
October 2016 | Volume 3 | Article 641

Code
published: 28 October 2016

doi: 10.3389/frobt.2016.00064

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Lorenzo Natale,

Istituto Italiano di Technologia, Italy

Reviewed by:
Juxi Leitner,

Queensland University
of Technology, Australia
Fulvio Mastrogiovanni,

University of Genova, Italy
Stéphane Lallée,

Institute for Infocomm Research
(A*STAR), Singapore

*Correspondence:
Plinio Moreno

plinio@isr.tecnico.ulisboa.pt

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 03 February 2016
Accepted: 06 October 2016
Published: 28 October 2016

Citation:
Aragão M, Moreno P

and Bernardino A (2016)
Middleware Interoperability for

Robotics: A ROS–YARP Framework.
Front. Robot. AI 3:64.

doi: 10.3389/frobt.2016.00064

Middleware Interoperability for
Robotics: A RoS–YARP Framework
Miguel Aragão, Plinio Moreno* and Alexandre Bernardino

LARSyS, Instituto de Sistemas e Robótica (ISR/IST), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Middlewares are fundamental tools for progress in research and applications in robotics.
They enable the integration of multiple heterogeneous sensing and actuation devices,
as well as providing general purpose modules for key robotics functions (kinematics,
navigation, and planning). However, no existing middleware yet provides a complete
set of functionalities for all robotics applications, and many robots may need to rely on
more than one framework. This paper focuses on the interoperability between two of the
most prevalent middleware in robotics: YARP and ROS. Interoperability between middle-
wares should ideally allow users to execute existing software without the necessity of (i)
changing the existing code and (ii) writing hand-coded “bridges” for each use case. We
propose a framework enabling the communication between existing YARP modules and
ROS nodes for robotics applications in an automated way. Our approach generates the
“bridging gap” code from a configuration file, connecting YARP ports and ROS topics
through code-generated YARP bottles. We support YARP/ROS and ROS/YARP sender/
receiver configurations, which are demonstrated in a humanoid on wheels robot that
uses YARP for upper body motor control and visual perception, and ROS for mobile
base control and navigation algorithms.

Keywords: robotic middlewares, interoperability framework, YARP, RoS, code reuse, code development
automation, code:C++, license: GNU Free documentation License

1. INTRodUCTIoN

Robotics midlewares such as the Robot Operating System (ROS) (Quigley et al., 2009) and Yet Another
Robot Platform (YARP) (Metta et al., 2006) are currently two of the main frameworks for research
and development on robotics platforms and are deployed in hundreds of robots worldwide. They
play a key enabling role on building complex applications requiring multiple distinct hardware
and software tools but are still under active development and far from providing a complete set
of functions for general purpose robots. YARP has been more used in the domain of humanoid
robots and developmental robotics, where skills such as visual and tactile perception, human robot
interaction, dexterous manipulation, and legged locomotion are central, whereas ROS has higher
focus on mobile robots and provides more tools on navigation, depth perception and planning. Thus,
rather than competitors, these middlewares should be seen as complementary and many robotic
platforms may benefit from using functions from both. However, trying to use these software tools
simultaneously is not an easy task mainly due to fundamental differences in the communication
architecture, i.e., how messages from different software modules are represented and transmitted

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00064&domain=pdf&date_stamp=2016-10-28
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00064
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:plinio@isr.tecnico.ulisboa.pt
http://dx.doi.org/10.3389/frobt.2016.00064
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00064/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00064/abstract
http://loop.frontiersin.org/people/317795/overview
http://loop.frontiersin.org/people/255346/overview
http://loop.frontiersin.org/people/158486/overview

2

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

between them. Thus, there is the need to address, in a systematic
way, the requirements for a proper interoperability1 framework
between YARP and ROS.

