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While recent advances in approaches for control of humanoid robot systems show 
promising results, consideration of fully integrated humanoid systems for solving com-
plex tasks, such as disaster response, has only recently gained focus. In this paper, a 
software framework for humanoid disaster response robots is introduced. It provides 
newcomers as well as experienced researchers in humanoid robotics a comprehensive 
system comprising open source packages for locomotion, manipulation, perception, 
world modeling, behavior control, and operator interaction. The system uses the Robot 
Operating System (ROS) as a middleware, which has emerged as a de facto standard in 
robotics research in recent years. The described architecture and components allow for 
flexible interaction between operator(s) and robot from teleoperation to remotely super-
vised autonomous operation while considering bandwidth constraints. The components 
are self-contained and can be used either in combination with others or standalone. 
They have been developed and evaluated during participation in the DARPA Robotics 
Challenge, and their use for different tasks and parts of this competition are described.

Keywords: urban search and rescue, humanoid robots, mobile manipulation, human–robot interaction, motion 
planning

1. InTRoDUcTIon

The 2015 DARPA Robotics Challenge (DRC) Finals showed that robotic systems provide promising 
capabilities for providing assistance in disaster scenarios that necessitate complex locomotion and 
manipulation abilities (see Figure 1). At the same time, the competition showed that there are still 
numerous research challenges that have to be solved before robot systems are capable and robust 
enough for use in real disasters.

Toward this goal, we present our ROS-based framework for solving complex locomotion and 
manipulation tasks. To our knowledge, it is the first fully open-sourced framework featuring 
documentation that allows other researchers to replicate the provided functionality and results in 
simulation or, after necessary interfacing, on their own robot systems. Our framework is based on 
ROS (Quigley et al., 2009), which has evolved to be the de facto standard robotics middleware within 
the robotics research community and parts of the robotics industry.
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FIgURe 1 | Two of the robot systems used. The Boston Dynamics Inc. (BDI) Atlas robot and the Robotics THOR-MANG robot.
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The contribution of this work is twofold:

•	 The framework and architecture of our approach for enabling 
complex humanoid robots to fulfill challenging tasks in disas-
ter environments are detailed.

•	 We provide a detailed discussion of different components for 
perception, locomotion, and manipulation contributing to 
achieve the overall task of flexible disaster response.

2. RelATeD WoRK

While humanoid robotics is an active research area, the DRC 
program demonstrated the wealth of open research challenges in 
areas, such as controls, planning, and human–robot interaction. 
For the first time, humanoids had to fulfill a variety of tasks in a 
common competition setup, which shifted focus from concen-
tration on specialized research topics toward the realization of 
humanoid (and other) systems that provide integrated percep-
tion, locomotion, and manipulation capabilities.

After the DRC Trials, publications by multiple teams described 
their approaches, but the majority of teams did not make their 
software available as open source that would allow for reproduc-
tion of the presented results. The MIT DRC team uses optimi-
zation-based planning and control (Fallon et  al., 2015), LCM 
(Huang et al., 2010) as a middleware, and the Matlab-based Drake 
system as a planning and control backend.1 Team IHMC uses a 
proprietary middleware based on Java (Johnson et al., 2015). Both 
teams provide significant parts of their software as open source 
software, but do not provide instructions and a setup that allows 
running their full setup as used for the DRC in simulation. We 

1 https://github.com/RobotLocomotion/drake 

provide an overview of our DRC related research in Kohlbrecher 
et al. (2015) and detail aspects in separate publications on footstep 
planning (Stumpf et al., 2014), manipulation (Romay et al., 2014, 
2015), and behavior control (Schillinger et al., 2016).

In Du et al. (2014), a manipulation approach used with the BDI 
Atlas robot is described, focusing on some of the DRC tasks. In 
Banerjee et al. (2015) another human-supervised manipulation 
control approach is described with a focus on the door DRC task.

For manipulation, bilateral teleoperation approaches allow 
teleoperation by the operator, while the robot simultaneously 
provides force feedback. Although demonstrations show the 
approach to be highly promising where applicable, there are 
potential stability issues when using bilateral approaches (Willaert 
et al., 2012) that make their use infeasible with constrained and 
significantly varying communications conditions, such as those 
considered in this work.

A relevant account by various teams of “What happened at the 
DRC” is available online (DRC-Teams, 2015). This gives a brief 
summary of issues and results from many teams.

3. ARchITecTURe

The goal of this work is to provide a comprehensive and re-
usable software ecosystem to enable humanoid robot systems to 
perform complex locomotion and manipulation tasks. To provide 
compatibility with a wide range of robot systems and to reduce 
integration effort with existing open source software, the system 
uses ROS as middleware.

3.1. Requirements
The ability to leverage existing developments and software in 
a way that allows users to avoid the duplication of efforts and 
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spending time re-implementing approaches is highly relevant for 
advancing the field of robotics research. While this requirement 
is not as relevant for mature commercialized robotic systems, 
using standard software for functional system components 
allows new users to reproduce results quickly. This is major driver 
for accelerating research in robotics and, thus, a key factor for 
accelerating the development of disaster response robots; that is, 
developing supervised autonomous systems that are deployable 
in real disaster situations.

The achievable complexity of robotic system architectures 
is limited unless the architectural design allows a transparent 
exchange of functional components (e.g., for manipulation or 
footstep planning) and also can be extended by additional func-
tional components. Modularity, re-usability, and extensibility 
are key properties of the architectural design needed to enable 
sustainable robotic system development.

While robots can be considered expendable in the sense that 
a loss is acceptable (in contrast to human responders), high reli-
ability and resilience are important aspects that disaster response 
robotic systems have to provide. Failures in disaster situations can 
have grave consequences; for instance, when a robot gets stuck 
or otherwise unresponsive, it can then block future access for 
responders, or tie up responders that could be required elsewhere.

As communications in disaster environments can be degraded, 
the possibility of delayed, reduced bandwidth, intermittent, or 
even completely absent communication has to be considered in 
the system design. Appropriate measures have to be taken to be 
tolerant of variations in communication link quality. This also 
motivates the need for autonomous capabilities. Autonomous 
performance under ideal (communications) conditions might 
actually be inferior to a human expert using teleoperation; how-
ever, under constrained communication conditions with outages 
or very high latencies, teleoperation might become impossible 
to use. In that case, leveraging autonomous functionality, for 
instance, for motion planning and control, is the only possible 
way to proceed.

3.2. System Architecture
To achieve high reliability, as discussed for the coactive design 
concept (Johnson et  al., 2014) observability, predictability, and 
directability of the robotic system are required. When consider-
ing the human supervisor and robot as a team, the members, 
thus, have to allow each other to understand the state of the 
other side (observability). They also have to be able to predict 
and understand the intent of the other side (predictability). Lastly, 
team members have to be able to communicate meaningful and 
accurate commands (directability).

The capability of informing the operator about the robot 
state using appropriate information and visualization must be 
considered (Kohlbrecher et al., 2015). Predictability is achieved 
by visualizing action outcomes prior to the command being 
sent to the robot. Achieving directability requires interfaces that 
allow for efficient and reliable interaction. These concepts will be 
revisited in following sections.

As noted previously, to achieve high reliability and versatility, 
the capability to flexibly change control and interaction modes 
between autonomous and teleoperated operation is crucial. 

While autonomous and assistive functions promise to reduce 
workload of operators and in some cases higher reliability, they 
can be brittle in real-world scenarios, where unexpected situa-
tions and failures can foil prior mission plans. In such cases, the 
capability of flexible switching between modes can significantly 
improve the reliability of the system, as the human supervisor has 
a toolbox of options at her disposal and can dynamically switch 
between them, adapting to the situation.

