'.\' frontiers

In Robotics and Al

ORIGINAL RESEARCH
published: 30 January 2017
doi: 10.3389/frobt.2016.00081

OPEN ACCESS

Edited by:
Christof Teuscher,
Portland State University, USA

Reviewed by:

Ashley Prater,

United States Air Force
Research Laboratory, USA
Subutai Ahmad,

Numenta Inc., USA

*Correspondence:
James Mnatzaganian
Jamesmnatzaganian@outlook.com

Specialty section:

This article was submitted to
Computational Intelligence, a section
of the journal Frontiers in Robotics
and Al

Received: 08 September 2016
Accepted: 26 December 2016
Published: 30 January 2017

Citation:

Mnatzaganian J, Fokoué E and
Kudithipudi D (2017) A Mathematical
Formalization of Hierarchical Temporal
Memory’s Spatial Pooler.

Front. Robot. Al 3:81.

doi: 10.3389/frobt.2016.00081

®

Check for
updates

A Mathematical Formalization of
Hierarchical Temporal Memory’s
Spatial Pooler

James Mnatzaganian'”, Ernest Fokoué? and Dhireesha Kudithipudi’

" NanoComputing Research Laboratory, Computer Engineering Department, Kate Gleason College of Engineering, Rochester
Institute of Technology, Rochester, N, USA, Data Science Research Group, School of Mathematical Sciences, College of
Science, Rochester Institute of Technology, Rochester, NY, USA

Hierarchical temporal memory (HTM) is an emerging machine learning algorithm, with
the potential to provide a means to perform predictions on spatiotemporal data. The
algorithm, inspired by the neocortex, currently does not have a comprehensive math-
ematical framework. This work brings together all aspects of the spatial pooler (SP),
a critical learning component in HTM, under a single unifying framework. The primary
learning mechanism is explored, where a maximum likelihood estimator for determining
the degree of permanence update is proposed. The boosting mechanisms are studied
and found to be a secondary learning mechanism. The SP is demonstrated in both spatial
and categorical multi-class classification, where the SP is found to perform exceptionally
well on categorical data. Observations are made relating HTM to well-known algorithms
such as competitive learning and attribute bagging. Methods are provided for using the
SP for classification as well as dimensionality reduction. Empirical evidence verifies that
given the proper parameterizations, the SP may be used for feature learning.

Keywords: hierarchical temporal memory, spatial pooler, machine learning, neural networks, self-organizing
feature maps, unsupervised learning

1. INTRODUCTION

Hierarchical temporal memory (HTM), created by Hawkins and George (2007), is a machine
learning algorithm that was inspired by the neocortex and designed to learn sequences and make
predictions. In its idealized form, it should be able to produce generalized representations for similar
inputs. Given time-series data, HTM should be able to use its learned representations to perform
a type of time-dependent regression. Such a system would prove to be incredibly useful in many
applications utilizing spatiotemporal data. One instance for using HTM with time-series data was
recently demonstrated by Cui et al. (2016), where HTM was used to predict taxi passenger counts.
Lavin and Ahmad (2015), additionally, used HTM for anomaly detection. HTM’s prominence in
the machine learning community has been hampered, largely due to the evolving nature of HTM’s
algorithmic definition and the lack of a formalized mathematical model. This work aims to bridge
the gap between a neuroscience inspired algorithm and a math-based algorithm by constructing a
purely mathematical framework around HTM’s original algorithmic definition.

HTM models at a high-level, some of the structures and functionality of the neocortex. Its
structure follows that of the cortical minicolumns, where an HTM region is comprised of many
columns, each consisting of multiple cells. One or more regions form a level. Levels are stacked
hierarchically in a tree-like structure to form the full network depicted in Figure 1. Within HTM,

Frontiers in Robotics and Al | www.frontiersin.org 1

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2016.00081
https://creativecommons.org/licenses/by/4.0/
mailto:jamesmnatzaganian@outlook.com
https://doi.org/10.3389/frobt.2016.00081
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00081&domain=pdf&date_stamp=2017-01-30
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00081/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00081/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00081/abstract
http://loop.frontiersin.org/people/373983
http://loop.frontiersin.org/people/336841
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

U\

[WRNY

(i

—
Cell Column

===

Level

FIGURE 1 | Depiction of HTM, showing the various levels of detail.

connections are made via synapses, where both proximal and
distal synapses are utilized to form feedforward and neighboring
connections, respectively.

The current version of HTM is the successor to HTM cortical
learning algorithm (Hawkins et al., 2011). In the current version
of HTM, the two primary algorithms are the spatial pooler (SP)
and the temporal memory (TM). The SP is responsible for taking
an input, in the format of a sparse distributed representation
(SDR), and producing a new SDR, where an SDR is a binary
vector typically having a sparse number of active bits, i.e., a bit
with a value of “1” (Ahmad and Hawkins, 2015). In this manner,
the SP can be viewed as a mapping function from the input
domain to a new feature domain. In the feature domain, a single
SDR should be used to represent similar SDRs from the input
domain. The algorithm is a type of unsupervised competitive
learning algorithm (Rumelhart and Zipser, 1985) that uses a
form of vector quantization (Gersho and Gray, 2012) resembling
self-organizing maps (Kohonen, 1982). The TM is responsible
for learning sequences and making predictions. This algorithm
follows Hebb’s rule (Hebb, 1949), where connections are formed
between cells that were previously active. Through the formation
of those connections, a sequence may be learned. The TM can then
use its learned knowledge of the sequences to form predictions.

HTM originated as an abstraction of the neocortex; as such,
it does not have an explicit mathematical formulation. Without
a mathematical framework, it is difficult to understand the key
characteristics of the algorithm and how it can be improved. In
general, very little work exists regarding the mathematics behind
HTM. Hawkins and Ahmad (2016) recently provided a start-
ing mathematical formulation for the TM. Ahmad and Hawkins
(2015) additionally provided some initial formalizations for the
SP. Lattner (2014) provided an initial insight about the SP, by
relating it to vector quantization. He additionally provided some
equations governing computing overlap and performing learning;
however, those equations were not generalized to account for local
inhibition. Byrne (2015) began the use of matrix notation and
provided a basis for those equations; however, certain components
of the algorithm, such as boosting, were not included. Leake
etal. (2015) provided some insights regarding the initialization of

the SP. He also provided further insights into how the initialization
may affect the initial calculations within the network; however,
his focus was largely on the network initialization. The goal of
this work is to provide a complete mathematical framework for
HTM’s SP and to demonstrate how it may be used in various
machine learning tasks. Having a mathematical framework cre-
ates a basis for future algorithmic improvements, allows for a
more efficient software implementation, and eases the path for
hardware engineers to develop scalable HTM hardware.

The major, novel contributions provided by this work are as
follows:

e Creation of a complete mathematical framework for the SP,
including boosting and local inhibition.

e Using the SP to perform feature learning.

e Using the SP as a preprocessor for non-spatial (categorical)
data.

o Creation of a possible mathematical explanation for the perma-
nence update amount.

o Insights into the permanence selection.

2. SPATIAL POOLER ALGORITHM

The SP consists of three phases, namely overlap, inhibition, and
learning. In this section, the three phases will be presented based
off their original, algorithmic definition. This algorithm follows
an iterative, online approach, where the learning updates occur
after the presentation of each input. Before the execution of the
algorithm, some initializations must take place.

Within an SP, there exist many columns. Each column has a
unique set of proximal synapses connected via a proximal dendrite
segment. Each proximal synapse tentatively connects to a single
column from the input, i.e., each column in the SP connects to
a specific attribute within the input. The input column’s activity
level is used as the synaptic input, i.e., an active column is a “1”
and an inactive column is a “0”.

To determine whether a synapse is connected or not, the
synapse’s permanence value is checked. If the permanence value is
at least equal to the connected threshold the synapse is connected;
otherwise, it is unconnected. The permanence values are scalars
in the closed interval [0, 1].

Prior to the first execution of the algorithm, the potential
connections of proximal synapses to the input space and the initial
permanence values must be determined. Following Hawkins et al.
(2011), each synapse is randomly connected to a unique attribute
in the input, ie., the number of synapses per column and the
number of attributes are binomial coefficients. The permanences
of the synapses are then randomly initialized to a value close
to the connected permanence threshold. The permanences are
then adjusted such that shorter distances between the SP column’s
position and the input column’s position will result in larger initial
permanence values. The three phases of the SP are explained in the
following subsections.