As stated by Fitzpatrick et al. (2008), one of the key aspects
for the longevity of middlewares is the ability to adapt to the
new environments and niches so interoperability can be seen
as a step in the right direction. This is basically the goal of this
work, to ease the process of interoperability between two specific
middlewares, ROS and YARP. We address the interoperability
in the context of existing ROS nodes and YARP modules that
can bring new skills to a robot by exchanging messages between
them. Ideally, the developer (YARP or ROS) should not need to
change the existing code and/or write code for “bridging” the
gap between the middlewares. We present a solution that avoids
changing the existing code and/or writing hand-coded bridges.
Since in most of the cases, the user has more familiarity with
one of the middlewares (YARP or ROS), we aim at simplify-
ing the programing of data sending/receiving. Issues such as
concurrency and real-time communication are not addressed
on this work. Our approach is based on a configuration file
where the user describes the “bridge” in a multiple inputs to
one output fashion. Using the configuration file, our software
generates automatically C++ code that enables the communi-
cation between existing ROS nodes and YARP modules. Our
approach is constructed upon the interoperability YARP with
ROS, proposed by Fitzpatrick (2016) and developed by the YARP
team, which supports the run-time conversion of YARP bottles
to ROS messages.

Our framework provides both YARP/ROS and ROS/YARP as
sender/receiver use cases. The YARP/ROS use cases illustrate how
to visualize in Rviz (a ROS application) (i) the current state of the
robot joints controlled with YARP and (ii) the current gaze point
of a robotic head. The ROS/YARP use case shows how to send
target gaze points from a ROS topic to a robotic head controller
implemented in YARP.

2. BACKGRoUNd ANd ReLATed WoRK

Naur and Randell (1969) define middleware as a piece of software
that gives an extra level of abstraction to the developer through a
layer between the operating system and the applications.

The majority of the communication middlewares are based
on an Interface Definition Language (IDL) approach2 and have
several implementations.3 Although the IDL is an agnostic
standard, the implementations require libraries for all the sup-
ported languages/operating systems. The dependency on specific
libraries has shifted the problem from the IDL to the adoption of a
particular implementation. Vendors and designers encourage the
users to adhere to a particular middleware while not considering
other options, so the interoperability between middlewares is not
usually addressed.

1 Interoperability is defined by Chen et al. (2008) as the capability of different systems
being able to communicate and take advantage of features of both.
2 For instance, CORBA and IIOP http://www.omg.org/spec/.
3 For instance, OpenMAMA www.openmama.org and DDS http://portals.omg.
org/dds/.

In the robotics context, Ceseracciu et al. (2013) describe the
middleware as the entity which provides the glue that holds
all the software modules together. Furthermore, as noted by
Mohamed et al. (2008), a middleware helps collaborative devel-
opment since each developer may orient its efforts to a specific
module. However, in systems with a large number of modules,
a high effort is put on the messaging system, in terms of effi-
ciency and coordination mechanisms. In this work, we focus on
the communication services that allow to send and to receive
information between software components in the YARP and
ROS middlewares.

Metta et al. (2006) introduced YARP, an open-source mid-
dleware initially designed to provide an abstraction layer to the
communications between modules. It has evolved into a multi-
purpose middleware that provides libraries, interfaces, and utili-
ties that act as the control system of a robot. Its main showcase
is the iCub robot, which uses YARP as its “circulatory system”.
Recently, the robots Coman and Vizzy have adopted it, adding
them to the more than 20 labs that use the iCub and YARP for
research. The basic communication objects in YARP are Ports that
send Bottles over the network. The Bottles may be constructed by
hand or using the Thirft Interface Definition Language (IDL) that
allows to define the bottle from a struct (i.e., list of types).

