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Tokić G, Wilhelm E, Bouffanais R and 
Yue DKP (2017) Swarm-Enabling 

Technology for Multi-Robot Systems. 
Front. Robot. AI 4:12. 

doi: 10.3389/frobt.2017.00012

Swarm-enabling Technology for 
Multi-Robot Systems
Mohammadreza Chamanbaz 1, David Mateo1, Brandon M. Zoss 2, Grgur Tokić 2,  
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Swarm robotics has experienced a rapid expansion in recent years, primarily fueled by 
specialized multi-robot systems developed to achieve dedicated collective actions. These 
specialized platforms are, in general, designed with swarming considerations at the front 
and center. Key hardware and software elements required for swarming are often deeply 
embedded and integrated with the particular system. However, given the noticeable 
increase in the number of low-cost mobile robots readily available, practitioners and 
hobbyists may start considering to assemble full-fledged swarms by minimally retrofitting 
such mobile platforms with a swarm-enabling technology. Here, we report one possible 
embodiment of such a technology—an integrated combination of hardware and soft-
ware—designed to enable the assembly and the study of swarming in a range of gener-
al-purpose robotic systems. This is achieved by combining a modular and transferable 
software toolbox with a hardware suite composed of a collection of low-cost and off-the-
shelf components. The developed technology can be ported to a relatively vast range of 
robotic platforms—such as land and surface vehicles—with minimal changes and high 
levels of scalability. This swarm-enabling technology has successfully been implemented 
on two distinct distributed multi-robot systems, a swarm of mobile marine buoys and a 
team of commercial terrestrial robots. We have tested the effectiveness of both of these 
distributed robotic systems in performing collective exploration and search scenarios, 
as well as other classical cooperative behaviors. Experimental results on different swarm 
behaviors are reported for the two platforms in uncontrolled environments and without 
any supporting infrastructure. The design of the associated software library allows for a 
seamless switch to other cooperative behaviors—e.g., leader–follower heading consen-
sus and collision avoidance, and also offers the possibility to simulate newly designed 
collective behaviors prior to their implementation onto the platforms. This feature greatly 
facilitates behavior-based design, i.e., the design of new swarming behaviors, with the 
possibility to simulate them prior to physically test them.

Keywords: swarm robotics, distributed multi-robot systems, cooperative control, flocking, distributed communication

1. InTRoDUcTIon

A swarm robotics system consists of autonomous robots with local sensing and communication 
capabilities, lacking centralized control or access to global information, situated in a possibly unknown 
environment performing a collective action (Brambilla et al., 2013). Based on this definition, one can 
easily distinguish swarm robotics systems from other multi-robot approaches (Iocchi et al., 2001). 
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It is not uncommon for multi-robot systems to lack some form 
of decentralization at the computation, communication, and/or 
operation levels (Vásárhelyi et al., 2014). Swarm robotics systems 
are often inspired by natural systems in which large numbers 
of simple agents perform complex collective behaviors— 
e.g., schooling fish, flocking birds—through repeated local inter-
actions between themselves and their environment (Bouffanais, 
2016). The swarm robotics design paradigm allows a multi-robot 
system to overcome the aforementioned limitations (local sens-
ing, lack of centralized control, etc.) and operate autonomously 
in a coordinated fashion.

One main challenge in artificial swarming is the design of 
systems that, while maintaining decentralized control, have 
agents capable of (i) acquiring local information through sens-
ing, (ii) communicating with at least some subset of agents, and 
(iii) making decisions based on the dynamically gathered sensed 
data. While decentralization denies the agents the benefits of a 
large central computation and/or communication hub, it affords 
the system robustness. The system is thus capable of perform-
ing global collective actions under a wide range of group sizes 
(scalability), despite the possible sudden loss of multiple agents 
(robustness), and under unknown and dynamic circumstances 
(flexibility) (Brambilla et al., 2013).

There have been a number of notable efforts to design robotic 
swarms. The kilobit (Rubenstein et al., 2012), e-puck (Mondada 
et al., 2009), Swarm-bots (Dorigo et al., 2004), marXbot (Bonani 
et al., 2010), Alice (Caprari and Siegwart, 2005), iAnt (Hecker et al.,  
2012), Scarab (Michael et  al., 2008), I-Swarm (Woern et  al., 
2006), r-one (McLurkin et  al., 2013), and Pi Swarm (Hilder  
et al., 2014) are only a few examples of different swarm/distributed 
multi-robot platforms that have been developed. Each platform 
explores the potential and feasibility of a few aspects of swarming 
and not all of them fulfill all requirements of a robotic swarm 
system—according to the definition above—or are capable of 
operating in real and uncontrolled environments without any 
supporting infrastructure. The technological advances imple-
mented on each platform make it challenging to port to others 
due to the specificities of each robot. Indeed, these platforms have 
been conceived with swarming considerations at the core of their 
design. As a consequence, the central components necessary to 
enable swarming are fully integrated inside the robots. Moreover, 
the software layer is often highly dependent on the hardware 
specifications owing to the original co-design process of both 
hardware and software. Although this deep technical integration 
lacking modularity provides platforms that can easily swarm, it 
also is a serious impediment to its portability to other mobile 
platforms.

