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Research on motor learning suggests that training with haptic guidance enhances
learning of the timing components of motor tasks, whereas error amplification is better
for learning the spatial components. We present a novel mixed guidance controller that
combines haptic guidance and error amplification to simultaneously promote learning of
the timing and spatial components of complexmotor tasks. The controller is realized using
a force field around the desired position. This force field has a stable manifold tangential
to the trajectory that guides subjects in velocity-related aspects. The force field has
an unstable manifold perpendicular to the trajectory, which amplifies the perpendicular
(spatial) error. We also designed a controller that applies randomly varying, unpredictable
disturbing forces to enhance the subjects’ active participation by pushing them away
from their “comfort zone.” We conducted an experiment with thirty-two healthy subjects
to evaluate the impact of four different training strategies on motor skill learning and self-
reportedmotivation: (i) No haptics, (ii) mixed guidance, (iii) perpendicular error amplification
and tangential haptic guidance provided in sequential order, and (iv) randomly varying
disturbing forces. Subjects trained two motor tasks using ARMin IV, a robotic exoskeleton
for upper limb rehabilitation: follow circles with an ellipsoidal speed profile, and move
along a 3D line following a complex speed profile. Mixed guidance showed no detectable
learning advantages over the other groups. Results suggest that the effectiveness of the
training strategies depends on the subjects’ initial skill level. Mixed guidance seemed
to benefit subjects who performed the circle task with smaller errors during baseline
(i.e., initially more skilled subjects), while training with no haptics was more beneficial for
subjects who created larger errors (i.e., less skilled subjects). Therefore, perhaps the high
functional difficulty of the tasks limited the potential benefit of mixed guidance. Adding
random disturbing forces during training reduced the learning effect size compared to no
haptics. The unanticipated forces also decreased the subjects’ feelings of competence
while did not increase their effort and interest. Further studies with mildly affected
neurologically patients employing easier tasks need to be performed in order to evaluate
the applicability of our approaches in rehabilitation.

Keywords: motor learning, haptic guidance, error amplification, random disturbing forces, rehabilitation robotics,
mixed guidance controller, motivation

Frontiers in Robotics and AI | www.frontiersin.org June 2017 | Volume 4 | Article 191

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00019
https://creativecommons.org/licenses/by/4.0/
mailto:laura.marchal@hest.ethz.ch
https://doi.org/10.3389/frobt.2017.00019
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00019&domain=pdf&date_stamp=2017-06-22
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00019/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00019/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00019/abstract
http://loop.frontiersin.org/people/188318
http://loop.frontiersin.org/people/449131
http://loop.frontiersin.org/people/413213
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Marchal-Crespo et al. Mixed Controller to Enhance Learning

INTRODUCTION

There is increasing interest in using robotic devices to improve
or gain new motor skills and recover lost motor function after a
neurologic injury (e.g., stroke). There has been a progression in
the development of robotic training strategies that specify how
these robotic devices interact with subjects—see Marchal-Crespo
and Reinkensmeyer (2009) for a review. The most extended
paradigm is to use a robotic device to physically guide subjects’
limbs during movement training. It is thought that by moving
the limb in ways that subjects would otherwise not be able to
move might motivate them to engage in repetitive and inten-
sive practice (Reinkensmeyer and Housman, 2007). However,
robotic guidance also appears to decrease physical effort dur-
ing training (Israel et al., 2006) suggesting that robotic training
could potentially decrease motor learning and/or recovery if it
encourages slacking, i.e., a decrease of muscle activation during
repeated movements when movement errors are small (Scheidt
et al., 2000; Reinkensmeyer et al., 2009). In a recent clinical study
with chronic stroke survivors, training with guidance from an
exoskeleton robot enhanced motor function more effectively than
conventional therapy. However, the benefits were limited to severe
impaired patients (Klamroth-Marganska et al., 2014). Thereby,
current rehabilitation robots might be working with suboptimal
training strategies—only using a fraction of the rehabilitation
potential—by not considering the subjects’ individual needs.

The goal of robotic therapy is to provoke motor plasticity in
order to improve motor recovery. Currently, however, there is
not a solid scientific understanding of how this goal can best be
achieved. Recent work has emphasized the relevance of motor
learning in neurorehabilitation (Krakauer, 2006; Shumway-Cook
and Woollacott, 2007). In fact, it is commonly accepted in the
field of neurorehabilitation that recovery is a form of learning
or relearning (Krakauer, 2015). Understanding the underlying
mechanisms of learning during the acquisition of novel motor
skills may provide novel ways to improve neurorehabilitation
therapies.

There is emerging evidence that haptic guidancemay be specif-
ically useful for learning timing tasks (Marchal-Crespo et al.,
2015a,b). Several studies have shown a benefit of haptic guidance
in learning to reproduce the temporal, but not spatial, characteris-
tics of complex spatiotemporal curves (Feygin et al., 2002; Lüttgen
and Heuer, 2012). The effect of haptic guidance on learning a
visuo-manual tracking task has been evaluated in several studies,
which found a positive effect of guidance on the time-related
components of a dynamic task, such as an increase in movement
speed and smoothness (Bluteau et al., 2008) and better learning of
temporal force patterns (Morris et al., 2007). Training with haptic
guidance also benefited learning to play a pinball-like game, which
is a highly time-critical task (Milot et al., 2010). These results
suggest that haptic demonstration of optimal timing, rather than
movement magnitude, may have facilitated skill transfer (Heuer
and Lüttgen, 2015). Nevertheless, in a recent experiment we found
that the most effective robotic training condition depended on
the degree of rhythmicity of the task: haptic guidance hampered
learning of continuous rhythmic tasks, but promoted learning of
discrete movements (Marchal-Crespo et al., 2015a,b).

Experimental evidence has demonstrated that it is possi-
ble to accelerate learning processes in healthy subjects when
trajectory errors are accentuated using robotic forces during
walking (Emken and Reinkensmeyer, 2005). In patients with
chronic stroke, amplifying errors during reaching with a force
field resulted in straighter movements when the force field was
removed (Patton et al., 2006). Similarly, enhancing errors using
constant disturbing forces in children with dystonia resulted in
better performance in reaching and rhythmic tasks (circle draw-
ing) when the force was removed (Casellato et al., 2012). Increas-
ing limb phasing error in post-stroke patients’ gait through a
split-belt treadmill also induced a long term increase in walking
symmetry (Reisman et al., 2007). However, there are also stud-
ies that did not find a benefit from augmenting errors during
training. Increasing velocity errors when learning a golf putting
task had no detectable effect on task performance (Duarte and
Reinkensmeyer, 2015). In fact, augmenting errors resulted in a
decrease on perceived competence and satisfaction and a long-
term decrease in motivation. These contradictory results suggest
that error amplificationmight limit learning if it decreasesmotiva-
tion during training due to systematically performing large errors.
Alternatively, researchers have proposed that error amplification
might benefit learning of only some specific characteristics of the
training tasks, such as spatial features of trajectories (Heuer and
Lüttgen, 2015).