As the lowest level of interaction between operator and robot, 
teleoperation should always be available, communication permit-
ting. Bypassing autonomous functions, this interaction mode 
shifts burden to the operator. Importantly, connectivity between 
robot and operator has to be sufficient in both directions; oth-
erwise teleoperation becomes slow, unsafe, or even impossible.

With currently fielded robotic systems, these good communi-
cations conditions have to be met, as otherwise the robot becomes 
inoperable. Once autonomous assistance functionality is in more 
widespread use, the capability to fall back to teleoperation can 
be impeded by communication constraints, allowing for new 
applications. As teleoperation is the last fallback mode in case 
autonomous components fail, availability of it, no matter how 
limited, is important for overall reliability as it provides the ability 
to recover from unexpected scenarios.

In supervised autonomy mode, the operator provides task-
level goals to the robot that are then followed autonomously using 
onboard systems. The operator observes actions, and generally 
provides permission to proceed at significant steps. This reduces 
reliance on connectivity and low latency communication, as 
the robotic system can follow task-level goals even when com-
munication is intermittent; however, such an approach requires 
sophisticated sensing and planning capabilities for onboard 
systems. Using full autonomy, the human operator only specifies 
the mission and associated tasks and provides a start command, 
monitors data provided by the robot to maintain situation aware-
ness, and either reacts to requests from the robot or switches to a 
lower autonomy mode on her own discretion. The clear advantage 
of full autonomy is that there is no need for communications as 
long as everything works well. The onboard autonomy system 
leverages the capabilities for task-solving used in the supervised 
autonomy mode and also makes use of planning capabilities, 
either directly or via task-level autonomy functionality.

It is crucial that when using a flexible level of interaction, the 
system stays in a well-defined state. For instance, when teleopera-
tion commands are sent, autonomous control components have 
to be notified of the switch in interaction level as to not cause 
undefined behavior when commands both from the operator 
and autonomous executive are executed at the same time. This is 
discussed in Section 6.

3.3. Middleware
Developing a modular system requires a common communica-
tion framework, or middleware. To satisfy the research-level 
requirements on reproducibility and modularity, ROS is chosen 
as the underlying middleware. The nearly ubiquitous prolifera-
tion of ROS in the research community allows for using estab-
lished standard interfaces and the ROS infrastructure allows 
for the development of highly modular code. With a large user 
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base, the barrier of entry for other researchers to use open source 
 developments is much lower, which is highly advantageous con-
sidering the goal of advancing research for challenging applica-
tions, such as versatile disaster response robots.

While ROS provides solutions for many common robotics 
tasks, there are capabilities that received less attention by the 
research community than others. This is also true for disaster 
response using humanoid robots. The following areas were 
identified as requiring significant contributions to enable robot 
to perform complex disaster response tasks:

•	 Communication over constrained connections. ROS does not 
provide built-in facilities for communication over a degraded 
link.

•	 Footstep planning for locomotion in challenging terrain.
•	 Operator guided manipulation.

In the remainder of this work, components that address these 
shortcomings are detailed. It should be noted that the focus is not 
on low-level control of humanoid robots; it is assumed that basic 
control and locomotion capabilities are provided. The presented 
contributions leverage and interface with these basic control 
capabilities to achieve flexible high-level control.

3.4. constrained communications
While ROS provides transparent capability for distributing com-
ponents over different machines by means of the network-based 
TCP/IP-based transport, communication constraints can impose 
additional challenges that make using ROS standard transports 
not feasible in some highly constrained scenarios. For those, spe-
cialized communication bridge tools need to be used, separating 
the ROS networks of the onboard and operator control station 
OCS sides. Such software has been developed by Team ViGIR 
during participation in the DRC (Kohlbrecher et  al., 2015). In 
the sections that follow, we reference communications across the 
comms bridge; therefore, this section provides a basic description 
of the functionality.

The ROS middleware presumes a connection to a centralized 
communications manager (ROS master). Furthermore, com-
munication with the ROS master requires a non-trivial amount 
of communication as modules come on line. As the degraded 
communications allowed by the DRC rules did not permit such 
unrestricted communications, Team ViGIR used a dual master 
setup between the OCS side and the robot onboard side.

The communication bridge system (comms bridge) developed 
by Team ViGIR uses mirrored components on either side that 
pass data across dedicated network channels. The components 
subscribe to messages on one side, compress them using custom 
encodings, send them across to the other side for uncompressing, 
and republish them as standard ROS messages. The messages use 
consistent names on each side to allow the system to also run 
transparently as a single ROS network without the comms bridge.

As the communication channels and compression are opti-
mized for the specific rules of the DRC, and contain certain 
proprietary data for the Atlas robot, we have not open sourced the 
comms bridge and, therefore, it is not the focus of this paper. The 
general idea of a comms bridge is generally applicable, so that this 

paper describes several of the approaches to data communication 
over constrained links in the sections that follow.

4. peRcepTIon AnD STATe eSTIMATIon

The worldmodel system has to provide state estimation and situa-
tional awareness (SA) to the supervisor–robot team. To effectively 
leverage the human supervisor’s cognitive and decision-making 
capabilities, a state estimate of both the internal and external state 
of the system has to be made available via the often constrained 
communication link between robot and operator. With current 
state of the art sensors often providing sensor data at rates in 
excess of 100 MB/s, this is both crucial and challenging.

The type of communication constraints under which the 
perception system has to work depends on used hardware and 
encountered scenario. They can include limited bandwidth, 
significant latency, and intermittent communication outages. The 
worldmodel system is designed to provide situational awareness 
and state estimation for the operator under all of these conditions. 
To achieve reliable and efficient manipulation with a remote 
operator in the loop, obtaining 3D geometry data is crucial. In the 
following sections, the approach and components for providing 
SA to both human supervisors and the robot are described.

4.1. Worldmodel Server
The worldmodel server2 component preprocesses, collects, and 
aggregates sensor data and makes it available to both onboard and 
OCS system components. Leveraging established open source 
libraries, such as PCL (Rusu and Cousins, 2011) and octomap 
(Hornung et al., 2013), the worldmodel server allows queries of 
information about the environment with flexible level of detail 
and bandwidth consumption.

Three-dimensional sensing is provided by onboard sensors, 
providing point cloud data. A frequently used setup used here is 
a LIDAR and optionally a RGB-D type camera system. As RGB-D 
sensing generally has a smaller field of view, is sensitive to light-
ing conditions, and has less consistent measurement accuracy, 
LIDAR data are used as the default main source for creating a 
3D geometry model of the environment onboard the robot. To 
achieve this, the planar scans of the LIDAR have to be preproc-
essed and aggregated, so full 3D point clouds can be generated 
from them. The following preprocessing steps are employed:

First, scan data are filtered for spurious measurements com-
monly called “mixed pixels” that occur at depth discontinuities 
(Tuley et al., 2005; Tang et al., 2007), using the shadow point filter 
available as a ROS package.

The filtered scan is then converted to a point cloud representa-
tion. During this process, motion of the LIDAR on the relative to 
the robot is considered and a high fidelity projection is employed, 
transforming every scan endpoint separately.

In a last step, parts belonging to the robot have to be filtered 
out of LIDAR data. To increase robustness against errors in 
kinematics calibration, a specialized robot geometry model uses 

2  h t t p s : / / g i t h u b. c o m / t e a m - v i g i r / v i g i r _ p e r c e p t i o n / t r e e / m a s t e r /
vigir_worldmodel_server 
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simplified and enlarged collision geometries for self-filtering 
purposes.

LIDAR scans are saved in a ring buffer along with snapshots 
of coordinate frames used within the system. By employing this 
method, aggregate point clouds relative to different coordinate 
frames can be provided on request. A ROS API allows querying 
the world model via both ROS topics or services and flexibly 
retrieving region of interest point cloud or octomap data relative 
to different coordinate frames. This capability can be employed by 
both onboard and OCS system components.

