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Autonomous Intelligent Systems, Institute for Computer Science VI, University of Bonn, Bonn, Germany

Planetary exploration scenarios illustrate the need for autonomous robots that are capable
to operate in unknown environments without direct human interaction. At the DARPA
Robotics Challenge, we demonstrated that our Centaur-like mobile manipulation robot
Momaro can solve complex tasks when teleoperated. Motivated by the DLR SpaceBot
Cup 2015, where robots should explore a Mars-like environment, find and transport
objects, take a soil sample, and perform assembly tasks, we developed autonomous
capabilities for Momaro. Our robot perceives and maps previously unknown, uneven
terrain using a 3D laser scanner. Based on the generated height map, we assess
drivability, plan navigation paths, and execute them using the omnidirectional drive. Using
its four legs, the robot adapts to the slope of the terrain. Momaro perceives objects with
cameras, estimates their pose, and manipulates them with its two arms autonomously.
For specifying missions, monitoring mission progress, on-the-fly reconfiguration, and
teleoperation, we developed a ground station with suitable operator interfaces. To handle
network communication interruptions and latencies between robot and ground station,
we implemented a robust network layer for the ROS middleware. With the developed
system, our team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015.
We also discuss the lessons learned from this demonstration.

Keywords: mapping, mobile manipulation, navigation, perception for grasping and manipulation, space robotics
and automation

1. INTRODUCTION

In planetary exploration scenarios, robots are needed that are capable to autonomously operate
in unknown environments and highly unstructured and unpredictable situations. Since human
workers cannot be deployed due to economic or safety constraints, autonomous robots have to
robustly solve complex tasks without human intervention. To address this need, the German
Aerospace Center (DLR) held the DLR SpaceBot Camp 2015.1 Ten German research groups were
supported to foster the development of robots, capable of autonomously solving complex tasks that
are required in a typical planetary exploration scenario. During the SpaceBot Camp, the robots need
to tackle these tasks:
• Find and identify three previously known objects in a planetary-like environment (cup, battery,

and base station).

1http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/
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• Take a soil sample of a previously known spot (optional).
• Pick up and deliver the cup and the battery to the base station.
• Assemble all objects.

All tasks had to be completed as autonomously as possible,
including perception, manipulation, and navigation, in difficult
terrain with slopes up to 15° that need to be traversed and larger
untraversable slopes. The overall weight of the deployed robotic
system was limited to 100 kg, and the total time for solving all
tasks was 60min. A rough heightmapwith 50 cm resolution of the
environment was known prior to the run. The use of any global
navigation satellite system (GNSS) was prohibited. No line-of-
sight between the robot and the crew was allowed, and communi-
cation between the robot and the operators was severely restricted.
Data transmission was bidirectionally delayed by 2 s, resulting in
a round trip time of 4 s – too large for direct remote control.
Furthermore, the uplink connection was blocked entirely after
20min and 40min for 4min each. More details on the SpaceBot
Camp itself and our performance are provided in Section 11.

To address the tasks, we used the mobile manipulation robot
Momaro (see Figure 1), which is configured and monitored from
a ground station. Momaro is equipped with four articulated com-
pliant legs that end in pairs of directly driven, steerable wheels.
To perform a wide range of manipulation tasks, Momaro has
an anthropomorphic upper body with two 7 degrees of freedom
(DOF) manipulators that end in dexterous grippers. This allows
for the single-handed manipulation of smaller objects, as well as
for two-armed manipulation of larger objects and the use of tools.
Through adjustable base height and attitude and a yaw joint in
the spine, Momaro has a work space equal to the one of an adult
person.

The SpaceBot Camp constitutes a challenge for autonomous
robots. Since the complex navigation and manipulation tasks
require good situational awareness, Momaro is equipped with a
3D laser scanner, multiple color cameras, and an RGB-D camera.
For real-time perception and planning, Momaro is equipped with
a powerful onboard computer. The robot communicates to a relay
at the landing site via WiFi and is equipped with a rechargeable
LiPo battery (details provided in Section 3).

The developed system was tested at the SpaceBot Camp 2015.
Momaro solved all tasks autonomously in only 20:25 out of

FIGURE 1 | The mobile manipulation robot Momaro taking a soil
sample.

60min including the optional soil sample. No official ranking
was conducted at the SpaceBot Camp, but since we were the
only team solving all these tasks, we were very satisfied with the
performance. We report in detail on how the tasks were solved.
Our developments led to multiple contributions, which are sum-
marized in this article, including the robust perception and state
estimation system, navigation andmotion–planningmodules and
autonomous manipulation and control methods. We also discuss
lessons learned from the challenging robot operations.

2. RELATED WORK

The need for mobile manipulation has been addressed in the past
with the development of a variety ofmobilemanipulation systems,
consisting of robotic arms installed on mobile bases with the
mobility provided by wheels, tracks, or leg mechanisms. Several
research projects exist that use purely wheeled locomotion for
their robots (Mehling et al., 2007; Borst et al., 2009). In the previ-
ous work, we developed NimbRo Explorer (Stückler et al., 2015),
a six-wheeled robot equipped with a 7 DOF arm designed for
mobile manipulation in rough terrain, encountered in planetary
exploration scenarios.

Wheeled rovers provide optimal solutions for well structured
and relatively flat environments; however, outside of these types
of terrains, their mobility quickly reaches its limits. Often they
can only overcome obstacles smaller than the size of their wheels.
Compared to wheeled robots, legged robots are more complex to
design, build, and control (Raibert et al., 2008; Roennau et al.,
2010; Semini et al., 2011; Johnson et al., 2015), but they have
obvious mobility advantages when operating in unstructured
terrains and environments. Some research groups have started
investigating mobile robot designs that combine the advantages
of both legged and wheeled locomotion, using different coupling
mechanisms between the wheels and legs (Adachi et al., 1999;
Endo and Hirose, 2000; Halme et al., 2003). In the context of the
DARPA Robotics Challenge, multiple teams (beside ours) used
hybrid locomotion designs (Hebert et al., 2015; Stentz et al., 2015).
In particular, the winning team KAIST (Kim and Oh, 2010; Cho
et al., 2011) used wheels on the knees of their humanoid robot to
move quickly and safely between different tasks on flat terrain.

In 2013, DLR held a very similar SpaceBot competition which
encouraged several robotic developments (Kaupisch et al., 2015).
Heppner et al. (2015) describe one of the participating systems,
such as the six-legged walking robot LAURON V. LAURON is
able to overcome challenging terrain, although its six legs limit the
locomotion speed in comparison to wheeled robots. As with our
system, the software architecture is based on the Robot Operating
System [ROS (Quigley et al., 2009)].

Sünderhauf et al. (2014) developed a cooperative team of two-
wheeled robots, named Phobos andDeimos. The straightforward,
rugged design with skid steering performed well, compared to
more complicated locomotion approaches. We made the same
observation in our participation at the SpaceBot Competition
2013 and opted to include wheels (opposed to a purely legged
concept) in the Momaro robot. In the 2013 competition, Phobos
and Deimos mainly had communication issues such that the
ground station crew could neither stop Phobos from colliding
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with the environment nor start Deimos to resume the mission.
These problems highlight why we spent considerable effort on
our communication subsystem (see Section 9) to ensure that the
operator crew has proper situational awareness and is able to
continuously supervise the robotic operation.

