) and
addressed. For example, Hart et al. (2006) showed that a devel-
opmental approach can be used for a robot to learn to reach and
grasp. We developed modules for action generation and collision
avoidance and their interfaces to the perception side. By having
the action and motion side tightly coupled, we can use learning
algorithms that require also negative feedback. We can create this
without actually “hurting” the robot.

3.1. example: evolving Object Detectors
We previously developed a technique based on Cartesian Genetic
Programing (CGP) (Miller, 1999, 2011) allowing for the auto-
matic generation of computer programs for robot vision tasks,
called Cartesian Genetic Programming for Image Processing
(CGP-IP) (Harding et al., 2013). CGP-IP draws inspiration from
previous work in the field of machine learning and combines it
with the available tools in the image processing discipline, namely
in the form of OpenCV functions. OpenCV is an open-source

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/Juxi/iCub/

FigUre 9 | Defining a grasp in LEOGrasper is simple: defining a start
and end position in joint space is all that is required. The open
command will revert the hand into the start state (left), close will attempt to
reach the end state (right). For more complex grasps intermediate states can
be provided.

FigUre 7 | a scene of the iCub avoiding an object (inset) during one of our experiments (leitner et al., 2014b) and its corresponding visualization of
the MoBeE model. Red body parts are highlighting impeding collisions with either another body part (as in the case of the hip with the upper body) or an object in
the world model (hand with the cup). (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).

FigUre 8 | The virtual forces created by the dynamical system within
MoBeE. It continuously mixing control and constraint forces (orange vectors)
to generate the robot motion in real time. It results in a smoother, more
intuitive motions in response to constraints/collisions (dashed green line). To
calculate the force, the distance of the object to the hand in its coordinate
frame CSHand is used. MoBeE handles the transformation from the
coordinate systems of the cameras (CSR/CSL) to the world frame CSWorld
and CSHand.

10

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

framework providing a mature toolbox for a variety of image
processing tasks. This domain knowledge is integrated into
CGP-IP allowing to quickly evolve object detectors from only a
small training set – our experiments showed that just a handful
of (5–20) images per object are required. These detectors can then
be used to perform the binary image segmentation within the
icVision framework. In addition, CGP-IP allows for the segmen-
tation of color images with multiple channels, a key difference to
much of the previous work focusing on gray scale images. CGP-IP
deals with separate channels and splits incoming color images

into individual channels before they can be used at each node
in the detector. This leads to the evolutionary process selecting
which channels will be used and how they are combined.

CGP-IP manages a population of candidates, which consists
of individual genes, representing the nodes. Single channels are
used as inputs and outputs of each node, while the action of each
node is the execution of an OpenCV function. The full candidate
can be interpreted as a computer program performing a sequence
of image operations on the input image. The output of each can-
didate filter is a binary segmentation. GPs are supervised, in the
sense that a fitness will need to be calculated for each candidate.
For scoring each individual, a ground truth segmentation needs
to be provided. A new generation of candidates is then created
out of the fittest individuals. An illustrative example of a CGP-IP
candidate is shown in Figure 12. CGP-IP can directly create
C# or C++ code from these graphs. The code can be executed
directly on the real hardware or pushed as updates to existing
filter modules running within icVision. CGP-IP includes classes
for image operations, the evolutionary search and the integration

https://www.youtube.com/watch?v=w_qDH5tSe7g
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 1 | Overview of experiments facilitated by parts of the architecture
presented herein.

experiment description Framework reference

Autonomous object detection icVision, CGP-IP Leitner et al. (2012a, 2013b)
Multi robot collision avoidance MoBeE (vSkin) Leitner et al. (2012b,c)
Safe policy learning MoBeE (vSkin) Pathak et al. (2013)
Object detection and
localisation

icVision Leitner et al. (2013a)

Spatial perception learning MoBeE, icVision Leitner et al. (2013d)
Learning object detection CGP-IP Leitner et al. (2013e)
Humanoid motion planning MoBeE Stollenga et al. (2013)
Reinforcement learning for
reaching

MoBeE Frank et al. (2014)

Improving vision through
interaction

Full system Leitner et al. (2014a)

Reactive reaching and grasping Full system Leitner et al. (2014b)
Cognitive and developmental
robots

Full system Leitner (2015)

FigUre 10 | The iCub hand during grasp execution with a variety of objects, including tin cans, tea boxes, and plastic cups (leitner et al., 2014b).

