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Reliable depth perception eases and enables a large variety of attentional and interactive 
behaviors on humanoid robots. However, the use of depth in real-world scenarios is hin-
dered by the difficulty of computing real-time and robust binocular disparity maps from 
moving stereo cameras. On the iCub humanoid robot, we recently adopted the Efficient 
Large-scale Stereo (ELAS) Matching algorithm (Geiger et al., 2010) for computation of 
the disparity map. In this technical report, we show that this algorithm allows reliable 
depth perception and experimental evidence that demonstrates that it can be used to 
solve challenging visual tasks in real-world indoor settings. As a case study, we consider 
the common situation where the robot is asked to focus the attention on one object 
close in the scene, showing how a simple but effective disparity-based segmentation 
solves the problem in this case. This example paves the way to a variety of other similar 
applications.

Keywords: disparity-based segmentation, visual tracking, disparity map, humanoid robotics, icub

1. InTRoDUcTIon

The main obstacle to stereo vision lies in the process of matching 2D points in the images coming 
from the cameras on both eyes in order to compute the amount of displacement, or disparity. In this 
work, we consider the Efficient Large-scale Stereo (ELAS) Matching algorithm (Geiger et al., 2010) 
and incorporate it in the visual perceptual system of the iCub robot (Metta et al., 2008).

According to standard KITTI Stereo-Vision Benchmark (Geiger et al., 2012; Menze and Geiger, 
2015), ELAS offers a reasonable trade-off between quality of the disparity estimation and computa-
tional time, which makes it particularly suited for applications that require real-time performance. 
Indeed, in the KITTI 2015 and 2012 benchmarks,1,2 ELAS is the first method, among the ones that 
require less than 1s per frame processing time, which comes with an open-source implementation. 
This threshold is purely indicative but – given the relatively high resolution of the images constitut-
ing the KITTI benchmark  –  is aimed at excluding those methods that do not provide real-time 
performance. Those algorithms in the KITTI benchmarks performing better and faster than ELAS 

1 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
2 http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
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are either proprietary (Einecke and Eggert, 2010, 2013, 2015) or 
rely on Convolutional Neural Network architectures and require 
dedicated GPUs (Mayer et al., 2015).

Therefore, we have integrated the ELAS algorithm, which is 
available with an open-source license as a self-contained, opti-
mized C++ library, LIBELAS,3 into the iCub software system and 
tested it in different applications, making them readily available 
for the benefit of the community. In this technical report, we 
describe the software we have implemented and present a set of 
quantitative and qualitative experiments to assess the efficacy of 
the ELAS algorithm in a realistic robotic setting.

2. RelATeD WoRK

Depth is a natural cue for object segmentation. For example, 
consider this common situation for a humanoid robotic platform: 
a human stands in front of the robot showing to it an object to 
be recognized or grasped. Both motion- and appearance-based 
approaches to focus the robot’s attention on the object of interest 
would impose many constraints even on this simple scenario. 
Color-based methods work under strict assumptions on the light 
conditions, kind of background (preferably a table or a wall) 
and generally fail in cluttered setting. Model-based methods can 
overcome many of the above limitations, but, more importantly, 
require the shape type of the object to be known a priori (Greggio 
et al., 2011). Motion cues are an alternative [see, e.g., Ciliberto 
et al. (2011) and Kumar et al. (2015)] but clearly require objects 
to be moving and ego-motion compensation. Perhaps the most 
distinguishing feature is simply the fact that the object of inter-
est is closer to the robot than the background. Indeed, depth 
information has been exploited in similar robotics settings in the 
past (Goerick et al., 2005, 2006; Wersing et al., 2006, 2007, 2008; 
Leitner et al., 2012a; Rudinac et al., 2012).

The issues involved by estimation of the disparity map on 
a humanoid robotic head are related to calibration, speed, and 
robustness. Indeed, since performing 2-dimensional searches for 
matching points in the two cameras is computationally expen-
sive, a commonly adopted approach for vergent stereo systems 
(Hartley and Zisserman, 2003) is to first rectify the left and right 
images, in order to bring corresponding points to lie on the same 
scanline. Then, disparity can be computed by performing only 
horizontal searches. However, accurately estimating the recipro-
cal position of the stereo pair, needed by the rectification step, 
can be difficult, particularly on a humanoid robotic head, where 
the pan and vergence of the robot eyes change continuously and 
the kinematic information is affected by uncertainty. The fol-
lowing horizontal disparity computation step then remains the 
main computational bottleneck. At present, solutions providing 
the disparity map with the right trade-off between speed and 
accuracy are active subject of research. Finally, robustness to 
lighting conditions, poorly textured regions and inaccuracies in 
the rectification is another key requirement for an algorithm to 
be usable on a robotic platform.