The primary onboard 3D geometry model is created using 
octomap, a volumetric, probabilistic approach using an octree 
as a back-end. Using this approach, the environment represen-
tation maintained onboard can be updated efficiently and in a 
probabilistically sound way. Even in case of changes in the envi-
ronment or drift in state estimation, the environment model 
is updated accordingly and maintains a useful representation. 

The octomap environment model provides the main geom-
etry representation and is used for multiple purposes. Using ray 
casting, distances to geometry can easily be determined. This 
feature can be used from within the OCS to perform ray cast 
distance queries against onboard geometry. In this case, only 
the ray cast information has to be transmitted to the robot and 
the distance information is transmitted back, utilizing only very 
low bandwidth.

The capability to request ROI data of the environment model 
allows to transfer small ROI geometry over the constrained 
connection on supervisor demand and also makes geometry 
available to other modules on request, like the footstep planning 
system. Similarly, it is possible to request 2D grid map slices of 
the octomap representation, aggregating 3D data into a 2D grid 
map. Using compression during transmission, this representation 
is very compact and often sufficient for supervisors to gain SA.

4.2. lIDAR Data compression
In case of intermittent communication, the approach for query-
ing the onboard worldmodel for data from the OCS as described 
in the previous section can fail, as no data can be transmitted in 
periods of communication loss. Instead, it is desirable to transmit 
all geometry information available onboard to the OCS side as 
long as a communication window is available. A mirror of the 
worldmodel can then be queried on the OCS side instead of 
relying on a connection to the remote onboard worldmodel. The 
approach described in the following is available online.3

In case of intermittent communication between supervisors 
and robot, two instances of the worldmodel server are used: one 
for the onboard/robot side and one for the OCS side. As direct 
transmission of point cloud data is error prone when experiencing 
packet loss, additional processing on LIDAR data is performed to 
make each packet compact enough to fit within a standard 1500-B 
UDP packet and compress it as to be able to transmit a maximum 
of data during a communications burst.

3 https://github.com/team-vigir/vigir_manipulation_planning/tree/master/
vigir_lidar_octomap_updater 

For compression of LIDAR data, the GIS research community 
developed solutions for large-scale airborne LIDAR datasets 
(Isenburg, 2013), but these significantly differ in structure from 
those by small planar scanners. For this reason, an approach lev-
eraging the special structure of data provided by planar scanners 
is presented here.

Direct transmission of point cloud data generated onboard the 
robot would cause prohibitive bandwidth cost as a point cloud 
representation with at least three floating point values for each 
Cartesian point is not a compact one. For this reason, the natural 
and compact representation of a laser scan as an array of range 
values is leveraged and used instead. To fully reconstruct the 3D 
geometry captured by a single scan, a high fidelity projection 
of the scan has to be performed, however, taking into account 
motion of the LIDAR mirror during the data capture process. If 
this motion is not considered, scan data show visible skew and 
ghosting (double walls) once it gets converted to a point cloud 
representation. The following approach is thus utilized:

•	 Perform a 3D high fidelity projection onboard the robot and 
perform self-filtering. The onboard octomap and worldmodel 
are updated simultaneously.

•	 Compress the scan data by writing the range values to a 2-Byte 
array representing millimeters and also encoding self-filtering 
information. Threshold and map intensity information to a 
single Byte.

•	 Add information about the scanner transform in world frame, 
one transform for the start of the scan and one for the end. 
This information allows performing a high fidelity projection 
of the scan after unpacking on the OCS side.

•	 Split the compressed scan into chunks that are small enough 
to be compressible to <1500 B. A schematic of this approach is 
available in Figure 2. By using this approach, each compressed 
scan packet is a self-contained unit and can be unpacked 
and used on the receiver side without the need for packet 
reassembly.

On the OCS side, the compression process is reversed, and 
resulting scan data are used to update the OCS world model. 
The size of a LaserScan message is dominated by the range and 
intensity fields. A typical Hokuyo LIDAR, for instance, provides 
1080 measurements per scan. For compression, floating point 
range values in meters are converted to millimeters and stored 
in an unsigned 16 bit number. Self-filtering of robot parts from 
LIDAR data requires knowledge of the whole transform tree of 
the robot and, thus, has to be performed on the onboard side 
if transmission of high bandwidth transform data to the OCS 
side is to be avoided. Per default, self-filtering is, thus, performed 
onboard and compressed laser scan data are annotated with a 
single bit per scan point, indicating if the self-filter determined 
that it belongs to the robot or objects attached to the robot.

Intensity data are converted from a floating point intensity to 
an unsigned 8 bit number. Here, a loss in fidelity is acceptable as 
intensity is mainly used for visualization and a range of 28 values 
is sufficient for presentation to the human supervisors.

Table  1 shows the different scan representation and their 
relative size. In Figure  3, the setup using one worldmodel 
instance each on the onboard and OCS sides is visualized. The 

http://www.frontiersin.org/Robotics_and_AI
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FIgURe 2 | Splitting lIDAR scans for compression. A schematic view from the top is shown here and the rotation direction indicated by an arrow. A LIDAR 
scan can be described by the start angle αstar and end angle αend. With a known angular resolution, scan points can be projected. To achieve a small packet size, the 
scan is split and intermediate start and end angles computed.

TABle 1 | Different lIDAR scan representations and the associated data 
size.

Data laserScan  
(Bytes)

localizedlaserScan  
(Bytes)

compressed  
(Bytes)

Header ≥16 – –
Metadata 7 × 4 – –
Ranges 4 × 1080 2 × 1080 < × ×1

3 2 1080

Intensities 4 × 1080 1080 < × ×1
3 2 1080

Total 8684 3240 <1080

As shown, the compressed size results in a packet size below the 1500 B of a standard 
size UDP packet.
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synchronization is performed using the previously described 
compressed scan transmission mechanism.

4.3. Sensor Data processing for Situation 
Awareness
To provide the supervisor(s) with the necessary SA for complex 
manipulation tasks, not only geometry but also image and texture 
data are crucial. In this section, components allowing for the 
processing of sensor data to achieve suitable representations and 
visualizations for obtaining supervisor SA are discussed.

4.3.1. Region of Interest Image Data
As images are readily compressible using standard compression 
methods, providing such data to the operator is often possible and 
can be feasible even when bandwidth is constrained. Often, only 
a limited region of interest in the full image is required. Examples 
are visually inspecting the quality of a grasp or the accuracy of 
end-effector positioning. To provide this capability, the opera-
tor can request full image and region of interest independently, 
making it possible to show coarse resolution full images, but 
high-resolution regions of interest. To minimize communica-
tion requirements, an optional video frame-rate is part of the 
request and images can be sent at a fixed rate without need for 
bi-directional communication.

4.3.2. Mesh Generation
To provide a high fidelity visualization for 3D geometry data, 
an infrastructure for generating meshes from both LIDAR 
point clouds and camera or LIDAR-based depth images was 
developed.4 Compared to plain point cloud visualization, this 
approach allows for a clear view of geometry and texturing of 
mesh surfaces, which allows for easier scene understanding by 
human supervisors.

Figure 4 shows a schematic of the mesh generation data flow. 
As indicated by the light blue OR gates, the mesh generation 
process can be based on different kinds of input data. Based on 
depth images, a mesh can be generated using a FastMesh (Holz 
and Behnke, 2013) approach. The depth image can either be 
provided by a RGB-D type camera or it can be generated from 
LIDAR data. In the latter case, data have to be aggregated over 
time, however. Instead of depth images, LIDAR-based point 
clouds can also be used for mesh generation; in this case, the 
mesh is generated from LIDAR point cloud data directly. This 
approach does not have the restricted field of view of the depth 
image-based one.