Practitioners with access to multiple units of an existing 
autonomous robotic platform—including commercial ones—
and seeking to study swarming have currently no other option 
than devising their own custom-made framework. A common 
alternative used by a number of research groups consists in 
simply devising swarming experiments that can be achieved 
with existing commercial swarm robotics platform (e.g., kilobot, 
e-puck, etc.). Although this alternative has the advantage of pig-
gybacking on well-tested platforms, thereby saving a significant 
amount of time, it nonetheless limits the ability to design very 

original experiments. Our proposed technological solution aims 
at filling this gap by offering a platform-agnostic framework—an 
integrated combination of a hardware suite with a software layer—
easily portable to a host of hardware platforms and facilitating the 
implementation of various swarm algorithms, while reducing the 
burden associated with platform-dependent interfacing.

Here, we report a unified platform-agnostic hardware/soft-
ware tool capable of: (i) assembling and transforming a collection 
of basic mobile robots into full-fledged swarms and (ii) achieving 
versatile swarming behaviors using an easily programmable soft-
ware library. The modular nature of both the hardware suite and 
software layer allows for possible evolution, upgrade, and exten-
sion of the technology independently from the specifications of 
the mobile platform. We present some preliminary results vali-
dating the technology on two vastly different swarming systems. 
This swarm-enabling technology is a combination of hardware/
software that allows a wide range of multi-robot platforms to 
perform versatile and responsive swarming. This is achieved 
by providing each agent with an additional interface hardware 
built from low-cost and off-the-shelf components, which are 
integrated with a specifically developed general purpose software 
library. We believe that this technology that decouples swarming 
considerations from robotics ones could be of interest to both 
researchers and educators primarily interested in the study of 
artificial swarming.

The software—written in Python, but also tested in C++—is 
designed in a modular way so as to make the technology portable 
between platforms as seamlessly as possible, i.e., with minimal 
hardware/software changes. To assess the effectiveness of the 
proposed technology, we used it on two different platforms oper-
ating in uncontrolled environments: a differential drive robot and 
a water surface platform (sensing mobile buoy). Furthermore, 
a number of collective behaviors such as heading consensus, 
perimeter defense, and collective marching are tested on these 
platforms, thereby confirming the versatility of our swarm-
enabling technology.

2. MATeRIAlS AnD MeThoDS

To enable swarming, it is essential to achieve distributed com-
munication and decentralized decision-making (Hamann et al., 
2014; Valentini et al., 2014, 2015, 2017; Vigelius et al., 2014). For 
instance, natural swarms achieve self-organizing behaviors and 
decentralized decision-making by means of distributed informa-
tion exchanges through local signaling (Camazine et  al., 2001) 
associated with sometimes sophisticated signaling mechanisms 
and trophic interactions (Dusenbery, 1992). Note that signaling 
refers to communication involving sensory capabilities. Swarm 
robotics systems mimic natural swarms in that communica-
tions between units is restricted to local information exchanges 
through short-range interactions (Brambilla et al., 2013). More 
generally, locality of communication in space and time between 
individual platforms leads to distributed communication. 
Therefore, platforms should be able to establish a dynamic and 
possibly switching communication networks and process infor-
mation locally, using solely the computation capabilities onboard 
each individual agent.
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2.1. computational Unit
Most multi-robot platforms have limited computational resources 
only to read sensors data from the robot and send them to a remote 
central unit. The remote processor makes appropriate decisions 
based on its supervisory control algorithm and sends commands 
back to the robot. Since we need the technology to be easily 
portable to many different robotic platforms, we use a dedicated 
processing unit independent from the robot’s sensing and actua-
tion processor as the “brain” of each agent. In our setup, computa-
tions are performed by Raspberry Pi/BeagleBone, single-board 
computers (SBCs) equipped with a number of multi-purpose 
inputs and outputs. These two SBCs provide ample computational 
resources for their size given the tasks at hand. Note that one can 
also consider using a different SBC such as Gumstix1 to serve the 
same purpose. The recently released Raspberry Pi “0” (resp. “3”) 
offers a very low-cost solution at half-credit card size (resp. high 
computational power and increased interfacing possibilities). If 
even more computational power is required, one may consider 
the Odroid SBC or ultimately the GIGABYTE.