Movement errors can also be induced using randomly varying
feedforward forces that disturb subjects’ movements during train-
ing. Recent research has shown that subjects whose movements
were more variable before training could more rapidly adapt to
a perturbation than those with reduced variability (Wu et al.,
2014). This is in line with recent research that states that error
exploration—i.e., encouraging learners to examine and investigate
new tasks by themselves—is an important element to boost learn-
ing, especially during the first states of learning (Huberdeau et al.,
2015). Disturbing subjects with randomly varying feedforward
forces could potentially improve movement variability, and there-
fore, result in bettermotor learning. Furthermore, in recent exper-
iments, we found that adding random disturbing forces during
training improved motor learning of a locomotion task, probably
because the addition of unforeseen forces increased subjects’ effort
(muscle activation) and concentration (Marchal-Crespo et al.,
2014a,b).

There is an initial body of work that compared the effec-
tiveness of different robotic trainings that augment or reduce
movement errors on motor learning (Feygin et al., 2002; Lee and
Choi, 2010). However, results from these comparative studies
were highly inconclusive, probably because they searched for the
robotic training strategy that results in better motor learning,
independently of the subjects’ individual skill level and the spe-
cific characteristics of the task to be learned. Haptic guidance
seemed to be particularly helpful for initially less skilled subjects
(Marchal-Crespo et al., 2010a,b, 2013), while error amplification
was found to be more beneficial for skilled subjects (Milot et al.,
2010). The rhythmicity and spatial–temporal characteristics of the
motor task to be learned also seemed to be key factors to consider
when selecting the robotic training strategies that enhance motor
learning (Marchal-Crespo et al., 2015a,b).
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Many everyday tasks include both temporal and spatial char-
acteristics. For example, in dance moves, the path followed and
the timing along the path are critical factors. Learning to draw
a circle with a particular speed profile is a motor task with a
timing component (learning the speed profile), but also with a
relevant spatial component (drawing a circle) (Lüttgen andHeuer,
2012). In order to promote learning of both temporal and spatial
task characteristics simultaneously, we designed a novel mixed
guidance controller that concurrently combines haptic guidance
and error amplification.We ran amotor learning experiment with
thirty-two healthy subjects to evaluate the impact on motor learn-
ing and self-reported motivation of four different training strate-
gies: (i) No haptics, (ii) a novel mixed guidance controller, (iii)
perpendicular error amplification and tangential haptic guidance
provided in random sequential order, and (iv) randomly varying
unpredictable disturbing forces. The third training strategy was
included to compare the relative benefits on motor learning of
applying the tangential haptic guidance and perpendicular error
amplification strategies simultaneously (mixed guidance), or in
random sequential order. ARMin IV, a robotic exoskeleton for
upper limb rehabilitation, was used to conduct the experiment.
Subjects were requested to learn two different motor tasks: a
rhythmic task—i.e., move the hand following circles with an ellip-
soidal speed profile, and a continuous single task—i.e., move the
hand along a 3D line following a complex speed profile. Subjects
were tested in both tasks before and after training, with and
without visual feedback.

We hypothesized that providing haptic guidance to learn the
time components—i.e., reducing errors tangential to the desired
trajectory—and error augmentation to learn the spatial com-
ponents—i.e., augmenting perpendicular errors—would result
in better learning of the timing and spatial characteristics. We
expected better motor learning when the error amplification and
haptic guidance were provided simultaneously (mixed guidance)
compared to sequential order, since subjects trained in sequential
order would only benefit from each training strategy half of the
time. We also hypothesized that training with random disturbing
forces would decrease feelings of competence but would increase
subjects’ effort during training, resulting in better learning. Since
the mixed guidance strategy employed both, haptic guidance and
error amplification simultaneously, we did not expect it to have a
great effect on motivation.

MATERIALS AND METHODS

ARMin IV
We employed ARMin IV (Figure 1) to conduct the motor learn-
ing experiment. ARMin IV is a 7 DoF robotic device for upper
limb rehabilitation designed by the SMS-lab at ETH Zurich in
collaboration with the University Hospital Balgrist (Nef et al.,
2009). The robot incorporates position and force/torque sensors
to measure the interaction between human and robot which
enable subjects to perform a wide range of natural movements of
the upper extremities (Guidali et al., 2011). The spatial precision
of the measurements is less than 0.5 cm. A real time system with
a sampling rate of 1 kHz controls the device and communicates
with the virtual world over a UDP connection.

FIGURE 1 | ARMin IV is a 7 DoF robotic device for upper limb
rehabilitation that incorporates position and force/torque sensors
(Guidali et al., 2011).

Training Strategies
No Haptics
Compensating for undesired robot dynamics is critical in order to
allow the participants to perform the tasks by themselves. Ideally,
the robot should be transparent, i.e., the interaction torques
between robot and patient should be zero. We designed the no
haptics controller to minimize the interaction torques using a
closed-loop zero-torque controller. However, due to the mass and
friction of the exoskeleton, transparency cannot be fully achieved
through torque control. Therefore, the force of gravity acting on
the exoskeleton (Nef et al., 2009) and the forces due to friction
of the motor-gear combinations were modeled and used as feed-
forward compensation (Guidali et al., 2011). Remaining inertia
effects, however, could not be compensated, since the robot did
not have acceleration sensors and the second derivative of the
position signal was noisy and could have led to instability. How-
ever, the motor tasks to be learned were quite slow and therefore,
the robot felt very transparent.

Tangential Haptic Guidance
In order to assist subjects to learn the time components of the task,
we developed a proportional controller to reduce errors tangential
to the desired trajectory. This controller works as a force field that
is linked to the desired position and is, therefore, time dependent
(Figure 2A). The force field has a stable manifold tangential to
the trajectory, which acts as a haptic guidance controller, guiding
the subjects in velocity-related aspects. The forces exerted by the
tangential haptic guidance controller (Ft) can be described as:

Ft = kt · (xdt − x) = kt · et; where kt > 0. (1)

Equation 1 describes a position controller in end-effector coor-
dinates where the error in tangential direction (et) is reduced with
a positive proportional gain kt. The perpendicular and tangential
directions are defined by the tangent with respect to the trajectory
going through the desired position (xd) at a certain time step
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FIGURE 2 | Example of force field generated by: (A) the tangential haptic guidance controller at a desired position (xd) on the target trajectory, (B) the
perpendicular error amplification controller with tubular transition to haptic guidance for large errors, and (C) the tubular mixed guidance controller.

FIGURE 3 | The tangential error (et) is the projection of the error (e)
between the actual (x) and desired position (xd) on the trajectory
tangent through the desired position. The perpendicular error (ep) is the
projection of the error (e) on the plane defined by the tangent and actual
position (N).

(Figure 3). The tangential error (et) is the projection of the error
(e) between the actual (x) and desired position (xd) on the tra-
jectory tangent through the desired position. The perpendicular
error (ep) is the projection of the error (e) on the normal plane
(N) defined by the tangent and actual position.

We entirely waived any derivative gains from the controller in
order to keep the force feedback as intuitive and predictable as
possible, and therefore, facilitate the building of an internalmodel.
The proportional gain kt was chosen ad hoc. In order to guide
the subjects in velocity-related aspects, they should be guided
accurately through time to convey a feeling of the right timing.
This can only be accomplished with a stiff position controller
that suppresses all tangential errors. Since gravity increases the
difficulty of any task in vertical direction, additional assistance
needed to be provided to compensate for the subject’s arm weight.
These restrictions resulted in gains of 10N/cm in the x and y
directions, and 20N/cm in the vertical direction (z).

