
ORIGINAL RESEARCH
published: 28 November 2016
doi: 10.3389/frobt.2016.00071

Edited by:
Michael Wibral,

Goethe University Frankfurt, Germany

Reviewed by:
Robin A. A. Ince,

University of Manchester, UK
Raul Vicente,

Max Planck Society, Germany

*Correspondence:
Oliver M. Cliff

o.cliff@acfr.usyd.edu.au

Specialty section:
This article was submitted to
Computational Intelligence,

a section of the journal
Frontiers in Robotics and AI

Received: 19 August 2016
Accepted: 31 October 2016

Published: 28 November 2016

Citation:
Cliff OM, Prokopenko M and Fitch R
(2016) An Information Criterion for
Inferring Coupling of Distributed

Dynamical Systems.
Front. Robot. AI 3:71.

doi: 10.3389/frobt.2016.00071

An Information Criterion for Inferring
Coupling of Distributed Dynamical
Systems
Oliver M. Cliff 1*, Mikhail Prokopenko2 and Robert Fitch1,3

1 Australian Centre for Field Robotics, The University of Sydney, Sydney, NSW, Australia, 2 Complex Systems Research
Group, The University of Sydney, Sydney, NSW, Australia, 3 Centre for Autonomous Systems, University of Technology
Sydney, Sydney, NSW, Australia

The behavior of many real-world phenomena can be modeled by non-linear dynamical
systems whereby a latent system state is observed through a filter. We are interested
in interacting subsystems of this form, which we model by a set of coupled maps as
a synchronous update graph dynamical system. Specifically, we study the structure
learning problem for spatially distributed dynamical systems coupled via a directed
acyclic graph. Unlike established structure learning procedures that find locally maximum
posterior probabilities of a network structure containing latent variables, our work exploits
the properties of dynamical systems to compute globally optimal approximations of these
distributions. We arrive at this result by the use of time delay embedding theorems. Taking
an information-theoretic perspective, we show that the log-likelihood has an intuitive
interpretation in terms of information transfer.

Keywords: complex networks, structure learning, dynamic Bayesian networks, graph dynamical systems,
information theory, dynamical systems, state space reconstruction

1. INTRODUCTION

Complex systems are broadly defined as systems that comprise interacting non-linear components
(Boccaletti et al., 2006). Discrete-time complex systems can be represented using graphical models
such as graph dynamical systems (GDSs) (Mortveit and Reidys, 2001; Wu, 2005), where spatially
distributed dynamical units are coupled via a directed graph. The task of learning the structure
of such a system is to infer directed relationships between variables; in the case of dynamical
systems, these variables are typically hidden (Kantz and Schreiber, 2004). In this paper, we study
the structure learning problem for complex networks of non-linear dynamical systems coupled
via a directed acyclic graph (DAG). Specifically, we formulate synchronous update GDSs as
dynamic Bayesian networks (DBNs) and study this problem from the perspective of information
theory.

The structure learning problem for distributed dynamical systems is a precursor to inference in
systems that are not fully observable. This case encompasses many practical problems of known
artificial, biological, and chemical systems, such as neural networks (Lizier et al., 2011; Vicente et al.,
2011; Schumacher et al., 2015), multi-agent systems (Xu et al., 2013; Gan et al., 2014; Cliff et al.,
2016; Umenberger and Manchester, 2016), and various others (Boccaletti et al., 2006). Modeling
a partially observable system as a dynamical network presents a challenge in synthesizing these
models and capturing their global properties (Boccaletti et al., 2006). In addressing this challenge,
we draw on probabilistic graphical models (specifically Bayesian network (BN) structure learning)
and non-linear time series analysis (differential topology).
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In this paper, we exploit the properties of discrete-time mul-
tivariate dynamical systems in inferring coupling between latent
variables in a DAG. Specifically, the main focus of this paper is to
analytically derive a measure (score) for evaluating the fitness of
a candidate DAG, given data. We assume the data are generated
by a certain family of multivariate dynamical system and are thus
able to overcome the issue of latent variables faced by established
structure learning algorithms. That is, under certain assumptions
of the dynamical system, we are able to employ time delay embed-
ding theorems (Stark et al., 2003; Deyle and Sugihara, 2011) to
compute our scores.

Our main result is a tractable form of the log-likelihood
function for synchronous GDSs. Using this result, we are able
to directly compute the Bayesian information criterion (BIC)
(Schwarz, 1978) and Akaike information criterion (AIC) (Akaike,
1974) and thus achieve globally optimal approximations of the
posterior distribution of the graph. Finally, we show that the
log-likelihood and log-likelihood ratio can be expressed in terms
of collective transfer entropy (Lizier et al., 2010; Vicente et al.,
2011). This result places our work in the context of effective net-
work analysis (Sporns et al., 2004; Park and Friston, 2013) based
on information transfer (Honey et al., 2007; Lizier et al., 2011;
Cliff et al., 2013, 2016) and relates to the information processing
intrinsic to distributed computation (Lizier et al., 2008).

