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Wearable robotic systems are being developed to prevent injury to the low back. 
Designing a wearable robotic system is challenging because it is difficult to predict how 
the exoskeleton will affect the movement of the wearer. To aid the design of exoskele-
tons, we formulate and numerically solve an optimal control problem (OCP) to predict 
the movements and forces of a person as they lift a 15 kg box from the ground both 
without (human-only OCP) and with (with-exo OCP) the aid of an exoskeleton. We model 
the human body as a sagittal-plane multibody system that is actuated by agonist and 
antagonist pairs of muscle torque generators (MTGs) at each joint. Using the literature 
as a guide, we have derived a set of MTGs that capture the active torque–angle, passive 
torque–angle, and torque–velocity characteristics of the flexor and extensor groups 
surrounding the hip, knee, ankle, lumbar spine, shoulder, elbow, and wrist. Uniquely, 
these MTGs are continuous to the second derivative and so are compatible with gra-
dient-based optimization. The exoskeleton is modeled as a rigid-body mechanism that 
is actuated by a motor at the hip and the lumbar spine and is coupled to the wearer 
through kinematic constraints. We evaluate our results by comparing our predictions 
with experimental recordings of a human subject. Our results indicate that the predicted 
peak lumbar-flexion angles and extension torques of the human-only OCP are within 
the range reported in the literature. The results of the with-exo OCP indicate that the 
exoskeleton motors should provide relatively little support during the descent to the 
box but apply a substantial amount of support during the ascent phase. The support 
provided by the lumbar motor is similar in shape to the net moment generated at the L5/
S1 joint by the body; however, the support of the hip motor is more complex because 
it is coupled to the passive forces that are being generated by the hip extensors of the 
human subject. The simulations developed in this study are specific to lifting motion and 
a lower back exoskeleton. However, the framework is applicable for simulating a large 
range of robotic-assisted human motions.

Keywords: optimal control, muscle torque generators, musculoskeletal model, wearable robotics, exoskeleton, 
movement prediction, model-based optimization

1. INtRodUCtIoN

Wearable robotic systems have the potential to improve the quality of life for many by preventing 
injury, restoring function, and extending human physical capacities. Injury to the lower back is 
particularly common and costly (Goetzel et al., 2003). Exoskeletons are being developed (Naruse 
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FIgURe 1 | The human is modeled as a 10-segment 12-DoF planar 
mechanism, the exoskeleton is modeled as a 5-segment 9-DoF mechanism, 
and the box is modeled using a single 3-DoF body. Kinematic constraints 
between the feet and the ground, the hands and the box, the box and the 
ground, and the exoskeleton and the body are indicated with dashed lines. 
The human-only OCP uses the human and the box models, while the 
with-exo OCP also makes use of the exoskeleton. Note that the left and right 
legs have been grouped into a single leg, as have the left and right arms. The 
letter κ indicates a frame. The subscripts B, H, and E refer to the box, the 
human, and the exoskeleton models, respectively. Planar positions are 
indicated with x and z, angles are indicated with θ, and changes of length are 
indicated with an l.
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et al., 2005; Abdoli-E et al., 2006; Luo and Yu, 2013; Ulrey and 
Fathallah, 2013; Bosch et al., 2016) to reduce the risk of low-back 
injury by providing support in awkward work postures and during 
lifts. Designing an exoskeleton that seamlessly assists its wearer 
is challenging because the motions and forces of the human need 
to be anticipated during the design phase.

Using powerful optimization methods, human motion can be 
predicted in silico given a sufficiently accurate model of the body’s 
dynamics and a representative cost function. This approach has 
been exploited to accurately predict the movements and forces 
of walking (Anderson and Pandy, 2001; Ackermann and van den 
Bogert, 2010; Dorn et al., 2015), sprinting (Schultz and Mombaur, 
2010), vaulting in gymnastics (Hiley et al., 2015), the backhand in 
tennis (Kentel et al., 2011), and platform diving (Koschorreck and 
Mombaur, 2011). Arriving at a sufficiently accurate model for the 
task is challenging. If the model is not accurate enough, the forces 
and motions of the solution will be of little value. In contrast, if 
the model is very detailed, 1000’s of CPU-hours (Anderson and 
Pandy, 2001; Dorn et  al., 2015) may be required to arrive at a 
solution.