This computational unit receives all sensor data from the robot 
and neighbors’ information through the communication network 
in order to make appropriate decision based on the swarm 
algorithm, which is embedded in the software toolkit detailed 
below; this latter part is preloaded onto each platform prior to 
any collective operation.

2.2. Distributed communication
From a theoretical viewpoint, distributed communication can 
be better analyzed and understood using network theoretical 
concepts—even in the absence of a real physical communica-
tion network as in the case of flocking birds and schooling fish 
(Bouffanais, 2016). Recently, studies of such signaling networks in 
swarms have revealed the need for specific structural properties of 
the network—in terms of degree distribution, shortest path, and 
clustering coefficient—in order to achieve effective consensus-
reaching dynamics (Shang and Bouffanais, 2014; Sekunda et al., 
2016) and high dynamic controllability of the swarm by a given 
subset of driving agents (Komareji and Bouffanais, 2013).

From a practical viewpoint, platforms should be able to establish 
a dynamic—i.e., switching—communication network. Recently, 
studies of such temporal networks (Holme and Saramäki, 2012) 
in swarms have revealed the need for specific structural properties 
of the network—in terms of degree distribution, shortest path, and 
clustering coefficient—in order to achieve effective consensus-
reaching dynamics (Shang and Bouffanais, 2014; Sekunda et al., 
2016) and high dynamic control of the swarm by a given subset 
of driving agents (Komareji and Bouffanais, 2013). With a mesh 
network, all agents are identical (from the network viewpoint) and 
can exchange information with a specific set of neighbors (e.g., 
metric, topological, Voronoi neighborhoods) directly without 
involving a third agent or going through a central hub or router. 
This grants the system robustness, as the loss of a subset of agents 
does not have a critical impact on the operation of the rest, assum-
ing the nodes are within the limited communication range. This 

1 https://www.gumstix.com/.

stands in stark contrast with the star network configuration, where 
the loss of the routing agent will halt the operation of the whole 
system. The same scenario would hold if the agents communicate 
in a mesh network but rely on a centralized computational hub to 
process information as is actually the case with many multi-robot 
systems, see Vásárhelyi et al. (2014) for further discussion.

The crucial component required to achieve a fully decentral-
ized system is the communication device. We use XBee modules 
(XBee, 2010) to establish a mesh network. The communication 
network is based on a metric interaction in which information is 
being communicated between agents within the communication 
range of one another (typically 300 m line of sight). The device is 
configured in broadcast mode in which the information sent by 
each agent is received by all neighbors within the communication 
range. The range of communication depends on various factors 
such as the output power of the module and the type of obstacles 
blocking the radio frequency wave. The hardware block diagram 
of this swarm-enabling unit (SEU) is shown in Figure 1.

A natural concern with such a dynamic and distributed com-
munication network is its effectiveness in maintaining a sustained 
flow of information among swarming agents. This was analyzed 
and quantified during swarming experiments with the BoB system 
with buoys continuously broadcasting their state at 0.1 Hz. The 
expected communication range is about 310 m and the modules 
are capable of relaying messages through multiple hops in the net-
work, which means that, in principle, any module can broadcast 
their state globally to all the agents in the collective. However, our 
experiments show that when tens of buoys are operating, the com-
munication is far from perfect, and the effective communication 
range is significantly smaller. The ratio of successful communica-
tions obtained during a typical field experiment is presented in 
Table 1. These results provide a measure of the effective communi-
cation range in a large and dynamic network of mobile XBee units. 
As one increases the number of buoys deployed, interferences 
between them will cause more messages to drop. This presents a 
clear example of why the distributed control algorithm should be 
designed to provide a robust collective behavior against imperfect 
communication.

2.3. cooperative control Strategy
The achievement of effective collective behaviors by a multi-robot 
system requires fully decentralized control algorithms. Such 
cooperative control strategies have received particular attention 
from different scientific communities with different aims and 
goals: first by the computer graphics community (Reynolds, 
1987), then followed by the physics community (Vicsek and 
Zafeiris, 2012). The control community subsequently established 
a formal framework (Jadbabaie et al., 2003a; Olfati-Saber et al., 
2007; Ren and Beard, 2008), which has been put into practice and 
expanded by multi-robot systems and swarm robotics commu-
nity (Turgut et al., 2008; Brambilla et al., 2013). Recently, Virágh 
et al. (2014) have established the connection between dynamical 
update rules of locally interacting agents and cooperative control 
strategies for flocks of autonomous flying robots. This endeavor 
was fueled by an intense research activity from biologists and 
physicists who have sought to identify local update rules at the 
agent level, which result into observed collective animal behavior 
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TAble 1 | Relative successful communications established between two 
buoys separated by a certain distance inside a dynamic collective of N 
buoys spread with a mean nearest-neighbor distance of ⟨r0⟩.