Schwendner et al. (2014) and Joyeux et al. (2014) discuss the six-
wheeled Artemis rover. Artemis is able to cope with considerable
terrain slopes (up to 45°) through careful mechanical design.
In contrast, Momaro has to employ active balancing strategies
(see Section 6) to prevent tipping over due to its high center of
mass. The authors emphasize the model-driven design of both
hardware and software. The latter is partly ROS based but also
has modules based on the Rock framework. Artemis demon-
strated its navigation capabilities in the 2013 competition, but
eventually its navigation planners became stuck in front of a
trench, again highlighting the need to design systems with enough
remote access, so that problems can be diagnosed and fixed
remotely.

A few articles on the SpaceBot Camp 2015 are already avail-
able. Kaupisch and Fleischmann (2015) describe the event and
report briefly on the performances of all teams. Wedler et al.
(2015) present the general design of their Lightweight Rover Unit
(LRU), which competed in the SpaceBot Camp 2015, successfully
solving all tasks except the optional soil sample task. The LRU is
a four-wheeled rover with steerable wheels, similar to Momaro’s
drive. Comparable to our flexible legs, the suspension uses both
active and passive mechanisms. However, the LRU wheels are
rigidly coupled with pairs, and the base height cannot be adapted.
Overall, the LRU seems geared toward building a robust and
hardened rover for real missions, while Momaro’s components are
not suitable for space. On the other hand, Momaro can solve tasks
requiring stepping motions and is capable of dexterous bimanual
manipulation.

In our previous work, we describe the Explorer system used in
the 2013 competition (Stückler et al., 2015) and its local naviga-
tion system (Schwarz and Behnke, 2014). Compared to the 2013
system, we improve on the

• capabilities of themechanical design (e.g., execution of stepping
motions or bimanual manipulation),

• grade of autonomy (execution of full missions, including
assembly tasks at the base station),

• situational awareness of the operator crew, and
• robustness of network communication.

The local navigation approach has moved from a hybrid laser
scanner and RGB-D system on three levels to a laser scanner-only
systemon two levels – allowing operation in regionswhere current
RGB-D sensors fail to measure distance (e.g., in direct sunlight).

In contrast to many other systems, Momaro is capable of driv-
ing omnidirectionally, which simplifies navigation in restricted
spaces and allows us to make small lateral positional corrections
faster. Furthermore, our robot is equipped with six limbs, two of
which are exclusively used for manipulation. The use of four legs
for locomotion provides a large and flexible support polygonwhen
the robot is performing mobile manipulation tasks. The Momaro
system demonstrated multiple complex tasks under teleoperation
in the DARPA Robotics Challenge (Schwarz et al., 2016).

Supervised autonomy has been proposed as a develop-
ment paradigm by Cheng and Zelinsky (2001), who shift
basic autonomous functions like collision avoidance from the
supervisor back to the robot, while offering high-level interfaces
to configure the functions remotely. In contrast to human-in-
the-loop control, supervised autonomy is more suited toward the
large latencies involved in space communications. Gillett et al.
(2001) use supervised autonomy in the context of an unmanned
satellite servicing system that must perform satellite capture
autonomously. The survey conducted by Pedersen et al. (2003)
not only highlights the (slow) trend in space robotics towardmore
autonomous functions but also points out that space exploration
will always have a human component, if only as consumers of the
data produced by the robotic system. In this manner, supervised
autonomy is also the limit case of sensible autonomy in space
exploration.

3. MOBILE MANIPULATION ROBOT
MOMARO

3.1. Mechanical Design
Our mobile manipulation robot Momaro (see Figure 1) was
constructed with several design goals in mind:

• universality,
• modularity,
• simplicity, and
• low weight.

In the following, we detail how we address these goals.

3.1.1. Universality
Momaro features a unique locomotion design with four legs end-
ing in steerable wheels. This design allows to drive omnidirection-
ally and to step over obstacles or even climb. Since it is possible
to adjust the total length of the legs, Momaro can manipulate
obstacles on the ground, as well as reach to heights of up to 2m.
Momaro can adapt to the slope of the terrain through leg length
changes.

On its base, Momaro has an anthropomorphic upper body
with two adult-sized 7 DOF arms, enabling it to solve complex
manipulation tasks. Attached to the arms are two 8-DOF dexter-
ous hands consisting of four fingers with two segments each. The
distal segments are 3D printed and can be changed without tools
for easy adaption to a specific task. For the SpaceBot Camp, we
designed distal finger segments that maximize the contact surface
to the SpaceBot objects: the finger tips are shaped to clamp around
the circumference of the cylindrical cup object (see Figure 3).
The box-shaped battery object is first grasped using the proximal
finger segments, and then locked in-place with the distal finger
segments as soon as it is lifted from the ground.

The upper body can be rotated around the spine with an addi-
tional joint, thus increasing the workspace. Equipped with these
various DOF, Momaro can solve most diverse tasks. If necessary,
Momaro is even able to use tools. We showed this ability by
taking a soil sample with a scoop at the SpaceBot Camp (see
Figure 2).
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A

B

FIGURE 2 | Manipulation capabilities. (A) Momaro is using a scoop to take a soil sample. (B) After filling the blue cup with previously scooped soil, Momaro
discards the scoop and grasps the cup to deliver it to a base station.

3.1.2. Modularity
All joints of Momaro are driven by Robotis Dynamixel actuators,
which offer a good torque-to-weight ratio.While the finger actua-
tors and the rotating laser scanner actuator are of the MX variant,
all others are Dynamixel Pro actuators. Figure 3 gives an overview
of the DOF of Momaro. For detailed information on Momaro’s
actuators, we refer to Schwarz et al. (2016).

Using similar actuators for every DOF simplifies maintenance
and repairs. For example, at the SpaceBot Camp, one of the
shoulder actuators failed shortly before our run. A possibility
could have been to repair the vital shoulder using a knee
actuator, since the knees were hardly used in this demonstration.
Fortunately, we acquired a spare actuator in time. Details can be
found in Section 11.

3.1.3. Simplicity
For Momaro, we chose a four-legged locomotion design over
bipedal approaches. The motivation for this choice was mainly
the reduction in overall complexity, since balance control and fall
recovery are not needed. Each leg has three degrees of freedom
in hip, knee, and ankle. To reach adequate locomotion speeds
on flat terrain, where steps are not needed, the legs are equipped
with steerable wheel pairs. For omnidirectional driving, the wheel
pairs can be rotated around the yaw axis, and each wheel can be
driven independently. The legs also provide passive adaption to
the terrain, as the leg segments aremade from flexible carbon fiber
and act as springs. The front legs have a vertical extension range of
40 cm. For climbing inclines, the hind legs can be extended 15 cm
further. Using these features, obstacles lower than approximately
5 cm can be ignored.

3.1.4. Low Weight
Momaro is relatively lightweight (58 kg) and compact (base foot-
print 80 cm× 70 cm). During development and deployment, this
is a strong advantage over heavier robots, which require large
crews and special equipment to transport and operate. In contrast,
Momaro can be carried by two people. In addition, it can be
transported in standard suitecases by detaching the legs and torso.

3.2. Sensing
Momaro carries a custom-built 3D rotating laser scanner (see
Figure 3) for simultaneous mapping and localization (see
Section 5). As with previous robots (Stückler et al., 2015), a
Hokuyo UTM-30LX-EW laser scanner is mounted on a slip ring
actuated by a Robotis Dynamixel MX-64 servo, which rotates it
around the vertical axis. For state estimation andmotion compen-
sation during a 3D scan, a PIXHAWKIMU ismounted close to the
laser scanner.