2. RELATED WORK

We are interested in classes of systems whereby dynamical units
are coupled via a graph structure. These types of systems have
been studied under several names, including complex dynamical
networks (Boccaletti et al., 2006), spatially distributed dynam-
ical systems (Kantz and Schreiber, 2004; Schumacher et al.,
2015), master-slave configurations (or systems with a skew prod-
uct structure) (Kocarev and Parlitz, 1996), and coupled maps
(Kaneko, 1992). Common to each of these definitions is that the
multivariate state of the system comprises individual subsystem
states, the dynamics of which are given by a set of either discrete-
time maps or first-order ordinary differential equations (ODEs),
called a flow. We assume the discrete-time formulation, where a
map can be obtained numerically by integrating differential equa-
tions or recording experimental data (observations) at discrete-
time intervals (Kantz and Schreiber, 2004). The literature on
coupled dynamical systems is often focused on the analysis of
characteristics such as stability and synchrony of the system. In
this work, we draw on the fields of BN structure learning and
non-linear time series analysis to infer coupling between spatially
distributed dynamical systems.

BN structure learning comprises two subproblems: evaluating
the fitness of a graph and identifying the optimal graph given this
fitness criterion (Chickering, 2002). The evaluation problem is
particularly challenging in the case of graph dynamical systems,
which include both latent and observed variables. A number of
theoretically optimal techniques exist for the evaluation problem
for BNs with complete data (Bouckaert, 1994; Lam and Bacchus,
1994; Heckerman et al., 1995), which have been extended to
DBNs (Friedman et al., 1998). With incomplete data, however, the
common approach is to resort to approximations that find local

optima, e.g., expectation-maximization (EM) (Friedman et al.,
1998; Ghahramani, 1998). An additional caveat with respect to
structure learning is that algorithms find an equivalence class
of networks with the same Markov structure, and not a unique
solution (Chickering, 2002).

In non-linear time series analysis, the problem of inferring
coupling strength and causality in complex systems has received
significant attention recently (Schreiber, 2000; Hoyer et al., 2009).
Early work by Granger defined causality in terms of the pre-
dictability of one system linearly coupled to another (Granger,
1969). Although this measure is popular for identifying coupling,
it requires systems are linear statistical models and is considered
insufficient for inferring coupling between dynamical systems
due to inseparability (Sugihara et al., 2012). Another method
popular in neuroscience is transfer entropy, which was introduced
to quantify the information transfer between non-linear (finite-
order Markov) systems (Schreiber, 2000). Transfer entropy has
been used to recover interaction networks in numerous fields such
as multi-agent systems (Cliff et al., 2016) and effective networks
in neuroscience (Lizier et al., 2011; Vicente et al., 2011; Lizier
and Rubinov, 2012). More recently, researchers have used the
additive noise model (Hoyer et al., 2009; Peters et al., 2011) to
infer unidirectional cause and effect relationships with observed
random variables and find a unique DAG (as opposed to an
equivalence class). These studies have been extended by exploring
weakly additive noise models for learning the structure of systems
of observed variables with non-linear coupling (Gretton et al.,
2009).

A recent approach to inferring causality is convergent cross-
mapping (CCM), which is based on Takens theorem (Takens,
1981) and tests for causation (predictability) by considering the
history of observed data of a hidden variable in predicting the out-
come of another (Sugihara et al., 2012). Using a similar approach,
Schumacher et al. (2015) used Stark’s bundle delay embedding
theorem (Stark, 1999; Stark et al., 2003) to predict one subsys-
tem from another using Gaussian processes. This algorithm can
thus be used to infer the driving systems in spatially distributed
dynamical systems in a similar manner to our work. However,
both papers do not consider the problem of inference over the
entire network structure, or formally derive the measures used
therein. In our work, we provide a rigorous proof based on estab-
lished structure learning procedures and discuss the problem of
inference within a distributed dynamical system.

3. BACKGROUND

This section summarizes relevant technical concepts used
throughout the paper. First, a stochastic temporal process X is
defined as a sequence of random variables (X1, X2, . . .,XN) with
a realization (x1, x2, . . ., xN) for countable time indices n ∈ N.
Consider a collection of M processes, and denote the ith process
Xi to have associated realization xin at temporal index n, and xn
as all realizations at that index xn = ⟨x1n, x2n, . . . , xMn ⟩. If Xi

n is a
discrete random variable, the number of values the variable can
take on is denoted |Xi

n|. The following sections collect results
from DBN literature, attractor reconstruction, and information
theory that are relevant to this work.
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3.1. Dynamic Bayesian Networks
DBNs are a general graphical representation of a temporal model,
representing a probability distribution over infinite trajectories of
random variables (Z1, Z2, . . .) compactly (Friedman et al., 1998).
These models are a more expressive framework than the hidden
Markov model (HMM) and Kalman filter model (KFM) (or lin-
ear dynamical system) (Friedman et al., 1998). In this work, we
denote Zn = {Xn, Yn} as the set of hidden and observed variables,
respectively, where n ∈ {1, 2, . . .} is the temporal index.