(N, ⟨r0⟩ (in m)) Distance (m) communication success (%)

(20, 19.5) 10 96
(20, 19.5) 40 91
(20, 19.5) 80 88
(20, 19.5) 120 84
(40, 6.9) 10 89
(40, 6.9) 40 86
(40, 6.9) 80 81
(40, 6.9) 160 66

FIgURe 1 | block diagram of the swarm-enabling unit (SeU). The SEU serves as a bridge between a particular robot and the swarm and is composed of a 
communication module and a processing unit running code using the marabunta module. At the software level, each agent (or swarmer) is composed of three 
elements. First, the “body” interacts with the robot to control its movement and gather information from its state and sensed environmental data. Second, the 
“network” interacts with the communication module to broadcast the current state of the agent to the swarm and to gather information from other agents’ state. 
Third, the “behavior” contains the cooperative control strategy. In its most elementary form, the behavior is implemented by an update rule that defines the 
movement of the robot for a certain time window, given the current state of the robot and these data gathered from the body and the network.
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(Vicsek and Zafeiris, 2012; Bouffanais, 2016). This acquired 
knowledge-enabled novel biologically inspired approaches to the 
design of cooperative control strategies. Such an approach has 
been successfully implemented and tested on a small flock of 10 
quadcopters (Vásárhelyi et al., 2014), using GPS for localization, 
and the same distributed communication paradigm as the one 
reported here. Using the taxonomy introduced by Brambilla et al. 
(2013), our decentralized cooperative control strategy follows a 
behavior-based design approach in a similar vein as Vicsek et al. 
(Virágh et al., 2014).

In what follows, we discuss several swarm algorithms coded 
and tested on different platforms.

2.3.1. Consensus
In a consensus algorithm, the participating agents seek to have 
their state variable—in the present case, their heading—converging 
toward a common value; this latter value is not known a priori and is 
entirely the outcome of this self-organizing process (Ren et al., 2005).

In the particular case of collective motion, agents can aim at align-
ing their direction of travel, leading a well-aligned flock of agents 
all traveling in the same direction. Another common example is 
aggregation. As its name implies, this dynamical behavioral rule 
leads the agents to collectively undergo an aggregation process. 
Such collective aggregation is extremely common and important in 
natural swarms (e.g., insects and microorganisms such as amoebae 
(Bouffanais and Yue, 2010)) and is also very useful with distributed 
multi-robot systems during certain phases of deployment in the field.

Denote the set of agents whose information is available to 
agent i as i, a consensus protocol can be summarized as

 
x k k x ki

j i
ij j

i

[ ] [ ] [ ]+ = ,
∈ ∪
∑1
 { }

α
 

(1)

where xi[k] ∈ℝ is the state of agent i at time k and αij[k] > 0 is a 
desired weighting factor. Considering the heading 

i i iθ θ θ = ,(cos sin ) 
and choosing αij Ni

= +
1

1  where Ni =  i , equation (1) reads

 
i

j k i i
jk

N
k

i

θ θ [ ] [ ]
[ ]

+ =
+

.
∈ ∪
∑1 1

1 { }  
(2)
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Essentially, the target heading at k + 1 is defined as the average 
heading of the agent itself and its neighbors at time k. This proto-
col only involves local information exchange and is guaranteed to 
generate a global common consensus if the swarm is connected 
(Jadbabaie et al., 2003b).

2.3.2. Perimeter Defense
The perimeter defense, or all round defense algorithm, for swarm-
ing agents consists in having them self-organize so as to maximize 
the perimeter covered in an unknown dynamic two-dimensional 
environment. To obtain this result over local information trans-
fers, the agents maximize the distance between themselves and 
their neighbors, giving a larger weight to the closer agents. This 
can be encoded as the dynamical rule

 
p k

p k p k
p p ki

j i

j i

j i

[ ]
[ ] [ ]
[ ] [ ]

+ =
−

| − |
,

∈
∑1 2
 k  

(3)

where pi[k] = (xi[k], yi[k]) is the position of agent i in Cartesian 
coordinates at time k. In equation  (3), the target heading is 
obtained from pi[k  +  1], and it is designed such that a larger 
weight is given the closer the neighbor is. Note that equations (2) 
and (3) are purely Markovian, involving only local information 
in both space and time without any assumption of information 
about prior or future states. Thus, any such algorithm comes 
with implicit flexibility, as the swarm can operate under dynamic 
environments.

2.3.3. Environment Exploration
For the purposes of environment exploration, we combine head-
ing consensus and a modified attraction–repulsion behavior with 
individually manifested heading goals. Unlike the perimeter 
defense, the goal here is to provide a dynamic two-dimensional 
spatial coverage for sensing and environment reconstruction and 
prediction purposes. Each member has the autonomy to diverge 
from collective behaviors in order to investigate their surround-
ings, yet maintain underlying neighbor-to-neighbor interactions.