11

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

with the robotic side through a middleware. Currently, we are
extending the C# implementation to run on various operating
systems and be integrated into a distributed visual system, such
as DRVS (Chamberlain et al., 2016).

CGP-IP allows not just for a simple reusable object detection
but also provides a simple way of learning these based on only
very small training sets. In connection with our framework,
these data can be collected on the real hardware and the learned
results directly executed. For this, an agent module was designed
that communicates with the icVision core through its interface.
Arbitrary objects are then placed in front of the robot and
images are collected while the robot is moving about. The col-
lected images are then processed by the agent and a training set
is created. With the ground truth of the location known, so is
the location of the object in the image. A fixed size bounding
box around this location leads to the ground truth required to
evolve an object detector. This way the robot (and some prior
knowledge of the location) can be used to autonomously learn

object detectors for all the objects in the robot’s environment
(Leitner et al., 2012a).

3.2. example: reaching While avoiding
a Moving Obstacle
The inverse kinematics problem, i.e., placing the hand at a given
coordinate in operational space, can be performed with previously
available software on the iCub, such as the existing operational
space controller (Pattacini, 2011) or a roadmap-based approach
(Stollenga et al., 2013). These systems require very accurate
knowledge of the mechanical system to lead to precise solu-
tions, requiring a lengthy calibration procedure. These systems
also tend to be brittle when change in the robot’s environment
requires adapting the created motions.

To overcome this problem, the framework, as described above,
creates virtual forces based on the world model within MoBeE to
govern the actual movement of the robot. Static objects in the
environment, such as, e.g., the table in front of the robot, can be
added directly into the model via an XML file. Once in the model,
actions and behaviors are adapted due to computed constraint
forces. This way we are able to send arbitrary motions to our sys-
tem, while ensuring the safety of our robot. Even with just these
static objects, this has been shown to provide an interesting way
to learn robot reaching behaviors through reinforcement (Pathak
et al., 2013; Frank et al., 2014). The presented system has the same
functionality also for arbitrary, non-static objects.

For this after the detection in both cameras, the object’s loca-
tion is estimated and updated in the world model. The forces
are continually recalculated to avoid impeding collisions even
with moving objects. Figure 7 shows how the localized object
is in the way of the arm and the hand. To ensure the safety of
the rather fragile fingers, a collision sphere around the end-
effector was added – seen in red, indicating a possible collision
due to the sphere intersecting with the object. The same can
be seen with the lower arm. The forces push the intersecting
geometries away from each other, leading to a movement of the

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 12 | example illustration of a cgP-iP genotype, taking three input channels of the current image. A sequence of OpenCV operations is then
performed before thresholding occurs to produce a binary segmented output image.

FigUre 11 | (left) The XMl files used to describe the kinematics of the Katana arm. (Right) Visualization of the same XML file in MoBeE.

12

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

end-effector away from the obstacle. Figure 13 shows how the
robot’s arm is “pushed” aside when the cup is moved close to
the arm, therefore avoiding a non-stationary obstacle. It does
so until the arm reaches its limit, then the forces cumulate and
the end-effector is “forced” upwards to continue avoiding the
obstacle. Similarly the reaching behaviour is adapted while the
object is moved. Without an obstacle, the arm starts to settle
back into its resting pose q*. By simply sending a signal through
the interface the type of the object within the world model can
be changed from obstacle into target. This leads to the
calculated forces now being attracting not repelling. MoBeE
also allows to trigger certain responses when collisions occur.
In the case when we want the robot to pick-up the object, we
can activate a grasp subsystem whenever the hand is in the close
vicinity of the object. We are using a prototypical power grasp
style hand-closing action, which has been used successfully in
various demos and videos.6 Figure 10 shows the iCub success-
fully picking up (by adding an extra upwards force) various
objects using our grasping subsystem, executing the same

6 See videos at: http://Juxi.net/media/

action. Our robot frameworks are able to track multiple objects
at the same time, which is also visible in Figure 7, where both
the cup and the tea box are tracked. By simply changing the
type of the object within MoBeE, the robot reaches for a certain
object while avoiding the other.