3 http://www.cvlibs.net/software/libelas/

A different approach proposed the use of machine learn-
ing methods as Neural Networks to overcome the calibration 
problem. In Leitner et al. (2012b), the authors are able to learn a 
network that maps the 2D projections of a point onto the left and 
right cameras to its 3D position in the world, being the cameras 
orientation approximately provided by the robot kinematics. 
Combining this with an object detection technique that segments 
an object in both cameras, they are able to localize the object 
without the need for any calibration. However, by considering 
only a single point as the object’s centroid, they do not solve the 
problem of 2-dimensional matching and disparity computation. 
Moreover, they rely on an appearance-based segmentation algo-
rithm that suffers from the limitations of color-based methods 
mentioned above.

For all these difficulties, active depth sensors have been often 
preferred when building complex behaviors as, e.g., interactive 
object learning (Lyubova et al., 2015). The goal of this work is to 
improve the stereo perception of the iCub robot in order to make 
dense 3D information usable in action–perception loops. In par-
ticular, we show an example object tracking application. Since the 
main problems affecting the stereo perceptual system of the robot 
were slowness and robustness, in this work we aim at improving 
the disparity computation step with respect to these aspects. For 
camera calibration and image rectification, we adopt the currently 
implemented technique on the iCub robot, described in Fanello 
et al. (2014) and briefly resumed in Section 3.1.

We decided to rely on the LIBELAS library because, com-
paring to other local dense stereo matching methods, which 
can be faster [see, e.g., OpenCV’s Block Matching algorithm 
implementation (Bradski and Kaehler, 2013), for which a GPU 
accelerated version is also available], LIBELAS provides better 
matching results in texture-less regions. Indeed, the matching 
performance of algorithms based on local correspondences 
is affected by the window size, which is particularly critical in 
real-world application scenarios, where scenes are characterized 
by large texture-less elements. In this setting, small windows can 
be uninformative but too large windows cause border bleeding 
artifacts and heavier computational time (Geiger et  al., 2010). 
Instead, the ELAS algorithm overcome this problem by propa-
gating to non-textured regions disparity information derived on 
a set of robust correspondences. Moreover, when compared to 
semi-global methods, including OpenCV’s implementation of 
Hirschmuller’s Semi-Global Block Matching (SGMB) algorithm 
(Hirschmuller, 2008) currently in use on the iCub platform, ELAS 
scales better with respect to the disparity search space, which is 
generally large in robotics application where the robots must per-
ceive both close and far objects. Indeed, in contrast with SGBM, 
which computes matching costs at each pixel for the full disparity 
space image, ELAS reduces the search only to plausible values 
between neighboring support points’ disparities. Finally, accord-
ing to recent experimental evidence (Sinha et al., 2014) (and to 
the KITTI benchmark), ELAS is remarkably fast on large images.

These are also the main reasons why LIBELAS has been 
the library of choice for many previous robotic applications. 
LIBELAS is adopted in Tombari et al. (2011) for an object recog-
nition task, and in Van den Bergh and Van Gool (2012) it is used 
in conjunction with color and optical flow to provide a real-time 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.cvlibs.net/software/libelas/
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super-pixel segmentation of the scene. In Mitzel and Leibe (2012) 
and Baumgartner et  al. (2013) LIBELAS is at the basis of an 
algorithm for people detection and inference engine that learns 
interactions between people and objects. Moreover, (Lin et al., 
2012) show that LIBELAS can be implemented on an embedded 
ARM-based processor with real-time on mid-resolution images.