BNs B= (G, Θ) represent a joint distribution p(z) graphically
and consist of: a DAG G and a set of conditional probability
distribution (CPD) parameters Θ. DBNs B= (B1, B→) extend
the BN to model temporal processes and comprise two parts:
the prior BN B1 = (G1, Θ1), which defines the joint distribu-
tion pB1(z1); and the two-time-slice Bayesian network (2TBN)
B→ = (G→, Θ→), which defines a first-order Markov process
pB→ (zn+1|zn) (Friedman et al., 1998). This formulation allows
for a variable to be conditioned on its respective parent set
ΠG→(Zi

n+1) that can come from the preceding time slice or the
current time slice, as long as G→ forms a DAG. The 2TBN
probability distribution factorizes according to G→ with a local
CPD pD estimated from an observed dataset. That is, given a set
of stochastic processes (Z1, Z2, . . ., ZN), the realization of which
constitutes a dataset D= (z1, z2, . . ., zN), we obtain the 2TBN
distribution as

pB→(zn+1|zn) =
∏
i

pB→(zin+1|πG→(Zi
n+1)), (1)

where πG→(Zi
n+1) denotes the (index-ordered) set of realizations

{zjo : Zj
o ∈ ΠG→(Zi

n+1)}.

3.2. Embedding Theory
Embedding theory refers to methods from differential topology
for inferring the (hidden) state of a dynamical system from a
reconstructed sequence of observations. The state of a discrete-
time dynamical system is given by a point xn confined to a
d-dimensional manifold M. The time evolution of this state is
described by a map f : M → M, so that the sequence of states
(xn) is given by xn+1 = f (xn). In many situations, we only have
access to a filtered, scalar representation of the state, i.e., the
measurement yn =ψ (xn) given by some measurement function
ψ : M → R (Takens, 1981; Stark, 1999). The celebrated Takens’
theorem (Takens, 1981) shows that for typical f andψ, it is possible
to reconstruct f from the observed time series up to some smooth
coordinate change. More precisely, fix some κ (the embedding
dimension) and some τ (the time delay), then define the delay
embedding mapΦΦΦf ,ψ : M → Rκ by

ΦΦΦf,ψ(xn) = y(κ)
n = ⟨ yn, yn−τ , yn−2τ , . . . , yn−(κ−1)τ ⟩. (2)

In differential topology, an embedding refers to a smooth map
Ψ: M → N between manifolds M and N if it maps M
diffeomorphically onto its image; therefore, ΦΦΦf ,ψ has a smooth
inverseΦΦΦ−1

f,ψ . The implication of Takens’ theorem is that for typical
f and ψ, the image ΦΦΦf ,ψ(M) of M is completely equivalent to

M itself, apart from the smooth invertible change of coordinates
given by the mapping ΦΦΦf ,ψ . An important consequence of this
theorem is that we can define a map F = ΦΦΦf,ψ ◦ f ◦ ΦΦΦ−1

f,ψ onΦΦΦf ,ψ ,
such that y(κ)

n+1 = F(y(κ)n ) (Stark, 1999).
There are technical assumptions for Takens’ theorem (and the

generalized versions employed herein) to hold. These assumptions
require: (f, ψ) to be generic functions (in terms of Baire space),
a restricted number of periodic points, and distinct eigenvalues
at each neighborhood of these points (Takens, 1981; Stark, 1999;
Stark et al., 2003; Deyle and Sugihara, 2011).

3.3. Information Theoretic Measures
Conditional entropy represents the uncertainty of a random vari-
able X after taking into account the outcomes of another random
variable Y by

H(X|Y) = −
∑
x,y

p(x, y)log2 p(x|y). (3)

Multivariate transfer entropy is a measure that computes the
information transfer from a set of source processes to a set of
destination process (Lizier et al., 2011). In this work, we use the
formulation of collective transfer entropy (Lizier et al., 2010),
where the information transfer fromm source processes V = {Y1,
Y2, . . ., Ym} to a single destination process Y can be decomposed
as a sum of conditional entropy terms:

TV→Y = H
(
Yn+1|Y(κ)

n

)
− H

(
Yn+1|Y(κ)

n , ⟨Y i,(κi)
n ⟩

)
, (4)

where Y i,(κi)
n = ⟨Y i

n,Y i
n−τ i ,Y i

n−2τ i , . . . ,Y i
n−(κi−1)τ i ⟩ for some

κi and τ i, and similarly for Y (κ)
n .