Although the methods to model large dynamic systems 
(Featherstone, 1983, 2008; Jain, 1991) and predict their move-
ments (Bock and Pitt, 1984; von Stryk, 1993) are relatively well 
established, there are few applications of these methods to aid 
in the design of wearable robotic systems (see, e.g., Koch and 
Mombaur, 2015; Schemschat et  al., 2016; Manns et  al., 2017).  
In preliminary work, we showed that assisted lifting motions for 
human–exoskeleton models can be simulated with an optimal 
control framework (Manns et al., 2017). In the current work, we 
study a stoop motion while lifting a 15 kg box with handles off 
of the floor and expand on the initial proof-of-concept (Manns 
et  al., 2017). First, we simulate the exoskeleton as an external 
rigid-body model connected to the human at contact points. This 
improvement allows us to more accurately model the exoskeleton 
and to compute human–exoskeleton contact forces. Second, we 
extend the formulation of our optimal control problem (OCP) to 
a three-phase bend–grip–lift motion. This enables a more realistic 
simulation of the experimental conditions. Third, we compare 
our simulation results to experimental data and evaluate how well 
our predictions compare to the motions and forces of real lifting.

2. Methods

Solving optimal control problems can be computationally inten-
sive. It is important to balance computational efficiency and accu-
racy so that the resulting problem is tractable but still produces 
meaningful results. Though we simulate the entire body, we are 
particularly interested in assessing the risk of low-back injury.

The most commonly assumed mechanism for low-back 
injury is tissue damage at the vertebral joints caused by high 
muscular forces (McGill, 1997). For our human model, we have 
developed muscle torque generators (MTGs) that represent the 
moments that are generated by a group muscles (flexors and 
extensors) that act together about a joint. Since van Dieën and 
Kingma (2005) have shown that the forces acting between the 
vertebral joints are highly correlated with net lumbar moments, 
we can use the MTGs to assess the risk of low-back injury: a 

lower net lumbar-extension moment means that the forces  
acting on the lumbar joints are smaller, and thus, the risk of 
injury is reduced. By simulating groups of muscles, rather than 
hundreds of line-type muscles, the MTGs are easier to fit specific 
subjects and result in faster simulations and numerical results 
that are easier to interpret.

We choose to study a stoop motion because this is a technique 
that is commonly used when lifting objects from the ground 
(van Dieën et al., 1999). Though it may seem surprising, a stoop 
does not place greater demands on the lumbar back than a squat 
except when the load can be straddled (van Dieën et al., 1999). 
In addition, since the risk of low-back injury increases with 
the weight of the payload, we have included a 15 kg box in our 
problem (Coenen et  al., 2013). The following sections outline 
the development of the dynamic model, the formulation of the 
optimal control problem, the experimental measurements, and 
finally the procedure to assess the results of this work.

2.1. Model Formulation
We model the human body as a planar floating base rigid-body 
system with 10 segments and a total of 12 DoF, the box as a 
single rigid-body with 3 DoF, and the exoskeleton as a 5- 
segment rigid body with 9 DoF (Figure 1). The left and right 
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legs and arms have been lumped together into a single leg and 
arm that has double the mass, inertia, and strength of a single 
limb. We have made this simplification as the motion we are 
simulating is bilaterally symmetric, and so having a distinct left 
and right leg increases computation without contributing addi-
tional information. During the with-exo OCP, the exoskeleton is 
attached to the human subject using nine kinematic constraints, 
which affix exoskeleton to the pelvis, thigh, and trunk of the 
human model. Similarly, we use kinematic constraints to allow 
the human model to grasp the box and to stay in contact with 
the ground.

The geometry of the human model is extracted from the digi-
tization points of bony landmarks of the experimental subject. 
The contact points for the foot are updated such that they are 
slightly larger than the largest anterior and posterior center-of-
pressure excursions that were recorded during the experiments. 
This is an important point as, in preliminary computations, we 
noticed that having an over-large estimation of foot size results 
in unrealistic movements. Mass and inertia properties were 
computed using Zatsiorsky’s regression equations (Zatsiorsky, 
2002). Nine of the joints corresponding to the human model’s 
anatomical joints are actuated by torque generators. The exoskel-
eton is actuated by two motors that apply torques to the linkages 
that bridge the hip joint and the lumbar spine. These motors 
have upper torque bounds that correspond to one-third of the 
extension torque that the human subject used to lift the 15 kg 
box but are otherwise idealized. By using idealized motors, we 
compute the torque trajectories that the motors should apply to 
the human wearer—valuable information for the design of the 
exoskeleton’s actuators.