2.1. Phase 1: Overlap

The first phase of the SP is used to compute the overlap between
each column and its respective input, as shown in Algorithm 1.
In Algorithm 1, the SP is represented by the object sp. The

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

ALGORITHM 1 | SP phase 1: overlap.

ALGORITHM 3 | SP phase 3: learning.

1: for all col € sp.columns do

2 col.overlap «— 0

3 for all syn € col.connected_synapses() do
4 col.overlap < col.overlap + syn.active()
5: if col.overlap < pseg_th then

6 col.overlap < 0O

7 else

8 col.overlap < col.overlap * col.boost

ALGORITHM 2| SP phase 2: inhibition.

1: for all col € sp.columns do
2 mo «+ kmax_overlap(sp.neighbors(col), k)
3 if col.overlap > 0 and col.overlap > mo then
4: col.active «— 1
5 else

6 col.active — 0

method col.connected_synapses() returns an instance to each
synapse on col’s proximal segment that is connected, i.e., synapses
having permanence values greater than the permanence con-
nected threshold, psyn_th. The method syn.active() returns “1”
if syn’s input is active and “0” otherwise. pseg_th' is a parameter
that determines the activation threshold of a proximal segment,
such that there must be at least pseg th active connected prox-
imal synapses on a given proximal segment for it to become
active. The parameter col.boost is the boost value for col, which is
initialized to “1”.

2.2. Phase 2: Inhibition

The second phase of the SP is used to compute the set of
active columns after they have been inhibited, as shown in
Algorithm 2. In Algorithm 2, kmax_overlap(C, k) is a function
that returns the k-th largest overlap of the columns in C. The
method sp.neighbors(col) returns the columns that are within col’s
neighborhood, including col, where the size of the neighborhood
is determined by the inhibition radius. The parameter k is the
desired column activity level. In line 2 in Algorithm 2, the k-th
largest overlap value out of col’s neighborhood is being computed.
A column is then said to be active if its overlap value is greater
than zero and the computed minimum overlap, mo.

2.3. Phase 3: Learning

The third phase of the SP is used to conduct the learning opera-
tions, as shown in Algorithm 3. This code contains three parts —
permanence adaptation, boosting operations, and the inhibition
radius update. In Algorithm 3, syn.p refers to the permanence
value of syn. The functions min and max return the minimum and
maximum values of their arguments, respectively, and are used
to keep the permanence values bounded in the closed interval
[0, 1]. The constants syn.psyn_inc and syn.psyn_dec are the prox-
imal synapse permanence increment and decrement amounts,
respectively.

!This parameter was originally referred to as the minimum overlap; however, it is
renamed in this work to allow consistency between the SP and the TM.

Adapt permanences

1: for all col € sp.columnns do
2 if col.active then

3 for all syn € col.synapses do
4: if syn.active() then
5: syn.p < min (1, syn.p + syn.psyn_inc)
6 else

7 syn.p «— max (0, syn.p — syn.psyn_dec)

Perform boosting operations
8: for all col € sp.columns do
9: col.mdc « 0.01 x max_adc(sp.neighbors(col))
10: col.update_active_duty_cycle()
11: col.update_boost()

12 col.update_overlap_duty_cycle()

13: if col.odc < col.mdc then

14: for all syn € col.synapses do

15: syn.p < min(1; syn.p + 0.1 x psyn_th)

16: sp.update_inhibition_radius()

ALGORITHM 4 | Boost update: col.update_boost().

1:if col.mdc == 0O then

2: col.boost < maxb

3: else if col.adc > col.mdc then

4: col.boost «— 1

5: else

6: col.boost = col.adc * ((1—maxb)/col.mdc) + maxb

The function max_adc(C) returns the maximum active duty
cycle of the columns in C, where the active duty cycle is a
moving average denoting the frequency of column activation.
Similarly, the overlap duty cycle is a moving average denoting
the frequency of the columns overlap value being at least
equal to the proximal segment activation threshold. The functions
col.update_active_duty_cycle() and colupdate_overlap_duty_
cycle() are used to update the active and overlap duty cycles,
respectively, by computing the new moving averages. The
parameters col.odc, col.adc, and col.mdc refer to col’s overlap duty
cycle, active duty cycle, and minimum duty cycle, respectively.
Those duty cycles are used to ensure that columns have a certain
degree of activation.

The method col.update_boost() is used to update the boost
for column, col, as shown in Algorithm 4, where maxb refers
to the maximum boost value. It is important to note that the
whitepaper did not explicitly define how the boost should be
computed. This boost function was obtained from the source code
of Numenta’s implementation of HTM, Numenta platform for
intelligent computing (NuPIC) (Numenta, 2016).

The method sp.update_inhibition_radius() is used to update
the inhibition radius. The inhibition radius is set to the
average receptive field size, which is average distance between
all connected synapses and their respective columns in the input
and the SP.

3. MATHEMATICAL FORMALIZATION

The aforementioned operation of the SP lends itself to a vectorized
notation. By redefining the operations to work with vectors it
is possible not only to create a mathematical representation but

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

also to greatly improve upon the efficiency of the operations. The
notation described in this section will be used as the notation for
the remainder of the document.

All vectors will be lowercase, bold-faced letters with an arrow
hat. Vectors are assumed to be row vectors, such that the trans-
pose of the vector will produce a column vector. All matrices
will be uppercase, bold-faced letters. Subscripts on vectors and
matrices are used to denote where elements are being indexed,
following a row—column convention, such that X;; € X refers to
X at row index’ i and column index j. Similarly, X; is a row
vector containing all elements in row i. The symbols ©® and @
are used to represent element-wise multiplication and addition,
respectively. Element-wise operations between a vector and a
matrix are performed columnwise, such that ¥ OY =% Y, ;ViVij.

Let I(k) be defined as the indicator function, such that the
function will return 1 if event k is true and 0 otherwise. If the input
to this function is a vector of events or a matrix of events, each
event will be evaluated independently, with the function returning
a vector or matrix of the same size as its input. Any variable with
a superscript in parentheses is used to denote the type of that
variable. For example, X is used to state that the variable X is
of type y. In the event that an operation has a before and after the
states will be denoted using superscripts, such that % and)
will represent the initial and final versions of x, respectively.

All of the user-defined parameters are defined in Table 1.°
These are parameters that must be defined before the initialization
of the algorithm. All of those parameters are constants. Let the
terms s, a, i, j, and k be defined as integer indices. They are
henceforth bounded as follows: s € [0, 1), a € [0, n,), i € [0, nc),
j €10, nc], and k € [0, nys).

3.1. Initialization

Competitive learning networks typically have each node fully
connected to each attribute in the input. The SP follows a different
line of logic, posing a new problem concerning the visibility of

2 All indices start at 0.
3The parameters +, and ;, have default values of 0.01 and 0.1, respectively.

TABLE 1 | User-defined parameters for the SP.

Parameter Domain Description

nNs {ns €N} Number of inputs/samples

Na {na € N5} Number of attributes in a input

Ne {nc € Ns.0} Number of columns

Nps {nps €N | 0 <nps <ng) Number of proximal synapses per
column

b+ ¢+ €[0,1] Permanence increment amount

o ¢_ €[0,1] Permanence decrement amount

s {ps €0,1)| p5s < ps A Window of permanence initialization

¢s <1— Ps}

Pd {ps €N |0 < pg <nps} Proximal dendrite segment
activation threshold

Ps ps €(0,1) Proximal synapse activation
threshold

pe {pc €N|0< pec <nc} Desired column activity level

Ka kg €(0,1] Minimum activity level scaling factor

Kb rp €(0,1] Permanence boosting scaling factor

Bo Bo € [1,Mps] Maximum boost

T {reN|0<T<ng} Duty cycle period

an input. As previously explained, the subset of input attributes
that connect to a particular column are determined randomly. Let
¢ € {0,1,...,n — 1}'*™ be defined as the set of all columns
indices, such that ¢; is the column’s index at i. Let U € {0, 1}"*"
be defined as the set of attributes for all inputs, such that Uy, is the
attribute for input s at index a. Let A € {0,1,...,n, — 1}"*"™
be the source column indices for each proximal synapse on each
column, such that A; x is the source column’s index of ¢;’s proximal
synapse at index k. In other words, each A; ; refers to a specific
index in Us.