The Robotic Operating System (ROS) is an open-source mid-
dleware that had large contributions from the Willow Garage
since 2007. As noted by Boren and Cousins (2011), it has grown
exponentially since then and turned into the most popular mid-
dleware in robotics while doing its first steps into the industry.
In addition to the large set of libraries, interfaces, and utilities,
ROS provides several state-of-the-art mobile robotics and motion
planning algorithms. Its main showcase is the PR2 from Willow
Garage, which is the common example of usage of the majority
of ROS modules. The ROS popularity has widened the number
of robots partially or totally supported and configured over ROS.
As described in Quigley et al. (2009), the basic communication
objects in ROS are Topics that send messages over the network.
The messages are constructed from a list of types defined in a text
file. The allowed types include standard primitive types (integer,
floating point, Boolean, etc.), arrays of primitive types, and other
types defined in a message file.4

The most recent developments by the YARP team, described in
Fitzpatrick (2016), allow to communicate bidirectionally (read/
write from/to ROS topics) for all the basic types and some of the
non-basic types such as images. There are two options to translate
types between YARP and ROS: (i) generate ROS-compatible
types at compilation time using Thrift ILD or (ii) generate ROS-
compatible types at run-time using Bottles.

However, both options require custom code written purpose-
fully for each particular set of messages, which is an effortful pro-
cess in systems with many communication links. Aspects such as
conversion between data types, memory layout of the messages,
metadata information, packaging/unpackaging of messages
(many-to-one or one-to-many conversions), all have to be hand
coded by the developer. Instead, we propose a semi-automated
way to generate the interface code. Through a text configuration

4 http://wiki.ros.org/Messages.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.omg.org/spec/
www.openmama.org
http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://wiki.ros.org/Messages

3

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

file, using a simple interface language, the developer describes
just the minimal set of information required to perform the
conversion between message formats.

In the following section, we describe the automatic code
generator that allows to exchange information between existing
YARP modules and ROS nodes.

3. YARP BoTTLe GeNeRAToR

Our framework is based on a tool that generates C++ code from
a configuration text file that describes the set of inputs (i.e., ports/
topics and their types), data conversions that may be applied to
the inputs, and a detailed specification of the output (i.e., list of
types, hierarchically defined). We denote this tool as the yarp
bottle generator, which after parsing the configuration file cre-
ates a C++ file that after compilation and subsequent execution
acts as a bridge between YARP and ROS. From the point of view
of Software Patterns, our approach acts as a Mediator Pattern,
that transforms data between a source and a destination while
lowering the coupling level. The generated code allows to com-
municate between YARP port objects and ROS publisher/sub-
scriber objects developed previously, reducing the maintenance/
refactoring load.

The generated code reads data from several inputs (YARP
ports or ROS topics) and constructs a YARP Bottle as output.
Note that the yarp bottle generator has two modes of operation: (i)
from ROS topics to a YARP port (ROS–YARP mode) and (ii) from
YARP ports to a ROS topic (YARP–ROS mode). On the one hand,
reading from/sending to YARP ports is straightforward because
our code generator is based on YARP bottles. On the other hand,
reading from/sending to ROS topics needs an additional conver-
sion, which is handled by the run-time YARP to ROS converter
yarpidl_rosmsg, introduced by Fitzpatrick (2016).

Our generator abstracts YARP and ROS developers from deal-
ing directly with interoperability issues. The main concepts of the
bottle generator are: the hub, the converter, and the output builder,
which are explained in the following subsections.

3.1. Main Concepts of the Generated Code
Figure 1A illustrates the main concepts of the generated code
and their interaction for creating the output. The output message
is assembled from the information provided by the converters
(units and data types conversion between the different systems),
constants (additional data required by ROS), timestamps, and
counters (time and sequence information required by ROS and
YARP). Each converter has a hub associated to it, which collects
information from several YARP ports/ROS topics and merges/
splits/reorders data elements according to the requirements of the
different platforms. In the following, we explain in detail the hubs,
converters, and output builder modules.