Based on these motivations, we decided to integrate LIBELAS 
into the iCub’s depth perception system. The spirit of our work 
is close to Leitner et  al. (2008), where the authors adapt the 
algorithm for disparity computation presented in Bernardino 
and Santos-Victor (2002) to work on a humanoid robotic head 
and benchmark its performance and computational efficiency. In 
this work, we validate the integration of LIBELAS in the iCub’s 
stereo perceptual system. We focus in particular to situations 
where 3D information is used in visuo-motor tasks, specifically 
object detection and tracking in indoor settings. The contribution 
of the paper is twofold: we first improve the iCub stereo percep-
tual system, by providing the possibility of employing LIBELAS, 
beyond OpenCV’s SGBM, for disparity computation; by building 
on faster and more robust 3D information, we are then able to 
implement a disparity-based tracker that allows for detection of 
never-seen objects on cluttered and dynamic background; this, 
finally, allows us to realize an interactive object learning applica-
tion that we use also for semi-automatic ground-truth collection. 
All the code of the applications that we show in this work is made 
publicly available to the iCub community.

In Section 3 we briefly review the processing steps currently 
adopted on the iCub for depth estimation; in Section 4 we 
describe the application that we devised to focus the robot’s atten-
tion on the closest object in its workspace. Finally, in Section 5 
we experimentally demonstrate the effectiveness of this approach.

3. DepTh eSTIMATIon

In this section we briefly describe the depth estimation pipeline 
adopted in this work. Following the standard approach from 
multi-view geometry (Hartley and Zisserman, 2003), the process 
is organized into two main phases: image rectification and dispar-
ity computation.

The rectification step estimates the geometrical transforma-
tion matrix relating left and right image planes in order to align 
the epipolar lines with the image scanlines. After this operation, 
horizontal disparity is computed for each pixel in the left (right) 
rectified image, by searching its correspondent point in the right 
(left) rectified image along its scanline. The resulting disparity map 
provides an estimation of the 3D structure of the scene as a cloud 
of points (whose projections end up on the image pixels) with 
respect to the observer. To recover the 3D position of the point 
corresponding to a specific pixel, the camera’s extrinsic parameters 
can be used, in combination with its disparity, to re-project it.

Regarding the estimation of the camera parameters, we follow 
the procedure described in Fanello et al. (2014), which involves 
online calibration starting from the initial off-line calibration 
(online re-calibration is required when the reciprocal position 
of the eyes change). As mentioned already, for disparity estima-
tion, we adopt the Efficient Large-scale Stereo (ELAS) Matching 
algorithm proposed in Geiger et al. (2010).

3.1. Rectification
Image rectification consists in the process of transforming a set 
of multiple images onto the same plane and is a fundamental 
step to most depth estimation algorithms. Rectification requires 
knowledge of both the intrinsic (camera specific) parameters 
of the two (or more) cameras and extrinsic parameters, i.e., 
the position and orientation of the cameras with respect to 
the world reference frame. More formally, any 3D point with 
coordinates X = (x, y, z, 1)⟙ with respect to the world reference 
frame is mapped on the camera image plane x =  (u, v, 1)⟙ via 
the transformation

 sx = PX (1)

where s ∈ R is a scaling factor, P ∈ R3×4 is the Projection Matrix 
that can be factorized as P = K[R|t], with K ∈ R3×3 and [R|t] ∈ R3×4 
the matrices of intrinsic and extrinsic parameters, respectively.

Intrinsic and extrinsic parameters can be estimated off-line 
during a calibration phase. However, while intrinsic parameters 
are camera specific and do not change over time, on the iCub 
the relative pose of the cameras changes when the robot fixates 
objects at different distance. To circumvent this issue, Fanello 
et  al. (2014) pre-compute the intrinsic parameters matrices 
KL and KR using standard calibration procedure (Hartley and 
Zisserman, 2003). Extrinsic parameters are then re-estimated at 
runtime. This calibration employs SIFT matching to estimate the 
Fundamental Matrix between the two camera planes [details are in 
Fanello et al. (2014)]. To achieve real-time performance, Fanello 
et  al. (2014) exploit the robot’s kinematics to approximate the 
camera transformation between subsequent frames and perform 
re-calibration using SIFT matching at a lower frame rate. This 
procedure is implemented in the SfM (Structure from 
Motion) module included in the iCub stereo-vision 
repository.4 Once the projection matrices PL and PR associated 
with the left and right cameras are known, the corresponding 
images can be mapped onto the same plane, i.e., they are recti-
fied. They are, therefore, ready for the subsequent stage: disparity 
estimation.