The entire exoskeleton is assumed to have a mass of 5.45 kg. 
The pelvis module (3.5  kg) consists of a belt (0.500  kg) upon 
which the three motors (1  kg each) are mounted. The next 
heaviest components are the torso (0.500 kg) and thigh modules 
(0.350 kg), which consist of a prismatic joint, a revolute joint, and 
a padded plate that is strapped to the body. Finally, the links that 
connect the pelvis module to each thigh module and the pelvis 
module to the torso module are assumed to be constructed out of 
aluminum 7178 tube (0.249 kg each) with a diameter of 1.5 cm, a 
wall thickness of 2 mm, and a length of 50 cm.

The differential algebraic equations (DAEs) governing this 
system are described as

 M c G T( ) ( ) ( )⋅q q q q q⋅⋅⋅⋅ λλ+ , = +τ  (1)

 g( )q = 0 (2)

where q, q⋅ , and q⋅⋅  are the generalized positions, velocities, and 
accelerations of the model, respectively; M(q) is the mass matrix, 
and c(q,q⋅ ) is the vector of Coriolis and centripetal forces. The 
kinematic constraints between the foot and the ground, the hand 
and the box, and the exoskeleton and the body are in the vector 
g(q), while the generalized forces that these constraints apply to 
the system are contained in the term G(q)Tλλ where G(q) is the 
Jacobian of the constraint equations g(q) with respect to q, and λλ 
is a vector of Lagrange multipliers.

The vector of applied generalized forces for the human model 
τH, the exoskeleton τE, and the box τB is used to build the vector 

of applied generalized forces τ for the entire model. The vector of 
applied generalized forces for the box is empty

 τ B = , ,( )0 0 0  (3)

since the human model grabs the box using kinematic constraints. 
In contrast, the vector of applied generalized forces for the human 
is quite full

 τ τ τ τ τ τ τ τ τ τH = , , , , , , , , , , ,( )0 0 0 16 17 18 19 20 21 22 23 24  (4)

where τ16–τ24 are the net torques generated at each joint by the 
flexor and extensor MTGs and the joint damping that we have 
added to the model. The vector of generalized forces for the 
exoskeleton only has two non-zero elements corresponding to 
the motor torques

 τ τ τE = , , , , , , , , .( )0 0 0 0 0 0 04 7  (5)

For the human-only OCP, only the τB and τH are used to define 
τ, while for the with-exo OCP, τ also contains τE. Note that the 
subscript numbering on the τ’s corresponds to the numbering 
used for the generalized coordinate labels in Figure  1. We use 
the open-source dynamics library Rigid Body Dynamics Library1 
(RBDL), an implementation of Featherstone’s order-n dynamics 
methods (Featherstone, 2008), developed by Felis (2017) to solve 
for the forward dynamics of our model.

The net torque at each of the model’s internal joints (τ16…τ24) 
is the sum of the signed flexor and extensor muscle torques acting 
at that joint and joint damping

 τ τ τ βωi i i i= + − .MF ME
 (6)

Since each torque muscle acts in a single direction, there are 
two MTGs per joint, a flexor τ i

MF, and an extensor τ i
ME, for a total 

of 18 MTGs for the whole model.
The torque τM developed by a single MTG is given by

 
τ τ θ ω θ β

ω
ω

M
o
M A V PE PE

max
M= + −



















.uf f f( ) ( ) ( ) 1

 
(7)

The torque developed by equation  (7) is a function of the 
control input u from the solver (in this case mapped to the activa-
tion of the muscle), the angle θ, and angular velocity ω of the 
joint. The angle of the joint changes the value of fA(θ), the active 
torque–angle curve, and fPE(θ), the passive torque–angle curve. 
The angular velocity of the joint affects the value of fV(ω), the 
torque–velocity curve, and also the damping torque of the passive 
element (Figure 2).