3.1.1. Hub
A hub reads data coming from several ports/topics and stores
the data in a YARP bottle. The data are ordered in the bottle
sequentially according to the list of port names indicated in the
configuration file. The user can define as many hubs as needed
in the configuration file according to the needs. The role of

hubs is mostly related to (i) the memory layout of the output
and (ii) the converter functions to be applied. For instance,
a hub reads the data coming from several YARP ports that
contain the motor encoder values of a robot head and arms.
This hub reads the ports and stores the values sequentially in
a bottle. After building the hub bottle, the following step is the
conversion.

The hub idea is similar to the YARP Port Arbitrator of Paikan
et al. (2014), because the arbitrator and the hub read data from
several ports. The main difference is that the hub stores the data
in a bottle, while the arbitrator selects one of the ports to be sent
according to a rule.

3.1.2. Converter
The converter receives a bottle from the hub and then applies
a function to every element of the bottle. The conversion func-
tion was designed to perform tasks such as unit conversion
(e.g., degrees to radians), string conversion (e.g., lowercase to
uppercase), and so on. The current approach is to have a converter
for each hub so in the configuration file each hub has the field
“function” where its corresponding converter function is defined.
The conversion result is stored in the same bottle received by the
converter.

The currently implemented functions include (i) degrees to
radians, (ii) string to floating point number, and (iii) empty func-
tion. It is possible to add new functions to the converter generator
in order to extend the set of available converters. In order to add
a new function, the developer should add the generation code
to the class yarp-bottle-generator/src/dataconvertergenerator.cpp.5
A new converter function is described by a unique identifier
(i.e., string) that will be used in the configuration file and the
corresponding strings that are written in the generated code.
We implemented the converter function in the C++ language to
improve efficiency of complex operations on data intensive types,
such as images and videos, in future applications of the bridge.
The converter was inspired by the YARP Port Monitor of Paikan
et al. (2014), which provides this functionality between YARP
ports in run-time.

3.1.3. Output Builder
The output builder constructs a YARP bottle using a hierarchical
structure of data types, defined in the configuration file. The hier-
archy of allowed types includes the hubs, constants, timestamps,
and counters, as illustrated in Figure 1A.

The structure of the hierarchy is comprised by the root’s data
type and its children, which may have children themselves. The
hierarchical data type is denoted as msg (borrowing from the
ROS message definition), which means that the definition of this
type is a list of data types. Following the same idea, the child data
type may have an msg in it, so the hierarchy expands one more
branch.

The remaining data types can be divided into (i) containers
(list, hub) and (ii) basic types (timestamp, counter, and single_
value). The containers have several values wrapped in one bottle,

5 http://vislab-tecnico-lisboa.github.io/yarp-bottle-generator/doxygen/doc/html/
classDataConverterGenerator.html#a64845e3ce285461b22eabb32af5899ff.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://vislab-tecnico-lisboa.github.io/yarp-bottle-generator/doxygen/doc/html/classDataConverterGenerator.html#a64845e3ce285461b22eabb32af5899ff
http://vislab-tecnico-lisboa.github.io/yarp-bottle-generator/doxygen/doc/html/classDataConverterGenerator.html#a64845e3ce285461b22eabb32af5899ff

A

B

FIGURe 1 | Top image shows the architecture of the generated code. Bottom table shows the overview of the configuration parameters. (A) Generated code
detailed architecture for the main use cases. The dashed boxes represent the previously implemented YARP with ROS Fitzpatrick (2016) interoperability tools.
(B) Overview of configuration file parameters. If the message section has a hierarchical structure, additional sections must be added and the instructions on how to
do this are available online (see text footnote 8).

4

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

and the basic types are just single elements added to the output.
The counter type is a sequential integer, while the single_value
is a constant (i.e., string or any number type). The examples in
Section 4 will show the application of the components explained
in this section.