3.3. example: improving robot Vision by
interaction
The two subsystems can further be integrated for the use of
higher level agents controlling the robot’s behavior. Based on the
previous section, the following example shows how an agent can
be used to learn visual representations (in CGP-IP) by having a
robot interact with its environment. Building on the previously
mentioned evolved object detectors, we extended the robot’s
interaction ability to become better at segmenting objects.
Similar to the experiment by Welke et al. (2010), the robot
was able to curiously rotate the object of interest with its hand.
Additional actions were added for the robot to perform, such as
poke, push, and a simple viewpoint change by leaning left and
right. Furthermore, a baseline image dataset is collected, while
the robot (and the object) is static. In this experiment, we wanted
to measure the impact of specific actions on the segmentation

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://Juxi.net/media/

FigUre 13 | The iCub’s arm is controlled by MoBeE to stay in a non-colliding pose of the moving obstacle and the table by using reactive virtual
forces. (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).

13

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

performance. After the robot performed one of the four pre-
programed actions, a new training set was collected, which con-
tains the images from the static scenario and the images during
action execution. While more data mean generally better results,
we could also see that some actions were leading to better results
than others. Figure 14 shows visually how the improvement
leads to better object segmentation, in validation images. On the
left is the original camera image, in the middle the segmentation
performed by an evolved filter solely based on the “static scene
baseline,” and on the right is the segmentation when integrating
the new observations during a haptic exploration action.

By providing a measurable improvement, the robot can select
and perform the action yielding the best possible improvement
for a specific detector. Interaction provides robots with a unique
possibility (compared to cameras) to build more accurate and
robust visual representations. Simple leaning actions change the
camera viewpoint sufficiently to collect a different dataset. This
does not just help with separating geometries of the scene but also
creates more robust and discriminative classifiers. Active scene
interaction by e.g., applying forces to objects enables the robot to
start to reason about relationships between objects, such as “are
two objects (inseparably) connected,” or, find out other physical
properties, like, “is the juice box full or empty,” We are planning
to add more complex actions and abilities to learn more object
properties and have started to investigate how to determine an
object’s mechanical properties through interaction and observa-
tion (Dansereau et al., 2016).

4. DiscUssiOn

Herein, we present our modular software framework applied in
our research toward autonomous and adaptive robotic manipula-
tion with humanoids. A tightly integrated sensorimotor system,
based on subsystems developed over the past years, enables a basic
level of eye–hand coordination on our robots. The robot detects
objects, placed at random positions on a table, and performs a
visually guided reaching before executing a simple grasp.

Our implementation enables the robot to adapt to changes in
the environment. It safeguards complex humanoid robots, such
as the iCub, from unwanted interactions – i.e., collisions with the
environment or itself. This is performed by integrating the visual
system with the motor side by applying attractor dynamics based
on the robot’s pose and a model of the world. We achieve a level
of integration between visual perception and actions not previ-
ously seen on the iCub. Our approach, while comparable to visual
servoing, has the advantage of being completely modular and the
ability to take collisions (and other constraints) into account.

The framework has grown over recent time and has been used
in a variety of experiments mainly with the iCub humanoid robot.
It has since then been ported in parts to work with ROS with the
aim of running pick and place experiments on Baxter; the code
will be made available on the authors webpage at: http://juxi.net/
projects/VisionAndActions/. The overarching goal was to enable
a way of controlling a complex humanoid robot, which combines
motion planning with low-level reflexes from visual feedback.
icVision provides the detection and localization of objects in the
visual stream. For example, it will provide the location of a chess
board on a table in front of the robot. It can also provide the
position of chess pieces to the world model. Based on this, an
agent can plan a motion to pick up a specific piece. During the
execution of that motion, MoBeE calculates forces for each chess
piece, attracting for the target piece, repelling forces for all the
other pieces. These forces are updated whenever a new object (or
object location) is perceived, yielding a more robust execution
of the motion due to a better coordination between vision and
action.

The current system consists of a mix of pre-defined and
learned parts, in the future, we plan to integrate further machine
learning techniques to improve the object manipulation skills of
robotic systems. For example, learning to plan around obstacles,
including improved prediction and selection of actions. This will
lead to a more adaptive, versatile robot, being able to work in
unstructured, cluttered environments. Furthermore, it might be
of interest to investigate an even tighter sensorimotor coupling,

https://www.youtube.com/watch?v=w_qDH5tSe7g
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://juxi.net/projects/VisionAndActions/
http://juxi.net/projects/VisionAndActions/

FigUre 14 | segmentation improvements for two objects after interaction. On the left, the robot’s view of the scene. The middle column shows the first
segmentation generated from the “static scene baseline.” The last column shows the improved segmentation after learning continued with new images collected
during the manipulation of the object.