The haptic force in end-effector coordinates was saturated at
10N to guarantee subjects’ safety, then transformed into joint
torques by using inverse kinematics and input to a closed-loop
torque controller (impedance controller), where friction and
weight compensation were applied.

Perpendicular Error Amplification
In order to augment the spatial errors, we developed a propor-
tional controller to amplify errors perpendicular to the desired
trajectory. This controller works as a force field linked to the
desired position that has an unstable manifold perpendicular to
the trajectory (Figure 2B), which acts as an error amplification
controller. The forces exerted by the perpendicular error amplifi-
cation controller (Fp) can be described as:

Fp = kp ·
(
xdp − x

)
= kp · ep; where kp < 0. (2)

Equation 2 describes a position controller in end-effector coor-
dinates where the error in the perpendicular direction (ep) is
amplified with a negative proportional gain kp. The error amplifi-
cation controller leads to an unstable system, i.e., repulsive forces
increase proportionally to perpendicular errors. Considering that
subjects have a maximum force that they can apply, coming back
to the desired trajectory would be impossible if the amplification
forces increase linearly with the error. In order to limit large
errors that can be dangerous or discouraging for the participants,
error amplification should be applied only in a small predefined
area around the desired position (xd). By additionally realizing a
conversion toward haptic guidance when the error is too large, the
subject could further be supported upon poor performance.

We made the negative proportional gain kp a function of the
subject’s ongoing perpendicular error in order to limit danger-
ous and discouraging large errors with haptic guidance, while
augmenting awareness of task relevant errors by means of error
amplification (Rüdt et al., 2016). The used equation corresponds
to the superposition of two elementary sigmoid functions:

kp = Kmax ·
(

2
1 + exp(r · (|ep| − eturn))

− 1
)
. (3)

The resulting function can be tuned by three parameters. The
parameter Kmax stands for the maximal amplification factor when
the perpendicular error ep is equal to zero. The parameter eturn
defines the error where the gain kp changes its sign (Figure 4).
Due to this change, the amplification force also changes its sign,
transitioning from error amplification to haptic guidance. The
combined sigmoid function has saturation for small and large ep.
The width of the saturated area and the steepness of the curve
around eturn can be tuned using the parameter r.

This approach resulted in a three-dimensional tube-like struc-
ture wrapped around the current tangent (Figure 2B). Within this
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FIGURE 4 | Combined sigmoid function and its resulting perpendicular force. The proportional gain kp is function of the subject’s ongoing perpendicular error,
limits dangerous and discouraging large errors (errors larger than eturn) with haptic guidance (HG), while augmenting awareness of task relevant errors by means of
error amplification (EA).

tube, error amplification was applied. Once the subject leaved this
surrounding, haptic guidance would be employed to limit errors
larger than eturn.

The maximal amplification factor Kmax was chosen ad hoc.
Contrary to the tangential haptic guidance controller, the per-
pendicular error amplification approach should allow subjects to
make small errors in order to stimulate motor learning. Never-
theless, subjects should be able to also stay on the desired target
position. In order to enable a certain tracking accuracy without an
excessive physical effort from the subject, we chose a small Kmax
gain of 0.4N/cm. In order to provide a good compromise between
smooth transition and unmodified controlmodes, we set the slope
r of the sigmoid to 0.8.

Finally, the perpendicular force in end-effector coordinates was
saturated at 10N to guarantee subjects’ safety, transformed into
joint torques and input to a closed-loop torque controller.

Mixed Guidance with Tubular Transition
In order to enhance learning of both, temporal and spatial task
characteristics simultaneously, we designed a novel mixed guid-
ance controller that combined the tangential haptic guidance and
the perpendicular error amplification controllers described above.
The mixed guidance controller is realized by a force field with a
stable manifold tangential to the trajectory, which acts as a hap-
tic guidance controller and an unstable manifold perpendicular
to the trajectory that acts as an error augmentation controller
(Figure 2C). To implement the mixed guidance approach with
tangential haptic guidance and perpendicular error amplification,
the two sets of control forces derived in equations 1 and 3 were
superimposed:

F = kp ·(xdp−x)+kt ·(xdt−x) = kp ·ep+kt ·et; where kp⟨0, kt⟩0.
(4)

We made the negative proportional gain kp a function of
the subject’s ongoing perpendicular error in order to limit large
errors with haptic guidance, while augmenting task relevant

errors with error amplification using equation 3. This fusion
resulted in a tubular structure surrounding the current trajec-
tory tangent. Within this tube, the mixed guidance approach
remained unchanged. However, once the perpendicular errors
got bigger than eturn, haptic guidance was applied in all dimen-
sions. To ensure the safety and directionality of the resulting
forces, the control output got saturated to 10N only after super-
position. The total force calculated in end-effector coordinates
by the controller was then transformed into joint torques by
using inverse kinematics, and fed into a closed-loop torque
controller.

Random Disturbing Forces
The idea of the randomly varying disturbing forces controller is
to enhance the active participation and concentration of subjects
by pushing them away from their “comfort zone.” The imple-
mentation of the random disturbing force controller with ARMin
IV is specified by some key parameters that describe the forces’
directionality, frequency and magnitude.

For the directional aspect, the reference system in which the
random disturbing forces are applied plays a crucial role (i.e.,
joint or end-effector space). For the current application (learning
a trajectory in end-effector space), we chose end-effector coor-
dinates for consistency. In order to have the random disturbing
forces only acting on the spatial aspect of the task, the disturb-
ing forces were generated so that they were randomly allocated
parallel to the trajectory normal plane (N) at each sample time
(Figure 3).

The timing aspect is tuned by three parameters. First, the aver-
age time between two pulses (Tavg) is specified. This parameter
defines the average frequency of application of random disturbing
forces. Second, the duration of a disturbance (Tdist) is fixed. Third,
the minimal time between two pulses (Tmin) is chosen. This
parameter controls that there is a minimum idle time between
two consecutive disturbances to allow subjects to recover from the
previous unforeseen force.
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The timing condition for the random disturbing forces can be
formulated applying probability calculation. At every time step, a
random number rand in the range from zero to one is drawn from
a uniform distribution [rand ~ Unif(0,1)]. The probability for this
random number rand to be smaller than a constant C∈[0,1] is
equal to C (Rüdt et al., 2016).

Pr(rand < C) = C. (5)

If rand is smaller than C, a disturbance is applied. Since this
process runs at 1 kHz, disturbances are applied at an average
frequency (f avg) of 1,000C Hz.

The magnitude of the disturbances is drawn from a uniform
distribution in the range between theminimal desired disturbance
force (Fdistmin) and the maximal desired force (Fdistmax):

Fdist = Fdistmin + rand × (Fdistmax − Fdistmin). (6)

All timing and magnitude parameters were selected ad hoc.
The average time Tavg was set to 4 s in order to keep the sub-
jects’ attention on one hand, but also prevent frustration. The
duration of a pulse Tdist was set to 0.4 s. This duration sufficed
for force application by the robotic device, but was still perceived
as discrete disturbance. The minimal time between two pulses
(Tmin) was fixed at 1 s. The thresholds for the minimum and
maximum exerted forces (Fdistmin and Fdistmax) were set to 10 and
20N, respectively. Although these values seem relatively large, the
remainingmoment of inertia of the robot hampered their effect on
the final subjects’ movements, since the unanticipated forces had
the effect of a short and fast change in themovement’s smoothness
(Marchal-Crespo et al., 2011).