Let ac € {0,1}'*" be defined as vector of events, such that
ac, = Jla € A, Va. Therefore, ac, is the event of attribute a
connecting to column g, where 3! is defined to be the uniqueness
quantification. The probability of a single attribute, Us,q, connect-
ing to a column is the ratio of #1ps and n,, as shown in equation (1).

P(ata) = (1)

It is also desired to know the average number of columns an
RN

attribute will connect with. To calculate this, let A € {0,1,...,
fe + nps}' ™ be defined as a vector of random quantities, such

that A, = Y1t Z";El I(a = A;). Therefore, A, is the
count of connections between each attribute and all columns.
Recognizing that the probability of a connection forming in #n.
follows a binomial distribution, the expected number of columns

that an attribute will connect to is simply equation (2).
E[X] = nep(ac,) 2)

Using equation (1), it is possible to calculate the probability of
an attribute never connecting, as shown in equation (3). Since the
probabilities are independent, it simply reduces to the product of
the probability of an attribute not connecting to a column, taken
over all columns. Let X' = Y7 'I(A, = 0), the random
variable governing the number of unconnected attributes. From
equation (3), the expected number of unobserved attributes may
then be trivially obtained as equation (4). Using equations (3)
and (2), it is possible to obtain a lower bound for n. and #ps,
by choosing those parameters such that a certain amount of
attribute visibility is obtained. To ensure, with high probabil-
ity, the observance of all attributes, equation (3) must be suffi-
ciently close to zero. This is obtained by fully connecting the SP
columns to the input columns or by having a sufficiently large
number of columns. Once that is satisfied, the desired number
of times an attribute is observed may be determined by using
equation (2).

P (Xu - 0) — (1 — P(aca))" 3)
E[N] = naP (Ka = 0) (4)

Once each column has its set of inputs, the permanences must
be initialized. As previously stated, permanences were defined
to be initialized with a random value close to ps but biased

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

based off the distance between the synapse’s source (input col-
umn) and destination (SP column). To obtain further clarifica-
tion, NuPIC’s source code (Numenta, 2016) was consulted. It
was found that the permanences were randomly initialized, with
approximately half of the permanences creating connected proxi-
mal synapses and the remaining permanences creating potential
(unconnected) proximal synapses. Additionally, to ensure that
each column has a fair chance of being selected during inhibi-
tion, there are at least p; connected proximal synapses on each
column.

Let & € R" " be defined as the set of permanences for each
column, such that ®; is the set of permanences for the proximal
synapses for ¢;. Let max(v) be defined as a function that will
return the maximum value in v. Similarly, let min(v) be defined
as a function that will return the minimum value in v. Each ®; ;
is randomly initialized as shown in equation (5), where Unif rep-
resents the uniform distribution. Using equation (5), the expected
permanence value is p; therefore, half of the proximal synapses
connected to each column will be initialized in the connected
state. This means that p; should be chosen such that pg <#/2
to sufficiently ensure that each column will have a greater than
zero probability for becoming active. Additionally, the columns’
inputs must also be taken into consideration, such that p; should
be chosen to be small enough to take into consideration the
sparseness in the input.

P~ Unif(Ps — ¢s, ps + ¢5) (5)

It is possible to predict, before training, the initial response
of the SP to a given input. This insight allows parameters to be
crafted in a manner that ensures a desired amount of column
activity. Let X € {0,1}"*" be defined as the set of inputs for
each column, such that X; is the set of inputs for ¢;. Each X; is
mapped to a specific Usg, such that X; C Uy when nys # n, and
Xi C U, otherwise. Let A € {0,1}" " be defined as a matrix
of events, such that A;; = X;; = 1. A;j is therefore the event that
the attribute connected via proximal synapse k to column i is
active. Let P(A; x) be defined as the probability of the attribute
connected via proximal synapse k to column i being active. There-
fore, P(3A; x € Aj) is defined to be the probability of any proximal
synapse connected to column i being active. Similarly, P(3A; x €
A) is defined to be the probability of any proximal synapse on any
column being active. The relationship between these probabilities
is given in equations (6) and (7).

P(3A;x € A)=1—(1—P(A;)™ (6)
P(HAir€A)=1—(1—-PEAix € Ai))™ (7)

Letas € {0, 1,..., 1y} " be defined as a vector of random
quantities, such that as; = > " EIX,»,k. Therefore, as; is the

number of active proximal synapses on column i. The expected
number of active proximal synapses on column i is then given by
equation (8). Letas = n% Z?;El :"; 51 X, 1> the random variable
governing the average number of active proximal synapses on

a column. Equation (8) is then generalized to equation (9), the

expected number of active proximal synapses for each column. If
Elas] < pa, it is very unlikely that there will be enough active
proximal synapses on a given column for that column to become
active. This could result in an insufficient level of column activa-
tions, thereby degrading the quality of the SP’s produced output.
Therefore, it is recommended to select p; as a function of the
sparseness of the input, such that p; < E[as]. Reducing p,; will
increase the level of competition among columns; however, it
will also increase the probability of including noisy columns, i.e.,
columns whose synapses’ inputs are connected to attributes within
the input that collectively provide little contextual meaning.

E[ﬁ,] = }’IPSIP)(EX,'J(e X; | X,—7k = 1) (8)
Elas] = npP(3X;x € X | Xjp = 1) 9)

Let AC € {0,1}"" be defined as a matrix of events, such
that AC; = A; NI(P; x > ps). Therefore, AC; i is the event that
proximal synapse k is active and connected on column i. Let ac €
{0,1,...,mp}'*" be defined as a vector of random quantities,
such that a¢; = Z": El AC; k. Therefore, ac; is the count of active
and connected proximal synapses for column i. Let P(AC; x =
1) = P(A;)ps, the probability that a proximal synapse is active
and connected.* Following equation (8), the expected number
of active connected proximal synapses on column i is given by
equation (10).

nps—1

Elaé] = Y P(ACix =1)
k=0

(10)

Let Bin(k; n, p) be defined as the probability mass function
(PMF) of a binomial distribution, where k is the number of
successes, 1 is the number of trials, and p is the success probability
in each trial. Let at = S0 1((Z";gl Xi k) > pd), the random
variable governing the number of columns having at least p, active
proximal synapses. Let act = Y 1! I((ZZ”;E1 AC;x) > pq), the
random variable governing the number of columns having at least
P4 active connected proximal synapses. Let 7, and 7, be defined
as random variables that are equal to the overall mean of P(A)
and P(AC), respectively. The expected number of columns with
at least py active proximal synapses and the expected number of
columns with at least p,; active connected proximal synapses are
then given by equations (11) and (12), respectively.

In equation (11), the summation computes the probability of
having less than p,; active connected proximal synapses, where
the individual probabilities within the summation follow the PMF
of a binomial distribution. To obtain the desired probability, the
complement of that probability is taken. It is then clear that the
mean is nothing more than that probability multiplied by n.. For
equation (12), the logic is similar, with the key difference being

*ps was used as a probability. Because p; € R, p; € (0, 1), permanences are
uniformly initialized with a mean of p,, and for a proximal synapse to be connected
it must have a permanence value at least equal to p;, p; may be used to represent
the probability that an initialized proximal synapse is connected.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

that the probability of a success is a function of both X and ps, as
it was in equation (10).

pa—1

Elat] = [1 - Z Bin(#; I’lps,ﬂ'x):| (11)
pa—1

Elact] = n. |[1— > Bin(t; nps,m)} (12)
t=0

3.2. Phase 1: Overlap

Letb € R X" be defined as the set of boost values for all
columns, such that b; is the boost for ¢;. Let Y = I(®; > ps)Vi,
the bit-mask for the proximal synapse’s activations. Therefore, Y;
is a row-vector bit-mask, with each “1” representing a connected
synapse and each “0” representing an unconnected synapse. In
this manner, the connectivity (or lack thereof) for each synapse
on each column is obtained. The overlap for all columns, & €
R>0 XMe is. defined by equation (13), which is a function of & €
Nso! X" & is the sum of the active connected proximal synapses
for all columns and is defined by equation (14).

Comparing these equations with Algorithm 1, it is clear that &
will have the same value as col.overlap before line five and that the
final value of col.overlap will be equal to &. To help provide further
understanding, a simple example demonstrating the functionality
of this phase is shown in Figure 2.