4. REPRESENTING NON-LINEAR
DYNAMICAL NETWORKS AS DBNs

We express multivariate dynamical systems as a synchronous
update GDS to allow for generic maps. With this model, we can
express the time evolution of the GDS as a stationary DBN,
and perform inference and learning on the subsequent graph.
We formally state the network of dynamical systems as a special
case of the sequential GDS (Mortveit and Reidys, 2001) with an
observation function for each vertex.

Definition 1. Synchronous graph dynamical system (GDS). A
synchronous GDS is a tuple (G, xn, yn, {f i}, {ψi}) that consists of:

• a finite, directed graph G = (V, E) with edge-set E = {Ei} and
M vertices comprising the vertex set V = {V i};

• a multivariate state xn = ⟨xin⟩, composed of states for each vertex
V i confined to a di-dimensional manifold xin ∈ Mi;

• an M-variate observation yn = ⟨yin⟩, composed of scalar obser-
vations for each vertex yin ∈ R;

• a set of local maps {f i} of the form f i : M → Mi, which update
synchronously and induce a global map f : M → M; and

• a set of local observation functions {ψ1, ψ2, . . ., ψM} of the form
ψi : Mi → R.
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Without loss of generality, we can use local functions to describe
the time evolution of the subsystems:

xin+1 = f i(xin, ⟨xijn⟩j) + υf i (5)

yin+1 = ψi(xin+1) + υψi . (6)
Here, υf i is i.i.d. additive noise and υψi is noise that is either

i.i.d. or dependent on the state, i.e., υψi(xin+1). The subsystem
dynamics [equation (5)] are therefore a function of the subsystem
state xin and the subsystem parents’ state ⟨xijn⟩j at the previous
time index such that f i : Mi ×j Mij → Mi. Each subsystem
observation is given by equation (6). We assume the functions {f i}
and {ψi} are invariant w.r.t. time and thus the graphG is stationary.

The time evolution of a synchronous GDS can be modeled
as a DBN. First, each subsystem vertex V i =

{
X i
n , Y i

n
}
has an

associated state variable Xi
n and observation variable Y i

n; the par-
ents of subsystem V i are denoted ΠG(V i). Since the graph G→ is
stationary and synchronous, parents of X i

n+1 come strictly from
the preceding time slice, and additionally ΠG→(Y i

n+1) = X i
n+1.

Thus, we can build the edge set E = {E1, E2, . . . , EM} in the GDS
by means of the DBN. That is, each edge subset Ei is built by the
DBN edges

Ei = {V j → V i : Xj
n ∈ ΠG→(X i

n+1) ∧ V j ∈ V \ V i},
so long as G forms a DAG. As an example, consider the syn-
chronous GDS in Figure 1A. The subsystemV3 is coupled to both
subsystemV1 andV2 through the edge set E = {V1 → V3,V2 →
V3}. The time-evolution of this network is shown in Figure 1B,
where the top two rows (processes X1 and Y1) are associated with
subsystem V1, and similarly for V2 and V3. The distributions
for the state [equation (5)] and observation [equation (6)] of
M arbitrary subsystems can therefore be factorized according to
equation (1):

pB→(zn+1|zn) =
M∏
i=1

pD(xin+1|xin, ⟨xijn⟩j) · pD(yin+1|xin+1). (7)

In the rest of the paper, we use simplified notation, given this
constrained graph structure. First, since our focus is on learning
coupling between distributed systems, the superscripts refer to
individual subsystems, not variables. Thus, although the 2TBNB→

is constrained such that ΠG→(Y i
n) = X i

n, the notation Y ij
n denotes

the measurement variable of the jth parent of subsystem i, e.g., in
Figure 1, an arbitrary ordering of the parents gives Y3,1

n =Y1
n and

Y3,2
n =Y2

n. Second, the scoring functions for the 2TBN network
B→ can be computed independently of the prior network B1
(Friedman et al., 1998).Wewill assume the prior network is given,
and focus on learning the 2TBN. As a result, we drop the subscript
and note that all references to the network B are to the 2TBN.
Since B→ is stationary, learning B→ is equivalent to learning the
synchronous GDS.

5. LEARNING SYNCHRONOUS GDSs
FROM DATA

In this section, we develop the theory for learning the synchronous
update GDS from data. We will focus on techniques for learn-
ing graphical models using the score and search paradigm, the
objective of which is to find a DAG G* that maximizes a score
g(B :D). Given such a score, we can then employ established
search procedures to find the optimal graph G*. Thus, we can
state that our main goal is to derive a tractable scoring function
g(B : D) for synchronous GDSs that gives a parsimonious model
for describing the data.

To derive the score, we use the DBN formulation of syn-
chronous GDSs (Sec. 4) to show that we cannot directly compute
the posterior probability of the network structure (Sec. 5.1). By
making some assumptions about the system, however, we are able
to compute scores for GDSs by use of attractor reconstruction
methods (Sec. 5.2). We conclude this section by giving an inter-
pretation of the log-likelihood in terms of information transfer
(Sec. 5.3).