The Ice Cream Maker Game
We developed a virtual game, the Ice Cream Maker, using
Unity©5.0 (Unity Technologies, USA). In this game, the subject
takes on the role of an ice cream vendor, who needs to make
an ice cream for a young customer. The aim of the game was
to serve ice cream by placing a cup under a dispenser that fol-
lowed predefined trajectories (Figure 5). Under the dispenser, the
desired cup position was indicated with a white sparkling particle
effect that moved with the dispenser. The location of the cup in
the game corresponds to the location of the end-effector of the
robot in the real world. The white sparkles turned green whenever
the cup was held in the correct position. This visual cue was
included to help subjects locate the cup in 3D space within the 2D
game view.

Two dispensers (one for ice cream and one for toppings)moved
following two different trajectories. In previous studies we found
that the training strategy that benefits motor learning the most
depends on the specific characteristics of the task to be learned. In
particular, the rhythmicity and duration of the movement seemed
to play a key role on the effectiveness of robotic training (Marchal-
Crespo et al., 2015a,b). Therefore, we selected two different move-
ments—usually trained during clinical practice—that differed in
their rhythmicity.

Rhythmic Trajectory
The ice cream dispenser followed continuous and consecutive
circles on the horizontal plane with an ellipsoidal speed profile
(Figures 5A,C) (Lüttgen and Heuer, 2012). Tracking a circle is
a task usually employed in robot-assisted rehabilitation during
training and assessment (Dipietro et al., 2007; Nordin et al., 2014).

FIGURE 5 | (A) Screen shot of the ice cream dispenser (circle). (B) Screen shot of the toppings dispenser (line). (C) Desired speed profile in the circle task.
(D) Desired speed profile in the line task. The dashed lines were not displayed to subjects.
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The circle’s radius was set to 10.6 cm and the maximum and
minimum speeds were 20 and 12 cm/s, respectively.

Single Trajectory
The toppings dispenser moved along the estimated line of propri-
oceptive neuromuscular facilitation, i.e., a line that spans 50 cm
from the bottom left to the upper right in 3D. This is an effective
movement regularly used in physiotherapy to increase joint range
of motion (Kwak and Ryu, 2015). The desired speed profile con-
sisted of the combination of threeGaussians, twowith peak speeds
of 25.3 cm/s and one in the middle with peak speed 17.8 cm/s
(Figures 5B,D). The toppings dropped on the two local minima
and at the end of the desired velocity profile. A 3-s counting down
message was presented on the screen as a cue to inform subjects
that the line movement was about to begin.

We artificially created the desired velocity profiles in order to
increase the task difficulty and to add a strong timing component
into the tasks. Since the experiment was performed with healthy
subjects, performing the trajectories at their natural velocity pro-
files (i.e., bell-shaped velocity profile in the line and constant
velocity in the circle) would have been too easy.

Experimental Protocol
The studywas approved by the local ethical committee (Kantonale
Ethikkommission Zürich, Application Number: KEK-ZH-Nr.
2015-0013) and conducted in compliance with the Declaration
of Helsinki. Thirty-two healthy, right-handed adult subjects (14

female), 25.8± 3.6 years old, gave written consent to participate
in the study.

Subjects were randomly assigned to one of four training strate-
gies (eight subjects per group): No haptics (NH), mixed guidance
(MG), tangential haptic guidance+ perpendicular error ampli-
fication provided in sequential order (HG+EA), and random
disturbing forces (RF). The HG+EA group was included in the
study in order to compare the relative benefits on motor learning
of applying the tangential haptic guidance andperpendicular error
amplification strategies simultaneously (mixed guidance), or in
sequential order. The eight subjects in the HG+EA were further
randomly assigned into two groups. The first group (four subjects)
started training with tangential haptic guidance and finished with
perpendicular error amplification, while the second group (four
subjects) started with error amplification and finished with haptic
guidance.

Subjects were instructed to learn the two different movements
(circle and line) followed by the dispenser. In order to prevent a
possible influence of the task order, subjects in each group were
randomly assigned into two groups, which learned the tasks in an
opposite order.

The experiment took place in two different days (Figure 6).
On day 1, subjects started with a baseline test (1min) where they
were instructed to track the dispenser (that followed the line or
the circle, depending on the task order) in order to fill the cup
without guidance/disturbance from the robot. During baseline
free (1min), subjects were requested to reproduce the movements

FIGURE 6 | Experimental protocol. On day 1, subjects started with a baseline test (1min) where they were instructed to track the dispenser that followed the line
(L) or the circle (C), depending on the order of the task. During baseline free (1min), subjects were asked to reproduce the movement without visual feedback
(dashed blocks). Baseline and baseline free were then repeated for the second task. During the training blocks, subjects trained with no haptics, mixed guidance,
HG+EA, or random disturbing forces, depending on their training group, in eight blocks of 1.5min each. The order of the tasks to be trained was alternated. First,
subjects performed two training blocks with the first task, followed by two blocks with the second task. These four blocks were then repeated again. After a 5-min
break, short-term retention and short-term retention free tests per each task were performed that followed the same structure and order than the baseline and
baseline free tests. After 3–5 days subjects came back to perform the long-term retention and long-term retention free tests. After the second baseline free test, and
at the end of both experimental days, subjects responded to 11 questions selected from the Intrinsic Motivation Inventory (IMI). Subjects also responded to the first
three questions of the questionnaire after every two training blocks.
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they just performed during baseline, but without visual feedback,
i.e., the dispenser did not move. Baseline and baseline free tests
were then repeated for the second task. During the training blocks,
subjects trained with no haptics, mixed guidance, HG+EA or
random disturbing forces, depending on their training strategy
group, in eight blocks of 1.5min each. We alternated the order
of the tasks to be trained. First, subjects performed two training
blocks with the first task (the first task in baseline), followed by
two blocks with the second task. These four blocks were then
repeated again. After a 5-min break, subjects performed short-
term retention and short-term retention free tests per each task
that followed the same structure and order than the baseline and
baseline free tests. The total experiment time on the first day was
around 1 h. Subjects were invited to return after 3–5 days to per-
form the long-term retention and long-term retention free tests,
which followed the same structure and order as the short-term
retention and short-term retention free tests. Short rest breaks
every two training blocks were allowed to minimize subjects’
fatigue.