. (ab &>

a= % =Py, (13)
0 otherwise

&= XY, (14)

3.3. Phase 2: Inhibition

Let H € {0, 1}"*"™ be defined as the neighborhood mask for all
columns, such that H; is the neighborhood for ¢;. ¢; is then said
to be in ¢/’s neighborhood if and only if Hj; is “1”. Let kmax(S,
k) be defined as the k-th largest element of S. The set of active
columns, ¢ € {0,1}'*"™, is defined by equation (15), such that
¢ is an indicator vector representing the activation (or lack of
activation) for each column. The result of the indicator function

@ Example column = Connected synapse
[l Example column's input === Unconnected synapse

={011322125462}

FIGURE 2 | SP phase 1 example where nc =12, n,s =5, and pg =2. It
was assumed that the boost for all columns is at the initial value of “1”. For
simplicity, only the connections for the example column, highlighted in gray,
are shown. The example column’s overlap is two since it has exactly two
active and connected synapses.

is determined by &% € N'*", which is defined by equation
(16) as the p.-th largest overlap (lower bounded by one) in the
neighborhood of ¢; Vi.

Comparing these equations with Algorithm 2, 7 is a slightly
altered version of mo. Instead of just being the p.-th largest
overlap for each column, it is additionally lower bounded by one.
Referring back to Algorithm 2, line 3 is a biconditional statement
evaluating to true if the overlap is at least mo and greater than
zero. By simply enforcing mo to be at least one, the biconditional
is reduced to a single condition. That condition is evaluated
within the indicator function; therefore, equation (15) carries out
the logic in the if statement in Algorithm 2. Continuing with
the demonstration shown in Figures 2 and 3 shows an example
execution of phase two.

=I(a; > 5,) Vi

¢ (15)
7 = max(kmax(H; © &, p.),

1) Vi (16)

3.4. Phase 3: Learning

Let clip(M, Ib, ub) be defined as a function that will clip all values
in the matrix M outside of the range [Ib, ub] to Ib if the value
is less than Ib, or to ub if the value is greater than ub. ® is then
recalculated by equation (17), where d ® is the proximal synapse’s
permanence update amount given by equation (18).”

3" = dip (4}“) © 68,0, 1) (17)

58 =0 © (p4X — (9 X)) (18)

The result of these two equations is equivalent to the result
of executing the first seven lines in Algorithm 3. If a column
is active, it will be denoted as such in ¢; therefore, using that
vector as a mask, the result of equation (18) will be a zero if the

*Due to X being binary, a bitwise negation is equivalent to the shown logical
negation. In a similar manner, the multiplications of ¢" with X and —X can be
replaced by an AND operation (logical or bitwise).

@ Example column [J] Neighbor column

{000111001010}

e mim-
-

FIGURE 3 | SP phase 2 example where p. = 2 and the inhibition radius
has a size of two. The overlap values were determined from the SP phase 1
example. The ellipse represents the inhibition radius, extending two units in all
directions from the example column. The example column is active, because
it has an overlap value of two which is at least as large as the pc-th largest
overlap value. It is noted that in this example, within the example column’s
inhibition radius, more than p. columns are active. This situation is valid and
occurs when neighboring columns have overlap values that are large enough
and close to the example column.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

column is inactive, otherwise it will be the update amount. From
Algorithm 3, the update amount should be ¢ if the synapse
was active and ¢_ if the synapse was inactive. A synapse is active
only if its source column is active. That activation is determined
by the corresponding value in X. In this manner, X is also being
used as a mask, such that active synapses will result in the update
equaling ¢+ and inactive synapses (selected by inverting X) will
result in the update equaling ¢_. By clipping the element-wise
sum of ® and d P, the permanences stay bounded between [0, 1].
As with the previous two phases, the visual demonstration is con-
tinued, with Figure 4 illustrating the primary functionality of this
phase.

Let n® ¢ R>o' "™ be defined as the set of active duty cycles

for all columns, such that 'r/l-(“) is the active duty cycle for ¢;. Let

(min)
i

S R>01X”L‘ be defined by equation (19) as the set of

minimum active duty cycles for all columns, such that 77(""") is

the minimum active duty cycle for ¢;. This equation is clearly the
same as line 9 in Algorithm 3.

[

7" = ki, max (Hi ® 17(“)> Vi (19)

Let update_active_duty_cycle(c) be defined as a function that
updates the moving average duty cycle for the active duty cycle
for each ¢; € ¢. That function should compute the frequency of
each column’s activation. After calling update_active_duty_cycle
(¢), the boost for ea@lumn is updated by using equation (20).

(min)

In Equation (20), 5('n,-(, 7;) is defined as the boost function,
following equation (21).° The functionality of equation (20) is
therefore shown to be equivalent to Algorithm 4.

b=p (nf 2 77,(""")) Vi (20)
50 "7,'(min) -0
B (n,»(“) 7 nf’”i")) ={1 0 > 0" (21

77;(“) 1=b 4 By otherwise
(min)

®The conditions within the piecewise function must be evaluated top-down, such
that the first condition takes precedence over the second condition which takes
precedence over the third condition.

| =.=Increment permanence == Decrement permanence |

= (o[l [@lzfz]o]o [&]o[Elo]}

I&'"llunun,,
g,

2T OO T 1010/ 77

FIGURE 4 | SP phase 3 example, demonstrating the adaptation of the
permanences. The gray columns are used to denote the active columns,
where those activations were determined from the SP phase 2 example.
Permanences are adapted based off the synaptic input for all active columns.
If the synaptic input is active, the permanence is incremented otherwise it is
decremented.

—

Let n® € Ry ™ be defined as the set of overlap duty cycles

for all columns, such that 'r/(o) is the overlap duty cycle for c;.
Let update_overlap_duty_cycle(c) be defined as a function that
updates the moving average duty cycle for the overlap duty cycle
for each ¢; € ¢. That function should compute the frequency of
each column’s overlap being at least equal to p4. After applying
update_overlap_duty_cycle(c), the permanences are then boosted
by using equation (22). This equation is equivalent to lines 13-15
in Algorithm 3, where the multiplication with the indicator func-
tion is used to accomplish the conditional and clipping is done to
ensure the permanences stay within bounds.

&0 = clip (@U) & Kppsl (() < n(mm)) ,0, 1> (22)

Let d(x, y) be defined as the distance function’ that computes
the distance between x and y. To simplify the notation,® let
pos(c, r) be defined as a function that will return the position
of the column indexed at c¢ located r regions away from the
current region. For example, pos(0, 0) returns the position of
the first column located in the SP and pos(0, —1) returns the
position of the first column located in the previous region. The
distance between pos(¢i, 0) and pos(A; x, —1) is then determined
by d(pOS(a‘,O),pOS(iks ™ 1))

Let D € Rs¢"™ " be defined as the distance between an
SP column and its corresponding connected synapses source
columns, such that D; i is the distance between ¢; and ¢;’s proximal
synapse’s input at index k. D is defined by equation (23), where
Y; is used as a mask to ensure that only connected synapses
may contribute to the distance calculation. The result of that
element-wise multiplication would be the distance between the
two columns or zero for connected and unconnected synapses,
respectively.’

D = (d(pos(ci, 0), pos(A;x, —1)) © Y, Vk) Vi (23)

The inhibition radius, oy, is defined by equation (24). The
division in equation (24) is the sum of the distances divided by
the number of connected synapses.'” That division represents
the average distance between connected synapses’ source and
destination columns and is therefore the average receptive field
size. The inhibition radius is then set to the average receptive field
size after it has been floored and raised to a minimum value of
one, ensuring that the radius is an integer at least equal to one.
Comparing equation (24) to line 16 in Algorithm 3, the two are
equivalent.

n.—1 Nps —

'p.

0o = max | 1, Z lk 0 ik
max(1,> 1

J) @
Yix)

"The distance function is typically the Euclidean distance.

81n an actual system the positions would be explicitly defined.

°It is assumed that an SP column and an input column do not coincide, i.e.,
their distance is greater than zero. If this occurs, D will be unstable, as zeros will
refer to both valid and invalid distances. This instability is accounted for during
the computation of the inhibition radius, such that it will not impact the actual
algorithm.