14

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

e.g., by working directly in the image space – similar to image-
based visual servoing approaches (Chaumette and Hutchinson,
2006) – this way avoiding to translate 2D image features into
operational space locations.

In the future, we are aiming to extend the capabilities to allow
for the quick end-to-end training of reaching (Zhang et al., 2015)
and manipulation tasks (Levine et al., 2015), as well as, easy
transition from simulation to real-world experiments. We are
also looking at developing agents that interface this framework
to learn the robot’s kinematics and adapt to changes occurring
due to malfunction or wear, leading to self calibration of a robot’s
eye–hand coordination.

aUThOr cOnTriBUTiOns

JL is the main contributor both in the research and software
integration of the framework. SH designed the CGP-IP software

framework and the related experiments. AF designed and con-
tributed to the research experiments on the iCub. PC contributed
to the manuscript and the research experiments on Baxter.

acKnOWleDgMenTs

The authors would like to thank Mikhail Frank, Marijn Stollenga,
Leo Pape, Adam Tow, and William Chamberlain for their discus-
sions and valued inputs to this paper and the underlying software
frameworks presented herein.

FUnDing

Various European research projects (IM-CLeVeR #FP7-
IST-IP-231722, STIFF #FP7-IST-IP-231576) and the Australian
Research Council Centre of Excellence for Robotic Vision
(#CE140100016).

reFerences

Ambrose, R., Wilcox, B., Reed, B., Matthies, L., Lavery, D., and Korsmeyer, D.
(2012). NASA’s Space Technology Roadmaps (STRs): Robotics, Tele-Robotics, and
Autonomous Systems Roadmap. Technical Report. Washington, DC: National
Aeronautics and Space Administration (NASA).

Ando, N., Suehiro, T., and Kotoku, T. (2008). “A software platform for component
based RT-system development: Openrtm-aist,” in Simulation, Modeling, and
Programming for Autonomous Robots, eds S. Carpin, I. Noda, E. Pagello, M.
Reggiani and O. von Stryk (Springer), 87–98.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). “SURF: speeded up robust fea-
tures,” in Computer Vision ECCV 2006, eds A.Leonardis, H.Bischof, and A.Pinz
(Berlin Heidelberg: Springer), 404–417.

Berthier, N., Clifton, R., Gullapalli, V., McCall, D., and Robin, D. (1996). Visual
information and object size in the control of reaching. J. Mot. Behav. 28,
187–197. doi:10.1080/00222895.1996.9941744

Brooks, R. (1991). Intelligence without representation. Artif. Intell. 47, 139–159.
doi:10.1016/0004-3702(91)90053-M

Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.,
et al. (2010). Universal robotic gripper based on the jamming of granular

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1080/00222895.1996.9941744
http://dx.doi.org/10.1016/0004-3702(91)90053-M

15

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

material. Proc. Natl. Acad. Sci. U.S.A. 107, 18809–18814. doi:10.1073/pnas.
1003250107

Brugali, D. (2007). Software Engineering for Experimental Robotics, Vol. 30. Berlin;
Heidelberg: Springer.

Carbone, G. (2013). Grasping in Robotics, Volume 10 of Mechanisms and Machine
Science. London: Springer.

Chamberlain, W., Leitner, J., and Corke, P. (2016). “A distributed robotic vision ser-
vice,” in Proceedings of the International Conference on Robotics and Automation
(ICRA), Stockholm.

Chaumette, F., and Hutchinson, S. (2006). Visual servo control, part I: basic
approaches. IEEE Robot. Autom. Mag. 13, 82–90. doi:10.1109/MRA.2006.250573

Ciliberto, C., Smeraldi, F., Natale, L., and Metta, G. (2011). “Online multiple
instance learning applied to hand detection in a humanoid robot,” in Proceedings
of the International Conference on Intelligent Robots and Systems (IROS).
San Francisco, CA.