For object detection, Momaro features an ASUS Xtion Pro
Live RGB-D camera. Since Momaro’s origins are in teleoperated
scenarios (Schwarz et al., 2016), it also carries seven color cam-
eras – three panoramic cameras and one downward-facing wide-
angle camera mounted on the head, one camera mounted in each
hand, and one wide-angle camera below the base. In a supervised
autonomy scenario, these cameras are mainly used formonitoring
the autonomous operation.

3.3. Electronics
Figure 3 gives an overview of the electrical components of
Momaro. For onboard computation, an off-the-shelf main-
board with a fast CPU (Intel Core i7-4790K @4–4.4GHz) and
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A

B C D

E

FIGURE 3 | Hardware components. (A) Sensor head carrying 3D laser scanner, IMU, four cameras, and an RGB-D camera. (B) The 8-DOF hand has specialized
fingers for grasping the objects. (C) Kinematic tree of one half of Momaro. The hand is excluded for clarity. Proportions are not to scale. (D) The front left leg. The red
lines show the axes of the six joints. (E) Simplified overview of the electrical components of Momaro. Sensors are colored green, actuators blue, and other
components red. We show USB 2.0 data connections (red), LAN connections (dotted, blue), and the low-level servo bus system (dashed, green).

32GB RAM is installed in the base. Communication with up
to 1300Mbit/s to the ground station is achieved through a
NETGEAR Nighthawk AC1900 WiFi router. The hot-swappable
six-cell 355Wh LiPo battery yields around 1.5–2 h run time.
Momaro can also run from a power supply for more comfortable
development.

For more details on Momaro’s hardware design, we refer to
Schwarz et al. (2016).

4. SOFTWARE ARCHITECTURE

Both the Momaro robot and the scenarios we are interested will
require highly sophisticated software. To retain modularity and

maintainability and encourage code re-use, we built our software
on top of the popular ROS [Robot Operating System (Quigley
et al., 2009)]middleware. ROS provides isolation of software com-
ponents into separate nodes (processes) and inter- and intrapro-
cess communication via a publisher/subscriber scheme. ROS has
seen widespread adoption in the robotics community and has a
large collection of freely available open-source packages.

To support the multitude of robots and applications in our
group,2 we have a set of common modules, implemented as Git
repositories. These modules (blue and green in Figure 4) are
used across projects as needed. On top of the shared modules, we

2http://ais.uni-bonn.de/research.html
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catch ros dynalib laser mapping momaro actuators

config server fsm kf server network vis

rosmon rviz oculus xtion grabber

spacebot

ROS Indigo Igloo

Package Description

fsm Finite state machine library
kf server Keyframe editing and interpolation, see Section 8
laser mapping Laser scanner SLAM using Multi-resolution Surfel Maps, see Section 5
momaro Hardware support for the Momaro robot
network Robust network transport for ROS, see Section 9
robotcontrol Plugin-based real-time robot control node
rosmon ROS process monitoring
rviz oculus Oculus Rift integration for RViz

FIGURE 4 | Organization of software modules. At the base, the ROS middleware is used. The blue colored boxes correspond to software modules, shared
across robots, projects, and competitions. Finally, the spacebot module contains software, specific to the SpaceBot Camp. Modules colored in green have been
released as open source, see https://github.com/AIS-Bonn.

have a repository for the specific application (e.g., DLR SpaceBot
Camp 2015, yellow in Figure 4), containing all configuration, and
code required exclusively by this application. The collection of
repositories is managed by the wstool ROS utility.

Protection against unintended regressions during the develop-
ment process is best gained through unit tests. The project-specific
code is hard to test, though, since it is very volatile, on the one
hand, and testing would often require full-scale integration tests
using a simulator, on the other hand. This kind of integration tests
have not been developed yet. In contrast, the core modules are
very stable and can be augmented easily with unit tests. Unit tests
in all repositories are executed nightly on a Jenkins server, which
builds the entire workspace from scratch, gathers any compilation
errors and warnings, and reports test results.

5. MAPPING AND LOCALIZATION

For autonomous navigation during a mission, our system contin-
uously builds a map of the environment and localizes within this
map. To this end, 3D scans of the environment are aggregated in a
robot-centric local multiresolution map. The 6D sensor motion is
estimated by registering the 3D scan to themap using our efficient
surfel-based registration method (Droeschel et al., 2014a). In
order to obtain an allocentric map of the environment – and to
localize in it – individual local maps are aligned to each other
using the same surfel-based registration method. A pose graph
that connects the maps of neighboring key poses is optimized
globally. Figure 5 outlines our mapping system.

5.1. Preprocessing and 3D Scan Assembly
Before assembling 3D point clouds from measurements of the
2D laser scanner, we filter out the so-called jump edges. Jump
edges arise at transitions between two objects and result in spu-
rious measurements. These measurements can be detected by
comparing the angle between neighboring measurements and
are removed from the raw measurements of the laser scanner.
The remaining measurements are then assembled to a 3D point
cloud after a full rotation of the scanner. During assembly, raw
measurements are undistorted to account formotion of the sensor
during rotation.

We estimate the motion of the robot during a full rotation of
the sensor from wheel odometry and measurements from the
PIXHAWK IMUmounted in the sensor head. Rotational motions
are estimated from gyroscopes and accelerometers, whereas linear
motions are estimated by filtering wheel odometry with linear
acceleration from the IMU. The resulting motion estimate is
applied to the remaining measurements by means of spherical
linear interpolation.

5.2. Local Mapping
The filtered and undistorted 3D point clouds are aggregated in a
robot-centric multiresolution grid map as shown in Figure 5. The
size of the grid cell increases with the distance from the robot,
resulting in a fine resolution in the direct workspace of the robot
and a coarser resolution farther away. The robot-centric property
of the map is maintained by shifting grid cells according to the
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   Overview of the SLAM and navigation pipeline

  3D point cloud    Local multiresolution map
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FIGURE 5 | SLAM and navigation architecture. (A) Overview of our mapping, localization, and navigation system. After filtering spurious measurements and
assembling 3D point clouds (Section 5.1), measurements are aggregated in a robot-centric multiresolution map (Section 5.2) using surfel-based registration.
Keyframe views of local maps are registered against each other in a SLAM graph (Section 5.3). A 2.5D height map is used to assess drivability. A standard 2D
grid-based approach is used for planning (Section 6). (B) 3D points stored in the map on the robot. Color encodes height from ground. (C) The robot-centric
multiresolution map with increasing cell size from the robot center. Color indicates the cell length from 0.25m on the finest resolution to 2m on the coarsest resolution.

robot motion – efficiently implemented by using circular buffers.
Using robot-centric multiresolution facilitates efficiency in terms
of memory consumption and computation time.

Besides 3D measurements from the laser scanner, each grid
cell stores an occupancy probability – allowing to distinguish
between occupied, free, and unknown areas. Similar to Hornung
et al. (2013), we use a beam-based inverse sensor model and
raycasting to update the occupancy probability of a cell. For
every measurement in the 3D scan, we update the occupancy
information of cells on the ray between the sensor origin and the
endpoint.

After a full rotation of the laser, the newly acquired 3D scan is
registered to the so far accumulatedmap to compensate for drift of
the estimated motion. For aligning a 3D scan to the map, we use
our surfel-based registration method (Droeschel et al., 2014a) –
designed for this data structure, it leverages the multiresolution
property of the map and gains efficiency by summarizing 3D

points to surfels that are used for registration.Measurements from
the aligned 3D scan replace older measurements in the map and
are used to update the occupancy information.