A B

FIGURE 1 | Representation of (A) the synchronous GDS with three vertices (V1, V2 and V3), and (B) the rolled-out DBN of the equivalent structure.
Subsystem V3 is coupled to both subsystems V1 and V2 by means of the edges between latent variables X1

n → X3
n+1 and X2

n → X3
n+1.
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5.1. Structure Learning for DBNs
Ideally, we want to be able to compute the posterior probability
of the network structure G, given data D. Using Bayes’ rule, we
can express this distribution as p (G|D) ∝ p (D|G) p (G), where
p(G) encodes any prior assumptions we want to make about the
network G. Thus, the problem becomes that of computing the
likelihood of the data, given the model, p(D|G). The likelihood
can be written in terms of distributions over network parameters
(Friedman et al., 1998):

p(D|G) =
∫

p(D|G,Θ)p(Θ|G)dΘ, (8)

where we denote ℓ(Θ̂G : D) = log p(D|G, Θ̂G) as the log-
likelihood function for a choice of parameters Θ̂G that maximize
p(D|G, Θ), given a graph G.

A common approach to compute equation (8) in closed
form is by using Dirichlet priors. This leads to the BD
(Bayesian–Dirichlet) score and variants (Heckerman et al., 1995;
Friedman et al., 1998). However, to obtain this analytic solution,
we require counts of the tuples (zin, πG(Zi

n)), which involve hidden
variables. We will instead use Schwarz’s (Schwarz, 1978) asymp-
totic approximation of the posterior distribution, which states
that

lim
N→∞

log p(D|G) ≈ ℓ(Θ̂G : D) − log N
2

C(G) + O(1), (9)

where C(G) is the model dimension (i.e., number of parameters
needed for the graph G (Friedman et al., 1998)) and O(1) is
a constant bounded by the number of potential models. The
approximation of the posterior [equation (9)] requires that data
come from an exponential family of likelihood functions with
conjugate priors over the model G, and the parameters given the
model ΘG (Schwarz, 1978).

Akaike (1974) gives a similar criterion by approximating the
KL-divergence of any model from the data. We can compute both
criteria in terms of the log-likelihood function ℓ(Θ̂G : D) and the
model dimension C(G), and thus the problem can be generalized
to that of deriving an information criterion for scoring the graph
of the form

g(B : D) = ℓ(Θ̂G : D) − f(N) · C(G). (10)

When f (N)= 1, we have the AIC score (Akaike, 1974);
f (N)= log (N)/2 yields the BIC score (Schwarz, 1978), and
f (N)= 0 gives the maximum likelihood score.

5.2. Deriving the Scores for Synchronous
GDSs
To calculate the information criterion [equation (10)], we require
tractable expressions for the log-likelihood function ℓ(Θ̂G : D)
and the model dimension C(G). The form of the CPD in equation
(7) specifies these functions, and for equation (9) to hold, this
distribution must come from an exponential family (Schwarz,
1978). We do not assume the underlying model is linear-Gaussian
or other known distributions, and thus express the log-likelihood
as themaximum likelihood estimate formultinomial distributions

(Friedman et al., 1998). From equation (7), the log-likelihood then
decomposes as
ℓ(Θ̂G : D) =

− N
M∑
i=1

∑
xin+1

∑
⟨xijn⟩j

pD(xin+1, xin, ⟨xijn⟩j) log pD(xin+1|xin, ⟨xijn⟩j)

− N
M∑
i=1

∑
xin+1

∑
yin+1

pD(yin+1, xin+1) log pD(yin+1|xin+1)

(11)
Note that although we describe the states and observations as

discrete in equation (11), we assume the data are generated by
a continuous and stationary process. In theory, it is conceivable
to have access to an infinite dataset containing realizations of all
potential states and observations. In practice, we have a limited
dataset and therefore must implement a discretization scheme.
Modeling the dynamical systems with non-parametric techniques
requires that the number of parameters scales linearly in the size
of the data, and thus C(G) scales linearly with N. Instead, later, we
will assume the observation data are discretized, such that there
are |Y i

n| possible outcomes for an observed random variable Y i
n.

The log-likelihood function [equation (11)] involves distri-
butions over latent variables, and thus we resort to state-space
(attractor) reconstruction. First, Lemma 1 shows that a future
observation from a given subsystem can be predicted from a
sequence of past observations. Building on this result, we present
a computable formulation of the 2TBN distribution pB→ (zn+1|zn)
via Lemma 2.We then derive a tractable form of the log-likelihood
function, presented in Lemma 1. It is then shown in Theorem 2
that these lemmas allow us to compute the information criterion
equation (10).