Cipolla, R., Battiato, S., and Farinella, G. M. (2010). Computer Vision: Detection,
Recognition and Reconstruction, Vol. 285. Berlin Heidelberg: Springer.

Corke, P. (2011). Robotics, Vision and Control, Volume 73 of Springer Tracts in
Advanced Robotics. Berlin; Heidelberg: Springer.

Dansereau, D. G., Singh, S. P. N., and Leitner, J. (2016). Proceedings of the
International Conference on Robotics and Automation (ICRA), Stockholm.

Davison, A. J., and Murray, D. W. (2002). Simultaneous localization and
 map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24,
865–880. doi:10.1109/TPAMI.2002.1017615

De Santis, A., Albu-Schäffer, A., Ott, C., Siciliano, B., and Hirzinger, G. (2007). “The
skeleton algorithm for self-collision avoidance of a humanoid manipulator,” in
Advanced Intelligent Mechatronics, 2007 IEEE/ASME International Conference
on (Zürich: IEEE), 1–6.

Diankov, R., and Kuffner, J. (2008). Openrave: A Planning Architecture for
Autonomous Robotics. Tech. Rep. CMU-RI-TR-08-34. Pittsburgh, PA: Robotics
Institute, 79.

Dietrich, A., Wimbock, T., Taubig, H., Albu-Schaffer, A., and Hirzinger, G. (2011).
“Extensions to reactive self-collision avoidance for torque and position con-
trolled humanoids,” in Proceedings of the International Conference on Robotics
and Automation (ICRA) (Shanghai: IEEE), 3455–3462.

Elkady, A., and Sobh, T. (2012). Robotics middleware: a comprehensive literature
survey and attribute-based bibliography. J. Robot. 2012. doi:10.1155/2012/
959013

Fanello, S. R., Ciliberto, C., Natale, L., and Metta, G. (2013). “Weakly supervised
strategies for natural object recognition in robotics,” in Proceedings of the
International Conference on Robotics and Automation (ICRA). Karlsruhe.

Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived robot genes.
Rob. Auton. Syst. 56, 29–45. doi:10.1016/j.robot.2007.09.014

Forssberg, H., Eliasson, A., Kinoshita, H., Johansson, R., and Westling, G. (1991).
Development of human precision grip I: basic coordination of force. Exp. Brain
Res. 85, 451–457. doi:10.1007/BF00229422

Frank, M. (2014). Learning to Reach and Reaching to Learn: A Unified Approach
to Path Planning and Reactive Control through Reinforcement Learning. Ph.D.
thesis, Universitá della Svizzera Italiana, Lugano.

Frank, M., Leitner, J., Stollenga, M., Förster, A., and Schmidhuber, J. (2014).
Curiosity driven reinforcement learning for motion planning on humanoids.
Front. Neurorobot. 7:25. doi:10.3389/fnbot.2013.00025

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). “The player/stage project:
tools for multi-robot and distributed sensor systems,” in Proceedings of the
11th International Conference on Advanced Robotics, Volume 1 (Coimbra),
317–323.

Gori, I., Fanello, S., Odone, F., and Metta, G. (2013). “A compositional approach for
3D arm-hand action recognition,” in Proceedings of the IEEE Workshop on Robot
Vision (WoRV). Clearwater, FL.

Gupta, K. (1986). Kinematic analysis of manipulators using the zero reference
position description. Int. J. Robot. Res. 5, 5. doi:10.1177/027836498600500202

Harding, S., Leitner, J., and Schmidhuber, J. (2013). “Cartesian genetic programming
for image processing,” in Genetic Programming Theory and Practice X, Genetic
and Evolutionary Computation, eds R.Riolo, E.Vladislavleva, M. D.Ritchie, and
J. H.Moore (New York; Ann Arbor: Springer), 31–44.

Hart, S., Ou, S., Sweeney, J., and Grupen, R. (2006). “A framework for learning
declarative structure,” in Proceedings of the RSS Workshop: Manipulation in
Human Environments. Philadelphia, PA.

Hartley, R., and Zisserman, A. (2000). Multiple View Geometry in Computer Vision,
2nd Edn. Cambridge, UK: Cambridge University Press.