3.2. Disparity computation with elAS
Disparity estimation consists in the process of evaluating the 
displacement of pixels from one (rectified) image to the other. 
Disparity is usually computed after rectification since at this stage 
the corresponding image points from the left and right cameras 
lie on the same scanline and, therefore, matching can be restricted 
to horizontal lines. A variety of disparity estimation methods 
have been proposed in the literature. The Efficient Large-Scale 
Stereo (ELAS) Matching algorithm proposed in Geiger et  al. 
(2010) consists in the following two phases:

 1. A set of robust support points is detected and matched across 
the two images.

 2. Dense disparity on a uniform group of points is obtained from 
these support points in a Bayesian framework.

4 https://github.com/robotology/stereo-vision
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In this section we offer a very brief overview of the ideas 
underlying ELAS, while referring the reader to the original paper for 
a more detailed description of the algorithm (Geiger et al., 2010).

3.2.1. Support Points
The first phase of ELAS is performed on a predetermined grid on 
the image plane, where candidate points are selected depending 
on their local appearance. To do so, the authors used a vector 
of local orientations (response to oriented Sobel filters) and 
performed robust matching between such feature vectors to 
eliminate unstable pairs of points. The outcome of this stage is 
a set S of points s = (u, v, d)⟙ that encode the position (u,v) of 
a support point on the left (rectified) image and the disparity d 
with respect to the matched point on the right (rectified) image.

3.2.2. Bayesian Inference
The second phase relies on the two-view geometry parameters 
estimated in Section 1 and the support points S to predict the 
most likely disparity values for the remaining image pixels. In 
particular, the authors adopt a Bayesian framework to model the 
likelihood:

 p d x x xL R
n

R( ... )( ) ( ) ( )| , , , ,1 S  

of observing a disparity d for a given point x(L) on the left image 
and a set of candidate corresponding points x xR

n
R

1
( ) ( )..., ,  on the 

right image. The most likely disparity value is, therefore, esti-
mated by factorizing such likelihood and performing a Maximum 
A Posteriori (MAP) procedure.

As pointed out in Geiger et al. (2010), this procedure can be 
carried out independently for each image point and it is fast and 
parallelizable. Clearly, this is a critical feature for the robotic 
setting, where the disparity estimation process must be com-
puted at frame rate. LIBELAS offers two presets of parameters, 
MIDDLEBURY and ROBOTICS, the latter being specifically 
tuned for higher robustness to dynamic lighting conditions and 
real-world scenes. We integrated the OpenMP parallelization 
of LIBELAS, available at the same website of the library, in the 
stereo-vision repository.

4. oUR BenchMARK: DISpARITy-DRIVen 
ATTenTIon

For validation, we consider the following benchmark. We 
designed a segmentation procedure based on the disparity map. 
This procedure identifies distinct 3-dimensional entities in the 
scene and it focuses the robot’s gaze toward the object that is 
closest to the cameras. By following this strategy, we were able 
to implement a simple but effective tracking algorithm that 
continuously focuses the robot’s attention and gaze toward the 
closest object in the scene, while at the same time providing also 
an approximate visual segmentation.

We first employed this basic tracking system to perform 
a qualitative and quantitative analysis of the disparity map 
produced by ELAS in a real-world indoor robotic setting 
(Sections 5.1 and 5.2). Then, within this general scenario we 
defined a reliable protocol to acquire ground-truth for visual 

object recognition (Section 6.1). We are exploiting this applica-
tion to acquire a dataset of images depicting multiple objects 
held in the hand of a human teacher who is showing them to 
the iCub, which is going to be released soon. In fact, a similar 
strategy, based however on independent motion detection, was 
previously explored on the iCub robot (Fanello et al., 2013a,b) 
for previous releases of the iCubWorld dataset. We show that 
in such an application disparity information results in a more 
reliable and stable cue.

In the following, we describe the algorithm we devised to seg-
ment the object closest to the iCub cameras and focus the robot’s 
gaze on it.