5.3. Allocentric Mapping
We incorporate measurements from the wheel odometry, IMU,
and local registration results to track the pose of the robot over a
short period of time. To overcome drift and to localize the robot
with respect to a fixed frame, we build an allocentric map from
the robot-centric multiresolution maps acquired at different view
poses (Droeschel et al., 2014b).

We construct a pose graph consisting of nodes, which are
connected by edges. Each node corresponds to a view pose and
its local multiresolution map. Nearby nodes are connected by
edges, modeling spatial constraints between two nodes. Each
spatial constraint is a normally distributed estimate with mean
and covariance. An edge describes the relative position between
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two nodes, arising from aligning two local multiresolution maps
with each other. Similar to the alignment of a newly acquired 3D
scan, two local multiresolution maps are aligned by surfel-based
registration. Each edge models the uncertainty of the relative
position by its information matrix, which is established by the
covariance from registration. A new node is generated for the
current view pose, if the robot moved sufficiently far.

In addition to edges between the previous node and the current
node, we add spatial constraints between close-by nodes in the
graph that are not in temporal sequence. By adding edges between
close-by nodes in the graph, we detect loop closures. Loop closure
allows us to minimize drift from accumulated registration errors,
for example, if the robot traverses unknown terrain and reenters
a known part of the environment.

From the graph of spatial constraints, we infer the probability
of the trajectory estimate given all relative pose observations using
the g2o framework (Kuemmerle et al., 2011). Optimization is
performed when a loop closure has been detected, allowing for
online operation.

5.4. Localization
While traversing the environment, the pose graph is extended and
optimized whenever the robot explores previously unseen terrain.
We localize toward this pose graph during mission to estimate
the pose of the robot in an allocentric frame. When executing a
mission, e.g., during the SpaceBot Camp, the robot traverses goal
poses w.r.t. this allocentric frame.

To localize the robot within the allocentric pose graph, the
local multiresolution map is registered toward the closest node in
the graph. By aligning the dense local map to the pose graph –
instead of the relative sparse 3D scan – we gain robustness, since
information fromprevious 3D scans is incorporated. The resulting
registration transform updates the allocentric robot pose. To gain
allocentric localization poses during acquisition of the scan, the
6D motion estimate from wheel odometry, and IMU is used to
extrapolate the last allocentric pose.

During the SpaceBot Camp, we assumed that the initial pose
of the robot was known, either by starting from a predefined
pose or by means of manually aligning our allocentric coordinate
frame with a coarse height map of the environment. Thus, we

could navigate to goal poses in the coarse height map by localizing
toward our pose graph.

5.5. Height Mapping
As a basis for assessing drivability, the 3D map is projected into
a 2.5D height map, shown in Figure 6. In case multiple measure-
ments are projected into the same cell, we use the measurement
with median height. Gaps in the height map (cells without mea-
surements) are filled with are local weighted mean if the cell has
at least two neighbors within a distance threshold (20 cm in our
experiments). This provides a good approximation of occluded
terrain until the robot is close enough to actually observe it. After
filling gaps in the height map, the height values are spatially
filtered using the fast median filter approximation using local
histograms (Huang et al., 1979). The resulting height map is
suitable for navigation planning (see Section 6).

6. NAVIGATION

Our autonomous navigation solution consists of two layers: the
global path planning layer and the local trajectory planning layer.
Both planners are fed with cost maps calculated from the aggre-
gated laser measurements.

6.1. Local Height Difference Maps
Since caves and other overhanging structures are the exception
on most planetary surfaces, the 2.5D height map generated in
Section 5.5 suffices for autonomous navigation planning.

The 2.5D heightmapH is transformed into amulti-scale height
difference map. For each cell (x, y) in the horizontal plane, we cal-
culate local height differences Dl at multiple scales l. We compute
Dl (x, y) as the maximum difference to the center cell (x, y) in a
local l-window:

Dl(x, y) := max
|u−x|<l;u̸=x
|v−y|<l;v̸=y

|H(x, y) − H(u, v)| . (1)

H(u, v) values of NaN are ignored. In the cases where the center
cell H (x, y) itself is not defined, or there are no other defined l-
neighbors, we assign Dl (x, y):=NaN. Small, but sharp obstacles

A B C

FIGURE 6 | Navigation planning. (A) 2.5D height map generated by projecting the 3D map. (B) Calculated traversability costs for each cell. (C) Inflated costs used
for A* path planning. The orange dot represents the current robot position, the blue square represent the target position. Yellow regions represent absolute obstacles,
red regions indicate missing measurements.
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show up on theDl maps with lower l scales. Larger inclines, which
might be better to avoid, can be seen on the maps with a higher l
value.

6.2. Path Planning
During the SpaceBot Camp, we used the standard ROS navfn3

planner. Afterward, we replaced it with a custom A* planner
to consider gradual costs fully, which the ROS planner was not
designed to do.We transform the height differencemap into a cost
map that can be used for path planning.

A combined difference map, D̃ is generated by linear combina-
tion of different Dl maps to comprise information about smaller
obstacles and larger inclines. The summands from the D3 and D6
maps are constrained to a response of 1/2 to prevent the creation of
absolute obstacles from a single scale alone. The smallest scale D1
is allowed to create absolute obstacles, since sharp obstacles pose
great danger to the robot:

D̃(x, y) :=
∑

l∈{1,3,6}

{
λlDl if l = 1
min

{
0.5; λlDl

}
otherwise.

(2)

Theλ1,λ3, andλ6 parameter values for drivability computation
were empirically determined as 2.2, 3.6, and 2.5, respectively.

6.2.1. Global Path Planning
For global path planning, we implemented an A* graph search
on the 2D grid map. The Euclidean distance (multiplied with the
minimum cost in the grid map) is used as the heuristic function
for A*. This planning does not account for the robot foot print
and considers the robot as just a point in the 2D grid. To ensure
the generation of a safe path, we inflate obstacles in the costmap to
account for the risk closer to obstacles. The inflation is done in two
steps. The cells within the distance of robot radius from absolute
obstacles are elevated to absolute obstacle cost, yielding cost map
D̄. Then for all other cells, we calculate local averages to produce
costs DD that increase gradually close to obstacles:

P(x, y) := {(u, v) : (x − u)2 + (y − v)2 < r2}, (3)

DD(x, y) :=

1 if D̄(x, y) = 1∑
(u,v)∈P(x,y)

D̄(x,y)
|P(x,y)| otherwise. (4)

Figure 6 shows a planned path on the height map acquired
during our mission at the SpaceBot Camp.

6.2.2. Local Trajectory Rollout
The found global path needs to be executed on a local scale.
To this end, we use the standard ROS dwa_local_planner4

package, which is based on the Dynamic Window Approach (Fox
et al., 1997). Thedwa_local_planner accounts for the robot foot
print, so cost inflation is not needed.

In order to prevent oscillations due to imperfect execution
of the planned trajectories, we made some modifications to the
planner. The dwa_local_planner plans trajectories to reach the

3http://wiki.ros.org/navfn
4http://wiki.ros.org/dwa_local_planner

given goal pose (x, y, θ) first in 2D (x, y) and then rotates in-place
to reach θ (this is called “latching” behavior). Separate cartesian
and angular tolerances determine when the planner starts turning
and when it reports navigation success. We modified the planner
to keep the current “latching” state even when a new global plan
is received (every 4 s), as long as the goal pose does not change
significantly. We also wrote a simple custom recovery behavior
that first warns the operator crew that the robot is stuck and then
executes a fixed driving primitive after a timeout.