""The summation of the connected synapses is lower bounded by one to avoid
division by zero.

fps—1
k=0

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

Two types of inhibition exist, namely global and local inhibi-
tion. With global inhibition, the neighborhood is taken to be all
columns in the SP, i.e., every value in H would be set to one regard-
less of the system’s topology. With local inhibition, the neighbor-
hood is determined by the inhibition radius. Using the desired
inhibition type, the neighborhood for each column is updated.
This is done using the function h(?,‘), which is dependent upon
the type of inhibition as well as the topology of the system. This
function is shown in equation (25), where ¢ represents all of
the columns located at the set of integer Cartesian coordinates
bounded by an n-dimensional shape. Typically the #n-dimensional
shape is a represented by an n-dimensional hypercube. Note that
if global inhibition is used, additional optimizations of equations
(16) and (19) may be made, and the need for equations (24) and
(25) is eliminated. For simplicity, only the generalized forms of
the equations, supporting both global and local inhibition, were
shown.

h(g) = i global inhibition

25
¢ local inhibition (25)

4. BOOSTING

It is important to understand the dynamics of boosting utilized
by the SP. The SP’s boosting mechanism is similar to DeSieno
(1988) conscience mechanism. In that work, clusters that were too
frequently active were penalized, allowing weak clusters to con-
tribute to learning. The SP’s primary boosting mechanism takes
the reverse approach by rewarding infrequently active columns.
Clearly, the boosting frequency and amount will impact the SP’s
learned representations.

The degree of activation is determined by the boost function,
equation (21). From that equation, it is clear that a column’s boost
is determined by the column’s minimum active duty cycle as well
as the column’s active duty cycle. Those two values are coupled,
as a column’s minimum active duty cycle is a function of its duty
cycle, as shown in equation (19). To study how those two parame-
ters affect a column’s boost, Figure 5 was created. From this plot,
it is found that the non-boundary conditions for a column’s boost

follow the shape 1/ 'r/i(mi"). It additionally shows the importance
of evaluating the piecewise boost function in order. If the second
condition is evaluated before the first condition, the boost will be
set to its minimum, instead of its maximum value.

To study the frequency of boosting, the average number of
boosted columns was observed by varying the level of sparseness
in the input for both types of inhibition, as shown in Figure 6."'

"To obtain Figure 6, the average number of boosted columns during each epoch
is computed. The average, across all of those epochs, is then calculated. That
average represents the percentage of columns boosted for a particular level of
sparsity. It is important to note that because the SP’s synaptic connections are
randomly determined, the only dataset specific factors that will affect how the SP
performs will be n, and the number of active input columns. This means that
it is possible to generalize the SP’s behavior for any dataset, provided that the
dataset has a relatively constant number of active columns for each input. For the
purposes of this experiment, the number of active input columns was kept fixed,
but the positions were varied; thereby creating a generalizable template. The inputs
presented to the SP consisted of 100 randomly vectors with a width of 100 columns.
Within each input, the columns were randomly set to be active. The sparseness
is then the percentage of non-active input columns. Each simulation consisted of

. o4 02 00

.6
G708 o oa
' Active Duty Ccycle .

FIGURE 5 | Demonstration of boost as a function of a column’s
minimum active duty cycle and active duty cycle.

Global Inhibition
45 . . . : T T

a5 . . . LoFal Inlhibitilon . . .

% Columns Boosted

%10

20 30 40 50 60
Sparsity [%]

70 80 90 100

[H Overlap Boosting ¥+ Permanence Boosting

FIGURE 6 | Demonstration of frequency of both boosting mechanisms
as a function of the sparseness of the input. The top figure shows the
results for global inhibition and the bottom figure shows the resullts for local
inhibition.

For the overlap boosting mechanism, equation (20), very little
boosting occurs, with boosting occurring more frequently for
denser inputs. This is to be expected, as more input columns would
be active; thus, causing more competition to occur among the SP’s
columns.

10 epochs and was performed across 10 trials. The SP’s parameters are as follows:
e = 2048, 11, = 100, s = 40, pg = 15, ps = 0.5, b = 0.05, p, = [0.02% 11, |, ¢, =0.03,
¢_ =0.05, By =10, and 7 = 100. Synapses were trimmed if their permanence value
ever reached or fell below 10™*. On the figure, each point represents a partial box
plot, i.e., the data point is the median, the upper error bar is the third quartile, and
the lower error bar is the first quartile.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

For the permanence boosting mechanism, equation (22),
boosting primarily occurs when the sparsity is between 70 and
76%, with almost no boosting occurring outside of that range.
That boosting is a result of the SP’s parameters. In this experiment,
nps =40 and py = 15. Based off those parameters, there must be
at least 25 active connected proximal synapses on a column for
it have a non-zero overlap; i.e., if the sparsity is 75%, a column
would have to be connected to each active column in the input to
obtain a non-zero overlap. As such, if the sparsity is greater than
75%, it will not be possible for the SP’s columns to have a non-zero
overlap, resulting in no boosting. For lower amounts of sparsity,
boosting was not needed, since adequate coverage of the active
input columns is obtained.

Recall that the initialization of the SP is performed randomly.
Additionally, the positions of active columns for this dataset are
random. That randomness combined with a starved level of activ-
ity results in a high degree of volatility. This is observed by the
extremely large error bars. Some of the SP’s initializations resulted
in more favorable circumstances, since the columns were able to
connect to the active input columns.

For the SP to adapt to the lack of active input columns, it
would have to boost its permanence. This would result in a large
amount of initial boosting, until the permanences reached a high
enough value. Once the permanences reach that value, boosting
will only be required occasionally, to ensure the permanences
never fully decay. This behavior is observed in Figure 7, where the
permanence boosting frequency was plotted for a sparsity of 74%.
The delayed start occurs because the SP has not yet determined
which columns will need to be boosted. Once that set is deter-
mined, a large amount of boosting occurs. The trend follows a
decaying exponential that falls until its minimum level is reached,
at which point the overall degree of boosting remains constant.
This trend was common among the sparsities that resulted in
a noticeable degree of permanence boosting. The right-skewed
decaying exponential was also observed in DeSieno (1988) work.

These results show that the need for boosting can be eliminated
by simply choosing appropriate values for 1, and pg.'* It is thus
concluded that these boosting mechanisms are secondary learning
mechanisms, with the primary learning occurring from the per-
manence update in equation (17). These findings allow resource
limited systems (especially hardware designs) to exclude boosting,
while still obtaining comparable results; thereby, greatly reducing
the complexity of the system.

5. FEATURE LEARNING

5.1. Feature Selection and Dimensionality

Reduction

It is convenient to think of a permanence value as a probability.
That probability is used to determine if a synapse is connected or
unconnected. It also represents the probability that the synapse’s
input is important. It is possible for a given synaptic input to be
represented in multiple contexts, where the context for a specific

"2 This assumes that there will be enough active columns in the input. If this is not
the case, the input may be transformed to have an appropriate number of active
columns.

100 . . . Glolbal Il:lhlbllilol'l . . .
80} b
60r - i“ ‘ H K
aol ([l ‘ ‘]
T 20 M
= I
H\H HH!HIHHlmmnmm L e
2 %
2
5100 . . . LOf:al In'hibit?on . . '
=
]
O 8o} J
ES
60} 3
| |\Wm |
20| A HMHHH
T
O
00 60 80 100 120 140 160 18
Iteration
FIGURE 7 | Frequency of boosting for the permanence boosting
mechanism for a sparsity of 74%. The top figure shows the results for
global inhibition and the bottom figure shows the results for local inhibition.
Only the first 200 iterations were shown, for clarity, as the remaining 800
propagated the trend.

instance is defined to be the set of inputs connected, via proximal
synapses, to a column. Due to the initialization of the network,
it is apparent that each context represents a random subspace;
therefore, each column is learning the probability of importance
for its random subset of attributes in the feature space. This
is evident in equation (18), as permanences contributing to a
column’s activation are positively reinforced and permanences not
contributing to a column’ activation are negatively reinforced.

If all contexts for a given synaptic input are observed, the overall
importance of that input is obtained. Multiple techniques could
be conjured for determining how the contexts are combined. The
most generous method is simply to observe the maximum. In
this manner, if the attribute was important in at least one of the
random subspaces, it would be observed. Using those new prob-
abilities the degree of influence of an attribute may be obtained.

Let ¢ € (0,1)'*™ be defined as the set of learned attribute
probabilities, such that ¢, represents the probability of Us, being
a meaningful attribute. One form of ¢ is shown in equation
(26).1* In equation (26), the indicator function is used to mask

the permanence values for Us,. Multiplying that value by every
permanence in ® obtains all of the permanences for Us,.