3.2. Software Architecture
Figure 5A shows the Unified Modeling Language (UML)
structure diagram of the yarp bottle generator. The root of the
hierarchy is the YarpCodeGenerator, an abstract class from where
all the remaining classes inherit the function generatedCode()

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

A

B

FIGURe 2 | Top part shows the YARP–RoS configuration file, and bottom part shows the RoS–YARP configuration file. (A) Left side: configuration file
example. In this case, there are two sensors: (i) a fake motor control board interface that sends the motor encoder values to a YARP port (mux1) and (ii) a fake inertial
sensor that sends readings to a YARP port (mux2). Readings from both sensors are sent to a ROS topic that reads the MotorsInertial message file (right side of the
figure). The MotorsInertial file indicates that the data are composed of two floating point arrays. (B) ROS–YARP configuration file example. In this case, there is a fake
robot, whose motors are controlled by a ROS program. The ROS message contains the joint number and the position value to be commanded, which is shown on
the left side of the figure. The right side of the figure shows the configuration file for the ROS–YARP bridge, where there the position values for a motor are read from
a ROS topic configured in mux1 (/fakebot_motor_control ros). The read values are sent to a YARP port (/fakebot/motor/rpc:i) configured in the section message.

5

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

that produces the strings that correspond to the automatically
generated code. The code generation is divided into the following
classes: CommonBeginningGenerator, PortMuxGenerator, Data
ConverterGenerator, BottleCreatorGenerator, ChildGenerator,
and CommonEndGenerator (see code examples of Figures 3
and 4). The class CommonBeginningGenerator handles
the code of the headers and main function code. The class
PortMuxGenerator handles the code that connects and reads
the data values from the YARP ports/ROS topics for all the
hubs (Section 3.1) defined in the configuration file. The class
DataConverterGenerator handles the code of the converter
function (Section 3.2) for the elements of a hub. The classes
BottleCreatorGenerator and ChildGenerator handle the output
builder (Section 3.3). The class BottleCreatorGenerator handles
the code for building the message and sending it through the
network (YARP port/ROS topic), at the top level of the message

hierarchy (root of the tree). The class ChildGenerator performs
the same task but at the leaves of the message hierarchy. Finally,
the class CommonEndGenerator handles the code that finishes
the main function. The documentation of the classes described
above is available online.6

3.3. Managing Middleware Source/
destination
This work is largerly motivated by our robot Vizzy, described in
Moreno et al. (2016), which has YARP and ROS running at the
same time. YARP controls its upper body, and ROS controls its
mobile platform. We will provide examples of both the YARP/
ROS and ROS/YARP cases. In addition, we implemented the

6 http://vislab-tecnico-lisboa.github.io/yarp-bottle-generator.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://vislab-tecnico-lisboa.github.io/yarp-bottle-generator

6

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

remaining combinations (ROS/ROS and YARP/YARP) that sup-
port a mix of existing ROS topic and YARP port tools. The YARP/
YARP case is equivalent to a customized mix of the commands
yarp merge and yarp sample and the conversion utility of the
Port Monitor of Paikan et al. (2014). The ROS/ROS case is equiva-
lent to a customized mix of the topic tools7 mux, throttle, and
transform.

The critical issue for managing the source/destination is that
connections between ports/topic are done differently on each
middleware. On the one hand, YARP does not assume either read
or write status of a port, so the sender–receiver connection is done
by the user. On the other hand, ROS topics have to be declared
as either publishers or subscribers, so the roscore server does the
connection sender–receiver according to the topic definition.
This difference is considered in our code, connecting to YARP
ports when sending/receiving data to/from YARP ports and let-
ting the roscore server manage the connections when sending/
receiving data to/from ROS topics.

3.4. Configuration File
The concepts explained in Section 3.1 correspond to sections or
parameters of the configuration file. Figure 1B summarizes the
sections (in square brackets) and their parameters, taking into
account the source–destination middleware configuration. More
details on how to write your own configuration file are available
online.8

4. USe CASeS, eXPeRIMeNTS, ANd
KNoWN ISSUeS

This section shows two tutorial use cases and two real use cases
of the code generation. The tutorial use cases (Sections 4.1 and
4.2) allow the user to grab the important concepts and test the
programs in just one pc. The tutorials’ ROS side repository and
instructions to run the examples are available online.9 The real use
cases are described in the github wiki of the repository,10 which
are more complex and show the usage of the code generation in
real-time robotics applications. Section 4.3 analyses the additional
computational resources required by our approach, followed by
known issues and limitations section.