Self-assembling within a group relies on three basic aspects: 
equilibrium distance between neighbors, center of mass (mem-
bers), and collective heading. The agents move according to 
pi[k + 1] = pi[k] + δ vi[k], where vi[k] is the scaled velocity of 
agent i

v k H k k H p
p k p ki i i

j
ij i

i ji

[ ] [ ] [ ] ( )
[ ] [ ]

= + − −
| − |






∈
∑β γ� �1 1 0

2

2Ni N


















+ .
∈ ∪
∑H ki

i j
j

i
N iR { }

θ� [ ] (4)

Here, 
i i iβ β β = ,(cos sin ) is the bearing vector toward the goal, 

ij ij ij
γ γ γ = ,(cos sin ) the azimuth vector of agent i toward agent j, 
and jθ the heading of agent j as defined before. The heading consensus 
is achieved here on a subset of agents i that are within a distance 
p0 from agent i, making the heading consensus localized. The 
binary heading consensus weight Hi determines whether the 
agent moves toward a goal (Hi = 1), or purely positions itself with 

respect to the other members of the swarm (Hi  =  0). Leader– 
follower behavior is established by setting the position of agent i 
(leader) as the goal for the other agents in the swarm. The scaling 
factor of 

ij
γ is more influenced by close spacing, leading to strong 

repulsion and collision avoidance. When the distance between 
two agents is the equilibrium distance p0, the corresponding scal-
ing factor of 

ij
γ is 0. The time constant δ is a parameter that depends 

on the update rate and the overall speed scaling. In general, the 
formulation [equation (4)] results in lattice-like swarm arrange-
ments, with different types of avoidance strategies (see Figure 3).

2.4. Robotic platforms
We tested the technology on two different platforms detailed 
below.

2.4.1. eBot
The eBot is a commercial small-size differential drive robot devel-
oped by EdgeBotix,2 a spin-off company developing educational 
robots based on research robots developed by the SUTD MEC 
Laboratory.3 It is equipped with 6 ultrasonic or infrared range 
finders, inertial measurement unit (IMU), two wheel encoders, 
and two light sensors (see Figure 4). The maximum velocity of 
the platform is 20 cm/s. We developed an extended Kálmán filter 
(included in the eBot’s API) to localize the robot in real time 
based on its IMU and wheel encoders.

2.4.2. Autonomous Surface Vehicle
The “BoB” (for “Bunch of Buoys”) system is a distributed multi- 
robots effort based on a small developmental surface craft 
(Figure  5) initially developed at MIT to perform collective 
environmental sensing. (Videos of the collective sensing with 
more than 50  U during a field test are available online.4,5,6) It 
is equipped with a global positioning satellite (GPS) receiver, 
MEMS compass, and 3-axis accelerometer. Omnidirectional 
design concepts lead to the vectored propulsion system, allowing 
for maximum agility with near instantaneous direction changes. 
The maximum velocity of the platform is up to 1 m/s, although 
design considerations are more concerned with positioning than 
transit.

Finally, the buoy may be equipped with multiple sensors 
in order to monitor its environment. The fleet of buoys (BoB) 
(Figure  6) is not constrained to homogeneity, and some units 
may be equipped with various sensors in order to provide varying 
levels knowledge about the surrounding waters.

2.5. Software
The connection between robot control, distributed communica-
tions management, and collective behavior is established by 

2 http://www.edgebotix.com/.
3 http://people.sutd.edu.sg/~erikwilhelm/.
4 Dynamic Environmental Monitoring using Swarming Mobile Sensing Buoys:  
https://youtu.be/Qe-wZOi3ONs.
5 51 Networked Buoys Swarming: https://youtu.be/fhg1rIX_y3A.
6 Dynamic Area Coverage (Geofencing) Field Test: https://youtu.be/hlBNjHS_Q7s.
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FIgURe 2 | An example of the behavior of the agents defined with an update function that is called in a loop. The update function calls different method 
of the body (red), network (blue), and behavior (green) of the agent.