4.1. Foremost object Segmentation
To achieve real-time performance, we reduced the post- processing 
operations on the disparity map to the minimum. Therefore, we 
implemented a proof-of-concept segmentation algorithm that 
can provide a reasonably stable and accurate blob around the 
closest proto-object in the scene. We are aware of the existence of 
more sophisticated algorithms, which may provide more precise 
segmentations [e.g., Li et al. (2013)]. These algorithms could be 
easily plugged in the present pipeline to realize other behaviors 
that require more accurate segmentation. Below we report the 
algorithm together with the parameters currently used on the 
robot. The code, implemented by using standard OpenCV func-
tions, has been made available in the dispBlobber module, 
part of the iCub segmentation repository.5

 1. Filtering: a 5 × 5 Gaussian filter (σx = σy = 1.5) is applied to the 
disparity map in order to smooth the surfaces. Then, as we are 
interested in the foremost object, background is suppressed by 
putting to black/zero all pixels whose grayscale value is under 
a threshold, set to 30 ÷ 50, so that farther (darker) pixels are 
removed. A sequence of 4 dilation and 2 erosion operations 
with a 3  ×  3 kernel matrix, interleaved by another 5  ×  5 
Gaussian filtering (σx = σy = 2) follows, in order to suppress 
small blobs and fill holes in large blobs.

 2. Blob selection: a simple routine to localize the closest blob of 
“reasonable” size (i.e., larger than a predefined threshold to 
avoid spurious detections) is devised. Iteratively:
(a) find the 2D image location of the brightest (closest) pixel 

as a vector (u,v),
(b) generate a candidate blob from the seed pixel by aggrega-

ting all neighboring pixels with disparity value between 
the brightest one (d) and a lower threshold defined by 
0.9*d,

(c) suppress (putting to black/zero) the aggregated region if 
its size is lower than a threshold (in our experiment set 
to 300 pixels for 320 × 240 images and to 1400 pixels for 
640 × 480 images),

(d) start again from a until one region satisfying the size re-
quirement is found, and

(e) check whether the returned region is composed by a 
single blob or by multiple connected blobs, by selecting 
only the largest one satisfying the size threshold fixed 

5 https://github.com/robotology/segmentation/tree/master/dispBlobber

http://www.frontiersin.org/Robotics_and_AI
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TABle 1 | Average computational time (splitted for disparity computation 
and segmentation) and percentage of blobs missed by lIBelAS and 
SgBM over the sequence represented in Figure 1.

SgBM elAS

Time disparity [ms] 190 60
Time segmentation [ms] 20 5
Time total [ms] 210 65
Missed blobs [%] 11.2 2
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above, in the latter case. This is achieved by first compu-
ting the contours of the region and then iterating on the 
connected components, discarding those whose area is 
under the threshold.

 3. Computing the blob’s centroid and ROI: if any blob is found, its 
center of mass and its smallest enclosing rectangular bound-
ing box (ROI), with an arbitrary margin, are computed.

 4. Averaging over a temporal buffer: finally, the centroid and the 
ROI are averaged over a buffer of n frames (with, e.g., n = 3) 
in order to mitigate isolated mis-detections.

4.2. Foremost object Fixation
At this stage, the foremost object’s centroid on the reference (left) 
image is available for further usage. In this application, the dis-
pBlobber module asks the SfM module to re-project the com-
puted centroid to its corresponding 3D position in the Cartesian 
space. This 3D point is finally fed to the module in charge of 
controlling the robot’s gaze [iKinGazeCtrl (Pattacini, 2011)], 
which moves the iCub’s eyes accordingly. This solution is more 
accurate than performing the triangulation using the robot kin-
ematics, because the SfM module performs a visual estimation 
of the relative orientation of the cameras [using the algorithm in 
Fanello et al. (2014)].

As a consequence, the head and eyes positions of the robot 
are continuously updated to keep the focus of attention fixed on 
the required 3D target, i.e., the closest object in the visual field, 
while the human moves it in front of the cameras. This pipeline 
is looped in real time so that the robot is able to follow the closest 
object with the gaze. It is then clear that relying on a fast and 
robust disparity map (eventually at the expenses of some sub-
pixel precision) in this kind of application is critical, and the 
reported results confirm that LIBELAS is suited to this task.

We note also that this is a very basic (yet effective) implemen-
tation for a disparity-driven attention system and that further 
improvements as, e.g., applying a Kalman filter to the trajectory 
of the 3D centroid, could be introduced to smooth and stabilize 
the resulting tracking system.

5. eXpeRIMenTAl eVAlUATIon

In this section, we present a qualitative as well as quantitative 
analysis of the depth estimation process described in Section 
3, with particular focus on the improvements provided by the 
ELAS algorithm, which represents the novel element of the 
pipeline for disparity computation. As we are mainly concerned 
in assessing the possibility to employ this algorithm in practical, 
real-time, robotics applications, we first evaluate the disparity-
based segmentation protocol introduced in Section 1 and then 
we evaluate this approach for disparity-driven visual attention 
behavior.