A non-linear normalized damping term βPE is added to the 
passive element to suppress vibration. The absence of this damp-
ing term leads to vibrations as the passive elements of the hips and 
back are stretched: as the stiffness of the passive element increases 
so too does the natural frequency of vibration of the segments 
to which the muscle is attached. We choose to use a non-linear 
damping similar to that of a Hunt and Crossley (1975) contact 

1 https://bitbucket.org/rbdl/rbdl. 
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table 1 | Maximum isometric torque of the MTGs and the literature used to 
derive the characteristic curves for each of the MTGs.

Joint name 
and direction

Mtg ττo
M (Nm) Mtg literature

Hip ext. 175.7 Jackson (2010)
Hip flex. 157.3 Jackson (2010)
Knee ext. 285.6 Jackson (2010)
Knee flex. 98.6 Jackson (2010)
Ankle ext. 127.6 Anderson et al. (2007), Jackson (2010)
Ankle flex. 44.3 Anderson et al. (2007), Jackson (2010)
Lumbar ext. 275.1–594 Dolan et al. (1994), Raschke and 

Chaffin (1996)
Lumbar flex. 211.7 Beimborn and Morrissey (1988), Dolan 

et al. (1994)
Shoulder ext. 127.4 Jackson (2010)
Shoulder flex. 91.1 Jackson (2010)
Elbow ext. 69.9 Jackson (2010), Kentel et al. (2011)
Elbow flex. 101.4 Jackson (2010), Kentel et al. (2011)
Ulnar dev. 31.4 Jackson (2010), Kentel et al. (2011)
Radial dev. 23.8 Jackson (2010), Kentel et al. (2011)

Note that the values reported are for a single leg and a single arm. The strength and 
damping terms of the single arm and leg used in our model are double the values 
reported here.

A B

FIgURe 2 | The torque–angle (a) and torque–velocity (b) characteristics of the hip extensors, one of the 18 MTGs used in the sagittal-plane lifting model. Jackson’s 
original passive torque–angle curve was applied to simulate a vault, a motion that requires far less hip flexion than a stoop. Accordingly, we shifted the passive 
torque–angle curve of the hip extensors to accommodate the larger hip flexion angles during the stoop motion. In addition, the strength and torque–velocity curves 
have been edited so that the model is strong enough to perform the lift as the experimental subject did.
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model because it does not noticeably increase the numerical stiff-
ness of our dynamic equations, which is not true for a parallel 
damper. The value of the normalized damping coefficient βPE is 
uniformly set to 0.1 for each of the muscles.

The light damping at each of the model’s joints in equation (6) 
is the passive damping introduced by the musculature and tissue 
surrounding the joint. The damping coefficient is defined as

 
β η

τ τ
ω ω

=
+
+

o
MF

o
ME

max
MF

max
ME

 
(8)

so that the amount of damping is proportional to the strength the 
musculature and inversely proportional to the maximum angular 
velocity of the musculature. The superscripts F and E designate 
the joint’s flexors and extensors, and η is a normalized joint 
damping scaling factor. Values of η of 0.2 and 0.4 effectively sup-
pressed vibrations in the legs and arms, respectively, and result 
in relatively light damping coefficients ranging from β = 0.6 to 
6.1 Nm s/rad.

Several literature sources are used to build the characteristic 
curves for the MTGs (Table 1), since there is no single source 
in the literature that documents all of these joints across even 
a single subject. The basis for the MTGs comes from Jackson 
(2010) who published the most complete account of the active 
torque–angle and torque–velocity characteristics at the hip, 
knee, shoulder, and wrist in an effort to simulate an elite male 
gymnast performing a vault. The remaining curves for ankle 
plantarflexion/dorsiflexion came from Anderson et al. (2007), 
while elbow extension/flexion, and wrist ulnar/radial devia-
tion come from Kentel et  al. (2011). Fortunately, the datasets 

of Anderson et al. and Kentel et al. reported curves for some 
of the same joints as Jackson allowing us to scale τo