¢ = max (®, (I(A;, = a) Vi Vk) Va (26)

Using ¢ it is possible to extract a set of meaningful features
from the original set of input attributes. This is done by selecting
attributes whose corresponding ¢, is above some threshold. In

the case of equation (26), the threshold is ps. This is because é

BThe function max was used as an example. Other functions producing a valid
probability are also valid.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

is representative of the maximum permanence for each attribute
in Uy, and for a given U, to be observed it must be connected,
which may only happen when its permanence is at least equal to p;.
The original set of attributes may then be reduced to a new set of
meaningful features. This is done by selecting all attributes whose
indexes are in u, which is obtained by equation (27). Therefore,
zwﬂl contain the set of all indexes in {0, 1,...,n, — 1} whose

¢ . > ps. The dimensionality of Us may be reduced to the size of
u, which will have a length of n, or less.

i={a| },>ps}Va (27)
5.2. Input Reconstruction
Building off the feature selection technique, it is possible to obtain
the SP’s learned representation of a specific input. To reconstruct
the input, the SP’s active columns for that input must be captured.
This is naturally done during inhibition, where ¢ is constructed. ¢,
a function of Us, is used to represent a specific input in the context
of the SP.

Determining which permanences caused the activation is as
simple as using ¢ to mask . Once that representation has been

obtained, ¢ is used to obtain the overall permanence for the
attributes. Those steps will produce a valid probability for each
attribute; however, it is likely that there will exist probabilities that
are not explicitly in {0, 1}. To account for that, the same technique
used for dimensionality reduction is applied, by simply threshold-
ing the probability at p;. This process is shown in equation (28),"
where &2 € {0,1}'"™ is defined to be the reconstructed input.

Thornton and Srbic (2013) used a similar approach for showing
how the representation of the input to the SP is understood. The
key advantage of this approach is that the input is able to be
reconstructed based solely off the permanences and the active
columns. This is a novel approach that allows for the input to be
decoupled from the system.

a=1 ([max (égu Vi) > pSD Va (28)

6. EXPERIMENTAL RESULTS AND
DISCUSSION

To empirically investigate the performance of the SP, a Python
implementation of the SP was created, called math HTM
(mHTM)." This library was built using the mathematical frame-
work described in this work. An initial implementation of the SP
was previously created following the original algorithmic defini-
tion. Using the new math-based framework, a speedup of three
orders of magnitude was obtained.

The SP was tested on both spatial data as well as categorical
data. The details of those experiments are explained in the ensuing
subsections.

"“The function max was used as an example. If a different function is utilized, it
must be ensured that a valid probability is produced. If a sum is used, it could be
normalized; however, if caution is not applied, thresholding with respect to p; may
be invalid and therefore require a new thresholding technique.

>This implementation has been released under the MIT license and is available at:
https://github.com/tehtechguy/mHTM.

6.1. Spatial Data

The SP is a spatial algorithm, as such, it should perform well with
inherently spatial data. To investigate this, the SP was tested with a
well-known computer vision task. The SP requires a binary input;
as such, it was desired to work with images that were originally
black and white or could be readily made black and white without
losing too much information. Another benefit of using this type
of image is that the encoder'® may be de-emphasized, allowing
for the primary focus to be on the SP. With those constraints,
the modified National Institute of Standards and Technology’s
(MNIST’s) database of handwritten digits (LeCun et al., 1998) was
chosen as the dataset.

The MNIST images are simple 28 x 28 grayscale images, with
the bulk of the pixels being black or white. To convert them to
black and white images, each pixel was set to “1” if the value was
greater than or equal to 255/2 and “0” otherwise. Each image was
additionally transformed to be one-dimensional by horizontally
stacking the rows. The SP has a large number of parameters,
making it difficult to optimize the parameter selection. To help
with this, 1,000 independent trials were created, all having a
unique set of parameters. The parameters were randomly selected
within reasonable limits.'” Additionally, parameters were selected
such that E[\'] = 0. To reduce the computational load, the size
of the MNIST dataset was reduced to 800 training inputs and
200 testing inputs. The inputs were chosen from their respective
initial sets using a stratified shuffle split with a total of five splits.
To ensure repeatability and to allow proper comparisons, care
was taken to ensure that both within and across experiments the
same random initializations were occurring. After performing
the initial experimental batch, the final parameters were selected.
Using those parameters, the full MNIST dataset was used. To
perform the classification, a linear support vector machine (SVM)
was utilized. The input to the SVM was the corresponding output
of the SP.

Three comparisons were explored for both global and local
inhibition: using the set of active columns as the features (denoted

as “column”), using (f) as the features (denoted as “probabilistic”)
and using the dimensionality reduced version of the original
input as the new input (denoted as “reduction”). The results are
shown in Table 2'® and Table 3" for global and local inhibition,
respectively. For reference, the same SVM without the SP resulted
in an error of 7.95%. The number of dimensions was reduced
by 38.01 and 35.71% for global and local inhibition, respectively.
Both the probabilistic and reduction methods only performed
marginally worse than the base SVM classifier. Considering that

'S An encoder for HTM is any system that takes an arbitrary input and maps it to a
new domain (whether by lossy or lossless means) where all values are mapped to
the set 0, 1.

The following parameters were kept constant: p,=0.5, 30 training epochs,
and synapses were trimmed if their permanence value ever reached or fell
below 10™*.

"8The following parameters were used to obtain these results: n.=936,
fips =353, pg=14, 5 =0.0105, p, = 182, ¢, =0.0355, b_ =0.0024, By =18, and
T =164.

YThe following parameters were used to obtain these results: n. =786,
fps =267, pa=10, b5 =0.0425, p, =57, ¢, =0.0593, $_ =0.0038, B =19, and
T =755.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

https://github.com/tehtechguy/mHTM
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

TABLE 2 | SP performance on MNIST using global inhibition.

Method Error (%)
Column 7.61
Probabilistic 9.02
Reduction 9.04

TABLE 3 | SP performance on MNIST using local inhibition.

Method Error (%)
Column 7.73
Probabilistic 8.98
Reduction 9.07

these two techniques are used to modify the raw input, it is likely
that the learned features were the face of the numbers (referring
to attributes equaling “1”). In that case, those methods would
almost act as pass through filters, as the SVM is already capable
of determining which attributes are more/less significant. That
being said, being able to reduce the number of attributes by over
two thirds, for the local inhibition case, while still performing
relatively close to the case where all attributes are used is quite
desirable.

Using the active columns as the learned feature is the default
behavior, and it is those activations that would become the feed-
forward input to the next level (assuming an HTM with multiple
SPs and/or TMs). Both global and local inhibition outperformed
the SVM, but only by a slight amount. Considering that only
one SP region was utilized, that the SP’s primary goal is to map
the input into a new domain to be understood by the TM, and
that the SP did not hurt the SVM’s ability to classify, the SP’s
overall performance is acceptable. It is also possible that given
a two-dimensional topology and restricting the initialization of
synapses to a localized radius may improve the accuracy of the
network. Comparing global to local inhibition, comparable results
are obtained. This is likely due to the globalized formation of
synaptic connections upon initialization, since that results in a loss
of the initial network topology.

To explore the input reconstruction technique, a random
instance of each class from MNIST was selected. The input was
then reconstructed as shown in Figure 8.2 The top row shows
the original representation of the inputs. The middle row shows
the SDR of the inputs. The bottom row shows the reconstructed
versions. The representations are by no means perfect, but it is
evident that the SP is indeed learning an accurate representation
of the input.

6.2. Categorical Data
One of the main purposes of the SP is to create a spatial repre-
sentation of its input through the process of mapping its input

2The following parameters were used to obtain these results: n. =784, n,s =392,
pa=10, ¢s=0.01, p.=10, ¢, =0.001, ¢_ =0.002, ten training epochs, global
inhibition, and boosting was disabled. The number of columns was set to be equal
to the number of attributes to allow for a 1:1 reconstruction of the SDRs.

1 HRADI510]T[8]7
T o O
g1 112354[5]L11]13]7

FIGURE 8 | Reconstruction of the input from the context of the SP.
Shown are the original input images (top), the SDRs (middle), and the
reconstructed version (bottom).

to SDRs. To explore this, the SP was tested on Bohanec and
Rajkovic (1988) and Lichman (2013) car evaluation dataset. This
dataset consists of four classes and six attributes. Each attribute
has a finite number of states with no missing values. To encode
the attributes, a multivariate encoder comprised of categorical
encoders was used.”! The class labels were also encoded, by using
a single category encoder.”