For our experiments, we employed the OpenCV (Bradski 
and Kaehler, 2013) implementation of the Semi-Global Block 
Matching algorithm (SGBM) (Hirschmuller, 2008) as a base-
line to compare the performance of ELAS. Indeed, SGBM was 
considered the “off-the-shelf ” disparity estimation algorithm for 
the iCub robot used in the SfM module in the iCub stereo-
vision repository [see Fanello et al. (2014)].

5.1. Real-Time Disparity-Driven 
Segmentation
We collected a sequence of 200 frames at the resolution of 
640 × 480, acquired across 2 minutes and recorded from the iCub 
cameras while a human subject was moving his hand in front 
of the robot. We computed the performance of the disparity-
based segmentation protocol described in Section 1 when using 
ELAS or SGBM. In Table 1, we report the computational time 
required on our platform [Intel(R) Core(TM) i7 3770QM CPU at 
3.40 GHz with 16-GB RAM] to perform the disparity estimation 
and segmentation, averaged over the whole acquisition sequence. 
We also report the ratio of “missed” blobs: the ratio of frames 
for which the segmentation algorithm failed to detect any blob. 
Our experiments show that ELAS significantly outperforms the 
baseline and moreover leads to better segmentation. In Figure 1, 
we report three exemplar images from this sequence: the first row 
depicts the rectified images acquired from the left camera (those 
from the right camera are not reported); the second and third 
rows report, respectively, the disparity maps and the resulting 
segmentation, obtained with ELAS (odd columns) or SGBM 
(even columns).

It can be noticed that the LIBELAS implementation is fast 
(achieving a 15  fps rate with respect to the 5  fps provided by 
SGBM) and robust enough to allow for further applications of 
the computed disparity, such as the disparity-driven attention 
behavior described in the following.

For these experiments, the disparity range was set to [0,127] 
for both ELAS and SGBM. In Table 2, we report the parameters of 
the SGBM algorithm, which have been tuned to the specific iCub’s 
indoor setting. Those not reported were left to their default value 
[see OpenCV’s documentation (Bradski and Kaehler, 2013)].

In the case of LIBELAS implementation, we chose the 
ROBOTICS preset of parameters offered by the library. In order 
to speed up computations we set the post_process_only_
left and the subsampling parameters to true and 
employed the OpenMP accelerated version of the library. All 
other parameters were left to their default value.

5.2. Disparity-Driven Visual Attention
In this section we test the presented simple attention system 
driven by disparity information, whose underlying principle is to 
keep the robots’ gaze focused on the closest object in the scene. 
In particular, we consider the following setting: a human moves 
an object in front of the robot camera, and we evaluate the stabil-
ity of the resulting “tracking” application.

We employed the pipeline described in Section 4. In the cur-
rent experiment, we used low-resolution images (320 × 240) in 
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TABle 2 | SgBM parameter setting.

opencV’s parameter name Value

preFilterCap 63
SADWindowSize 7
P1 8 ⋅ 7 ⋅ 7
P2 32 ⋅ 7 ⋅ 7
uniquenessRatio 15
speckleWindowSize 50
speckleRange 16
disp12MaxDiff 0

The left column reports the parameter name in the OpenCV implementation and the 
right column its value in our application.

FIgURe 1 | examples from a sequence recorded on the icub’s cameras, with fixed eyes and head. Top: left rectified images. Middle: disparity maps 
computed by LIBELAS and OpenCV’s SGBM methods. Bottom: segmentation of the closest blob in the scene.
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order to provide the gaze controller with a more frequent feed-
back and the disparity range was reduced to [0, 95]. For SGBM, 
we used the same parameter set of the previous experiment. 
For LIBELAS, there was no need to enable the subsampling 
since the lower resolution already allowed to achieve frame-rate 
performance (30 fps) on our platform. Experiments with SGBM 
were performed off-line because the lower efficiency (~10 fps) did 
not allow for a smooth tracking.