6.3. Omnidirectional Driving
The wheel positions r(i) relative to the trunk determine not only
the footprint of the robot but also the orientation and height of the
robot trunk. During autonomous operation, the wheel positions
are kept in a configuration with a base height.

Either autonomous navigation or manual operator input gen-
erates a velocity command w= (vx, vy, ω) with horizontal linear
velocity v and rotational velocity ω around the vertical axis. The
velocity command is first transformed into the local velocity at
each wheel i:v(i)x

v(i)y

v(i)z

 =

vx
vy
0

 +

0
0
ω

 × r(i) + ṙ(i), (5)

where r(i) is the current position of wheel i relative to the
base. The kinematic velocity component ṙ(i) allows simultaneous
leg movement while driving. The wheels rotates to yaw angle
α(i) = atan2(v(i)y , v(i)x ) first and then moves with the velocity
||(v(i)y , v(i)x )

T
||. While driving, the robot continuously adjusts the

orientation of the ankle, using IMU information to keep the axis
vertical and thus retains omnidirectional driving capability.

6.4. Base Orientation Control
To prevent the robot from pitching over on the high-incline areas
in the arena, we implemented a pitch control mechanism. The
pitch angle of the robot is continuously measured using the IMU.
We then use a simple proportional controller to compensate for
the disturbance. With the commanded angle w, disturbance z,
controller gain Kp, plant gain Ks, and plant disturbance gain
Ksz, the steady-state error eb of the linearized proportional plant
evolves with

eb =
1

1 + Ks · Kp
· w − Ksz

1 + Ks · Kp
· z. (6)

Since the incline is directly measured, Ks = 1 and Ksz = 1. We
found Kp = 0.8 to sufficiently stabilize for inclines present at the
SpaceBot Camp. When driving up the ramp with z≈ 15°, and
setpoint w= 0° the resulting error (robot pitch) is eb ≈ 8.3°.

We found that this compensation enables Momaro to even
overcome inclines greater than 20° without pitching over. Due to
the lack of integral control, the robot is even (eb= 0°) only on a
completely flat surface. Since this poses no balance problem, there
is no need for integral control.
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7. OBJECT PERCEPTION

For approaching objects and adapting motion primitives to
detected objects, RGB images, and RGB-D point clouds from
the wide-angle camera and ASUS Xtion camera, mounted on the
sensor head are used. We differentiate between object detection
(i.e., determining an approximate object position) and object
registration (i.e., determining the object pose accurately).

The objects provided by DLR are color coded. We classify
each pixel by using a precomputed lookup table in YUV space.
The lookup table is generated from a collection of ellipses for
each color class in UV space (see Figure 7), and lower/upper
limits in brightness (Y). Thus, we assume that the object color
measurements are governed by a Gaussian mixture model in the
UV plane. In practice, a single ellipse sufficed for each of the
SpaceBot Camp objects.

When approaching an object, object detection is initially
performed with the downward-facing wide-angle camera
mounted on the sensor head (see Figure 7). Using the connected
component algorithm, we obtain object candidate clusters of
same-colored pixels. An approximate pinhole camera model
calculates the view ray for each cluster. Finally, the object position

is approximated by the intersection of the view ray with the local
ground plane. The calculated object position is precise enough
to allow approaching the object until it is in the range of other
sensors.

As soon as the object is in range of the head-mounted ASUS
Xtion camera, the connected component algorithm can also take
Cartesian distance into account. We use the PCL implementa-
tion of the connected component algorithm for organized point
clouds. Since the depth measurements allow us to directly com-
pute the cluster centroid position, and the camera is easier to
calibrate, we can approach objects much more precisely using the
RGB-D camera.

When the object is close enough, we use registration of a CAD
model to obtain a precise object pose (see Figure 7). Since color
segmentation often misses important points of the objects, we
perform a depth-based plane segmentation using RANSAC and
Euclidean clustering as detailed by Holz et al. (2011) to obtain
object clusters. The clusters are then registered using Generalized
ICP (Segal et al., 2009).

ICP approaches often have problems with partially observed
box shapes. For example, only the front and the top face of a box
may be visible if the box is partially outside of the camera view

A B C

D E

FIGURE 7 | Object perception. (A) Classification ellipses in UV space. (B) RGB input image (first row: Xtion camera, second row: RGB wide-angle camera).
(C) Pixel classes (white= unknown). (D) RGB-D point cloud showing the cup and battery objects on SpaceBot Camp terrain. The registered models are shown in
green. (E) Registration of the base station. Although neither the left nor the right face is visible, the pose ambiguity is resolved correctly.

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 5710

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

frustum. To resolve the resulting ambiguity, we initialize the ICP
pose using PCA under the assumption that the visible border of
the object which is close to the image border is not an actual object
border but is caused by the camera view frustum. In practice, this
problem particularly occurs with the large base station object (see
Figure 7).

The ICP pose is then normalized respecting the symmetry
axes/planes of the individual object class. For example, the cup is
symmetrical around the Z axis, so the X axis is rotated such that it
points in the robot’s forward direction (see Figure 7).

8. MANIPULATION

Since Momaro is a unique prototype, the time used for devel-
opment and testing had to be balanced between individual sub-
modules. To reduce the need for access to the real robot, we
made extensive use of simulation tools. For manipulation tasks,
we developed a Motion Keyframe Editor GUI to design motion
primitives offline. Finished motions are then tested and finalized
on the real robot with the original objects to bemanipulated in the
field.We show theMotion Keyframe Editor GUI in Figure 8.With
its help, we designed dedicated motions for all specific tasks in the

SpaceBot Camp. We give an overview of our custom motions and
their purpose in Figure 8.

8.1. Kinematic Control
We use straightforward kinematic control for Momaro (see
Figure 9). Both arms and the torso yaw joints are considered
independently.

A goal configuration is specified by telemanipulation (see
Section 10) or predefined keyframe sequences either in Carte-
sian or in joint space. To interpolate between current and goal
configuration, the Reflexxes Motion Library (Kröger, 2011) is
used. Goals for different limbs can be defined concurrently; the
interpolation is configured in a way that goals for all limbs are
reached simultaneously. Cartesian poses are converted to joint-
space configurations, using inverse kinematics after interpolation.
We use the selectively damped least squares approach (SDLS)
described by Buss and Kim (2005) to calculate the inverse kine-
matics of the arms. Before the configurations are sent to the hard-
ware controllers for execution, they are checked for self-collisions
using theMoveIt! Library.5 Detecting a collision will abort motion

5http://moveit.ros.org

A B C

D

FIGURE 8 | Keyframe editor GUI. (A) Motions are designed step by step and can be absolute or relative to perceived objects. (B) The user can select which joint
groups are included in the currently edited keyframe and if interpolation between keyframes is Cartesian or joint space. (C) The real position of the robot is indicated
in black. The currently edited keyframe target is shown in yellow. Interactive markers can be used to modify the keyframe pose in 6D (here only for the right hand). A
model of the cup (blue, circled red) is placed in front of the robot to assist designing relative motions. (D) Overview of the custom motions designed for the SpaceBot
Camp 2015.
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A

B

FIGURE 9 | Object manipulation. (A) Kinematic control architecture for Momaro. Joint configurations can be generated using magnetic trackers or the keyframe
player. Cartesian poses in keyframes can be adapted to a measured pose p. The interpolated configurations Tperceived are checked for collisions before they are sent
to the hardware. (B) Grasping objects dynamically using motion adaption. Left: the blue reference object is grasped as the primitive was designed in the Keyframe
editor. Right: the primitive is automatically adapted to the perceived pose of the yellow object.

execution. For safety reasons, different methods of manipula-
tion control (i.e., telemanipulation and the keyframe player) will
preempt each other.