After the second baseline free test, and at the end of both
experimental days, subjects responded to 11 questions (Table 1)
selected from the Intrinsic Motivation Inventory (IMI, Ryan,
1982), which is a well-established and valid questionnaire already
used in previousmotor learning and rehabilitation studies (Novak
et al., 2014; Duarte and Reinkensmeyer, 2015). The full ques-
tionnaire consists of 45 questions and can be further divided
into 7 subscales. In the present study, only four subscales were
selected: interest/enjoyment (I/E), perceived competence (PC),
effort/importance (E/I), and pressure/tension (P/T). These four
items were selected because they encompass the essentials of the
motivational aspects in the specific motor task (McAuley et al.,
1989). Subjects also responded to the first three questions of the
questionnaire (Table 1, in bold) after every two training blocks
(Figure 6). We selected these questions in order to assess sub-
jects’ enjoyment, perceived competence and effort during train-
ing. Subjects rated their feelings on a Likert scale between 1 and
7 points; 1 indicated “I disagree completely” and 7 indicated “I
agree completely.” The questions were presented in German and

TABLE 1 | IMI Questionnaire.

IMI Questions Subscale

1. I enjoyed playing the game very much interest/enjoyment (I/E)
2. I am satisfied with my performance perceived

in the game competence (PC)
3. I put a lot of effort into this effort/importance (E/I)
4. I think the game was boring (I/E)
5. I felt very tense while playing the game pressure/tension (P/T)
6. I could not play the game very well (PC)
7. It was important for me to do well at the game (E/I)
8. This game was fun to play (I/E)
9. I was anxious while playing the game (P/T)

10. I think I am pretty good at the game (PC)
11. I did not try very hard to do well at the game (E/I)

Set of 11 questions selected from the Intrinsic Motivation Inventory (IMI) (Ryan, 1982)
in order to assess subjects’ interest/enjoyment (I/E), perceived competence (PC),
effort/importance (E/I) and pressure/tension (P/T). Questions in bold were also presented
after each two training blocks. Subjects rated on a Likert scale between 1 and 7 points; 1
indicated “I disagree completely” and 7 indicated “I agree completely.”

English. Subjects could see their previous answers to the same
questions.

Data Processing and Statistical Analysis
We calculated the mean absolute tracking error (i.e., the mean
absolute difference between the measured and desired position),
its perpendicular and tangential projections, and the mean abso-
lute velocity error (i.e., the mean absolute difference between
the measured and desired velocity) during baseline, training and
short- and long-term retention tests. We evaluated the perfor-
mance during baseline free and short- and long-term reten-
tion free tests (i.e., when subjects were requested to reproduce
the task without visual feedback) comparing the recorded and
desired trajectories using dynamic time warping (DTW) with the
weighting of the temporal shifts set to zero (i.e., spatial error)
(Giese and Poggio, 2000). We also used DTW to calculate the
velocity error, i.e., comparing the recorded and desired velocity
profiles using DTW with the weighting of the temporal shifts
set to zero. Data from one subject in the random disturbing
force group (RF) and one subject in the no haptics group (NH)
while practicing the line task were discarded because they did
not follow the instructions despite coaching, and instead sys-
tematically performed very large errors. After removing these
subjects, data became normal distributed during baseline for each
group.

We used repeated measures of ANOVA to test the effect that
different training strategies, task to be learned and initial skill level
had on the error reduction from baseline to retention tests. The
error created during baseline was used as a qualitative measure
of initial skill level (i.e., the larger the error during baseline, the
initially less skilled a subject was). We fitted the model with the
two different tasks (circle vs. line, fixed effect), the four differ-
ent training strategies [no haptics (NH), mixed guidance (MG),
tangential haptic guidance+ perpendicular error amplification in
series (HG+EA), and random disturbing forces (RF) as fixed
effect], the initial skill level as covariate, and the subjects as ran-
dom effect. We evaluated the main effects of the training strategy,
the task to be learned and the initial skill level and the interaction
between the training strategy and task. We performed Pearson’s
correlation tests in order to test the correlation between error
reduction after the different training strategies and initial skill
level (i.e., performance during baseline).

We usedmultivariate analysis in order to test whether the train-
ing strategies modulated subjects’ performance during training.
We evaluated the performance change from baseline to the first
training block with the four training strategies and the two tasks
to be learned as fixed effects. We performed univariate analysis
with the performance change from baseline to the first training
block with the training strategy as fixed effect in order to evaluate
the influence of the training strategy on performance for the line
and the circle tasks. We note that during the first training block,
half the subjects in the HG+EA group trained with tangential
haptic guidance, while the other half trained with perpendicular
error amplification.

In order tomeasure the effects that the different training strate-
gies had on self-reported motivation, we compared the responses
to the 11 IMI questions just before the training started and after
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short- and long-term retention tests. We grouped the responses
into each of the four subscales: interest/enjoyment (Q1, Q4, Q8),
perceived competence (Q2, Q6, Q10), effort/importance (Q3, Q7,
Q11) and pressure/tension (Q5,Q9).We also analyzed the effect of
the different training strategies on self-reported motivation dur-
ing training using the subset of three questions from the IMI given
after every two consecutive training blocks (four short IMI ques-
tionnaires in total). We used the responses before training as the
reference point. We compared the changes in responses using the
non-parametric independent samples Kruskal–Wallis test with
training strategy as the main factor. Mann–Whitney test range
test was used on pairwise comparisons, if the Kruskal–Wallis
was significant. We used Wilcoxon signed-ranks tests to compare
changes in the responses from baseline to short- and long-term
retention tests.

We checked normal distribution visually using Q–Q plots.
We performed post hoc comparisons with Bonferroni correction.
When Mauchly’s test indicated that the assumption of sphericity
was violated for repeated measures ANOVA, we used Green-
house–Geisser corrections and adjusted degrees of freedom were
reported. The significance value was set to α = 0.05. We also
report p-values smaller than 0.1 as tendencies. Statistical analyses
were performed using IBM® SPSS® Software (version 21, Chicago,
IL, USA).

RESULTS

Performance during Training with Different
Training Strategies
The robotic guidance provided in the tangential direction dur-
ing training with mixed guidance and HG+EA reduced the
tangential errors when performing the line and circle tasks. We
found a significant effect of training strategy between baseline
and first training block on the tangential error [Figure 7A,
F(3,53)= 3.01, p= 0.038]. Contrast revealed that subjects who
trained with mixed guidance reduced the tangential error to

a greater percentage than subjects who practiced with random
disturbing forces (Figure 7A, p= 0. 013) and tended to reduce
the error more than subjects who practiced without haptics
(Figure 7A, p= 0.083). The HG+EA group also reduced the
tangential error in a greater amount than the random disturbing
forces group (Figure 7A, p= 0.032). We did not find a main effect
of task; neither the interaction effect of the strategy and task was
significant.

We also found a main effect of training strategy on the per-
pendicular error reduction between baseline and the first train-
ing block [Figure 7B, F(3,53)= 4.70, p= 0.006]. In particular,
post hoc test revealed that subjects trainedwithout haptics reduced
the perpendicular error in a greater amount than subjects in
the mixed guidance group (Figure 7B, p= 0.006). They also
reduced the error in a greater amount than subjects in the
HG+EA group, but the difference did not reach significance
(Figure 7B, p= 0.096). Themain effect of taskwas non-significant
[F(1,53)= 3.66, p= 0.061]. The task and strategy interaction
effect was also non-significant.

The controllers’ output forces reached the 10N saturation limit
during training with the mixed guidance controller on average
29.04% of the time and with the tangential haptic guidance con-
troller 27.45% of the time. The gain of the error amplification
controller was relatively small, and therefore, the forces from the
error amplification controller never reached saturation. During
training, subjects in the no haptics group reached perpendicular
errors equal or greater than eturn on average 0.05% of the time,
subjects in the mixed guidance 1.5% of the time, subjects in
the random disturbing forces group 0.34%, subject training with
haptic guidance 0.71% and subjects during training with error
amplification 0.4% of the time.