M for the 
ankle, elbow, and wrist to be more consistent with the gym-
nast’s strength. The characteristic curves associated with the 
lumbar spine are derived using experimental data from Dolan 
et al. (1994), Raschke and Chaffin (1996), and Beimborn and 
Morrissey (1988).
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FIgURe 3 | The stooping box lift is formulated as a three-phase OCP: stand to touching the box, touching the box to gripping the box, and finally lifting the box to a 
standing position.
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The set of gymnast-fitted MTGs are fitted so that the model 
can perform the same lifting movement as the experimental 
subject. To fit the MTGs to the movement, we use the joint 
angles and velocities from an inverse kinematics analysis and 
the torques computed from an inverse-dynamics analysis 
and equation  (7) to ensure that each of the muscles is flex-
ible and strong enough to perform the same lifting motion 
as the experimental subject. Jackson’s hip extension passive 
torque–angle curve is too stiff to allow the model to perform 
the stoop and is accordingly scaled (Figure  2) such that the 
passive elasticity of the hips provides only 80% of the required 
extension torque that the experimental subject required to lift 
the box (the subject reported that his hip extensors were being 
strongly stretched). In addition, the force–velocity curve and 
maximum isometric torque of the hip extensors are adjusted 
such that the maximum activation of the hip extensors stayed 
below 75%.

In each case, fifth-order C2 continuous (continuous to the 
second derivative) Bézier splines are used to approximate the 
active torque–angle, passive torque–angle, and torque–velocity 
curves provided by Jackson, Anderson et  al., and Kentel et  al.  
We approximate the curves reported in the literature because, in 
many cases, these curves contain C1 discontinuities rendering 
them incompatible with the optimal control solution method, 
which requires C2 continuity. An open-source software imple-
mentation of the MTGs is available as an add-on in RBDL.

2.2. lifting as an optimal Control Problem
In general, an optimal control problem is defined by the goal of 
identifying the vector of state x(⋅) and control functions u(⋅) that 
minimize the cost function

 
min ( ( ) ( ) )
( ) ( )x u

x u p
⋅ , ⋅ ,

=

−

∑ ∫
+ , ,








ν j

n

j

p

j

j t t dt
0

1
1

ν

ν
φ

 
(9)

where j iterates sequentially across the phases that begin at time 
νj and terminate at time νj+1. The state vector is not completely 

free to vary but must satisfy problem-specific constraints and the 
equations of motion

 

x x p⋅⋅ ( ) ( ) for [ ]t t t
j

j= , , ,

= ,..., = =
−f t t

n
j j

p np

( ) ( ), ,

, ,

u ∈ ν ν
ν ν

1

01 0 TT  (10)

which take the form of the DAEs in equations (1) and (2). Note 
that the physical quantities assigned to the state vector and the 
vector of control signals can vary depending on the problem 
formulation. Here, we use a forward-dynamics OCP, so the state 
vector is the positions and velocities of the multibody system, and 
the control vector is composed of the 18 activation signals to the 
MTGs. In addition, the with-exo OCP has the torque of the two 
motors included in its control vector.

We formulate the stooping box lift as a forward-dynamics 
OCP that has three separate phases (Figure 3):

•	 Stand to box-touch: the first phase begins with the model 
standing at rest and ends when the model touches the box but 
applies no forces to the box.

•	 Box-touch to box-grip: the second phase begins with the model 
touching the box and ends when the model is supporting the 
full weight of the box but otherwise applies no other forces to 
the box.

•	 Box-grip to stand: the third phase begins with the model 
holding the full weight of the box in the stoop position and 
ends when the model has lifted the box and is standing with it.

Note that the multibody constraints between the hands and 
the box, and hence the underlying dynamics, between the three 
phases change.

We use continuous constraints

 0 1≤ , , , ,−g t t t tj j j( ( ) ( ) ) [ ]x u p for ∈ ν ν  (11)

on state bounds and constraints that are specific to the 
movement. The limits on each state bound are chosen to be 
consistent with a physiological range-of-motion of each 
joint and more than twice as fast as joint velocities measured 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


6

Millard et al. Optimal Control of Wearable Robotic Systems

Frontiers in Robotics and AI | www.frontiersin.org August 2017 | Volume 4 | Article 41

during the experimental recordings. The movement-specific 
constraints on the positions and velocities ensure that the 
model begins in a standing pose at rest, guides the hands to 
the handles of the box, and finishes the lift in a standing pose 
at rest. During the second-phase additional constraints are 
added so that the hands only apply vertical forces to the box, 
which begin at zero and linearly vary throughout the phase 
until the full weight of the box is supported by the hands. 
Accordingly, the box handles are placed directly above the 
center of mass (CoM) of the box so that it does not swing.  
In the third phase, additional constraints are added so that 
the box does not come into contact with the legs. Inequality 
constraints are used throughout the movement to ensure that 
the contact forces in the normal direction are strictly positive 
and that the ratio of tangential to normal forces does not exceed 
the coefficient of friction (we assumed a coefficient of friction 
of 0.8). In addition, to approximate the coordinated movement 
of a real lumbar spine (Wong et al., 2006), we couple the two 
lumbar joints so that they always have equal angular velocities. 
This ensures that both joints flex together and extend together. 
The duration of the first and final phases νj is free to vary and is 
identified during the solution process, and the duration of the 
second phase is fixed to match that recorded in the experiment.