8.2. Motion Adaption
Since it is often impossible or too slow to precisely approach an
object in all 6 dimensions, we relax the assumption of absolute
positioning. Motions can be designed around a reference object
Trefernce. When the motion is executed, the predefined endeffector
poseTendeffector is transformed in selected keyframes i tomatch the
perceived object Tperceived:

Trelative = T(i)
perceived(Treference)

−1T(i)
endeffector (7)

Figure 9 shows how a motion, designed relative to a refer-
ence object, is adapted to a perceived object pose to account for
imprecise approach of the object.

As described in Section 7, the perceived objects are represented
in a canonical form, removing all ambiguities resulting from
symmetries in the original objects. For example, the rotation-
symmetric cup is always grasped using the same yaw angle. After
adaption, the Cartesian keyframes are interpolated as discussed
earlier.

9. COMMUNICATION

Communication between the ground station and a planetary rover
is typically very limited – in particular, it has high latency due to
the speed of light and the large distances involved. The SpaceBot
Camp addressed this limitation by imposing several constraints
on the network link:

• Packets were delayed by 2 s in each direction, as expected to
occur on a lunar mission,

• the uplink from the ground station to the robot could only be
opened for 5min at a time, and

• the 60-min schedule included two 4-min windows where
uplink communication was not possible (e.g., due to planetary
occlusions).

Furthermore, our system uses a wireless data link inside the
arena, which introduces packet loss.

The main idea of our communication system is to minimize
latency by exploiting the different characteristics of the local
wireless link inside the arena and the simulated inter-planetary
network.

9.1. Communication Architecture
Our communication architecture is shown inFigure 10. TheDLR-
provided network emulator is the central element limiting all
communication between robot and operator crew. To be able to
exploit the different link characteristics, we place an additional
field computer between the network emulator and the robot.
Thus, it is connected to the network emulator via a reliable Eth-
ernet connection and communicates directly with the robot over
WiFi. As the WiFi link is unreliable, but has low latency, while
the network emulator link is reliable, but has high latency, this
places the field computer in an ideal position to exploit both link
characteristics.

As the network emulator allows communication only through a
single port per direction, we use the Linux tun interface to create
a network tunnel over two ports. For UDP tunneling, we adapted
code from the quicktun project.6 The tunnel wraps all pack-
ets in UDP packets, transmitted over the two designated ports.

6http://wiki.ucis.nl/QuickTun
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FIGURE 10 | Communication architecture. Components in the vicinity of the operators are shown in yellow, DLR-provided components in blue, and components
in the “arena”-network in red. Solid black lines represent physical network connections. Thick lines show the different channels, which stream data over the network
(dotted: UDP, solid: TCP). The ROS logo ( ) indicates a ROS master. UDP tunnel endpoints are designated by triangles. Streaming links (Section 9.1.2) are colored
red, message links (Section 9.1.3) are shown in blue.

This allows us to use multiple communication channels without
interference.

Separate ROSmasters run on the robot, the field computer, and
the ground station.Multiple operator computers can be connected
to the ROS master running on the ground station to provide
additional views and means for intervention.

9.1.1. Communication Software Module
Since our participation in the DLR SpaceBot Cup 2013 (Stück-
ler et al., 2015), our group develops a robust software module
(nimbro_network) for communication between multiple ROS
masters over unreliable and high-latency networks. We used it
with very good results in the DLR SpaceBot Cup 2013 and in
the DARPA Robotics Challenge (Schwarz et al., 2016). Since the
DRC, the module is now freely available7 under BSD-3 license.
In contrast to custom-engineered network stacks for a particu-
lar purpose, it allows the generic transport of ROS topics and
services. The module is ideally suited for situations where the
connection drops and recovers unexpectedly, since it avoids any
configuration/discovery handshake.

Several specific transports and compression methods exist,
such as a ROS log transport, tf snapshotting, or H264 video
stream compression.

For large messages, a transparent BZip2 compression can be
enabled. Automatic rate limiting with configurable upper and
lower bounds ensures that bandwidth limits are met.

nimbro_network also allows forward error correction (FEC),
i.e., augmenting the sent packets with additional packets allowing
content recovery from arbitrary subsets of sufficient size of trans-
mitted packets. Depending on the message size, a Reed–Solomon
codec (Lacan et al., 2009) or a LDPC-Staircase codec (Roca et al.,
2008) is chosen.

Note that in principle ROS offers built-in network trans-
parency. Since this functionality heavily relies on the TCPprotocol
for topic discovery and subscription, even when the “UDPROS”
transport is chosen, this is unsuitable for unreliable and high-
latency networks.

7http://github.com/AIS-Bonn/nimbro_network

9.1.2. Streaming Data
Most high-bandwidth data from the robot are of streaming type.
The key feature here is that lost messages do not lead to system
failures, since new data will be immediately available, replacing
the lost messages. In this particular application, it even would not
make sense to repeat lost messages because of the high latencies
involved. This includes

• video streams from the onboard cameras,
• transform information (TF),
• servo diagnostic information (e.g., temperatures),
• object detections, and
• other visualizations.

In the uplink direction, i.e., commands from the operator crew
to the robot, this includes, e.g., direct joystick commands.

Consequently, we use the nimbro_network UDP transport
for streaming data (red in Figure 10). The transport link
between robot and field computer uses the FEC capability of
nimbro_network with 25% additional recovery packets to com-
pensate WiFi packet loss without introducing new latency.

9.1.3. Message Data
Other data are of themessage type, including

• Laser pointclouds,
• SLAMmaps,
• SLAM transforms,
• ROS action status messages, and
• ROS service calls.

Here, a message loss might be costly (e.g., SLAM maps are
only generated on every scanner rotation) or might even lead
to system failure (e.g., loss of a ROS action state transition).
Therefore, the TCP transport is used for this kind of messages
over the WiFi link to eliminate the possibility of packet loss. The
link over the network emulator is still implemented with the UDP
protocol, since there is no packet loss here and the high latencies
prohibit TCP handshakes. The message links are colored blue in
Figure 10.
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10. MISSION CONTROL INTERFACES

For the operator crew, situational awareness is most important.
Our system shows camera images, 3D visualization, and diagnosis
information on a central ground station with four monitors (see
Figure 11).

In order to cope with the degraded communication link, the
system needs to be as autonomous as possible, while retaining the
ability to interrupt, reconfigure, or replace autonomous behavior

by manual intervention. To this end, our system provides three
levels of control to the operator crew. On the highest level, entire
missions can be specified and executed. The intermediate level
allows configuration and triggering of individual autonomous
behaviors, such as grasping an object. On the lowest level, the
operators can directly control the base velocity using a joystick or
move individual DOF of the robot.

The last aspect of our control paradigm is remote debugging.
Operators need to be able to directly introspect, debug, and

A

B C D E

F G H

FIGURE 11 | Operator interfaces. (A) Overview of the GUI shown on the three lower screens of the main ground station. The left, center, and right screens are
dedicated to system monitoring and diagnosis, mission planning, and camera images, respectively. (B) Mission plan on rough height map provided by DLR.
(C) Mission plan on detailed height map generated from the SLAM map. (D) List representation of the first 8 poses. The “Nav” column can be used to disable
navigation (e.g., start grasping an object immediately). (E) Pose editing using interactive marker controls. The position can be modified by dragging the rectangle. The
pose is rotated by dragging on the blue circle. Teleoperation interfaces: operator uses (F), oculus rift DK2 HMD, and (G) Razer Hydra 6 DOF controllers for immersive
teleoperation. (H) 3rd person view of the scene rendered in the Oculus HMD during debris cleaning (see Figure 13).
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manipulate the software on the robot in order to prevent relatively
simple problems from escalating to mission failures.