Hutchinson, S., Hager, G. D., and Corke, P. I. (1996). A tutorial on visual servo
control. IEEE Trans. Robot. Automat. 12, 651–670. doi:10.1109/70.538972

Jackson, J. (2007). Microsoft robotics studio: a technical introduction. IEEE Robot.
Autom. Mag. 14, 82–87. doi:10.1109/M-RA.2007.905745

Jeannerod, M. (1997). The Cognitive Neuroscience of Action. Blackwell
Publishing. Available at: http://au.wiley.com/WileyCDA/WileyTitle/pro-
ductCd-0631196048.html

Johnson, M. H., and Munakata, Y. (2005). Processes of change in brain
and cognitive development. Trends Cogn. Sci. 9, 152–158. doi:10.1016/
j.tics.2005.01.009

Karlsson, N., Di Bernardo, E., Ostrowski, J., Goncalves, L., Pirjanian, P., and
Munich, M. (2005). “The vSLAM algorithm for robust localization and map-
ping,” in Proceedings of the International Conference on Robotics and Automation
(ICRA). Barcelona.

Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Robot. Autom. Mag. 12, 566–580. doi:10.1109/70.508439

Kemp, C., Edsinger, A., and Torres-Jara, E. (2007). Challenges for robot manip-
ulation in human environments [grand challenges of robotics]. IEEE Robot.
Autom. Mag. 14, 20–29. doi:10.1109/MRA.2007.339604

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Robot. Res. 5, 90. doi:10.1177/027836498600500106

Kragic, D., and Vincze, M. (2009). Vision for robotics. Found. Trends Robot. 1,
1–78. doi:10.1561/2300000001

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi:10.1038/nature14539

Leitner, J. (2014). Towards Adaptive and Autonomous Humanoid Robots: From
Vision to Actions. Ph.D. thesis, Universitá della Svizzera italiana, Lugano.

Leitner, J. (2015). “Chapter 10, a bottom-up integration of vision and actions to cre-
ate cognitive humanoids,” in Cognitive Robotics (CRC Press), 191–214. Available
at: https://www.crcpress.com/Cognitive-Robotics/Samani/9781482244564

Leitner, J., Chandrashekhariah, P., Harding, S., Frank, M., Spina, G., Förster, A.,
et al. (2012a). “Autonomous learning of robust visual object detection and
identification on a humanoid,” in Proceedings of the International Conference
on Development and Learning and Epigenetic Robotics (ICDL). San Diego, CA

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2012b).
Learning spatial object localization from vision on a humanoid robot. Int. J.
Adv. Robot. Syst. 9.

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2012c).
“Transferring spatial perception between robots operating in a shared work-
space,” in Proceedings of the International Conference on Intelligent Robots and
Systems (IROS). Villamoura.

Leitner, J., Förster, A., and Schmidhuber, J. (2014a). “Improving robot vision mod-
els for object detection through interaction,” in International Joint Conference
on Neural Networks (IJCNN). Beijing.

Leitner, J., Frank, M., Förster, A., and Schmidhuber, J. (2014b). “Reactive reaching
and grasping on a humanoid: towards closing the action-perception loop on the
icub,” in Proceedings of the International Conference on Informatics in Control,
Automation and Robotics (ICINCO) (Vienna), 102–109.

Leitner, J., Harding, S., Chandrashekhariah, P., Frank, M., Förster, A., Triesch, J.,
et al. (2013a). “Learning visual object detection and localization using icVi-
sion,” in Biologically Inspired Cognitive Architectures 2012. Extended versions
of selected papers from the Third Annual Meeting of the BICA Society (BICA
2012), eds. A. Chella, R. Pirrone, R. Sorbello and R. K. Jóhannsdóttir (Berlin
Heidelberg: Springer), 29–41.

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2013b). “ALife
in humanoids: developing a framework to employ artificial life techniques for
high-level perception and cognition tasks on humanoid robots,” in Workshop
on ’Artificial Life Based Models of Higher Cognition’ at the European Conference
on Artificial Life (ECAL). Taormina