Effect of Training Strategies and Tasks on
Skill Learning
We analyzed the effect that the different training strategies and
tasks had on the absolute tracking error reduction from baseline to

FIGURE 7 | Box-plot of error reduction from baseline to the first training block. (A) The robotic guidance provided in the tangential direction during training
with mixed guidance and HG+EA reduced the mean absolute tangential errors in a greater amount than the no haptics and random disturbing forces. (B) The error
amplification provided in the perpendicular direction during training with mixed guidance and HG+EA reduced the mean absolute perpendicular errors in a
significant smaller amount than the no haptics and random disturbing forces. *p<0.05, ·p<0.1. Horizontal lines are medians, boxes show the interquartile range
(IQR), error bars extent ±1.5 IQR. Individual data points are plotted as circles.
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short-and long-term retention tests. The absolute tracking error
during baseline (initial skill level) was a strong regressor on the
error reduction [F(2,106)= 59.86, p< 0.001], i.e., subjects who
performed worse during baseline (initially less skilled) reduced
the tracking error in a greater amount than initially more skilled
subjects. We found a significant main effect of training strategy
[F(6,106)= 3.034, p= 0.009]. Contrast revealed that the effect
of the training strategy was significant in the absolute tracking
error reduction from baseline to long-term retention [Figure 8A,
F(3,53)= 3.701, p= 0.017]. In particular, post hoc tests showed
than subjects in the no haptics group reduced the error to long-
term retention significantly more than subjects in the random
disturbing forces group (Figure 8A, p= 0.015). We also found

a significant effect of the task on the tracking error reduction
[Figure 8A, F(2,106)= 4.14, p= 0.019]. Contrast revealed that
subjects created larger tracking errors when tracking the line
compared to the circle (p= 0.017) and that subjects reduced the
error in the circle task in a greater amount than in the line task.
This indicates that performing the line wasmore difficult than the
circle. The interaction effect between task and training strategy
was non-significant.

We did not find a significant main effect of the training strat-
egy on the velocity error reduction from baseline to short- and
long-term retention tests. We found that the error reduction was
significantly larger when performing the circle task compared to
the line task [Figure 8B, F(2,106)= 28.67, p< 0.001]. Contrast

FIGURE 8 | Effect of training strategies on learning. (A) Box-plot of mean absolute tracking error reduction from baseline to long-term retention for the circle
(dark gray) and line (light gray) tasks. (B) Box-plot of mean absolute velocity error reduction from baseline to long-term retention, in the circle and line tasks.
(C) Box-plot of mean absolute tangential error reduction from baseline to short-term retention, in the circle and line tasks. (D) Box-plot of mean absolute
perpendicular error reduction from baseline to long-term retention, in the circle and line tasks. *p<0.05. Horizontal lines are medians, boxes show the interquartile
range (IQR), error bars extent ±1.5 IQR. Individual data points are plotted as circles.
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also revealed that the error during the circle task was signifi-
cantly smaller than during the line task (p< 0.001), indicating
that performing the velocity profile in the line task was more
difficult than the velocity profile in the circle. The absolute velocity
error during baseline was, again, a strong regressor on the error
reduction [F(2,106)= 42.728, p< 0.001]. The interaction effect
between task and training strategy was non-significant.

The main effect of the training strategy on the tangential error
reduction after training showed a tendency [F(6,106)= 1.844,
p= 0.098]. In particular, subjects in the no haptics group reduced
the tangential error to short-term retention significantly more
than subjects in the HG+EA group (Figure 8C, p= 0.007).
We found a significant effect of the task on the error reduction
[Figure 8C, F(2,106)= 15.87, p< 0.001]. Contrast revealed that
the tangential error was larger in the line task compared to the
circle task (p< 0.001) and that subjects reduced the error in the
circle task in a greater amount than in the line task. The tangen-
tial error during baseline (initial skill level) was again a strong
regressor [F(2,106)= 105.18, p< 0.001].

The main effect of training strategy on the perpendicular error
reduction showed a tendency [F(6,106)= 1.937, p= 0.082]. In
particular, subjects in the no haptics group reduced the error to
long-term retention significantly more than the random disturb-
ing forces group (Figure 8D, p= 0.048). There was no effect of
the performed task on the error reduction, neither an interaction
between task and strategy. The perpendicular error during base-
line was again a strong regressor [F(2,106)= 30.27, p< 0.001].

We further investigated the effect of the initial skill level (e.g.,
the perpendicular error during baseline) on the effectiveness of
the different training strategies (i.e., reduction of perpendicular
error from baseline to short-term retention) per each task and
found that there was a significant linear relationship between
initial skill level and the error reduction from baseline to
retention after training with the four different training strategies
in the circle task (Figure 9A, Pearson’s correlation; no haptics:
R= 0.888, p= 0.003; mixed guidance: R= 0.784, p= 0.021;

random disturbing forces: R= 0.892, p= 0.003; HG+EA:
R= 0.682, p= 0.063) and in two over four training strategies
in the line task (Figure 9B, Pearson’s correlations; no haptics:
R= 0.861, p= 0.013; mixed guidance: R= 0.717, p= 0.045;
random disturbing forces: R= 0.118, p= 0.801; HG+EA:
R= 0.481, p= 0.228). The tendency in the differences between
slopes [F(3,27)= 2.38, p= 0.092] suggests that when training
the circle (easy task) no haptics benefited the initially less-skilled
subjects, while training with mixed guidance was more beneficial
for initially more skilled (Figure 9A). On the other hand, when
training the line (difficult task), training without haptics benefited
all subjects, skilled and non-skilled (Figure 9B). The absolute
tracking error follows the same results pattern.

Effect of Training Strategies on the
Performance without Visual Feedback
In order to evaluate whether subjects learned how to perform
the circle and line tasks without visual feedback, we analyzed
the reduction of DTW spatial and velocity errors from baseline
free to short- and long-retention free tests. Two data sets dur-
ing baseline free and two during long-term retention tests could
not be used, because subjects performed the circle task turning
counterclockwise, while they should have turned clockwise.

In general, all subjects reduced significantly the spatial error
from baseline free to short- and long-term retention free
[F(2,98)= 11.614, p< 0.001]. However, we did not find a main
effect of the training strategy. We found a main effect of the task
[F(2,98)= 5.500, p= 0.005]. In particular, subjects performed
systematically worse when playing the line compared to the circle
task (p< 0.001), but reduced the spatial errors in greater amount
in the line task.