We describe the developed operator interfaces in the following.

10.1. Mission Planning and Execution
Ourmission control layer is able to execute all required tasks in the
SpaceBot Camp specification. The mission can be specified fully
in advance on a rough height map and can later be interactively
refined as the mission progresses, and a more detailed map of the
environment is created.

A specified mission consists of a list of 2D poses in the height
map frame. Attached to each pose is an optional action, which
is executed when the robot reaches the pose. Poses without an
associated action are just used as navigation targets. Supported
actions include:

• Taking a soil sample using the scoop in one hand,
• approaching and grasping the battery,
• approaching the cup, filling it with the soil sample and grasping

it, and
• approaching the base station and performing all stationmanip-

ulation tasks.

The mission can be configured and monitored using our Mis-
sion GUI (see Figure 11). During the mission, execution can be
stopped at any time, mission updates can be performed, and the
execution resumed. Missions can also be spliced in the sense that
the currently performed action is carried out and then execution
switches to a new mission.

In the case of a failure of the mission control level, or if the
operator judges that the system will not be able to carry out
the mission autonomously, the execution can be interrupted and
the task in question can be carried out using the lower control
levels. Afterward, the mission can be resumed starting after the
completed task.

10.2. Semiautonomous Control
The semiautonomous control level gives direct access to all indi-
vidual, less autonomous behaviors. This includes

• approaching an object,
• grasping an object,
• performing single manipulation tasks, and
• navigating to a goal pose.

10.3. Low-Level Control
If all autonomous behaviors fail, the operators can also directly
teleoperate the robot. For manipulation, our operators can choose
between on-screen teleoperation using 6D interactive markers in
either Cartesian or joint space or immersive 3D telemanipulation
(see Figure 11) using an Oculus Rift HMD and 6D magnetic
trackers [see Rodehutskors et al. (2015) for details].

For navigation, the operator can use a joystick to directly con-
trol the base velocity. Teleoperation speed is of course limited by
the high feedback latency, so that this method is only used if the
navigation planners get stuck. Finally, several macros can be used
to influence the robot posture or recover from servo failures such
as overheating.

10.4. Remote Introspection and Debugging
To be able to react to software problems or mechanical failures,
operators first need to be aware of the problem. Our system
addresses this concern by

• providing direct access to the remote ROS log,
• showing the state of all ROS processes, and
• transmitting and displaying 3D visualization data from the

autonomous behaviors.

Once aware of the problem, the operators can interact with
the system through ROS service calls over our nimbro_network
solution, parameter changes, or ROS node restarts through
rosmon. In extreme cases, it is even possible to push small Git
code patches over the network and trigger re-compilation on the
robot. If everything else fails, the operators can access a remote
command shell on the robot using the mosh shell (Winstein and
Balakrishnan, 2012), which is specifically optimized for high-
latency, low-bandwidth situations. The shell gives full access to the
underlying Linux operating system.

11. EVALUATION

Momaro has been evaluated in several simulations and lab exper-
iments as well as in the DARPA Robotics Challenge (DRC) Finals
in June 2015, during the DLR SpaceBot Cup Qualification in
September 2015, and the DLR SpaceBot Camp in November 2015
(Kaupisch et al., 2015). For details on our performance at the DRC
Finals, we refer to Schwarz et al. (2016). Here, we will focus on our
performance at the SpaceBot Qualification and Camp.

In preparation for the DLR SpaceBot finals, the SpaceBot Cup
Qualification tested basic capabilities of the robotic system. To
qualify, participants had to solve three tasks which involved explo-
ration and mapping of an arena and manipulation of the cup
and the battery, but no assembly. In contrast to the finals, the
communication uplink time was unlimited, which lowered the
required autonomy level. Using our intuitive telemanipulation
approaches, our team was the only team to successfully qualify
in the first attempt. Further information about our performance
is available on our website.8 Since only two other teams managed
to qualify using their second attempt, the planned SpaceBot Cup
competition was changed to an open demonstration, called the
SpaceBot Camp.

The SpaceBot Camp required participants to solve mapping,
locomotion, and manipulation tasks in rough terrain. As detailed
in Section 1, the battery and cup (with soil sample) had to be found
and transported to the base station object, where an assembly
task was to be performed. The participants were provided with a
coarsemap of the environment that had to be refined by the robot’s
mapping system. As detailed in Section 9, the communication link
to the operator crew was severely constrained both in latency (2 s
per direction) and in availability.

11.1. Locomotion
While Momaro was mainly evaluated on asphalt at the DRC
(Schwarz et al., 2016), the SpaceBot Camp arena included various

8http://www.ais.uni-bonn.de/nimbro/Explorer
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A B

FIGURE 12 | Map refinement. (A) Rough map of the SpaceBot Camp 2015 arena. (B) The resulting global map from data acquired during the competition.

types of soil and stones (see Figure 14). We did not experience
any problems on the main traversable area, which was covered
with flattened soil mixed with stones. During our run, we avoided
the gravel and sand areas. We also traversed the soil sample area
(loose granulate), and parts of the slopes covered with gravel, as
long as the inclination permitted. Testing after our run confirmed
that Momaro’s wheels were not suited for the fine sand areas on
the edge of the ramp, causing the robot to get stuck.

While preparing for the SpaceBot Camp, we learned that our
pitch stabilization control method works reliably, even under
extreme conditions. Being able to reliably overcome ramps with
inclines greater than 20°, we were confident that locomotion
would not pose a problem during the competition. Unfortunately,
we only employ stabilization in pitch direction. Turning around
the yaw axis on a pitched slope can result in a dangerous roll angle.
We dealt with this issue during our final run by placing enough
waypoints on the primary slope in the course to ensure proper
orientation (see Figure 11).

11.2. Mapping and Self-Localization
Our mapping system continuously built an allocentric map of the
environment during navigation, guided by waypoints specified on
the coarse height map. The coarse map and the allocentric map,
generated from our mapping system, are shown in Figure 12.
While showing the same structure as the coarse map, the resulting
allocentric map is accurate and precisely models the environment.
During a mission, the map is used for localization and to assess
traversability for navigation. The estimated localization poses are
shown in Figure 14.

Despite the challenging planetary-like environment, causing
slip in odometry and vibrations of robot and sensor, our mapping
system showed very robust and reliable performance. There was
only one situation during the run where the operators had to
intervene: due to traversing the abandoned scoop tool – used to
take the soil sample – the robot was exposed to a fast and large
motion, resulting in a distorted 3D scan. This distorted 3D scan
caused spuriousmeasurements in themap. The operators decided
to clear the SLAM map using a remote service call to prevent
localization failures. The map was rebuilt from this point on and
successfully used for the rest of the mission.

11.3. Object Manipulation
While preparing our run, we found the battery slot in the base
station to have a significant resistance due to a build-in clamping

A B

FIGURE 13 | Details of our run at SpaceBot camp. (A) Due to a failed
finger actuator, Momaro failed to take the soil sample in the first attempt.
(B) After finishing all tasks of the SpaceBot Camp, we showed Momaro’s
universal capabilities by removing debris from the terrain under teleoperation.

mechanism. Due to our flexible motion design workflow, we were
able to alter the motion, so that Momaro would execute small up-
and downward motions while pushing to find the best angle to
overcome the resistance.