4.1. YARP–RoS Case: Reading YARP
devices from RoS
Figure 2A shows the configuration file for reading two YARP
ports and converting them into a MotorsInertial ROS message
(right side of Figure 2A). The generated program shown in
Figure 3 reads from the YARP ports /dummy_head/state:o
and /inertial and creates a MotorsInertial message, which is
published on the ROS topic /motors_inertial_port. After
reading data from the ports, the program converts the angles to

7 http://wiki.ros.org/topic_tools.
8 ht tp s : / / g i t hub. c om / v i s l ab - te c n i c o - l i s b o a / y ar p - b ot t l e - ge ne r ator
#customize-your-own-configuration-file.
9 https://github.com/vislab-tecnico-lisboa/yarp_bottle_generator_ros_examples.
10 Items 3, 4, and 5 on https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/
wiki.

radians and fills up the arrays inertial and encoders of the
MotorsInertial message with the converted values.

The configuration file contains four sections: [general],
[mux1], [mux2], and [message]. The general section describes

•	 The output entity name (string output_name), in this case
a ROS topic.

•	 The source/destination middlewares flags (from_ros_
topics = false,to_ros = true). In this case, we send
from YARP ports to ROS topics.

•	 The number of hubs (integer num_mux), in this case 2.
•	 The rate of execution of the generated code (number rate),

in this case 60 Hz.
•	 The ROS message name (string ros_msg_name), for ROS to

know what type to expect.

The subsequent sections of the configuration file describe each
of the hubs, which in this example are two (mux1 and mux2). The
hub attributes are

•	 Number of ports (integer num_ports = 1 for both hubs).
•	 Name of the ports/topics (string ports = /dummy_head/
state:o for mux1 and ports =/inertial for mux2).
For several ports, the user writes comma separated names.

•	 Converter function function = deg_to_rad for mux1,
which converts the read encoder angles from degrees to radians.
The converter function of mux 2, function = non-e_dou-
ble parses the coming data as a floating point number.

•	 Verbose flag (string verbose = false), in case the user
wants to print on the screen the values red by the hub.

The rest of the file describes how the output’s structure is
built. The section message needs to know the number of types
(integer num_fields), which is this case is the number of fields
of MotorsInertial. In this simple example, each field cor-
responds to the data stored by the hub, so we just need to define
type and mux, as follows:

•	 The first type 1_type = mux corresponds to the data stored
in a hub. In order to know which hub corresponds to this field,
the line 1_mux = mux2 assigns the data from the inertial
sensor.

•	 The second type 2_type = mux and 2_mux = mux1 assigns
the data from the motors to the second field of the message.

Figure 3 shows the code generated by this configuration file
example. The code guarantees that there is successful connection
to all the YARP input ports, waiting until all the YARP ports are
connected to the bridge ports. If the code connects to all the
inputs, moves to a loop that (i) reads the input data, (ii) builds
the output message, and (iii) sends the message. It is important to
remark that for the output port is not necessary to check the con-
nection status, because ROS automatically connects the publisher
to the subscriber as soon as they are available.

4.2. RoS–YARP Case: Controlling YARP
devices from RoS
The right side of Figure 2B shows the configuration file for read-
ing the ROS message MotorControl (on the left side of Figure 2B)
from a ROS topic, converting the message into a YARP Bottle that

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://wiki.ros.org/topic_tools
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator#customize-your-own-configuration-file
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator#customize-your-own-configuration-file
https://github.com/vislab-tecnico-lisboa/yarp_bottle_generator_ros_examples
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/wiki
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/wiki

7

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

FIGURe 3 | example of the generated C++ code by running the yarp-bottle-generator executable with the configuration file yarp_ros_tutorial
example in Figure 2A.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

8

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

commands a motor of the fakebot robot. The generated program
reads the joint and angle values from the topic /fakebot_
motor_control_ros, then sending the command “set pos
joint angle” to the RPC YARP port /fakebot/motor_rpc:i.
The main differences with respect to the previous example are

•	 The general section has the flags to_ros = false and
from_ros_topics = true.