Similarly, all subjects reduced the velocity error from baseline
free to short- and long-term retention free [F(1.66,81.18)= 4.57,
p= 0.018, Greenhouse-Geisser corrected]. We found a significant
effect of the training strategy [Figure 10, F(4.97, 81.18)= 3.13,

FIGURE 9 | Effect of initial skill level (baseline perpendicular error) on the perpendicular error reduction from baseline to short-term retention after
training with the different training strategies for the circle task (A) and line task (B). *p<0.05, ·p<0.1.
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p= 0.013, Greenhouse-Geisser corrected]. Post hoc test revealed
that the velocity error reduction from baseline free to short-term
retention free was smaller in the random disturbing forces group
than in the no haptics (p= 0.020), and mixed guidance groups
(p= 0.042). The velocity error reduction from baseline free to
long-term retention free was smaller in the random disturbing
forces group than in the mixed guidance group (p= 0.035). The
effect of the task did not reach significance [F(1.66,81.18)= 2.35,
p= 0.111, Greenhouse-Geisser corrected]. Again, the velocity
error in the line was greater than in the circle (p< 0.001). We did
not find a significant interaction between the training strategy and
the task.

Effect of Training Strategies on Motivation
Training with the different strategies did not have a great
impact on subjects’ self-reported motivation during training

FIGURE 10 | Effect of training strategy on performance without visual
feedback. Box-plot of mean DTW velocity reduction from baseline free to
short-term retention free (dark gray) and to long-term retention free (light gray).
*p<0.05. Horizontal lines are medians, boxes show the interquartile range
(IQR), error bars extent ±1.5IQR. Individual data points are plotted as circles.

(shaded areas in Figure 11). We found that, in general, subjects
significantly increased the perceived competence from baseline
till the end of training (Break 4) (Figure 11B, p< 0.001). In
particular all training groups increased significantly the perceived
competence from baseline to Break 4 (no haptics, p= 0.017;
mixed guidance, p= 0.04; HG+EA, p= 0.017). Only subjects
trained with the random disturbing forces did not significantly
increase their perceived competence after the last training
block. However, differences between training groups were not
significant. No significant differences in perceived competence,
neither on effort/importance (Figure 11C) was found between
groups during training. Only the mixed guidance group showed
an almost significant smaller enjoyment than the other training
groups after the second training block (Figure 11A, p= 0.058).

In general, subjects significantly increased their perceived
competence from baseline to the end of day 1 [mean(Q2, Q6,
Q10), p< 0.001]. They also showed a non-significant decrease
in effort/importance [mean(Q3, Q7, Q11), p= 0.135] and in
pressure/tension [mean(Q5, Q9), p= 0.120]. Subjects continued
to report an increase of perceived competence after 3–5 days,
when they were back for the long-term retention test (p< 0.001)
and a reduction of pressure/tension (p< 0.001). In particular, all
training groups—except for subjects trainedwith randomdisturb-
ing forces—increased their perceived competence at short-term
retention (Figure 12A, no haptics: p= 0.025; mixed guidance:
p= 0.028; HG+EA: p= 0.012). At long-term retention, also sub-
jects in the randomdisturbing forces group significantly increased
their perceived competence. At long-term retention, only subjects
in the mixed guidance group did not significantly reduce the
pressure/tension (Figure 12B).

We did not find significant differences between training groups
in any of the motivation subscales. The mixed guidance group
reported feeling more tense than subjects in no haptics and
HG+EA groups at short-term retention, as observed in the
responses to Q5 (“I felt very tense while playing the game”). How-
ever, differences did not reach significance (p= 0.069). Subjects in

FIGURE 11 | Effect of the training strategies on self-reported motivation. (A) Responses to Q1 (“I enjoyed playing the game very much”), after baseline, after
every two training blocks, and after short- and long-term retention tests. (B) Responses to Q2 (“I am satisfied with my performance in the game”). (C) Responses to
Q3 (“I put a lot of effort into this”). The shaded areas indicate when the training strategies were applied. All values are referred to the responses provided after
baseline. *p<0.05. Error bars: 1 SE.
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FIGURE 12 | Change in responses at short-term retention (dark gray) and after 3–5days, at long-term retention (light gray). (A) Mean responses to Q2,
Q6, and Q10 (Table 1), related to perceived competence. (B) Mean responses to Q3, Q7, and Q11 (Table 1) related to tension and pressure. All values are referred
to the responses provided after baseline. *p<0.05. Error bars: 95% CI.

the random disturbing forces group seemed not to increase their
perceived competence as much as subjects in the other groups,
as observed in a non-significant difference in the responses to
Q6 at long-term retention (“I could not play the game very well”)
(p= 0.105).

DISCUSSION

We assessed the impact of four different training strategies on
motor skill learning and self-reported motivation using a robotic
exoskeleton for upper limb rehabilitation: (i) no haptics: no robot
forces were present, (ii) a novel mixed guidance controller: a force
field with a stable manifold tangential to the desired trajectory
that guides subjects in velocity-related aspects and an unstable
manifold perpendicular to the trajectory, which amplifies the
perpendicular (spatial) error, (iii) tangential haptic guidance and
perpendicular error amplification provided in random sequential
order, and (iv) random disturbing forces. Thirty-two healthy sub-
jects were requested to learn two different motor tasks: a rhythmic
task—i.e., move the hand following circles with and ellipsoidal
speed profile (Lüttgen and Heuer, 2012), and a single task—i.e.,
move the hand along the line of proprioceptive neuromuscular
facilitation (Kwak and Ryu, 2015) following a complex speed
profile.Mixed guidance showed no detectable learning advantages
over the other groups. However, results suggest that the effective-
ness of the training strategies depends on the subjects’ initial skill
level.

Research in motor learning has suggested that error amplifica-
tion might benefit learning of only specific characteristics of the
training tasks, such as spatial features of trajectories (Casellato
et al., 2012; Heuer and Lüttgen, 2015), while there is emerg-
ing evidence that haptic guidance may be specifically useful for
learning reproduce the temporal, but not spatial, characteris-
tics of trajectories (Feygin et al., 2002; Marchal-Crespo et al.,

2010a,b). Thus, we hypothesized that providing haptic guidance
to learn the time components—i.e., reducing errors tangential to
the desired trajectory—and error augmentation to learn the spa-
tial components—i.e., augmenting perpendicular errors—would
result in better learning of timing and spatial characteristics. We
expected better motor learning when the error amplification and
haptic guidance were provided simultaneously (mixed guidance)
than in sequential order, since subjects trained in sequential order
would only benefit from each training strategy half of the time.

All training strategies worked as expected. The mixed guidance
and tangential haptic guidance controllers significantly reduced
the tangential tracking errorwhen training the circle and line tasks
in a greater extent than the no haptics and random disturbing
forces groups. Furthermore, training with mixed guidance and
perpendicular error amplification hampered the error reduction
from baseline to training. We also found that performing the line
task (single trajectory) was more difficult than performing the
circle task (rhythmic trajectory), as suggested by the larger error
created during the line task, and the smaller error reduction after
training.

Contrary to our hypothesis, we found that training with mixed
guidance did not result in better learning than training without
haptics and training with perpendicular error amplification and
tangential haptic guidance provided in sequential order. Perhaps
the mixed guidance training strategy was too difficult to inter-
pret. Error augmentation coupled with haptic guidance might
not be distinguished during these complex tasks. Furthermore,
the mixed guidance controller is realized by a saddle-point force
field linked to the desired position, and therefore, changes its
manifold directions with time in curved trajectories (tangential
and perpendicular directions changed with time). Maybe this
continuous change in force direction while training made the
subjects to perceive the guidance as a disturbance. We observed
this limitation in a preliminary study where we evaluated training
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with a first version of the mixed guidance controller and observed
that training with mixed guidance limited learning of the circle
(Marchal-Crespo et al., 2016). Based on those findings we decided
to reduce the unstable forces in the perpendicular direction (by
reducing the perpendicular error amplification controller gain)
and limit large errors by adding the haptic guidance tubular tran-
sition (i.e., the transition from error amplification to haptic guid-
ance when the perpendicular error was larger than the allowed
limit). However, maybe these new additions were not sufficient to
make the training easier.