Lemma 1. Consider a synchronous GDS (G, xn, yn, {f i}, {ψi}),
where the graph G is a DAG. Each subsystem state follows the
dynamics xin+1 = f i(xin, ⟨x

ij
n⟩j) and emits an observation yin+1 =

ψi(xin+1); the subsystemobservation can be estimated, for somemap
Gi, by

yin+1 = Gi
(
yi,(κ

i)
n , ⟨yij,(κ

ij)
n ⟩j

)
. (12)

Proof. Consider a forced system xn+1 = f (xn, wn) with forc-
ing dynamics wn+1 = h(wn) and observation yn =ψ(xn+1). Given
this type of forced system, the bundle delay embedding theo-
rem (Stark, 1999; Stark et al., 2003) states that the delay map
ΦΦΦf,h,ψ(xn,wn) = y(κ)n is an embedding for generic f, ψ, and h.
Stark (1999) proved this result in the case of forcing dynamics
h that are independent of the state x.1 For notational simplicity,
we omit dependence on the noise process for the mapΦΦΦf,h,ψ ; the
noise can be considered an additional forcing system so long as υf
is i.i.d and υψ is either i.i.d or dependent on the state (Stark et al.,
2003).

Given a DAG G, any ancestor of the subsystem V i is not
dependent on V i. As such, the sequence

yi,(κ
i)

n = ΦΦΦf i,⟨f ij⟩j,ψi

(
xin, ⟨xijn⟩j

)
(13)

1Stark (1999) conjectures that the theorem should generalise to functions h that are
not independent of x. To the best of our knowledge, this result remains to be proven.
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is an embedding, since ⟨xijn⟩j is independent of x
i
n. Let ⟨xijkn ⟩k be

the index-ordered set of parents of node Xij
n (which itself is the

jth parent of the node Xi
n). Under the constraint that G is a DAG,

where the state xin+1 = f i(xin, ⟨x
ij
n⟩j) + υf i , it follows from the

bundle delay embedding theorem (Stark, 1999; Stark et al., 2003)
that there exists amapFi that is well defined and a diffeomorphism
between observation sequences. From equation (13), we can write
this map

yi,(κ
i)

n+1 = ΦΦΦf i,⟨f ij⟩j,ψi

(
f i

(
xin, ⟨xijn⟩j

)
,
⟨
f ij

(
xijn, ⟨xijkn ⟩k

)⟩
j

)

= ΦΦΦf i,⟨f ij⟩j,ψi

(
f i
(
ΦΦΦ−1

f i,⟨f ij⟩j,ψi(yi,(κ
i)

n ),
⟨
ΦΦΦ−1

f ij,⟨fijk⟩k,ψij(yij,(κ
ij)

n )
⟩
j

))
.

(14)

Denote the RHS of equation (14) as Fi(yi,(κ
i)

n , ⟨yij,(κ
ij)

n ⟩j); the
last κi +

∑
j κ

ij components of Fi are trivial. Denote the first
component as Gi : Rκ

i
×jRκ

ij
→ R, then we arrive at equation

(12).
Lemma 2. Given an observed dataset D= (y1, y2, . . ., yN) where

yn ∈ RM are generated by a directed and acyclic synchronous
GDS (G, xn, yn, {f

i}, {ψi}), the 2TBN distribution can be
written as

M∏
i=1

pD(xin+1|xin, ⟨xijn⟩j) · pD(yin+1|xin+1)

=

∏M
i=1 pD(yin+1|y

i,(κi)
n , ⟨yij,(κ

ij)
n ⟩j)

pD(xn|⟨yi,(κ
i)

n ⟩)
. (15)

Proof. The generalized time delay embedding theorem (Deyle
and Sugihara, 2011) states that, under certain technical assump-
tions, and given M inhomogeneous observation functions
{ψ1, ψ2, . . . , ψM}, the map

ΦΦΦf,ψ(x) = ⟨ΦΦΦf1,ψ1(x),ΦΦΦf 2,ψ2(x), . . . ,ΦΦΦfM,ψM(x)⟩ (16)

is an embeddingwhere each subsystem (local)mapΦΦΦf i,ψi : M →
Rκ

i
, and, at time index n is described by

ΦΦΦf i,ψi(xn) = yi,(κ
i)

n = ⟨ψi (xn) , ψi(xn−τ i),

ψi(xn−2τ i), . . . , ψi(xn−(κi−1)τ i)⟩

where
∑

i κ
i = 2d + 1 (Deyle and Sugihara, 2011).2 Therefore,

the global map equation (16) is given by ΦΦΦf,ψ(xn) =

⟨yi,(κ
i)

n ⟩ and there must exist an inverse map xn =
ΦΦΦ−1

f,ψ

(
⟨yi,(κ

i)
n ⟩

)
. Given Lemma 1, the existence of ΦΦΦ−1

f,ψ , and

2The original proof (Deyle and Sugihara, 2011) uses positive lags; however, the
authors note that the use of negative lags also applies [and should be used in the
case of endomorphisms (Takens, 2002)].

since ∀i, {yi,(κ
i)

n , ⟨yij,(κ
ij)

n ⟩j} ⊆ ⟨yi,(κ
i)

n ⟩, we arrive at the
following equation:

M∏
i=1

pD
(
Yi
n+1 = Gi

(
yi,(κ

i)
n , ⟨yij,(κ

ij)
n ⟩j

)
| yi,(κ

i)
n , ⟨yij,(κ

ij)
n ⟩j

)
= pD

(
Xn = ΦΦΦ−1

f,ψ

(
⟨yi,(κ

i)
n ⟩

)
|⟨yi,(κ

i)
n ⟩

)
×

M∏
i=1

pD
(
Xi
n+1 = f i(xin, ⟨xijn⟩j) | xin, ⟨xijn⟩j

)
×

M∏
i=1

pD
(
Y i
n+1 = ψi(xin+1)|xin+1

)
. (17)

Rearranging equation (17) gives the equality in equation (15).
Lemma 2 shows that the distributions can be reformulated by

conditioning on delay vectors. The RHS of equation (15) can
be used to perform inference in the 2TBN (7). The numerator
is a product of local CPDs of scalar variables, and can thus be
computed by either counting (for discrete variables) or density
estimation (for continuous variables). The denominator is used
to compute the probability that the hidden state occured, given
an observed delay vector; fortunately, Casdagli et al. (1991) estab-
lished methods to compute this CPDs for a variety of practical
scenarios. Therefore, Lemma 2 provides a method to perform
exact inference. Using this delay vector representation, we arrive
at the following theorem.

Theorem 1. Consider a synchronous GDS
(G, xn, yn, {f

i}, {ψi}), where the graph G is a DAG. Each
subsystem state follows the dynamics xin+1 = f i(xin, ⟨x

ij
n⟩j) and

generates an observation yin+1 = ψi(xin+1); a complete dataset
is given by the sequence of observations D= (y1, y2, . . ., yN).
The log-likelihood of the data given a network structure can be
computed in terms of conditional entropy:

ℓ(Θ̂G : D) = N · H(Xn|⟨Y i,(κi)
n ⟩)

− N ·
M∑
i=1

H(Y i
n+1|Y i,(κi)

n , ⟨Y ij,(κij)
n ⟩j) (18)

Proof. Substituting equation (15) into equation (11) gives the
log-likelihood ℓ(Θ̂G : D) as

N
M∑
i=1

∑
yin+1

∑
yi,(κi)
n

∑
⟨yij,(κij)

n ⟩j

pD(yin+1, yi,(κ
i)

n , ⟨y ij,(κij)
n ⟩j)

× log pD(yin+1|yi,(κ
i)

n , ⟨y ij,(κij)
n ⟩j)

− N
M∑
i=1

∑
xn

∑
⟨yi,(κi)

n ⟩

pD(xn, ⟨yi,(κ
i)

n ⟩)log pD(xn|⟨yi,(κ
i)

n ⟩).

(19)

In equation (19), we have removed arguments of the joint
distributions that will be nullified when multiplied with the CPD.
Expressing equation (19) in terms of conditional entropy [equa-
tion (3)], we arrive at equation (18).
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Theorem 2. The information criterion [equation (10)] for syn-
chronous GDS can be computed as:

g(B : D) = −N ·
M∑
i=1

H(Yi
n+1|Y i,(κi)

n , ⟨Y ij,(κij)
n ⟩j)

− f(N) ·
M∑
i=1

|Y i
n|κ

i
· (|Y i

n| − 1) ·
∏

Vp∈ΠG(V i)

|Yp
n|κ

p

 .

(20)

Proof. The distributions for the first term in equation (18) do not
depend on the parents of a subsystem and thus are independent
of the graphG being considered. Therefore, we have the following
equation for maximum log-likelihood:

max
G
ℓ(Θ̂G : D)= O(N)−N·min

G

M∑
i=1

H(Yi
n+1|Y i,(κi)

n , ⟨Y ij,(κij)
n ⟩j).

(21)
We can now compute the number of parameters needed to

specify the model as (Friedman et al., 1998)

C(G) =
M∑
i=1

|Y i
n|κ

i
·
(
|Y i

n| − 1
)

·
∏

Vp∈ΠG(V i)

|Yp
n|κ

p

 . (22)

Since we are searching for the graph G*=maxG g(B :D), hold-
ingN constant, we can substitute equation (21) and equation (22)
into equation (10) and ignore the constant term O(N) in (21).

5.3. The Log-Likelihood and Information
Transfer
To conclude our study of the scores, we look at the log-likelihood
in the context of information transfer. First, rearranging the terms
of collective transfer entropy [equation (4)], we can rewrite the
log-likelihood function [equation (18)], leading to the following
result.