An example of generating meshes based on stereo camera 
RGB and depth data is shown in Figure 5. Three novel rendered 
viewpoints are shown, demonstrating how the approach com-
bines the fidelity of image data with 3D geometry.

4.3.3. Fisheye Camera
The Atlas robot could not rotate the Multisense sensor head 
around the yaw axis, greatly limiting the field of view of the main 
sensor system. With early versions of the Atlas robot, this was a 
severe issue, as the volume of good manipulability for the arms 
was outside the Multisense sensor field of view. To remedy this 
issue, a system for rectification the Fisheye lenses of the fisheye 
cameras was developed.5 Using a ROS-integrated version of the 
OCamLib library (Scaramuzza and Siegwart, 2007), the fisheye 

4 https://github.com/team-vigir/vigir_perception/tree/master/vigir_point_cloud_proc 
5 https://github.com/team-vigir/vigir_wide_angle_image_proc 
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FIgURe 4 | options for generating a mesh representation of the environment. The RGB camera image gets texture mapped on a mesh generated from 
LIDAR or depth image data. The depth image is either provided by a camera directly or can be generated from aggregated LIDAR point cloud data.

FIgURe 3 | overview of the Worldmodel server setup. Worldmodel information is synchronized via compressed LIDAR data. One instance of the worldmodel 
server is running on the onboard and OCS side each.
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distortion is calibrated. This allows generating novel rectified 
views from fisheye images not exhibiting severe distortion 
that otherwise makes judging of spatial relations difficult for 
operators.

Recomputing the rectification online, the system can track 
arbitrary frames on the robot or in the environment. It is, thus, 
possible to create a virtual pinhole camera that, for instance, 
tracks an end effector of the robot.

5. plAnnIng

For manipulation, motions to move manipulators into desired 
configurations for grasping or other tasks need to be generated. As 
it can reduce operator workload considerably, a crucial capability 
is automated collision avoidance, both considering self-collisions 
of the robot (e.g., arm coming in contact with torso) and col-
lision of robot parts with the environment. When performing 
manipulation in contact with the environment, motion must not 
lead to unplanned high internal forces acting on the robot, as 
these can quickly lead to damage to the robot, especially if it loses 

balance as a result. While force or admittance control approaches 
can reduce this risk, they are often difficult to implement due to 
limited force sensing and control performance on real systems. 
Preventing unintended contact in the first place thus serves as a 
risk reduction measure.

As high latency limits the usefulness of otherwise promising 
approaches for teleoperation of end effectors that rely on real-
time feedback (Leeper et al., 2013), direct control is not feasible. 
Instead, the supervisor(s) specify goal joint configurations or 
Cartesian goal poses and requests robot onboard systems to reach 
them.

The system described in this section is available as open 
source.6

5.1. previewing Manipulation
As described in Chapter 4, the worldmodel server provides the 
supervisor(s) with the necessary tools to achieve situational aware-
ness of the environment state in a variety of different  bandwidth 

6 https://github.com/team-vigir/vigir_manipulation_planning  
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FIgURe 5 | Rendering novel views based on textured mesh data. (A) RGB image, (B) depth image, and (c–e) novel view points rendered based on applying 
texture to a mesh generated from the depth image.
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conditions. To be able to reliably perform  manipulation, an 
approach for predictive visualization of how the robot interacts 
and likely will interact with the environment in the future is 
required.

With the high number of DOF of humanoid systems and 
the challenges of balance control, judging the reachability and 
manipulability of the robot for a given task can be much more 
difficult than for more conventional robots. While inverse 
reachability approaches show promising results in the literature 
(Vahrenkamp et al., 2013; Burget and Bennewitz, 2015), they do 
not consider constraints beyond kinematics and self collisions. 
Such additional constraints are for instance sensor visibility 
constraints or control-related constraints due to appendage 
control performing better in some configurations than others. It 
would be possible to incorporate those into inverse reachability 
analysis, but this remains a largely unsolved topic for research 
at this time.

To provide an intuitive interface to human operators, the so 
called “ghost robot” is used. This is a interactive puppet robot 
that can be used to predictively simulate the kinematics of 

manipulation tasks. The state of the ghost robot can be modified 
in the user interface without effects on the real robotic system. 
Once the supervisor is satisfied with ghost robot based plan-
ning, planning and motion requests can be generated based on 
the ghost robot state using variety of different options detailed 
below.

The ghost robot is an essential tool for teleoperation and 
supervised autonomy and is used for the full range of manipula-
tion and locomotion control. While it remains possible to move 
the robot by sending joint angles directly, this is discouraged due 
to the high risk involved in such actions.

As shown in Figure 6 the ghost robot state can be modified 
based via a ROS API that allows for the following options:

•	 Joint angles. The ghost robot can externally be set to be in a 
desired joint angle configuration. Importantly, a subset of 
joints can be used here.

•	 Cartesian goals for end effectors. The ghost robot end effectors 
can be moved to Cartesian goals. In this case, an IK solver is 
used internally to solve for the joint positions.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FIgURe 6 | Schematic showing inputs and outputs for the ghost robot that is used for pre-planning manipulation tasks.
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•	 Cartesian goals for the robot pose. The ghost robot root frame 
(frequently the pelvis in case of a humanoid) can be moved to 
a desired Cartesian goal pose.

If a whole body IK solver is used externally, the ghost can 
also be set to a desired state by jointly using the joint angle and 
Cartesian robot pose interfaces simultaneously.

Based on the ghost robot state, the following types of com-
mands can be generated to be executed on the real robot:

•	 A goal pose for the footstep planner based on the ghost robot 
pelvis position in the global frame.

•	 The joint configuration of one of the ghost’s appendage groups 
can be sent to the onboard controller as a motion target.

•	 The same joint configuration can be sent to the onboard 
motion planner, which then generates a collision free trajectory  
for it.

•	 The Cartesian end-effector pose can be sent to the onboard 
motion planner, which then generates a collision free trajec-
tory to reach it.

It should be noted that the last two options are not equivalent 
on most humanoid robots, as balance control generally will shift 
the pelvis pose when the arm configuration of the robot changes, 
resulting in an offset for the first option.

Figure 7 shows use of the ghost robot during the DRC Trials. It 
is used for determining a stand pose for the robot on the left and 
for planning manipulation of a valve on the right.

5.2. planning System Details
Manipulation for disaster response often incorporates prolonged 
contact situations, for instance when opening a door or turning 
a valve. Especially in disaster response applications, cluttered 
environments present a challenge, as obstacles have to be avoided 
during motion planning.

The manipulation planning system is based on the MoveIt!7 
(Chitta et  al., 2012) motion planning framework available for 
ROS. This framework provides a powerful API for planning and 
different planning components.

The system enables planning to goal joint configurations and 
to goal end-effector poses and thus is directly compatible with 
the ghost robot approach described in the previous section. Two 
planning modes are available: the default mode is unconstrained 
planning, with joints free to move between the start and goal joint 
configurations. The other mode is a constrained motion mode. 
Here, motion is constrained to follow a Cartesian path between 
the start and goal end-effector pose. In this case, waypoints are 
generated based on linear interpolation between start and goal 
position and orientations for waypoints are generated using slerp 
(Shoemake, 1985) between start and goal end-effector quaterni-
ons. More complex constrained motions such as circular motion 
for turning a valve are generated by concatenating multiple short 
linearly interpolated Cartesian paths.

7 http://moveit.ros.org/
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FIgURe 7 | Two examples of using the ghost robot for previewing manipulation. (A) The ghost robot is used to preview the stand pose before performing 
manipulation. (B) Previewing arm motion during the valve task at the DRC Trials. The solid robot is the current true state, while the translucent green one is the ghost 
robot.
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For obstacle avoidance, the volumetric octomap representa-
tion as described in Chapter 4 is used. As contact with the 
environment is required in many manipulation tasks, collision 
checking between end effectors and the environment can option-
ally be disabled by the supervisor(s). For instance, collision 
avoidance is needed to safely bring the robot hand into a position 
to pick up a drill. In order to grasp the drill, collisions between 
the palm and fingers of the hand and the drill handle must be 
allowed, however.