To solve the optimal control problem specified in equa-
tions  (9)–(11), we use a direct multiple shooting method 
described by Bock and Pitt (1984) and implemented in the 
software package MUSCOD-II developed by Leineweber et  al. 
(2003). In this direct approach, the infinite-dimensional space 
of control functions u(⋅) in time is discretized using functions 
that provide only local support such as piecewise constant, linear, 
and cubic functions. State parameterization is performed by the 
multiple shooting technique, which transforms the OCP from an 
infinite-dimensional problem into a finite dimensional problem, 
which is then solved iteratively using a sequential quadratic 
programming (SQP) solver.

We solve for motions that minimize the integral of muscle 
activation a squared

 
min
( ) ( )x u

a a
⋅ , ⋅ , ⋅

=

−

=
∑ ∫ ∑+ ⋅











ν j

n

k

n
T

p

j

j
k

t
0

1

0

1

ν

ν
d

 
(12)

across all of the nk actuated joints of the model. Objective func-
tions consisting of activation raised to a power are commonly 
used in literature (Thelen et  al., 2003; Damsgaard et  al., 2006; 
Ackermann and van den Bogert, 2010) and are associated with 
the minimization of muscle effort (Ackermann and van den 
Bogert, 2010).

A naive initial solution is used to initialize the problem: posi-
tions are initialized using a linear interpolation of the experimen-
tal positions at the phase transitions, all velocities are set to zero, 
and all control signals are set to 0.1. The initial solution does not 
satisfy either the multibody constraints or the OCP constraints 
and is not a feasible motion. In practical terms, this is useful as it 
frees the developer from providing feasible initial solution for a 
system that may only exist as a virtual model.

Forty-two shooting and control intervals are used to discretize 
the lifting OCPs with 15 shooting intervals for the first and last 

phases and 12 shooting intervals for the middle phase. The con-
trol signal is discretized into piecewise continuous linear func-
tions that are continuous across phases. Each shooting interval 
was integrated using the Runge–Kutta–Fehlberg method with 
an absolute and relative tolerance of 10−8. Finally, each OCP was 
run until the Karush–Kuhn–Tucker condition was satisfied to a 
tolerance of 10−5 over the course of a 3–4 h for the human-only 
OCP and 8–12 h for the with-exo OCP.

2.3. experimental Measurements
The motions and ground forces of a 35-year-old male subject 
(mass of 81.7 kg and a height of 1.72 m) were measured as the 
subject stooped and picked up a 15 kg box with handles from the 
floor. The subject was instrumented with OptoTrack IRED marker 
clusters to track the three-dimensional (3D) movements of 14 
body segments: head, upper torso, mid-back, pelvis, legs, shanks, 
feet, upper arms, and lower arms. Ground reaction forces were 
recorded under the subject’s feet and the box using Kistler force 
plates (Kistler GmbH, Germany). The recordings were conducted 
at Vrije Universiteit Amsterdam according to the guidelines of the 
Declaration of Helsinki 2013, approved by the ethics committee 
of Faculteit der Gedrags- en Bewegingswetenschappen (Faculty 
of Behavioural and Movement Sciences) and with written and 
informed consent from the subject.