FIgURe 3 | examples of simulated avoidance behaviors based on equation (4), with Hi = 1, Hj = 0, (p0)j = 100 m, j ≠ i. The mission of agent i is to reach 
the goal (red cross) when the path is blocked by other agents in the swarm (starting from a position at the lower right corner). Left: yielding behavior. The equilibrium 
distance (p0)i = 100 m of agent i is too large for it to go through the swarm without reconfiguration. In response, the agents in the swarm yield as agent i moves 
toward the goal through the swarm, only to circle back to their equilibrium positions based on equation (4). Center: swarm fixed in place (νj ≡ 0). The equilibrium 
distance (p0)i = 100 m is too large for the agent i to go through the swarm, so it goes around. Right: swarm fixed in place (νj ≡ 0). The equilibrium distance 
(p0)i = 50 m is small enough for the agent i to go through the swarm.
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FIgURe 4 | Right: the ebot with ultrasound sensors crowned with the swarm-enabling technology. A 3D printed structure is hosting the Raspberry Pi and 
XBee module, along with a power bank serving as the power source. The WiFi module is used exclusively for monitoring and updating purposes and is not required 
for the autonomous operation of the robot. Left: swarm of 15 eBots with IR sensors.

FIgURe 5 | A cast aluminum hull mitigates magnetic interference with 
sensitive MeMS sensory elements used to reference buoy 
orientation. Many standard expansion ports along the perimeter allow for 
the addition of environmental measuring devices seamlessly in the field. A 
large access cover at the top provides easy access for maintenance as 
needed. All components are housed securely within the watertight hull and 
can be seen on the top view (top right corner).

FIgURe 6 | A small fleet of autonomous surface vehicles: (top panel) 
25 buoys collectively operating at bedok Reservoir, Singapore; 
(bottom left panel) buoys stacked up during transportation to the 
field site; (bottom right panel) 48 buoys lined up before deployment.
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means of a Python module called marabunta7 that we designed 
with modular development of swarming behaviors in mind and 
that emphasizes portability and ease of deployment in different 
platforms.

With this module, the interaction with the robot is abstracted at 
a low-level through a platform-dependent class (the “body” of the 
agent). In the same fashion, the management of communications 
is also handled by another low-level and platform-dependent 
“network” class. Both of these classes are independent from one 
another and are also independent from the high-level behavior of 
the swarm, defined as the “behavior” class.

Each different robot platform requires its own body class. 
This is designed following the assumption that the processor 
running the code has the capacity to interact with the robot such 

7 See http://www.github.com/david-mateo/marabunta.

that it can (i) send commands to move it in space, (ii) request 
these data needed for localization of the unit, and (iii) access the 
information gathered by the robot about its local environment 
typically by means of a sensor suite. The swarm-enabling unit 
(SEU for short and shown in Figure  1) does not require total 
access to the inner workings of the robot or deep knowledge of 
its specifications. For instance, if one is using commercial robots 
such as the eBot or e-puck (Mondada et al., 2009), establishing a 
Bluetooth connection and using the provided API to send com-
mands to the robot is enough to use this technology to deploy 
a swarm of robots. The body classes for both the eBot and the 
e-puck are included in marabunta.

The communication between agents is handled by a separate  
network class. Separating this from the control of the 
body allows to pair different robot platforms with different  
communication protocols. This implementation assumes that 
the processor has the capacity to interact with a communication 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.github.com/david-mateo/marabunta
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FIgURe 7 | perimeter defense algorithm using 5, 7, 8, and 10 ebots. The experiment is performed in a room with approximate dimension of 13.5 m × 6.2 m. 
All robots start with zero initial heading and information about all initial positions and headings. Each robot uses an extended Kálmán Filter to estimate its position 
and heading based on onboard sensors. This information is shared among neighbors leading to the decentralized computation of a target heading based on 
equation (3). (A) 10 eBots, (b) 8 eBots, (c) 7 eBots, and (D) 5 eBots.
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FIgURe 8 | Speed at which one agent finds the target (solid red) and 
at which the swarm reaches the target (dashed green) as a function 
of the number of agents in the swarm. Each data point is averaged over 
10 runs. The error bars show the variance over these runs.

module capable of (i) broadcasting messages to nearby agents and 
(ii) reading the messages broadcast by other agents. There is no 
need for the communication module to be able to handle directed 
communication or recognition of nearby nodes. The marabunta 
module provides a network class for the Digimesh protocol, so 

that one can connect an XBee module in serial to the computer 
running the software to get out-of-the-box distributed communi-
cations between agents afforded with the present technology.

The collective behavior of the swarm is a result of the agents’ 
individual behavior, implemented in a separate behavior class 
that is hardware-agnostic. Since the behavior is independent of 
the robot used, this technology allows to have heterogeneous 
swarming where different robots perform the collective behaviors 
described in the previous section. Additionally, since the behav-
ior is also independent of the communication between agents, a 
swarm can have heterogeneous behaviors where different agents 
follow different behaviors. A friction-less platform to experiment 
with heterogeneous swarming can yield interesting novel emer-
gent behaviors arising from the combination of behaviors (for 
example, combining some ratio of agents performing consensus 
with others performing perimeter defense makes the swarm split 
in sub-groups).