As a reference ground-truth to compare with the result 
of the disparity-based segmentation, we used the output of a 
model-based object tracker (Taiana et  al., 2010). In particular, 
we used a red ball for which a well-established particle filter 
tracker is implemented in the pf3dTracker module, part of 
the icub-basic-demos repository.6 As the operator moved 
the red ball in front of the robot, the gaze was focused toward 
it (since it was the closest object in the scene). The information 
about its estimated position was acquired independently using 
the disparity-based segmentation procedure described above and 
the color/shape-based particle filter tracker (see Figure  2). We 
recorded the coordinates (udisp, vdisp) of the closest blob’s centroid 
on the left image plane as provided at each frame by the segmen-
tation module on top of ELAS disparity map. At the same time, 

6 https://www.github.com/robotology/icub-basic-demos

we recorded the coordinates (umodel, vmodel) of the center of the red 
ball in the same image plane, provided by the red-ball detector.

Figure 3 reports the image plane coordinates (top rows) with 
red and blue colors, respectively, for disparity and model-based 
tracker, and their difference (bottom rows). Notice that, in some 
frames, ELAS estimates the wrong position for the blob (sudden 
jumps in the red curves); instead, the red ball tracker fails to 
detect its target within a 2 s interval around t = 18 s in the plot. In 
Figure 2, we provide a short sequence showing the ELAS failure 
around t = 2.6 s. Indeed, it does happen that, since the robot is 
moving and we are in an uncontrolled setting, the disparity map is 
affected by noise that cause false blob detections. Notice, however, 
that these errors occur on isolated frames and can be removed by 
filtering the 2D image position detected by raw segmentation. In 
Figure 4, we report instead a short sequence extracted from the 
interval in which the red ball detector fails: in this case, the error 
is due to a constant mis-detection caused by the slightly changed 
lighting condition. This unexpected behavior by the way offers 
the occasion to highlight that the proposed approach based on the 
disparity cue for tracking and segmentation is not only a viable 
solution but can also be even more robust than appearance-based 
information when the 3D position of the target is a more stable 
signal than its color.

Figure 5 shows the same quantities of Figure 3 but computed 
on the disparity map provided by SGBM. We computed the dis-
parity map off-line on the same set of rectified images acquired 
when tracking with the ELAS algorithm. As can be clearly noticed, 
the unstable behavior of the disparity produced by SGBM is not 
sufficient to provide a fast and reliable signal to track the ball.

6. ApplIcATIonS oF DISpARITy 
on hUMAnoID RoBoTS

In this section we show how the disparity-driven attention 
system described in Section 5 can be employed to improve 
the robot perception of the surrounding environment. In 
particular, we consider a basic interaction between the robot  
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FIgURe 2 | Frames extracted from the sequence represented in Figure 3 around t = 2.6 s, when lIBelAS fails to detect the closest object. Top: 
output of the red ball tracker. Middle: disparity map. Bottom: disparity segmentation.
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and a human teacher or the situation in which the robot needs to 
visually select objects on a table. In this section, our observations 
are mainly qualitative.

6.1. on the Fly object Recognition
We focus on the setting used in Fanello et  al. (2013), where a 
human teacher shows new objects to the iCub in order for the 

FIgURe 3 | coordinates of the red ball target, recorded while the human operator was moving it in front of the robot. Top: u and v coordinates of the 
closest blob’s centroid on the left image plane (red trace), provided at each frame by the disparity segmentation module, and of the center of the red ball in the same 
image plane (blue trace), provided by the red ball detector. Bottom: difference between the two. LIBELAS is used to provide the disparity map.
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FIgURe 5 | Similar to Figure 3, but in this case SgBM provides the disparity map. The blue trace is the (u,v) coordinate compute from the color tracker, while 
the red trace is obtained using the blob detector on the disparity map. Because of the low efficiency, the blob detector is computed off-line. For comparison in this 
experiment, we use the same sequence of Figure 3.

FIgURe 4 | Frames extracted from the sequence represented in Figure 3 in the period from t = 18 s to t = 20 s, when the red ball tracker fails to 
detect its target. Top: output of the tracker. Middle: disparity map. Bottom: disparity segmentation.
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robot to focus its attention toward them and learn their visual 
appearance. Communication between the human and the robot 
occurs through speech, i.e., commands and object labels are ver-
bally provided by the human teacher [see Fanello et al. (2013b) for 

more details and a throughout overview of the system]. We show 
how, by replacing the motion-based segmentation and tracking, 
used in Fanello et al. (2013b), with the disparity-based approach 
described in Section 4, we are able to remarkably improve the 
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usability of the resulting application and the naturalness of the 
human-robot interaction.  