In challenging conditions, noise in sensor data that lead 
to geometric artifacts, preventing successful planning due to 
spurious collisions cannot be ruled out completely. To cope 
with such situations, collision checking against the octomap 
environment model can also be disabled for the complete robot 
geometry; in this case, the ghost robot changes color to warn 
the operator.

For motion planning, the number of joints (DOF) to use can 
be selected by the supervisor(s). For instance, on Atlas, planning 
can be performed using either 7 DOF with the arms only, or by 
including the torso joints and using up to 10 DOF. As the 10 
DOF planning mode tends to result in higher control error or 
oscillation in some joint configurations, the operator can lock a 
selection of torso joints to restrict the planning space. The same 
approach can be used on other robotic systems transparently.

To allow for safety and robustness, the ability to select 
the desired trajectory execution speed with every planning 
request was introduced. Using standard MoveIt! functionality, 
trajectories were previously time parameterized according to 
the velocity limits supplied in the URDF robot model. This 
approach turned out to be not flexible enough for challenging 
manipulation in contact that might require moving appendages 
slow for safety.

5.3. planning Interface
To implement the described manipulation back-end, the MoveIt! 
API was used and DRC-specific capabilities were implemented in 
a separate move_group capability plugin. This offers the advantage 
of retaining standard MoveIt! library planning features, while 
simultaneously allowing the development of extended capabili-
ties specific for disaster response manipulation tasks.

As shown in Figure 8, the planning system is exposed via a 
ROS Action server interface and, thus, provides feedback about 
the planning and plan execution process. The Action interface is 
the sole entry point for requesting and executing motion plans 
and (in order of increasing autonomy) used for teleoperation, 
affordance-based manipulation planning and for motion plan 
requests generated by the behavior executive. For teleoperation, 
an onboard node translates compressed and compact motion 
requests by the operator into an Action request that then gets 
forwarded to the planning system.

5.4. Supervised and Autonomous control
The described planning system offers a powerful API that can be 
used to plan for complex manipulation tasks. In the preceding 
sections, both the teleoperation interface and the planning back-
end are described.

To achieve both task-level supervised operation and 
autonomous control, two additional software components for 
manipulation use the described planning system as a back-end 
for performing manipulation: an object template framework and 
the FlexBE behavior engine.

Figure  9 shows an overview of how the different system 
components interact to achieve the full range of capability from 
teleoperation to full autonomy in interaction with one or more 
human supervisors.

http://www.frontiersin.org/Robotics_and_AI
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FIgURe 8 | overview of the planning back-end. Both the planning interface and the LIDAR octomap updater are loaded into the standard MoveIt! move_group 
process as plugins. Using this approach, existing functionality provided by MoveIt! is kept, but extended.

FIgURe 9 | Supporting multiple levels of interaction for manipulation capable avatar robots.
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5.4.1. Object Templates
Instead of directly controlling appendages, the object template-
based approach for manipulation (Romay et  al., 2014, 2015) 
uses models of objects to be manipulated, the so-called object 
templates. These are placed by the human operator in the virtual 
environment model where 3D sensor data of the environment are 
visualized and serve as references to achieve manipulation task at 
a higher level of abstraction.

Object Templates contain relevant information about the 
objects they represent, such as physical and abstract information. 
With this, the operator can provide the robot with potential stand-
ing poses, grasp poses, usable parts of the object, and manipula-
tion skills or affordances (Gibson, 1977) to manipulate the object. 
With each template offering a set of affordances, motion can be 
specified by the operator on the affordance level. A door opening 
motion can, for instance, be commanded by using the “open” 

http://www.frontiersin.org/Robotics_and_AI
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FIgURe 10 | Atlas traversing chevron hurdles based on computed footstep plan.
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affordance defined for the door handle and the “push” affordance 
defined by the door hinge.

The information that object templates provide can also be 
abstracted by higher system layers, such as autonomous behaviors.

5.4.2. Automatic Behavior Control
For autonomous execution of complex manipulation and loco-
motion tasks, the Flexible Behavior Engine (FlexBE) has been 
developed during the DRC. A detailed overview is provided in 
Section 6. The object template system is also used within FlexBE 
to represent manipulatable objects. The behavior executable can, 
thus, take over responsibility for coordinating complex tasks 
from remote human supervisors where applicable.

5.5. Whole-Body planning
While the developed motion planning system performs well for 
many manipulation tasks requiring only upper body motion, 
sampling-based planning falls short for planning whole-body 
motions that require the consideration of balance constraints. 
To also support this, the optimization-based planning approach 
available as part of the Drake framework (Fallon et al., 2015) has 
been integrated with the Team ViGIR planning system. Planning 
using Drake can transparently be used by specifying the plan 
request. Drake has also been integrated with the ghost robot on 
the OCS side and the operator can use Drake-based whole-body 
inverse kinematics to pre-plan tasks, such as reaching toward the 
ground for picking up objects.

5.6. Footstep planning
A key challenge of the DRC was enabling the robot be able to 
tackle locomotion tasks, such as the traversal of sloped stairs, 
ramps, and rubble. While Team ViGIR depended on a manu-
facturer supplied footstep controller for stepping and stability, 
the specification of footstep placements remained a significant 
challenge; Team ViGIR extended an existing planner for 2D 
environments to handle this more complex 3D terrain.

The footstep planner has to satisfy two main requirements: 
the planner has to solve the navigation problem of finding the 
shortest safe path in a given environment. Second, it has to gen-
erate a feasible sequence of footstep placements, which can be 
executed by the robot with minimal risk of failure. Additionally, 
the DRC competition discouraged the use of slow footstep 

planning approaches due to mission time limits. Here, operator 
performance highly depends on the speed and performance of the 
used footstep planning system, so planning efficiency becomes 
important. It is desirable that the planning system provides all 
parameters of the walking controller for each step, so that the 
complex low-level walking controller interface is completely 
hidden from the operator to reduce the chance of operator error. 
This kind of footstep planning systems has not been applied to 
human-size real robots in complex terrain scenarios, such as the 
DRC before.

5.6.1. Overview
Our footstep planning approach satisfies the requirements 
mentioned above and requires the operator to only provide a 
goal pose to start planning. During the DRC competition, we 
have introduced the first search-based footstep planner capable 
of generating sequences of footstep placements in full 3D under 
planning time constraints and using an environment model based 
on online sensor data (Stumpf et al., 2014). The planner solves the 
navigation problem of finding shortest and collision-free paths 
in difficult terrain scenarios while simultaneously computing 
footstep placements appropriate for a given walking controller. 
A 3D terrain generator allows to generate terrain models for the 
footstep planning system online. It is able to efficiently compute 
the full 6 DoF foot pose for foot placements based on 3D scans 
of the environment. In addition, a novel collision check strategy 
based on ground contact estimation allows the planner to con-
sider overhanging steps, significantly enhancing performance in 
rough terrain scenarios.

The described approach has been successfully applied to three 
different biped humanoid robots during the DRC Finals. As the 
only team at the DRC Trials, we demonstrated that our approach 
is able to generate suitable footstep plans over entire obstacles that 
had been executed without interruptions (see Figure 10).

5.6.2. Terrain Modeling
Planning in difficult terrain scenarios needs a suitable 3D terrain 
model that can efficiently be generated and utilized by the footstep 
planner. Therefore, a terrain model generator8 was implemented 
which analogously to the worldmodel server (see section 4.1) 

8 see https://github.com/team-vigir/vigir_terrain_classifier 
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accumulates all incoming LIDAR scans given as point clouds. 
All data are stored in a discrete octree to reduce the amount of 
needed memory and enable efficient data fusion.