•	 No converter function applied to the hub (function =
none).

•	 The [message] generated has two string values that are con-
stant (1_msg and 2_msg).

4.3. Computational Performance
Our approach aims at reducing the workload of the programmer
(i.e., having to change the original software in order to be compat-
ible with both middlewares), who does not need to care anymore
about the message format translation. There is a small amount of
computational and network resources allocated to the bridging
code, namely, the creation of two additional ports that act as the

FIGURe 4 | example of the generated C++ code by running the yarp-bottle-generator executable with the configuration file ros_yarp_tutorial
example in Figure 2B.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

9

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

A

B

C

FIGURe 5 | The top image shows the UML class diagram, the middle table shows the computational overload of the generated code, and the bottom
table shows the network overload of the generated code. (A) UML class diagram. (B) Computational overload. The results show the additional execution time
of reading the inputs and writing the output Bottle. (C) Network overload.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

10

Aragão et al. YARP and ROS Interoperability Framework

Frontiers in Robotics and AI | www.frontiersin.org October 2016 | Volume 3 | Article 64

ReFeReNCeS

Boren, J., and Cousins, S. (2011). Exponential growth of ROS [ROS topics]. IEEE
Robot. Autom. Mag. 18, 19–20. doi:10.1109/MRA.2010.940147

Ceseracciu, E., Domenichelli, D., Fitzpatrick, P., Metta, G., Natale, L., and
Paikan, A. (2013). A middle way for robotics middleware. J. Softw. Eng. Robot.
5, 42–49.

Chen, D., Doumeingts, G., and Vernadat, F. (2008). Architectures for enterprise
integration and interoperability: past, present and future. Comput. Ind. 59,
647–659. doi:10.1016/j.compind.2007.12.016

Fitzpatrick, P. (2016). Using YARP with ROS. Available at: http://www.yarp.it/
yarp_with_ros.html

Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived robot genes.
Rob. Auton. Syst. 56, 29–45. doi:10.1016/j.robot.2007.09.014

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Mohamed, N., Al-Jaroodi, J., and Jawhar, I. (2008). “Middleware for robotics:
a survey,” in IEEE International Conference on Robotics, Automation and
Mechatronics, RAM 2008 (Chengdu), 736–742.

Moreno, P., Nunes, R., Figueiredo, R., Ferreira, R., Bernardino, A., Santos-
Victor, J., et al. (2016). “Vizzy: a humanoid on wheels for assistive robotics,” in

Robot 2015: Second Iberian Robotics Conference: Advances in Robotics, Vol. 1.
(Cham: Springer International Publishing), 17–28.

Naur, P., and Randell, B. (eds) (1969). Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct.
1968. Brussels: Scientific Affairs Division, NATO.

Paikan, A., Fitzpatrick, P., Metta, G., and Natale, L. (2014). Data flow port moni-
toring and arbitration. J. Softw. Eng. Robot. 5, 80–88.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros: an
open-source robot operating system. ICRA Workshop Open Source Softw. 3, 5.

Sucan, I. A., and Chitta, S. (2016). MoveIt! Available at: http://moveit.ros.org

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Aragão, Moreno and Bernardino. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

bridge. We discuss qualitatively the additional memory needed,
and we evaluated quantitatively the execution time and network
bandwidth required by the two additional ports. Figures 5B,C
show the additional load in CPU time and network transmission,
where we remark the very low additional CPU load and network
load. It is important to mention that the computational load is in
the microsecond order of magnitude, having only one exception
(0.183 ms) because of writing to an RPC port that takes longer
than the regular ports. On the one hand, Figure 5B shows that the
computational overload increases when the number of ports read
increases, but the rate is not linear. On the other hand, Figure 5C
shows that the network overload increases linearly with the
number of ports being read.