The insertion of the battery requires high precision. To account
for inaccuracies in both battery and station pose, we temporarily
place the battery on top of the station. After grasping the battery
again, we can be sure that any offset in height is compensated.

Furthermore, we found it to be error prone to grasp the battery
at the very end, which is necessary to entirely push it inside the
slot. Instead, we push the battery in as far as possible until the hand
touches the base station. After releasing the battery, we position
the closed hand behind it and push it completely inside with part
of the wrist and proximal finger segments.

Overall, our straightforward keyframe adaption approach
proved itself to be very useful. Compared to motion–planning
techniques, it lacks collision avoidance and full trajectory opti-
mization, but it is sufficient for the variety of performed tasks.

11.4. Full System Performance at DLR
SpaceBot Camp 2015
After a restart caused by a failed actuator (described below),
Momaro solved all tasks of the SpaceBot Camp with supervised
autonomy. Our team was the only one to demonstrate all tasks
including the optional soil sample extraction. Figure 14 gives
an overview of the sequence of performed tasks. A video of our
performance can be found online.9 While overall the mission was

9https://youtu.be/q_p5ZO-BKWM
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FIGURE 14 | Overview of the executed mission at SpaceBot Camp. The mission starts by scooping the soil sample, filling it into the cup and grasping the cup,
then locating and grasping the battery pack. After waiting until the end of scheduled communication blackout, the mission is concluded by Base station assembly.
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TABLE 1 | Timings of our run at the DLR SpaceBot Camp 2015.

Task Start time
(mm:ss)

End time
(mm:ss)

Duration
(mm:ss)

Soil sample collection 1:05 1:40 0:35
Fill and grasp cup 2:15 3:05 0:50
Grasp battery 7:00 7:40 0:40
Base station assembly 18:25 20:25 2:00

Total (including locomotion) 0:00 20:25 20:25

successful, we experienced a number of problems which will be
discussed in detail.

In our run, Momaro failed to take the soil sample in the first
attempt. During the vigorous scooping motion, the scoop turned
inside the hand (cf. Figures 2 and 13).We found the problem to be
a malfunctioning finger actuator in the hand holding the scoop.
Since we were confident that Momaro would be able to solve all
tasks even in the remaining 50:20min, we restarted the whole run
after performing a software reset on the affected finger and letting
it cool down.

In the second attempt, scooping succeeded and Momaro was
able to complete all remaining tasks as well. See Figure 14 for
detailed images of the subtasks. Timings of the run are listed in
Table 1.

Although Momaro was able to complete all tasks, this was not
possible fully autonomously. While approaching the battery, a
timeout aborted the process. This built-in safety feature made
operator interaction necessary to resume the approach. Without
intervention, Momaro would have executed the remainder of the
mission without the battery object.

As Momaro reached the main slope of the course, we also
approached the time of the first communication blackout, because
we lost time in the beginning due to the restart. The operator
crew decided to stop Momaro at this point, as we knew that going
up would be risky and intervention would have been impossible
during the blackout. After the blackout, autonomous operation
resumed and Momaro successfully went up the ramp to perform
the assembly tasks at the base station (Figure 14). Although the
operators paused autonomous navigation at one point on the
slope to assess the situation, no intervention was necessary and
navigation resumed immediately.

After finishing the course in 20:25min, we used the remaining
time to show some of Momaro’s advanced manipulation capabil-
ities by removing debris from the terrain with Momaro and our
intuitive teleoperation interface (Figure 13).

12. LESSONS LEARNED

Our successful participation in the SpaceBot Camp was an
extremely valuable experience, identifying strong andweak points
of our system in a competitive benchmark within the German
robotics community. Lessons learned include

• Mechanical Design. While the humanoid torso raised the center
of gravity and thus caused stability concerns on high terrain
inclines, it allowed us to performbimanualmanipulation. Being
able to carry both objects in the hands allowed us to omit

storing the objects in separate holders on the robot, saving
time. Furthermore, our end effector design allowed us to use
a scoop to take the soil sample. The soil extraction task was not
attempted by any other team. In future work, we will further
improve the robot balance control to operate in more difficult
rough terrain. For instance, adaptive roll stabilization could
advance Momaro’s locomotion capabilities.

• Actuator Monitoring. Our system provides extensive diagnostic
actuator feedback such as temperature and current consump-
tion. Still, this was not enough to prevent the failure of the finger
actuator during our run. Actuator monitoring and damage
prevention should have a high priority during development.

• Software Design: Autonomy Follows Teleoperation. Our unique
history of competing previously in the DARPA Robotics Chal-
lenge, a competition heavily focused on intuitive teleoperation,
set us apart from other teams. In particular, resulting from
the DRC competition, we had extensive intuitive teleoperation
abilities before starting work on the higher autonomy required
by the SpaceBot Camp. We suspect that most other teams
followed the opposite approach, augmenting the autonomy later
on with teleoperation facilities, which can be difficult if the sys-
tem was not designed for teleoperation from the start. Treating
the autonomy as an additional layer on a teleoperable system
ensures that the operator crew has full control of the system
at all time. Furthermore, this also accelerates development,
since missing autonomous functionalities can be substituted
by intuitive teleoperation. We demonstrated the ability of our
telemanipulation solution after our run by removing debris and
thus clearing the robot’s path.

• Intelligent Progress Monitoring. Our mission control layer
included some very basic error handling, e.g., fixed timeouts on
certain actions. Unfortunately, one of these timeouts resulted
in an early abort of the battery approach in our run, which
had to be corrected by operator action. A more intelligent
system, tracking the progress of the current task, would have
noticed that the approach was still progressing and would have
continued the approach. In future, we will investigate such
resilient progress monitoring methods in more detail.

13. CONCLUSION

In this article, we presented the mobile manipulation robot
Momaro and its ground station. We provided details on the soft-
ware and hardware architecture of the integrated robot system and
motivate design choices. The feasibility, flexibility, usefulness, and
robustness of our design were evaluated with great success at the
DLR SpaceBot Camp 2015.

Novelties include an autonomous hybrid mobile base combin-
ing wheeled locomotion with active stabilization in combination
with fully autonomous object perception and manipulation in
rough terrain. For situational awareness, Momaro is equipped
with a multitude of sensors such as a continuously rotating 3D
laser scanner, IMU, RGB-D camera, and a total of seven color
cameras. Although our system was build with comprehensive
autonomy inmind, all aspects fromdirect control tomission spec-
ification can be teleoperated through intuitive operator interfaces.
Developed for the constraints posed by the SpaceBot Camp, our
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system also copes well with degraded network communication
between the robot and the monitoring station.

The robot localizes by fusing wheel odometry and IMU mea-
surements with pose observations obtained in a SLAM approach
using laser scanner data. Autonomous navigation in rough terrain
is tackled by planning cost-optimal paths in a 2D map of the
environment. High-level autonomous missions are specified as
augmented waypoints on the 2.5D height map generated from
SLAM data. For object manipulation, the robot detects objects
with its RGB-D camera and executes grasps using parametrized
motion primitives.

In the future, shared autonomy could be improved by automatic
failure detection, such that the robot reports failures and recom-
mends a suitable semiautonomous control mode for recovery.
Currently, only vision-based manipulation is supported by the
system. Additional touch and force-torque sensing could poten-
tially lead to more robust manipulation capabilities.
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