For each point in an incoming point cloud, a normal estima-
tion9 with respect to the point neighborhood is immediately 
performed. Afterwards, the octree is updated with this new 
information. Each node within the octree, thus, provides the 
3D position of the scan point and the estimated surface normal. 
Through the sparse laser scan updates of the spinning LIDAR, 
this operation can be performed in real-time on a single core of a 
CPU. In general, performing this operation with stereo vision or 
RGB-D systems is possible too, but needs further investigation as 
they generate more noisy data.

The described approach allows to run real-time terrain model 
generation on a robotic system as long as it is capable of providing 
point clouds given in an absolute world frame.

5.6.3. Footstep Planning Framework
The main objective is to provide an integrated footstep planning 
framework that may be deployed easily into an existing ROS 
setup. Providing a framework, the planner has to be expandable 
for new features but closed for modifications. Any user of the 
framework should only have to implement and extend robot-
specific elements to use the planning system instead of develop-
ing a modified version of an existing planner or even starting 
from scratch each time. Already implemented and, thus, proven 
algorithms are kept untouched, reducing the likelihood of errors 
and saving implementation effort. Although the framework 
must generalize well, it has to be able to solve difficult terrain 
task problems and utilize the versatile locomotion capabilities of 
robot-specific walking controllers.

In order to meet this objective, parameter (vigir_generic_
params)10 and plugin (vigir_pluginlib)11 management systems 
have been implemented.

5.6.3.1. Parameter System
In real-world applications, different terrain scenarios need to be 
tackled (e.g., flat surface, stairs or sloped terrain). The footstep 
planner can perform best if an appropriate set of parameters is 
defined for each kind of terrain scenario. This allows the operator to 
easily switch between different planning behaviors. Furthermore, 
it is desirable to be able to modify a parameter set if the situation 
requires it. In general, these requirements can be solved using 
the available ROS message infrastructure. Frameworks, such 
as the presented footstep planner, however, are supposed to be 
extended with new features. The structure of parameter sets may 
vary during runtime that is in conflict to ROS messages requiring 
a static structure. A simple solution would be separate configura-
tion files and well as user interfaces for each plugin. Due to high 
maintenance effort this, however, is undesirable.

9 http://pointclouds.org/documentation/tutorials/normal_estimation.php 
10 https://github.com/team-vigir/vigir_generic_params 
11 https://github.com/team-vigir/vigir_pluginlib 

5.6.3.2. Plugin System
The vigir_pluginlib provides the capability to manage versatile 
plugins that can be also used outside of the footstep planning 
domain. The approach is based on pluginlib that already allows for 
dynamically loading plugins using the ROS build infrastructure. 
We have extended the package into a semantic plugin manage-
ment system. The practical implementation consists of two parts: 
the plugin base class and the plugin manager.

5.6.3.3. Framework Overview
The plugin and parameter management systems form the infra-
structure base of the footstep planning framework.12,13,14 The foot-
step planner pipeline has multiple injection points where a user 
might want to customize the behavior of the planner. For each of 
those, a semantic base class has been introduced as follows:

•	 CollisionCheckPlugin: basic collision check for a given state or 
transition,

•	 CollisionCheckGridMapPlugin: specialized CollisionCheckPlugin 
for occupancy grid maps,

•	 HeuristicPlugin: computes heuristic value from current state 
to goal state,

•	 PostProcessPlugin: allows performing additional computation 
after each step or step plan has been computed,

•	 ReachabilityPlugin: check if transition between two states is 
valid,

•	 StepCostEstimatorPlugin: estimates cost and risk for given 
transition,

•	 StepPlanMsgPlugin (unique): marshaling interface for robot 
specific data, and

•	 TerrainModelPlugin (unique): provides 3D model of 
environment.

The last two semantic base classes are defined to be unique; only 
a single instance might be running instance at a time. Figure 11 
shows the use of plugins within the planner pipeline. For a quick 
deployment of the framework, concrete plugin implementations 
for common cases already exist for all semantic-based classes.

A major goal is maintaining footstep planner efficiency. 
Therefore, the computational overhead of the plugin system 
must be kept to a minimum. It obviously is inefficient to reload 
needed plugins in each single iteration of the planning process. 
For this reason, the planner loads all plugins only once and sets 
their parameters once before starting planning. Additionally, a 
mutex locks all critical callback functions of the planning system. 
The footstep planner is, thus, protected against any changes of the 
plugin as well as parameter manager during the planning process.

Advanced walking controllers usually need very specific data 
to allow for performing complex locomotion tasks. For instance, 
these data could be intermediate trajectory points of the foot or 
the convex hull of expected ground contact. The framework has 
been designed to be able to provide this capability. The plugin 
system allows to inject additional computation needed by the 

12 https://github.com/team-vigir/vigir_footstep_planning_msgs 
13 https://github.com/team-vigir/vigir_footstep_planning_basics 
14 https://github.com/team-vigir/vigir_footstep_planning_core 
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walking controller. Analogously to the parameter management 
system, all custom data can be carried as a byte stream within 
regular step plan messages. Marshaling algorithms already avail-
able for basic data types can be applied here as well. Marshaling 
for complex data types has to be implemented as a customized 
StepPlanMsgPlugin. The framework is, thus, able to pack all 
custom data into the generic step plan message and send it to 
the hardware adapter, where it gets unpacked and forwarded to 
the walking controller. The framework, thus, supports any kind 
of walking controller via the plugin system without required 
modifications to the framework code base.

5.6.4. Interactive Footstep Planning
During the DRC Trials, the inability to refine generated footstep 
plans was identified as a shortcoming. Even though the planner 
is able to generate feasible plans, the possibility that the resulting 
plan contains undesirable steps due to noisy sensor data remains. 
In this case, the operator previously had to request a new step 
plan in the hope to get a better result. For this reason, the foot-
step planning system was extended to provide multiple services 
to manage footstep plans. These services can be used by user 
interfaces to enable interactive footstep planning, allowing full 
human in the loop planning. This mode allows for plan stitch-
ing, plan revalidation, and editing single steps with assistance 
of the footstep planner. The operator is able to quickly adjust 
single steps, while the planner will automatically update the 3D 
position of the new foot pose if enabled and provides immediate 
feedback if the modified step sequence is still feasible for the 
walking controller.

6. BehAVIoR eXecUTIVe

Combination of multiple, complex software components on 
a high level is an often underestimated issue when composing 
robot systems. Existing solutions are often very application 
specific and require expert developers for implementing mission 
specifications. Thus, in order to provide a suitable task-level layer 
of control for full or assisted robot autonomy, the behavior engine 
FlexBE15 (Schillinger, 2015) has been developed. It is based on 
SMACH (Bohren and Cousins, 2010) and extends it by several 
helpful capabilities in order to facilitate both development and 
execution of high-level behaviors. Furthermore, FlexBE provides 
an extensive user interface, enabling even non-expert users 
to compose and execute mission specifications within short 
time frames. During runtime, execution can be monitored and 
controlled remotely and the robot autonomy level can be flexibly 
adjusted.

6.1. component Interface
FlexBE (standing for “flexible behavior engine”) adapts the 
concept of hierarchical state machines similar to the implementa-
tion in SMACH. Each state corresponds to an action executed 
by the robot and transitions reflect the possible outcomes of 
these actions while data gathered during runtime can be passed 
between states. This approach enables to focus on the internal 
state of the robot (i.e., the current state of action execution). 
Knowledge about the external environment is only considered 

15 http://flexbe.github.io 
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FIgURe 12 | conceptual overview of a behavior composition. Each behavior is defined by a hierarchical state machine that instantiates and connects (lower 
part) re-usable state implementations (upper part).
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implicitly when designing a behavior, but is not needed to be 
exactly known during execution. Especially in disaster response, 
where the environment cannot be precisely modeled and events 
are typically the result of own actions, this concept helps to effec-
tively define high-level behaviors.