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2013c).
“An integrated, modular framework for computer vision and cognitive
robotics research (icVision),” in Biologically Inspired Cognitive Architectures
2012, Volume 196 of Advances in Intelligent Systems and Computing, eds
A. Chella, R. Pirrone, R. Sorbello, and K. Jóhannsdóttir (Berlin; Heidelberg:
Springer), 205–210.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1073/pnas.1003250107
http://dx.doi.org/10.1073/pnas.1003250107
http://dx.doi.org/10.1109/MRA.2006.250573
http://dx.doi.org/10.1109/TPAMI.2002.1017615
http://dx.doi.org/10.1155/2012/959013
http://dx.doi.org/10.1155/2012/959013
http://dx.doi.org/10.1016/j.robot.2007.09.014
http://dx.doi.org/10.1007/BF00229422
http://dx.doi.org/10.3389/fnbot.2013.00025
http://dx.doi.org/10.1177/027836498600500202
http://dx.doi.org/10.1109/70.538972
http://dx.doi.org/10.1109/M-RA.2007.905745
http://au.wiley.com/WileyCDA/WileyTitle/productCd-0631196048.html
http://au.wiley.com/WileyCDA/WileyTitle/productCd-0631196048.html
http://dx.doi.org/10.1016/
j.tics.2005.01.009
http://dx.doi.org/10.1016/
j.tics.2005.01.009
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/MRA.2007.339604
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1561/2300000001
http://dx.doi.org/10.1038/nature14539
: https://www.crcpress.com/Cognitive-Robotics/Samani/9781482244564

16

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2013d).
“Artificial neural networks for spatial perception: towards visual object locali-
sation in humanoid robots,” in Proceedings of the International Joint Conference
on Neural Networks (IJCNN) (Dallas, TX: IEEE), 1–7.

Leitner, J., Harding, S., Frank, M., Förster, A., and Schmidhuber, J. (2013e).
“Humanoid learns to detect its own hands,” in Proceedings of the IEEE Conference
on Evolutionary Computation (CEC) (Cancun), 1411–1418.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-End training of deep
visuomotor policies. J. Mac. Learn. Res. 17, 1–40.

Lowe, D. (1999). “Object recognition from local scale-invariant features,” in
Proceedings of the International Conference on Computer Vision (ICCV) Kerkyra.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., and Abbeel, P. (2010). “Cloth
grasp point detection based on multiple-view geometric cues with application
to robotic towel folding,” in Proceedings of the International Conference on
Robotics and Automation (ICRA) (Anchorage, AK), 2308–2315.

Marchand, E., Spindler, F., and Chaumette, F. (2005). Visp for visual servoing: a
generic software platform with a wide class of robot control skills. IEEE Robot.
Autom. Mag. 12, 40–52. doi:10.1109/MRA.2005.1577023

McCarty, M., Clifton, R., Ashmead, D., Lee, P., and Goubet, N. (2001). How infants
use vision for grasping objects. Child Dev. 72, 973–987. doi:10.1111/1467-8624.
00329

Meltzoff, A. (1988). Infant imitation after a 1-week delay: long-term memory
for novel acts and multiple stimuli. Dev. Psychol. 24, 470. doi:10.1037/0012-
1649.24.4.470

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Miller, J. (1999). “An empirical study of the efficiency of learning Boolean func-
tions using a Cartesian genetic programming approach,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) (Orlando, FL),
 1135–1142.

Miller, J. F. (ed.). (2011). Cartesian Genetic Programming: Natural Computing
Series. Berlin; Heidelberg: Springer.

Oztop, E., Bradley, N., and Arbib, M. (2004). Infant grasp learning: a computational
model. Exp. Brain Res. 158, 480–503. doi:10.1007/s00221-004-1914-1

Pathak, S., Pulina, L., Metta, G., and Tacchella, A. (2013). “Ensuring safety of poli-
cies learned by reinforcement: reaching objects in the presence of obstacles with
the icub,” in Proceedings of the International Conference on Intelligent Robots and
Systems (IROS). Tokyo.

Pattacini, U. (2011). Modular Cartesian Controllers for Humanoid Robots: Design
and Implementation on the iCub. Ph.D. thesis, Italian Institute of Technology,
Genova.

Plumert, J., and Spencer, J. (2007). The Emerging Spatial Mind. Oxford: Oxford
University Press.

Posner, M. (1989). Foundations of Cognitive Science. Cambridge, MA: The MIT
Press.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software. Kobe.

Sadikov, A., Možina, M., Guid, M., Krivec, J., and Bratko, I. (2007). “Automated
chess tutor,” in Computers and Games, Volume 4630 of Lecture Notes in

Computer Science, Vol. 13–25, eds H.Herik, P.Ciancarini, and H.Donkers
(Berlin; Heidelberg: Springer), 13–25.