2.4. evaluation Procedure

We evaluate the model and the predicted results in the following 
ways:

 1. To assess the kinematic model, we perform an inverse 
kinematics analysis and report the errors between the real 
markers on the subject and the virtual markers on the model. 
We report the residuals from inverse-dynamics analysis of 
the recorded data to assess the mass and inertia properties 
of the subject model. Inverse-dynamics analysis computes 
generalized forces that are consistent with the kinematics 
of the subject and the measured ground forces. Since our 
kinematic model has a floating pelvis frame, the inverse-
dynamics results will include generalized forces between the 
ground frame and the pelvis frame, which should be small (as 
there were no external forces applied to the subject’s pelvis 
during the experiment). If these residual forces are small in 
magnitude, then we can conclude that the geometry and mass 
distribution of the model fits the subject well. We compare 
the peak lumbar-flexion angles and extension moments of our 
experimental subject to the data reported by Kingma et  al. 
(2004) from 10 subjects lifting a 10.5 kg box from a height 
of 0.5 m using a stoop technique. All of the analysis of the 
subject data is performed using a human model that has two 
legs and arms. To assess the validity of grouping the legs and 
arms together (as is done for the model used in the OCPs), 
we report the angular difference between the hip, knee, ankle, 
shoulder, elbow, and wrist joints of the subject during the lift 
from the inverse kinematics analysis.

 2. We report the joint angles and torques of the lumbar spine, 
hip, knee, and ankle of the human-only OCP and compare 
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these results with the IK and ID analysis of the experimental 
data. Differences between the human-only OCP and analyses 
of the experimental data will be due to the cost function, the 
constraints of the OCP, and/or the MTGs.

 3. We report the kinematics and kinetics of the lumbar spine, 
hip, knee, and ankle of the with-exo OCP and compare these 
results with human-only OCP to evaluate how the exoskeleton 
changed the motion of the model. Any differences between the 
human-only OCP and with-exo OCP results are entirely due 
to the mass of the exoskeleton and the moments that it applies 
to the body.

 4. Finally, we report quantities useful to the design of the exo-
skeleton: actuator kinematics, actuator torque profiles, and 
human–exo interaction forces. The kinematics and torque 
profiles of the actuators are useful for the design of the 
exoskeleton’s actuators. The human–exo interaction forces 
are useful for the design of the linkage and the interface that 
transmits the support from the actuators to the wearer.

3. ResUlts

The kinematics and dynamics of the model fit the recorded stoop 
motion well, with the largest kinematic errors occurring at the 
shoulder. The error of the inverse kinematics solution between 
the virtual markers on the model and measured markers is 
14 ± 6.6 mm with a maximum error of 67.8 mm at the shoul-
ders. The residual forces and moments of the inverse-dynamics 
analysis are 5.4 ± 3.4 N and 3.6 ± 2.5 Nm, with peaks of 19.3 N 
and 11.6 Nm, when the box is being picked up. The subject used 
in the experiments performs a stoop lift with substantially less 
lumbar flexion (14° vs. 39° ± 14°, Figure 4A) than was observed 
by Kingma et al. (2004). The net L5/S1 extension moments gener-
ated by the experimental subject are very close to those of Kingma 
et al.’s subjects (200 vs. 199 ± 12 Nm, Figure 4B) even though 

the box used in this experiment is 4.5 kg heavier. The maximum 
kinematic differences between the left and right legs are between 
2.1° and 4.4°, while the differences between the left and right arms 
range between 2.8° and 15.9°.

The human-only OCP has similar peak lumbar-flexion angles 
(49° vs. 39° ± 14°) and extension moments (192 vs. 199 ± 12 Nm) 
as the data from Kingma et al. (2004) (Figure 4). Correspondingly, 
the lumbar-flexion angle of the human-only OCP differs from 
the experimental subject (49° vs. 14°), though the angles match 
well at the hip. The largest differences between the human-only 
OCP and the experimental subject show up at the knee: the model 
flexes its knee more (60° vs. 49°, Figure 5B) and has different peak 
knee torques (55 vs. −56 Nm, Figure 5E).