Proposition 1. The log-likelihood function for the synchronous
GDS [equation (18)] decomposes as follows:

ℓ(Θ̂G : D) = N · H(Xn|⟨Y i,(κi)
n ⟩) − N ·

M∑
i=1

H(Yi
n+1|Y i,(κi)

n )

+ N ·
M∑
i=1

T⟨Yij⟩j→Yi . (23)

Again, the first two terms in equation (23) do not depend
on the proposed graph structure, and thus maximizing log-
likelihood is equivalent to maximizing collective transfer entropy.
This becomes clear when we consider the log-likelihood ratio. This
ratio quantifies the gain in likelihood by modeling the dataD by a
candidate network B instead of the empty network B∅, i.e.,

ℓ(Θ̂G : D) − ℓ(Θ̂G∅ : D) ∝ log p(B|D)
p(B∅|D)

.

Recall that the empty DAG G∅ is one with no parents for
all vertices ∀i,ΠG(V i) = ⟨Y ij,(κij)

n ⟩j = ∅. Substituting this

definition into equation (18) [or, alternatively equation (23)] gives
the following result.

Proposition 2. The ratio of the log-likelihood [equation (18)] of
a candidate DAG G to the empty network G∅ can be expressed as

ℓ(Θ̂G : D) − ℓ(Θ̂G∅ : D) = N ·
M∑
i=1

T⟨Yij⟩j→Yi .

6. DISCUSSION AND FUTURE WORK

We have presented a principled method to score the structure
of non-linear dynamical networks, where dynamical units are
coupled via a DAG. We approached the problem by modeling
the time evolution of a synchronous GDS as a DBN. We then
derived the AIC and BIC scoring functions for the DBN based on
time delay embedding theorems. Finally, we have shown that the
log-likelihood of the synchronous GDS can be interpreted in the
context of information transfer.

The representation of synchronous GDSs as DBNs allows for
inference of coupling in dynamical networks and facilitates tech-
niques for synthesis in these systems. DBNs are an expressive
framework that allows representation of generic systems, as well as
a numerous general purpose inference techniques that can be used
for filtering, prediction, and smoothing (Friedman et al., 1998).
Our representation therefore allows for probabilistic reasoning for
purposes of planning and prediction in complex systems.

Theorem 2 captures an interesting parallel between learning
from complete data and learning non-linear dynamical networks.
If the embedding dimension κ and time delay τ are unity, then
the information criterion becomes identical to learning a DBN
from complete data (Friedman et al., 1998). Thus, our result
could be considered a generalization of typical structure learning
procedures.

The results presented here provoke new insights into the con-
cepts of structure learning, non-linear time series analysis, and
effective network analysis (Sporns et al., 2004; Park and Friston,
2013) based on information transfer (Honey et al., 2007; Lizier
et al., 2011; Cliff et al., 2013, 2016). The information-theoretic
interpretation of the log-likelihood has interesting consequences
in the context of information dynamics and information thermo-
dynamics of non-linear dynamical networks. The transfer entropy
terms in Propositions 1 and 2 show that the optimal structure
of a synchronous GDS is immediately related to the information
processing of distributed computation (Lizier et al., 2008), as well
as the thermodynamic costs of information transfer (Prokopenko
and Lizier, 2014).

In the future, we aim to perform empirical studies to exemplify
the properties of the presented scoring functions. Specifically, the
empirical studies should yield insight into the effect of weak,mod-
erate and strong coupling between dynamical units. An important
concept to consider in stochastic systems is the convergence of the
shadow (reconstructed) manifold to the true manifold (Sugihara
et al., 2012); we have implicitly accounted for this phenomena by
using CPDs in our model, however, it is important to investigate
the property of convergence with different density estimation
techniques. In addition, we are interested in the effect of syn-
chrony in these networks and the relationship to previous results
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for dynamical systems coupled by spanning trees (Wu, 2005). We
conjecture that approach used here will allow us to derive scoring
functions without the assumption of multinomial observations,
and thus afford the use of non-parametric density estimators.
Parametric techniques, such as learning the parameters of dynam-
ical systems (Ghahramani and Roweis, 1999; Hefny et al., 2015),
could be considered in place of the posterior approximations.

Finally, the reconstruction theorems used in this paper typ-
ically make the assumption that the map (or flow) is a diffeo-
morphism (invertible in time). Thus, given any state, the past
and future are uniquely determined and the time delay τ can be
taken positive or negative. In certain cases, however, the time-
reversed system is acausal, giving a map that is not time-invertible
(an endomorphism). Ideally, we would aim to have methods to
infer coupling for both endomorphisms and diffeomorphisms.
Takens (2002) showed that if themap is an endomorphism, taking
the delay vector of temporally previous observations forms an
embedding. The generalized theorems in Stark (1999), Stark et al.
(2003), and Deyle and Sugihara (2011), however, were established
for diffeomorphisms, rather than endomorphisms; we can only
conjecture that taking a delay of past observations (as we have

done throughout this paper) follows for these results. Empirical
studies using the measures presented in this paper would indicate
whether it is an important line of inquiry to prove the generalized
reconstruction theorems for endomorphisms.
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