The modular design of the technology allows for fast 
experimentation. One can use the included MockBody and 
MockNetwork to design collective behaviors iteratively using 
simulations. From there, one can change the body to the proper 
robot controller and do some preliminary tests from a single, central 
control terminal (by keeping a “mock network” in the terminal). 

http://www.frontiersin.org/Robotics_and_AI
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FIgURe 9 | heading consensus algorithm tested with a swarm of 10 ebots. Each robot starts with a random heading. After a number of iterations, the swarm 
agrees on a common value for its heading. At time t = 22 s, one of the robots stops participating to the consensus algorithm and we are in the presence of a leader–
follower swarm, thereby forcing the swarm to converge to the leader’s heading. The sub-figure is a zoomed-in view of the swarm heading from t = 0 to t = 11 s.

FIgURe 10 | Field tests of aggregation behavior of a swarm of 45 buoys, conducted on a ~1 km2 body of water on a moderately windy day. Left: buoy 
trajectories for aggregation behavior. The aggregation test consisted of a single aggregation event (p0 from 50 to 5 m), where the relative bearing to the group center 
is maintained. The entire aggregation event takes just over 8 min, in which time the coverage area is decreased from ≈125, 000 m2 to 1, 250 m2. Right: buoy 
heading θ i  as a function of distance ir̂ from the group center for the same aggregation event. Blue dots indicate the initiation position of the buoys, while red and 
black indicate the 50% and terminal positions, respectively.

Finally, by affording each robot with a SEU with the desired  
behavior and a proper communication module, the system is 
ready to perform swarming experiments in a truly decentralized  
fashion.

2.6. Integration
In order to illustrate and exemplify the full integration of our 
SEU, we detail in this subsection the actual implementation used 
for the search and exploration experiments whose results are 
presented in Sec. 3.2.

The natural starting point is implementing the cooperative con-
trol algorithm described in Sec. 2.3.2 as a behavioral behavior 

class. By generating some artificial data for walls and position 
of the target to locate, one can readily simulate the behavior of 
the swarm and iterate the design of the algorithm by providing 
the behavior with a MockBody and network classes. For the 
search and exploration experiment, the behavior of a swarming 
agent is defined by the update rule presented in Figure 2. This fig-
ure highlights the dependencies with the methods implemented 
in the body, network, and behavior classes.

After iterating the design of the behavior via simulation, we 
equip a fleet of 10 eBots with a “swarming-enabling unit” (SEU) 
consisting of a Raspberry Pi with Python and the marabunta 
module loaded on it, an XBee module, a Bluetooth module, and 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
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the swarm is still capable of covering the perimeter in the best  
possible manner. Robustness has been tested with the same scenario 
with the forced removal of a number of units while performing  
the experiment. In such a case, the whole swarm dynamically 
reacts to this change and tries to cover the area the removed 
robots were supposed to cover. As mentioned earlier, the 
Markovian nature of the swarming algorithms enables the swarm 
to adapt instantaneously to any change in the environment or 
configuration, including the addition or removal of agents and 
modifications of the experimental arena.

3.2. Search and exploration
The second experiment is regarding a search and exploration task 
in which robots try to collectively find a target in the environment. 
The target in our setup is a light source in an unknown environ-
ment. This experiment is divided into two phases: (i) the robots 
perform a perimeter defense until one finds the light source and 
informs its neighbors about the location of the target and (ii) the 
robots perform a rendezvous in space to collectively navigate to 
the location of the detected light source. The algorithm was tested 
with up to 10 eBots. We ran ten experiments for each number 
of agents to better quantify the effectiveness of the swarming 
behavior. Figure 8 shows the convergence speed—inverse of the 
time it takes to find the target and navigate to its location—with 
respect to the number of robots. Scalability of the swarm can be 
seen from the upward trend of the graphs in Figure 8: in most 
cases, incorporating more agents in the experiment speeds up 
the search and exploration task (watch video online8). The same 
experiment was expanded to allow for 14 robots swarming in 5 
distinct rooms (watch video online9).

3.3. heading consensus
Figure 9 presents the experimental results of the heading con-
sensus algorithm discussed in subsection 2.3.1 using 10 agents. 
This experiment consists of two parts: (1) robots with random 
initial heading converge to a common heading, and (2) a robot is 
forced not to follow the swarm heading. This can be interpreted 
as a leader–follower configuration where the forced robot plays 
the role of the leader in the swarm and forces the swarm to follow 
its heading.