Additionally, maybe the tasks to be learned were too difficult
for this type of error augmenting controller. Performing circles
with an ellipsoidal speed profile without arm gravity compen-
sation was a difficult and tiring task, as suggested by the large
errors done during baseline. Performing the line in 3D was even
more difficult, as suggested by the larger errors created during
the line task. We also observed that subjects self-reported levels
of perceived competence increased significantly during training,
implying that subjects did not report reaching learning ceiling
effects during training, which would have been an indicator of
low functional task difficulty. The reported effort after baseline
was also considerable high (5.18± 1.04). We investigated the
effect of the initial skill level on the effectiveness of the differ-
ent training strategies per each task. Results suggest that when
training the circle (easier task) no haptics benefited the initially
less-skilled participants, while training with mixed guidance was
more beneficial for initially more skilled subjects. On the other
hand, when training the line (more difficult task), trainingwithout
haptics benefited all subjects, independently of their initial skill
level. Therefore, the unexpected limitation of the mixed guidance
controllermight originate from the fact that the tasks to be learned
were too difficult (Marchal-Crespo et al., 2015a,b). This is in
line with previous studies that showed that error amplification
seemed to be particularly helpful for initially more skilled subjects
(Milot et al., 2010; Marchal-Crespo et al., 2014a) and for specially
simple tasks (Marchal-Crespo et al., 2014b). This can be explained
by the Challenge Point Theory, which states that optimal learn-
ing is achieved when the difficulty of the task is appropriate
for the individual subject’s level of expertise (Guadagnoli and
Lee, 2004). Thus, matching the robotic strategy—that changes
the task’s difficulty—to the trainee’s skill level, may provide the
greatest opportunity for learning.

We also found that training with perpendicular error ampli-
fication and tangential haptic guidance provided in random
sequential order limited learning of the task spatial components
compared to training without haptics. A possible reason is that
error amplification might enhance learning only in discrete tasks,
such as fast point-to-point reaching tasks (Patton et al., 2006), but
might limit learning (and generalization) of tasks that require con-
tinuous error correction, such as the tracking tasks here presented.
A possible rationale for the limited learning observed in our
continuous tasks might originate from the feedback that subjects
received while training. During training, subjects continuously
received visual feedback about their performance (i.e., concurrent
visual feedback). The specificity-of-learning hypothesis states that
learning ismost effectivewhen training is performed involving the
most crucial sensory information source needed to perform the

motor task in retention tests. In our case, in order to track the ice
cream dispenser, the concurrent visual information was crucial,
and therefore, maybe other sources of sensory information—for
example proprioception—were neglected (Proteau, 2005).

We found that adding randomly varying disturbance forces
during training hampered learning of both tasks. Training with
random disturbing forces resulted in poorer learning and limited
performance when subjects were requested to replicate the tasks
without visual feedback. A possible rationale could originate from
the anticipated decrease of feelings of competence when the ran-
dom disturbing forces were applied. Subjects who trained with
randomly varying disturbing forces reported lower levels of com-
petence after training. This decreased feeling of competence could
have jeopardized the subjects motivation to perform the task,
and therefore, negatively affect their learning outcomes (McAuley
et al., 1989). This is in line with a recent study that found that
robotically increasing kinematic errors did not improve learning
of a golf putting task, but decreased motivation in a persistent
way (Duarte and Reinkensmeyer, 2015). In a previous study, we
found that the addition of random disturbing forces increased
subjects effort during training (Marchal-Crespo et al., 2014b), and
this increase in effort resulted in better motor learning. However,
in the current study we did not find a significant increase of
effort during training, probably because the taskwas already pretty
difficult (the mean of the responses to questions related to effort
was 5.18± 1.04 after baseline). Therefore, the negative effects
of the decrease in perceived competence was not compensated
by an increase in effort during training with random disturb-
ing forces. Additionally, maybe the controller parameters that
describe the random disturbance forces’ directionality, frequency
andmagnitude were not appropriate to enhancemotor learning of
these specific tasks. We selected the parameters based on previous
research on motor learning of locomotor tasks (Marchal-Crespo
et al., 2014b; Rüdt et al., 2016). However, maybe complex tasks
performed with the upper limbs require totally different values.
Further experiments analyzing the effect of different frequency
and magnitude parameters on motor learning need to be per-
formed.

As hypothesized, since the mixed guidance strategy applied
both, haptic guidance and error amplification simultaneously, it
did not have a great impact on motivation. We only observed a
decrease of enjoyment during the first training trials; a difference
that was quickly faded as training progressed. We also observed
that subjects trained with mixed guidance did not reduce the
pressure/tension feelings after training, as subjects in the other
training groups did. Therefore, it is still possible to apply some sort
of error amplification strategy that keeps the subjects tension and
pressure during training without affecting negatively their per-
ceived competence, providing an excellent framework to enhance
motor learning.

The difficulty of the motor tasks might limit the applicability of
our approach in rehabilitation. The impacts of different training
strategies on motor learning may differ in neurological patients
(Casellato et al., 2012). They probably have a lower initial skill level
and therefore, their optimal challenge point (i.e., where subjects
show the best motor learning) may be at a different level. Easier
tasks (e.g., drawing circles with gravity compensation) need to
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be developed and evaluated with mildly affected neurologically
patients.

CONCLUSION

We evaluated a novel mixed guidance controller that combines
haptic guidance and error amplification to simultaneously pro-
mote learning of the timing and spatial components of complex
motor tasks. We also evaluated a controller that applies randomly
varying disturbing forces to enhance the subjects’ active participa-
tion by pushing them away from their “comfort zone.” We found
that, contrary to our hypothesis, training with mixed guidance
did not result in better motor learning than training without
haptics and training with error amplification and haptic guidance
provided in sequential order. Results suggest that the effectiveness
of the robotic training strategies depends on the subject’s initial
skill level, in line with our previous findings (Marchal-Crespo
et al., 2015a,b). Training with mixed guidance seemed to benefit
initially more skilled subjects, while training with no haptics was
more beneficial for initially less skilled subjects. Therefore, the
limitation of the mixed guidance strategy might be explained
because the motor tasks to be learned were too difficult. Adding
random disturbing forces during training showed no detectable
learning advantages over no haptics. In fact, the unanticipated
forces hampered learning, probably because they decreased the
subjects’ feelings of competence but did not increase their effort
and interest. Additionally, we suggest that the benefits of error
augmentation might be limited to learn tasks that require only
feedforward motor control, such as point-to-point reaching tasks,
butmight limit learning of tasks that require continuous error cor-
rection, as is learning to track figures. An important direction for
future research is to perform further studies with mildly affected
neurologically patients employing easier tasks in order to evaluate
the applicability of our approaches in rehabilitation.
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