Each action state is given by a class definition implementing a 
specific interface. Depending on the situation, a state returns one 
of its outcomes, leading to a transition in the respective containing 
state machine. Furthermore, states can declare input and output 
keys for sharing common data during runtime. As depicted by the 
concept overview in Figure 12, these state implementations form 
the atomic building blocks from which behaviors are composed. 
Each action state refers to a well-defined and encapsulated high-
level capability of the robot, for example, closing fingers, planning 
footsteps, or executing a trajectory.

6.2. Behavior Development
In order to support the user in composing state instantiations to 
a complete behavior, FlexBE provides a comprehensive graphical 
user interface, including a state machine editor. Figure 13 shows 
a screenshot of this editor displaying a behavior as used for the 
DRC task of turning the valve. Yellow boxes denote states, white 
boxes are embedded state machines, and the boxes in pink refer 

to other complete stand-alone behaviors, which can be  embedded 
as well. Transitions are given by arrows between the states, where 
their labels refer to the outcomes of the outgoing states, i.e., 
under which condition the respective transition is taken. Their 
color corresponds to the required level of autonomy, which can 
be selected by the user.

The editor also provides a set of useful tools for making sure 
that states are composed in the correct way. For example, a 
dataflow graph can be displayed in order to check how data will 
be accessed and potentially modified by the different robot capa-
bilities during runtime. More importantly, each time a behavior 
is saved, or on demand, consistency of a behavior is validated. 
This includes checks such as that each outcome corresponds to 
a well-defined transition and no runtime data are potentially 
accessed before being written. FlexBE allows to make behavior 
modifications even during runtime and for updating behaviors 
while they are executed. With the static check functionality, the 
state machine editor ensures that such modifications do not lead 
to runtime failure.

Experience from designing task-level behaviors for the DRC 
showed that the usage of these concepts and the related tools 
not only helped facilitating the definition of complex behaviors 
since state machines could be modeled graphically instead 
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FIgURe 13 | Behavior to solve the DRc task of turning the valve, visualized by FlexBe’s state machine editor. Even during execution, the structure can 
easily be re-arranged with just a few mouse-clicks and without manually writing code.
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of manually writing code, but also because a well-defined 
encapsulation of robot capabilities and the re-usability of all 
parts encouraged proper software engineering practices, such 
as modularity and a clear separation of control and data flow. 
Furthermore, the augmentation of states by detailed documen-
tation was helpful when working with a multitude of different 
capabilities.

6.3. Behavior execution
Execution of behaviors is embedded in the graphical user 
interface as well. During runtime, the currently active state is 
displayed in the center, with transitions pointing to the possible 
successor states. While a robot would always proceed to the 
next state whenever possible in full autonomy, the operator is 
able to limit the autonomy level of the robot in order to prevent 
wrong transitions in phases of limited situational awareness. If a 
transition requires more autonomy than allowed by the operator, 
this transition will be highlighted in the runtime control user 
interface and the operator is asked to either confirm or decline 
this decision. The operator can also force a completely different 
one at any time.

Although this concept of collaborative autonomy is helpful for 
the control flow of behaviors, the operator also needs to be able 

to provide specific data to the robot as required during runtime if 
the robot fails to retrieve it on its own. For this purpose, an input 
data server is running as part of the OCS. Whenever requested by 
the robot, the operator can assist and provide the required data 
manually, for example, place an object template. This is invoked 
by using an input state, which is implemented as a robot capability 
like any other perception state.

In order to account for constrained communication, robot–
operator collaboration is carefully designed to be bandwidth 
efficient. A behavior mirror component runs on the OCS and 
mimics the onboard behavior, requiring only minimal runtime 
updates. It is, thus, possible to abstract from the fact that the 
behavior is not running locally and components, such as the user 
interface, can work on this mirror in order to retrieve the data 
they need for monitoring the runtime status.

7. eXpeRIMenTS

7.1. DRc Finals
The DRC Finals took place at Pomona, CA, USA on June 5th 
and 6th 2015. In the DRC Finals, three teams used the software 
described in this work, demonstrating the claimed flexibility and 
modularity.
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Unlike in the previously held DRC Trials, tasks were not 
attempted separately. Instead teams had 60  min time to score 
as many of the 8 tasks as they could. Each team was allowed 
two runs in the competition, one on the first and one on the 
second competition day. The first objective was reaching the 
door, behind which the other tasks were situated. This could 
be done either by starting the robot in a Polaris Ranger vehicle 
and letting the robot drive up to the goal line close to the door, 
or by starting outside the vehicle and letting the robot walk the 
whole distance. Scoring awarded 0 points for walking, 1 point for 
driving, and 1 point for egress from the vehicle. Teams could opt 
out from performing egress. In this case, a reset had to be called 
and the robot manually extracted from the vehicle, resulting in 
a 10 min reset penalty and no point for egress. Traversing the 
door was the next task, with one point for full traversal through 
the door frame.

After traversing the door, communication constraints went 
into effect, meaning that the high bandwidth connection for 
perception data had pseudo-random dropouts of up to 30  s 
length, with 1 s windows of communication in-between. Fifteen 
minutes before run end, the drop outs stopped, allowing for full 
communication again.

7.1.1. Team Hector
Team Hector used a THOR-MANG robot. While the system 
showed promising capabilities during the qualification for the 
DRC Finals and prior to them during testing, slope of the ground 
at the Trials and hardware problems resulted in the robot falling 
in both Final runs.

The driving task was performed reliably, but on both days the 
robot fell while attempting to perform the door task.

7.1.2. Team Valor
Team VALOR used the ESCHER robot in the DRC Finals. The 
team decided to not attempt the driving task. ESCHER was one 
of two robots that successfully walked the complete distance from 
the start point up to the door. The attempt at opening the door 
was not successful due to encountered hardware issues.

7.1.3. Team ViGIR
Team ViGIR used the most recent, untethered version of the BDI 
Atlas robot. Originally, the team intended to skip the driving task. 
When it became clear that it would be allowed to not perform 
egress, but instead call for a reset, a decision was made to attempt 
the driving task. The performance for both competition days is 
briefly described the next two paragraphs.

7.1.3.1. Finals Day One
Starting in the Polaris Ranger vehicle, teleoperation was used to 
drive the robot down the vehicle course. A worldmodel of the 
course was obtained through LIDAR and cameras, and it was 
visualized in the OCS as described in Section 4. With this percep-
tion information, operators were able to use a driving controller 
system that generated the necessary joint motions to actuate the 
steering wheel and actuate the gas pedal. Details on the driving 
controller system will be described in Section 7.2. After com-
pleting the driving course, an intervention (with an associated 

10-min penalty pause as specified in the DRC rules) was then 
used to manually extract the robot from the car.