Saxena, A., Driemeyer, J., and Ng, A. (2008). Robotic grasping of novel objects
using vision. Int. J. Robot. Res. 27, 157. doi:10.1177/0278364907087172

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural
Netw. 61, 85–117. doi:10.1016/j.neunet.2014.09.003

Schoner, G., and Dose, M. (1992). A dynamical systems approach to task-level
system integration used to plan and control autonomous vehicle motion. Rob.
Auton. Syst. 10, 253–267. doi:10.1016/0921-8890(92)90004-I

Soetens, P. (2006). A Software Framework for Real-Time and Distributed Robot
and Machine Control. Ph.D. thesis, Department of Mechanical Engineering,
Katholieke Universiteit Leuven, Belgium. Available at: http://www.mech.
kuleuven.be/dept/resources/docs/soetens.pdf

Stollenga, M., Pape, L., Frank, M., Leitner, J., Fõrster, A., and Schmidhuber, J. (2013).
“Task-relevant roadmaps: a framework for humanoid motion planning,” in
Proceedings of the International Conference on Intelligent Robots and Systems
(IROS), Tokyo.

Stückler, J., Badami, I., Droeschel, D., Gräve, K., Holz, D., McElhone, M., et al.
(2013). “Nimbro@home: winning team of the robocup@home competition
2012,” in Robot Soccer World Cup XVI (Berlin-Heidelberg: Springer), 94–105.

Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K., and Asfour, T. (2015).
The robot software framework armarx. Inform. Tech. 57, 99–111. doi:10.1515/
itit-2014-1066

Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., Asfour, T., and Dillmann, R.
(2008). “Visual servoing for humanoid grasping and manipulation tasks,” in
Proceedings of the International Conference on Humanoid Robots (Daejon),
406–412.

van den Bergen, G. (2004). Collision Detection in Interactive 3D Environments,
Taylor & Francis Group, 277.

Verschae, R., and Ruiz-del Solar, J. (2015). Object detection: current and future
directions. Front. Robot. AI 2:29. doi:10.3389/frobt.2015.00029

Welke, K., Issac, J., Schiebener, D., Asfour, T., and Dillmann, R. (2010).
“Autonomous acquisition of visual multi-view object representations for object
recognition on a humanoid robot,” in IEEE International Conference on Robotics
and Automation (ICRA) (Anchorage, AK: IEEE), 2012–2019.

Zhang, F., Leitner, J., Milford, M., Upcroft, B., and Corke, P. (2015). “Towards
vision-based deep reinforcement learning for robotic motion control,” in
Australasian Conference on Automation and Robotics (ACRA), Canberra.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Leitner, Harding, Förster and Corke. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2005.1577023
http://dx.doi.org/10.1111/1467-8624.00329
http://dx.doi.org/10.1111/1467-8624.00329
http://dx.doi.org/10.1037/0012-
1649.24.4.470
http://dx.doi.org/10.1037/0012-
1649.24.4.470
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.1007/s00221-004-1914-1
http://dx.doi.org/10.1177/0278364907087172
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/0921-8890(92)90004-I
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
http://dx.doi.org/10.1515/itit-2014-1066
http://dx.doi.org/10.1515/itit-2014-1066
http://dx.doi.org/10.3389/frobt.2015.00029
http://creativecommons.org/licenses/by/4.0/

	A Modular Software Framework for Eye–Hand Coordination in Humanoid Robots
	1. Introduction
	1.1. Motion and Action: Interacting with the Environment
	1.2. Robotic Vision: Perceiving the Environment
	1.3. Integration: Sensorimotor Coordination
	1.3.1. Robotic Systems Software Design and Toolkits

	2. The Eye–Hand Framework
	2.1. Object Detection and Localization Modules: icVision
	2.2. Robot and World Modeling for Collision Avoidance: MoBeE
	2.3. Action Repertoire: LEOGrasper Module

	3. Method of Integrating Action and Vision: Applying the Framework
	3.1. Example: Evolving Object Detectors
	3.2. Example: Reaching While Avoiding a Moving Obstacle
	3.3. Example: Improving Robot Vision by Interaction

	4. Discussion
	Author Contributions
	Acknowledgments
	Funding
	References