The selection of the SP’s parameters was determined through
manual experimentation.” Cross validation was used, by parti-
tioning the data using a stratified shuffle split with eight splits.
To perform the classification an SVM was utilized, where the
output of the SP was the corresponding input to the SVM. The SP’s
performance was also compared to just using the linear SVM and
using a random forest classifier.** For those classifiers, a simple
preprocessing step was performed to map the text-based values to
integers.

The results are shown in Table 4. The SVM performed poorly,
having an error of 26.01%. Not surprisingly, the random forest
classifier performed much better, obtaining an error of 8.96%.
The SP was able to far outperform either classifier, obtaining an
error of only 2.32%. From literature, the best known error on this

! A multivariate encoder is one which combines one or more other encoders. The
multivariate encoder’s output concatenates the output of each of the other encoders
to form one SDR. A categorical encoder is one which losslessly converts an item to
a unique SDR. To perform this conversion, the number of categories must be finite.
For this experiment, each category encoder was set to produce an SDR with a total of
50 bits. The number of categories, for each encoder, was dynamically determined.
This value was set to the number of unique instances for each attribute/class. No
active bits were allowed to overlap across encodings. The number of active bits, for
each encoding, was scaled to be the largest possible value. That scaling would result
in utilizing as many of the 50 bits as possible, across all encodings. All encodings
have the same number of active bits. In the event that the product of the number of
categories and the number of active bits is less than the number of bits, the output
was right padded with zeros.

ZThis encoding followed the same process as the category encoders used for the
attributes.

2The following parameters were used: 1, = 4096, 1ps =25, pg =0, p5 =0.5, p. =819,
¢, =0.001, and ¢_ =0.001. Boosting was disabled and global inhibition was used.
Only a single training epoch was utilized. It was found that additional epochs were
not required and could result in overfitting. p. was intentionally set to be about 20%
of n.. This deviates from the standard value of ~ 2%. A value of 2% resulted in lower
accuracies (across many different parameter settings) than 20%. This result is most
likely a result of the chosen classifier. For use with the TM or a different classifier,
additional experimentation will be required.

24 These classifiers were utilized from scikit-learn (2016).

“The shown error is the median across all splits of the data.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

TABLE 4 | Comparison of classifiers on car evaluation dataset.

Classifier Error (%)
Linear SVM 26.01
Random forest 8.96
SP + linear SVM 2.32

dataset was 0.37%, which was obtained from a boosted multilayer
perceptron (Oza, 2005).

This result shows that the SP was able to map the input data
into a suitable format for the SVM, thereby drastically improving
the SVM’s classification. Based off this, it is determined that the
SP produced a suitable encoding.

6.3. Extended Discussion

Comparing the SP’s performance on spatial data to that of cate-
gorical data provides some interesting insights. It was observed
that on spatial data the SP effectively acted as a pass through filter.
This behavior occurs because the data is inherently spatial. The
SP maps the spatial data to a new spatial representation. This
mapping allows classifiers, such as an SVM, to be able to classify
the data with equal effectiveness.

Preprocessing the categorical data with the SP provided the
SVM with a new spatial representation. That spatial representa-
tion was understood by the SVM as readily as if it were inherently
spatial. This implies that the SP may be used to create a spatial
representation from non-spatial data. This would thereby provide
other algorithms, such as the TM and traditional spatial classifiers,
a means to interpret non-spatial data.

7. EXPLORING THE PRIMARY LEARNING
MECHANISM

To complete the mathematical formulation, it is necessary to
define a function governing the primary learning process. Within
the SP, there are many learned components: the set of active
columns, the neighborhood (through the inhibition radius), and
both of the boosting mechanisms. All of those components are a
function of the permanence, which serves as the probability of an
input column being active in various contexts.

Let A® € [0,1]" " be defined as the permanence update
amount, as shown in equation (29), where J € {1}"*"*. §&® may

then be rewritten as 8® = ¢ © A®. Similarly, the permanence
update for ®; is given by 6@, ; = ¢;AP;, where AP;; =
o+ Xik — d—(1 — Xi).

AP =X —$_(J—X) (29)

The permanence update equation is then logically split into
two distinct components. The first component is the set of active
columns, which is used to determine the set of permanences
to update. The second component is AP, which is used to
determine the permanence update amount.

7.1. Plausible Origin for the Permanence
Update Amount

It is noticed that A® represents an unlearned function of a
random variable coming from a prior distribution. That random

variable is nothing more than X. It is required that X;; ~
Ber(IP(A;)), where Ber is used to denote the Bernoulli distri-
bution. Recall that the initialization of the SP is performed such
that each X, € X; is obtained by randomly sampling without
replacement from U;. Each X; € X is independent, since they are
obtained by sampling from the same U;. This initialization scheme
means that each X; € X is independent and identically distributed
(i.i.d.), but that each X € X; is not i.i.d.

If the initialization scheme is redefined such that X;; € X; is
obtained by sampling with replacement, then each X;; € X would
be i.i.d. This slight change to the initialization would mean that a
given input attribute may be observed by a column zero up to 7s
times. If n. is set to be sufficiently large, then each U, will still be
observed and the overall impact of this change should be minor.
Assuming that this new initialization scheme is utilized, then
X He Ber(6), where 0 is defined to be the probability of an input
being active. Using the PMF of the Bernoulli distribution, the like-
lihood of 6 given X is obtained in equation (30), where ¢t = n.p;
andX = 1yt Z";El X; k> the overall mean of X. The cor-
responding log-likelihood of 6 given X is given in equation (31).

ne—1 Mps—1
co:x)= [[¢ —o0)*
i=0 k=0 (30)
_ 9&(1 - e)t—ti
2(6; X) = tXlog(0) + (t — tX)log(1 — 0) (31)

Taking the gradient of the log-likelihood of equation (31) with
respect to 6 results in equation (32). Similarly, the partial deriva-
tive of the log-likelihood for a single X results in equation (33).
Equation (33) suggests by its form that an unconstrained local
update of 6 may be obtained. Let @ € [0,1]"*" = P(JA;x €
A), such that ©;; =P(A;). Recall that X is populated based off
the entries in a single Us, i.e., X represents the current input to the
SP, not all of the inputs. Solving equation (32) for the maximum-
likelihood estimator results in maximizing the likelihood of the
current sample rather than the population. Realizing this, an
approach similar to stochastic gradient ascent is used to obtain
equation (34), where d¢ (0,) and dp (@) are functions
of ©; ; that compute the permanence increment and decrement
amount for each ©; j, respectively.

t t -
VU0 X) = ;X - 5 (1-X) (32)
0 1 1
%f(eyXi,k) = gxi,k — m(l —Xix) (33)
AP =004(0;1)Xix — 00— (0, 1)1 —Xi) (34)

Relating equation (34) to equation (29), d¢4(@®;x) and
d¢+(©; k) were defined to return the constants ¢4 and ¢_,
respectively. If the probabilities of each X;; =1 are sufficiently
close in value for all Us € U, then global constants may be suf-
ficient. Using constants also simplifies the permanence update
equation, which is likely why the original permanence update
method, equation (18), used this approach. For more complicated
inputs, it is unlikely that this assumption will hold true. To address
that, this new method allows for a local and adaptive way to tune
the permanences.

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

7.2. Discussing the Permanence Selection
The set of active columns is the learned component in equation
(18). Those columns are used to determine which permanences
are selected for update. Obtaining the set of active columns is done
through a process similar to competitive learning (Rumelhart and
Zipser, 1985). In a competitive learning network, each neuron in
the competitive learning layer is fully connected to each input
neuron. The neurons in the competitive layer then compete, with
one neuron winning the competition. The neuron that wins sets
its output to “1” while all other neurons set their output to “0”
At a global scale, this resembles the SP with two key differences.
The SP permits multiple columns to be active at a time and
each column is connected to a different subset of the input’s
attributes.

Posit that each column is equivalent to a competitive learning
network. This would create a network with one neuron in the
competitive layer and n,s neurons in the input layer. The neuron
in the competitive layer may only have the state of “1” or “07;
therefore, only one neuron would be active at a time. Given this
context, each column is shown to follow the competitive learning
rule.