In Figure  6, we report three frames extracted from three 
corresponding sequences, recorded while tracking three dif-
ferent objects following the disparity-based strategy previously 
described. The top row shows the output of the pipeline: the 
object (in this case a cup, a toy octopus, and a lemon squeezer) 
is localized in the scene using the ROI provided by the disparity 
segmentation module, the label being provided verbally by the 
human teacher. The middle row reports the associated dispar-
ity map by ELAS and the bottom row reports its segmentation, 
together with the centroid, that is used for the tracking (red dot, 
average over three frames; green dot, current frame) and the ROI, 
used for the segmentation (averaged over three frames to account 
for spurious mis-segmentations). The ROI is computed as the 
smallest rectangular region enclosing the segmented blob, with 
a margin of 20 pixels.

The full video, recorded from the iCub cameras while the robot 
was focusing on the objects to be learned and showing the differ-
ent stages of the tracking pipeline, is available as Supplementary 
Material to this paper. Notice that the disparity-driven control of 
attention results in stable object tracking.

The uses of this tracking application can be multiple: first of 
all, we plugged it into our object recognition pipeline to teach new 
objects to the robot (code available in the iCub onthefly-rec-
ognition repository7). Then, we are currently employing it as a 
fast and natural method to collect large-scale annotated datasets 
of images containing objects “as seen by the robot,” to be used to 

7 https://github.com/robotology/onthefly-recognition

train/benchmark off-line visual recognition systems on the robot’s 
visual experience. This is particularly useful because it allows to 
collect object recognition ground-truth by consistently reducing 
the effort of the manual annotation phase: indeed not only the 
label is provided verbally by the teacher but also the ROI around 
the object is automatically provided by the disparity segmentation. 
The acquisition application through which we are currently build-
ing a large-scale visual recognition dataset of objects part of the 
iCub’s world is available online at the iCubWorld8 repository.

We conclude that the strategy proposed in this report is a 
viable alternative to the motion-based tracker employed in 
Ciliberto et al. (2013), Fanello et al. (2013a,b) and Pasquale et al. 
(2015). Another advantage is that this strategy is more effective 
because it does not require the human teacher to continuously 
shake the object in front of the robot (as it is the case when motion 
is used instead). This results in a more natural interaction, where 
the user is free to move the object slowly or keep it still at all. 
The segmentation is more accurate, especially because it allows 
to improve the detection using low-pass filtering, and the quality 
of the acquired images is higher.

6.2. object exploration and Manipulation
Finally, we consider a setting in which the robot is standing in 
front of a table and uses disparity to distinguish separate objects. 
In this setting, by relying on LIBELAS disparity map, we could 
reconstruct the scene in front of the robot and the system could 
determine the optimal hand pose for a reliable grasp (Gori et al., 
2014).

8 https://github.com/GiuliaP/icubworld

FIgURe 6 | Three frames (extracted from the attached video) showing the effectiveness of the proposed segmentation system. Top: resulting crop in 
the left rectified frame, labeled by the operator using speech. Middle: disparity map. Bottom: segmented disparity blob, its centroid, and the enclosing ROI.
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In Figure 7, we report the left rectified image (top left) and 
the corresponding segmentation (top right), obtained by putting 
a threshold on the disparity map (bottom). For the purpose of 
demonstration, such threshold was chosen manually; however, in 
a real application more sophisticated processing of the disparity 
map could applied to cluster 3D point clouds and better detect 
separate objects.

7. conclUSIon

In this work, we have described the current system implemented 
on the iCub robot to perform depth estimation and how it ben-
efits from the recent incorporation of the state-of-the-art dispar-
ity computation algorithm ELAS (Geiger et al., 2010). We have 
evaluated a few real applications of the information provided by 
the disparity map produced by ELAS to typical robotics settings. 
We experimentally demonstrated that this approach is computa-
tionally efficient and robust for the real-world scenario. The work 
presented in this report may be at the basis of more complex 

behaviors of the humanoid robotic system, such as interaction 
with the human or with the surrounding environment. The sys-
tem described in this paper for depth estimation is made publicly 
available: it can be used as an off-the-shelf solution for the benefit 
of the whole iCub community and, with minor adaptations, on 
other robots.
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The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/frobt.2016.00035

FIgURe 7 | Top left: rectified frame recorded from the icub’s left camera while the robot was looking at a table in front of it. Top right: segmentation of 
the three closest objects on the table obtained from the disparity map of the scene (bottom).
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