3.4. Aggregation and leader–Follower
Figure  10 shows some preliminary results of the aggregation 
behavior and Figure 11 of a leader–follower behavior according 
to equation (4) for a swarm of N = 45 buoys. For the aggregation 
test (Hi ≡ 0, i = 1, …, N), the buoys are initially self-assembled 
in a loose arrangement, and then the equilibrium distance p0 is 
reduced; the spreading follows by enlarging p0. For the leader– 
follower behavior (Hi ≡ 1, i = 1, …, N), one buoy is driven along a 
given path, and its position is given as the goal for all other buoys 
in the swarm. The experiments show that lattice-like arrangement 

8 Swarm Robotics: Collective Search & Exploration: https://www.youtube.com/
watch?v=JzbWV1sfZ-A.
9 Simultaneous Collective Exploration of 5 rooms by a Swarm of 14 Terrestrial 
Robots: https://www.youtube.com/watch?v=0tsAx6TDy-Q.

FIgURe 11 | Field tests of leader–follower behavior of a swarm of 45 
buoys with p0 = 5 m. The group traverses ~400 m in calm seas. The 
trajectory of the leader buoy is marked with a blue trail and that of the 
followers with a gray trail. The red trail highlights the trajectory of a buoy 
lagging behind due to low battery. Even though there are a number of 
degraded members, the system successfully executes the intended 
behavioral exercise.

a power bank. To operate these robots, one has to establish a 
Bluetooth connection and send simple commands (such as acti-
vate wheels with a certain power or read the values of each sensor) 
through their dedicated Python API. Implementing a body class 
for the eBot is, in practice, a matter of expanding the provided 
API to obtain a comprehensive interface to interact with the robot 
and return the sensor data in a convenient, hardware-agnostic 
format (e.g., giving the estimated coordinates of the obstacles 
detected, as opposed to these raw sensor data).

For this kind of experiments, one does not need most of the 
features of the communication module; the XBee can be set in 
transparent mode and interfaced purely by writing the messages 
to be sent and reading the received ones through a serial connec-
tion. This makes the network class implementation for an XBee 
module quite straightforward. The main task of this class is to 
translate the received messages and properly structure these data 
so that the other elements of the module can access it.

By switching the MockBody for the eBotBody and the 
MockNetwork by the XbeeNetwork, the code used for simu-
lation can run on the SEU and make the swarm to autonomously 
perform search and exploration.

3. ReSUlTS

3.1. perimeter Defense
Experimental results regarding the perimeter defense algorithm 
discussed in Section 2.3.2 for different number of robots are 
shown in Figure  7. One can observe the dynamic decision-
making feature of the swarm algorithm in Figures 7A–D. Each 
individual decides on its target heading based on the informa-
tion received from other agents in the network. For this reason, 
the target direction of robots are vastly different with different 
number of robots. We also remark that one of the most important 
features of a swarm is its scalability. This feature can be observed 
in Figure 7 that by reducing the number of robots from 10 to 5, 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://www.youtube.com/watch?v = JzbWV1sfZ-A
https://www.youtube.com/watch?v = JzbWV1sfZ-A
https://www.youtube.com/watch?v = 0tsAx6TDy-Q
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is persistent. They further confirm that the mesh network strategy 
scales robustly for a swarm of this size (videos of these experi-
ments are available online10,11,12).

4. conclUSIon

In this report, we presented the design of integrated hardware 
and software tools enabling a wide range of multi-robot systems 
to collectively operate in a fully distributed manner. Although 
our proposed swarm-enabling technology requires some work to 
develop a basic interfacing with the selected mobile platform, it 
nonetheless offers a general framework to assemble full-fledged 
swarms from virtually any set of mobile robots. As already men-
tioned and shown in the particular case of the e-puck, this basic 
interface can be extremely simple and straightforward to put in 
place. In particular, this technology adds decentralization fea-
tures to the robotic platforms, which is a key element in a swarm 
and distributed robotics systems. Modular design of the software 
library allows a swift transfer of the hardware toolkit onto vastly 
different platforms. Moreover, the overall modular design of this 
swarm-enabling technology facilitates possible future upgrade 
and evolution depending on the particular requirements of any 
given swarm experiment, e.g., more powerful computing unit 
to run swarming behaviors requiring on-the-fly machine learn-
ing. We reported experimental results regarding various swarm 

10 Dynamic Environmental Monitoring using Swarming Mobile Sensing Buoys: 
https://youtu.be/Qe-wZOi3ONs.
11 51 Networked Buoys Swarming: https://youtu.be/fhg1rIX_y3A.
12 Dynamic Area Coverage (Geofencing) Field Test: https://youtu.be/hlBNjHS_Q7s.

algorithms on land and water surface platforms equipped with 
this swarm-enabling technology.

Future research directions are toward including further 
swarm algorithms in the software library and also the possibility 
to simulate newly designed collective behaviors prior to their 
implementation onto the platforms. This feature greatly facilitates 
the design and testing of new swarming behaviors. Last, given 
the fact that our swarm-enabling technology can seamlessly func-
tion with a host of different mobile robots, it should, therefore, 
facilitate studies of heterogeneous swarming.
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