Taking into context the full SP, with each column as a com-
petitive learning network, the SP could be defined to be a bag of
competitive learning networks, i.e., an ensemble with a type of
competitive learning network as its base learner. Recalling that
X C Uy, each X is an input for ¢;. Additionally, each X; is obtained
by randomly sampling U, without replacement. Comparing this
ensemble to attribute bagging (Bryll et al., 2003), the primary
difference is that sampling is done without replacement instead
of with replacement.

In attribute bagging, a scheme, such as voting, must be used
to determine what the result of the ensemble should be. For the
SP, a form of voting is performed through the construction of
. Each base learner (column) computes its degree of influence.
The max degree of influence is ;. Since that value is a constant,
each & may be represented as a probability by simply dividing
@; by g. In this context, each column is trying to maximize
its probability of being selected. During the inhibition phase, a
column is chosen to be active if its probability is at least equal
to the p.-th largest probability in its neighborhood. This process
may then be viewed as a form of voting, as all columns within a
neighborhood cast their overlap value as their vote. If the column

REFERENCES

Ahmad, S., and Hawkins, J. (2015). Properties of sparse distributed representa-
tions and their application to hierarchical temporal memory. arXiv preprint
arXiv:1503.07469. Available at: https://arxiv.org/abs/1503.07469

Bohanec, M., and Rajkovic, V. (1988). “Knowledge acquisition and explanation for
multi-attribute decision making,” in 8th Intl Workshop on Expert Systems and
Their Applications, (Avignon) 59-78.

Bryll, R., Gutierrez-Osuna, R., and Quek, E (2003). Attribute bagging: improving
accuracy of classifier ensembles by using random feature subsets. Pattern Recog-
nit. 36, 1291-1302. doi:10.1016/S0031-3203(02)00121-8

Byrne, E (2015). Encoding reality: prediction-assisted cortical learning algorithm
in hierarchical temporal memory. arXiv preprint arXiv:1509.08255. Available at:
https://arxiv.org/abs/1509.08255

being evaluated has enough votes, it will be placed in the active
state.

8. CONCLUSION AND FUTURE WORK

In this work, a mathematical framework for HTM’s SP was pre-
sented. Using the framework, it was demonstrated how the SP can
be used for feature learning. The primary learning mechanism of
the SP was explored. It was shown that the mechanism consists
of two distinct components, permanence selection and the degree
of permanence update. A plausible estimator was provided for
determining the degree of permanence update, and insight was
given on the behavior of the permanence selection.

The findings in this work provide a basis for intelligently ini-
tializing the SP. Due to the mathematical framework, the pro-
vided equations could be used to optimize hardware designs.
Such optimizations may include removing the boosting mecha-
nism, limiting support to global inhibition, exploiting the matrix
operations to improve performance, reducing power through the
reduction of multiplexers, etc... In the future, it is planned to
explore optimized hardware designs. Additionally, it is planned
to make the SP more flexible and adaptive. Finally, it is planned to
expand this work to provide the same level of understanding for
the TM.

AUTHOR CONTRIBUTIONS

JM wrote the paper, formulated the initial mathematics, developed
mHTM, and conducted the experiments. EF assisted in the for-
malization of the mathematics. DK initiated the work and assisted
in experimental design. All listed authors made substantial intel-
lectual contributions to the work and approve it for publication.

ACKNOWLEDGMENTS

The authors would like to thank Kevin Gomez of Seagate Tech-
nology, the staff at RIT’s research computing, and the mem-
bers of the NanoComputing Research Lab, in particular Amanda
Hartung and Cory Merkel, for their support and critical feed-
back. The authors would also like to thank the reviewers for
their exhaustive feedback to enhance the overall quality of the

paper.

Cui, Y., Ahmad, S., and Hawkins, J. (2016). Continuous online sequence learning
with an unsupervised neural network model. Neural Comput. 28, 2474-2504.
doi:10.1162/NECO_a_00893

DeSieno, D. (1988). “Adding a conscience to competitive learning,” in IEEE
International Conference on Neural Networks, 1988 (San Diego, CA: IEEE),
117-124.

Gersho, A., and Gray, R. M. (2012). Vector Quantization and Signal Compression,
Vol. 159. New York: Springer Science & Business Media.

Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses,
a theory of sequence memory in neocortex. Front. Neural Circuits 10:1-13.
doi:10.3389/fncir.2016.00023

Hawkins, J., Ahmad, S., and Dubinsky, D. (2011). Hierarchical Temporal Memory
Including htm Cortical Learning Algorithms. Available at: http://numenta.org/
resources/HTM_CorticalLearningAlgorithms.pdf

Frontiers in Robotics and Al | www.frontiersin.org

January 2017 | Volume 3 | Article 81

https://arxiv.org/abs/1503.07469
https://doi.org/10.1016/S0031-3203(02)00121-8
https://arxiv.org/abs/1509.08255
https://doi.org/10.1162/NECO_a_00893
https://doi.org/10.3389/fncir.2016.00023
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Mnatzaganian et al.

Mathematical Formalization of HTM’s SP

Hawkins, J., and George, D. (2007). Directed Behavior using a Hierarchical Temporal
Memory Based System. Google Patents. Available at: https://www.google.com/
patents/US20070192268. US Patent App. 11/622,448.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Approach.
New York: John Wiley & Sons.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biol. Cybern. 43, 59-69. doi:10.1007/BF00337288

Lattner, S. (2014). Hierarchical Temporal Memory-Investigations, Ideas, and Experi-
ments. Master’s thesis, Linz: Johannes Kepler Universitit.

Lavin, A, and Ahmad, S. (2015). “Evaluating real-time anomaly detection
algorithms-the numenta anomaly benchmark,” in IEEE 14th International
Conference on Machine Learning and Applications (ICMLA) (Miami: IEEE),
38-44.

Leake, M., Xia, L., Rocki, K., and Imaino, W. (2015). A probabilistic view of the
spatial pooler in hierarchical temporal memory. World Acad. Sci. Eng. Technol.
Int. J. Comput. Electr. Autom. Control Inform. Eng. 9, 1111-1118.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278-2324. doi:10.1109/5.
726791

Lichman, M. (2013). UCI Machine Learning Repository. Available at: http://archive.
ics.uci.edu/ml

Numenta. (2016). Numenta Platform for Intelligent Computing (Nupic). Available at:
http://numenta.org/

Oza, N. C. (2005). “Online bagging and boosting,” in IEEE International Conference
on Systems, Man and Cybernetics, Vol. 3 (Waikoloa: IEEE), 2340-2345.

Rumelhart, D. E., and Zipser, D. (1985). Feature discovery by competitive learning.
Cogn. Sci. 9, 75-112. d0i:10.1207/s15516709cog0901_5

scikit-learn. (2016). scikit-learn. Available at: http://scikit-learn.org/stable/index.
html

Thornton, J., and Srbic, A. (2013). Spatial pooling for greyscale images. Int. J. Mach.
Learn. Cybern. 4, 207-216. doi:10.1007/s13042-012-0087-7

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Mnatzaganian, Fokoué and Kudithipudi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and Al | www.frontiersin.org

14

January 2017 | Volume 3 | Article 81

https://www.google.com/patents/US20070192268
https://www.google.com/patents/US20070192268
https://doi.org/10.1007/BF00337288
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://numenta.org/
https://doi.org/10.1207/s15516709cog0901_5
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
https://doi.org/10.1007/s13042-012-0087-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	A Mathematical Formalization of Hierarchical Temporal Memory's Spatial Pooler
	1. Introduction
	2. Spatial Pooler Algorithm
	2.1. Phase 1: Overlap
	2.2. Phase 2: Inhibition
	2.3. Phase 3: Learning

	3. Mathematical Formalization
	3.1. Initialization
	3.2. Phase 1: Overlap
	3.3. Phase 2: Inhibition
	3.4. Phase 3: Learning

	4. Boosting
	5. Feature Learning
	5.1. Feature Selection and Dimensionality Reduction
	5.2. Input Reconstruction

	6. Experimental Results and Discussion
	6.1. Spatial Data
	6.2. Categorical Data
	6.3. Extended Discussion

	7. Exploring the Primary Learning Mechanism
	7.1. Plausible Origin for the Permanence Update Amount
	7.2. Discussing the Permanence Selection

	8. Conclusion and Future Work
	Author Contributions
	Acknowledgments
	References