After the penalty time, the door task was attempted. During 
the attempt to perform the door task, the supervisor team 
noticed that high-level behavior execution did not work as 
intended. This was later traced back to a faulty setup of the 
communications bridge system and increased saturation of the 
wireless links used in the competition. The supervisor team, 
thus, switched from using assisted autonomy via FlexBE behav-
iors to using object templates and teleoperation. Operators 
inserted the door template in the OCS where the sensor data 
of the door was displayed and commanded the robot to walk 
to the pre-defined stance pose for opening the door. After 
locomotion was performed, the operators attempted to open 
the door using the “open” affordance defined in the door object 
template. The robot hand slipped away from the door handle 
and, thus, the autonomous execution of the affordance failed. 
For this reason, the operators switched to Cartesian-space 
teleoperation. Using this approach, the door was successfully 
opened as seen in Figure  14A. After opening the door, the 
operators manually commanded the robot to walk toward a 
stance pose to open the valve. The valve task was solved using 
mainly the affordance-level control provided by the valve object 
template (see Figure 14B). Finally, before being able to actuate 
the switch in the surprise task, time ran out, ending the run. A 
video is available online.16

7.1.3.2. Finals Day Two
The second-day mission again started by the supervisor team 
using teleoperation for driving the Polaris vehicle. Due to erratic 
network connectivity and possible operator error, a barrier was 
touched and a reset had to be called. In the second attempt, the 
driving task was performed successfully. The door opening task 
was performed using object template and automated behavior 
control. After the door was opened, the pump of the robot shut 
down for unknown reasons and the robot fell. After this forced 
reset, another attempt at traversing the door was made, resulting 
in another fall. A video is available online.17

7.1.4. Discussion
The perception system worked as designed during the compe-
tition, providing image and full LIDAR-based environment 
geometry data. It provided the necessary data also under com-
munication constraints after traversing the door only allowed 
intermittent communication over the 300MBit high data rate 
connection from the robot.

All three teams using Team ViGIR’s software were able to lever-
age the contributions described in this work, which enabled them 
to perform supervised locomotion and manipulation with highly 
diverse bipedal robot systems. Due to encountered issues, the full 
potential, however, could not be demonstrated at the DRC Finals. 
The DRC competition operated on a tight schedule. This meant that 
delays in hardware availability presented significant challenges, 

16 https://youtu.be/VEsUICAa4rg 
17 https://youtu.be/Whw-tG0Wh9U 
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B

FIgURe 14 | Team VigIR Atlas robot view of performing tasks at the DRc Finals. (A) Door task. From left to right: Door Template aligned, Pre-grasp, Grasp, 
Turn Clockwise affordance, Push affordance (fails to open), door opened after Cartesian teleoperation. (B) Valve task. From left to right: Valve Template aligned, 
Pre-grasp, Grasp, Open affordance 45°, 135°, and 270°. Images courtesy of Alberto Romay.
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as they would reduce the time available for testing software and 
training operators. This general constraint is a contributing factor 
to the issues encountered, such as the communications setup issue 
experienced, during the first day by Team ViGIR.

Open source whole-body controllers for the ATLAS and Thor-
MANG robot were not available; instead manufacturer-provided 
libraries were used for low-level control of these robots. While 
capabilities offered by these libraries proved useful, their closed 
source nature provided little transparency and did not allow for 
tighter coupling between high-level and low-level control. The 
fact that ATLAS teams who developed their own controller based 
on prior research scored higher than those who used the BDI-
supplied one supports this assertion.

While using a sliding level of autonomy up to full teleoperation 
worked well, offloading the task of object perception and pose 
estimation from supervisors is an aspect that has not been focused 
on so far. Instead, the described approach relied on providing 
supervisors with the necessary situational awareness to perform 
these tasks. Reliable automated solutions have the potential to 
improve performance and speed at which complex tasks can be 
performed.

7.2. Driving a Vehicle
Demonstrating the applicability of the framework to different 
robot systems and tasks, we focus here on the realization of the 
driving task for both the ATLAS and Thor-MANG robot as an 
example.

7.2.1. Controlling the Vehicle
To control the vehicle, both the steering wheel and gas pedal 
have to be actuated. Depending on the robot used, this can be 

challenging due to factors, such as size, strength, and sensing 
capabilities. To increase robustness, adapters that can be added 
to the Polaris Ranger XP900 vehicle were developed. As shown in 
Figure 15A, a knob attached to the steering wheel with a spring 
was used for steering control. While allowing for actuation of 
the steering wheel, the spring adds compliance to the setup and 
prevents high forces being exerted on either robot or vehicle. For 
the pedal shown in Figure 15B, an adapter was used that limits 
pedal travel as to limit the maximum speed of the vehicle. For 
the ATLAS robot, the adapter also had to mechanically transfer 
the steering command from the passenger side of the vehicle 
to the pedal, as the robot was too big to fit at the driver side.  
As a safety measure, a spring was added to the pedal adapter that 
always brings the adapter back into the idle position when not 
pressed down.

7.2.2. Perception
As generic and robust ego-motion estimation for humanoid 
robots placed in vehicles is highly challenging and prone to fail-
ure, a teleoperation-based approach was used. Steering angle and 
gas pedal angle are set by the operator. As a safety measure, the 
system automatically stops if no commands have been received 
within a threshold duration.

7.2.3. Results
In the DRC Finals, for both ATLAS and THOR-MANG, the 
capability to drive a car as required in the DRC Finals rules was 
demonstrated. A video is available online.18

18 https://www.youtube.com/watch?v=noxAK7YdJUE 
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A B

FIgURe 15 | hardware attachment for driving a car. (A) Compliant steering wheel adapter. (B) Pedal adapter for the Thor-MANG robot.

19

Kohlbrecher et al. A Comprehensive Software Framework for Humanoid Robots

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 31

7.3. Simulation
Due to the high cost of complex humanoid robot systems, it is 
highly desirable to be able to simulate them. This allows perform-
ing research and experiments when real systems are not available.

7.3.1. Simulation of Humanoids
The components described in this work are available as open 
source software and an example setup using the THOR-MANG 
robot in Gazebo simulation can be reproduced easily using avail-
able install instructions.19 A tutorial video showing the use of the 
example setup is available online.20

7.3.2. Example of Use with a Non-Biped Robot
Demonstrating the flexibility and modularity of the provided 
architecture, we show how manipulation capabilities can be 
added to a robot system that combines the proven mobility of a 
tracked base with a humanoid upper body.

The robot is capable of fully autonomous exploration of 
environments using the software components described in 
Kohlbrecher et  al. (2014). In a demonstration video,21 it first 
explores parts of the environment fully autonomously, with the 
supervisor observing progress. When the supervisor notices that 
the closed door prevents the robot from continuing exploration, 
she uses the manipulation capabilities of the robot to open the 
door using teleoperation or affordance-level control using the 
contributions described in this work. Afterwards, the supervi-
sor can command the robot to keep exploring the environment 
autonomously or continue operating in a lower autonomy mode. 

19 https://github.com/team-vigir/vigir_install/wiki/Install-thor-mang-vigir-gazebo 
20 https://www.youtube.com/watch?v=6fS89HGPEf4 
21 https://youtu.be/6ko27gKZGdA 

Instructions for install and use of the shown system are available 
online.22

8. conclUSIon

This work discusses a comprehensive software framework for 
performing complex disaster response tasks using humanoid 
robots with human supervisors in the loop. System architecture 
design considerations are detailed and comprehensive contribu-
tions toward different aspects, such as communication, percep-
tion, manipulation and footstep planning, and behavior control, 
are detailed.

The described contributions are available as open source 
software23 for ROS. In contrast to other approaches, it has been 
successfully used on three different highly complex humanoid 
systems, demonstrating the flexibility and modularity of the 
system.

As discussed in the Section 7.1.4, while abstraction and 
decoupling from the low-level control system provided by 
robot systems can be considered a strength, achieving highest 
possible performance with a biped robot system requires full 
integration with and leveraging the capabilities of a whole-
body control system. The realization of this is a subject of 
future work.

AUThoR conTRIBUTIonS

SK: Perception and manipulation; AS: Footstep planner; AR: 
Object/affordance tem plate approach; PS: FlexBE behavior engine; 
OS: Advisor, overall design; and DC: Advisor, overall design.

22 https://github.com/tu-darmstadt-ros-pkg/centaur_robot_tutorial 
23 https://github.com/team-vigir/vigir_install 
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