4.4. Known Issues and Limitations
The code does not have issues in its latest version. The most
important issues solved include (i) the bidirectionality support
by adding the ROS–YARP communication, (ii) perform the
conversion between YARP timestamps and ROS timestamps,
and (iii) the type of the ROS message was not defined properly.
The complete list of the solved issues is at the github repository.11
The main limitation of our approach is that we do not have tools
for checking the format conversion specified in the configuration
file. For instance, if the user in the configuration file associates
a wrong type between the middlewares, the code is generated
without any warnings/errors. Thus, the user has to verify the
association between types. Another limitation of our approach is
the applicability area, which is limited to two middlewares only.
In the context of robotics applications, the main goal of the mid-
dleware is the correct streaming of sensors and actuators data for
control systems, so abstractions such as meta-messages that will
work for several middlewares are difficult to implement because

11 https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/issues?q=is%3A
issue+is%3Aclosed.

of the low-level streaming approach (e.g., different data code/
decode for the same type of sensor).

5. CoNCLUSIoN ANd FUTURe WoRK

We introduced a software tool that improves the interoperability
between YARP and ROS, reducing the coding effort and changing
existing software. Our approach is based on a configuration file
written by the user that is the input of our software, which gener-
ates C++ code. The code enables the communication between
YARP modules and ROS nodes and works in the multiple inputs
and one output fashion. We show examples of a robotic platform
using YARP and ROS, communicating existing YARP control
software with ROS visualization and actionlib software. Future
work should address (i) the automatic parsing of the output mes-
sage from ROS msg files and Thrift IDL files, and (ii) the automatic
generation of YARP code for supporting more complex data types
such as images and point clouds. In addition, the actionlib ROS
library is the standard way to implement remote monitoring over
a process, which allows to cancel, read feedback, and overwrite
goals to the actionlib server. The automatic generation of code
that supports the communication of YARP code with the ROS
actionlib servers and clients will ease the interoperability between
YARP-based control and the MoveIt motion planning interfaces
of Sucan and Chitta (2016).

AUTHoR CoNTRIBUTIoNS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNdING

This work was supported by FCT (UID/EEA/50009/2013),
partially funded by the FCT Ph.D. programme RBCog and FCT
project AHA (CMUP-ERI/HCI/0046/2013).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2010.940147
http://dx.doi.org/10.1016/j.compind.2007.12.016
http://www.yarp.it/yarp_with_ros.html
http://www.yarp.it/yarp_with_ros.html
http://dx.doi.org/10.1016/j.robot.2007.09.014
http://dx.doi.org/10.5772/5761
http://moveit.ros.org
http://creativecommons.org/licenses/by/4.0/
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/issues?q=is%3Aissue+is%3Aclosed
https://github.com/vislab-tecnico-lisboa/yarp-bottle-generator/issues?q=is%3Aissue+is%3Aclosed

	Middleware Interoperability for Robotics: A ROS–YARP Framework
	1. Introduction
	2. Background and Related Work
	3. YARP Bottle Generator
	3.1. Main Concepts of the Generated Code
	3.1.1. Hub
	3.1.2. Converter
	3.1.3. Output Builder

	3.2. Software Architecture
	3.3. Managing Middleware Source/Destination
	3.4. Configuration File

	4. Use Cases, Experiments, and Known Issues
	4.1. YARP–ROS Case: Reading YARP Devices from ROS
	4.2. ROS–YARP Case: Controlling YARP Devices from ROS
	4.3. Computational Performance
	4.4. Known Issues and Limitations

	5. Conclusion and Future Work
	Author Contributions
	Funding
	References