With the ability to provide up to 67 Nm of torque (one-third 
of the peak lumbar extension from the ID analysis), the exoskel-
eton’s motors are able to reduce the lumbar flexion of the model 
so that the with-exo OCP solution matches the mean peak 
lumbar-flexion angle of Kingma et al. (2004) (43° vs. 39° ± 14°) 
better than the human-only OCP solution. The assistance pro-
vided by the exoskeleton reduces the peak lumbar-extension 
moment by 28  Nm from 192 to 164  Nm (Figure  4B). The 
peak flexion angles at the hip, knee, and ankle of the with-exo 
OCP deviate from the human-only OCP by between 4° and 7° 
(Figures 5A–C). The peak hip, knee, and ankle torques differ 
between the human-only OCP and with-exo OCP solutions 
by up to 47 Nm with the most pronounced differences at the 
hip (Figure 5D) and ankle (Figure 5F). Additional kinematic 
differences between the two OCP solutions and the experi-
mental subject can be seen clearly by examining trajectories 
of the hands during the lift and the posture of the body when 
the box is picked up (Figure  6). When approaching the box 
(phase 1), the human-only OCP and the with-exo OCP swing 
the arms (slightly reducing the cost), while the experimental 
subject’s hands follow a more direct path. During the pickup 
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while the OCP solutions swing the arms (dashed lines). During the lifting 
phase, experimental subject and the OCP solutions follow similar paths. The 
difference in the hip, knee, and lumbar-flexion angle can be seen between the 
experimental subject and the two OCP solutions when the box is being 
picked up.

A B C

D E F

FIgURe 5 | The joint angles of the hip (a), knee (b), and ankle (C) from the inverse-kinematics analysis of the experimental subject, the human-only OCP, and the 
with-exo OCP are shown in the top row. The corresponding joint torques of the hip (d), knee (e), and ankle (F) from the inverse-dynamics analysis of the 
experimental subject, the human-only OCP, and the with-exo OCP are shown in the bottom row.
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phase (phase 3), the two OCP solutions are similar to the 
experimental subject.

The with-exo OCP solution shows that the hip actuator has 
to be driven with more complex signals than the lumbar actua-
tor during the box pick up. Although both motors output the 
maximum torque at some point (Figure 8C), the hip motor has 
to undergo larger rotations (96° vs. 40°, Figure 7A) and has to 

sustain high velocities (145°/s, Figure 7B) for a large part of the 
movement. The interaction forces between the human and the 
exoskeleton show that the pelvis interface has to comfortably 
transmit large normal forces (338 N), shear forces (112 N), and 
torsional moments (51 Nm) to the human wearer (Figure 8A). 
Although the normal forces at the thigh (Figure 8B) and trunk 
(Figure 8C) interfaces are substantial (−184 and −216 N), the 
shear forces (31 and −41  N) and reaction moments (0.28 and 
−4.0 Nm) are small in comparison to the pelvis interface.

4. dIsCUssIoN

This work is motivated by the need to reduce the risk of back 
injury. Injury to the back is common and costly (Goetzel et al., 
2003), and wearable robotic systems can decrease the risk by 
reducing the extension torques of the lumbar spine. The design 
of such systems is challenging with several aspects influencing 
this process: the exoskeleton can change the way the wearer 
moves, perhaps rendering the design ineffective; the interaction 
between the human and the exoskeleton may be too uncomfort-
able for long-term use; and/or the anticipated amount of support 
might differ from what the human wearer actually needs. To 
address some of these difficulties, the present study uses optimal 
control to predict the motions and forces of a dynamic model 
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of a human lifting a 15 kg box from the floor with the aid of an 
exoskeleton.

We have presented an OCP of human lifting both without and 
with the aid of an exoskeleton. The solutions of the OCPs are 
physiologically realistic and dynamically consistent. The results 
of these simulations provide information that is useful to predict 
how exoskeleton might be used by the human, the requirements 
placed on the actuators, and finally the interaction forces between 
the human and the exoskeleton. The peak lumbar-flexion angles 
and L5/S1 extension moments predicted by the solution to the 
human-only OCP compare well with the 10.5 kg box stoop lift 
reported by Kingma et  al. (2004). It is interesting to note that 
the L5/S1 extension moments match closely given that the box 
used in this work is 15 kg rather than 10.5 kg. This match likely 
arises because the subject used in this work is 13 cm shorter than 
the average subject in Kingma et al.’s study. While the predicted 
kinematics and loads of the lumbar spine compare favorably to 
the data of Kingma et al. (2004), it is clear that the cost function 
we have used does not do a good job of predicting the trajectory 
of the hands as the model moves to pick up the box (Figure 6). 
The solution likely converged to a motion with a large arm swing 
because this movement slightly reduces the muscle activity of 
the hip and lumbar extensors as the model approaches the box. 

Fortunately, the differences in arm trajectory appear to have lit-
tle influence on the quantities that most affect the design of the 
exoskeleton: the kinematics and loads of the back and lower body.

The results indicate that indeed an exoskeleton can reduce the 
L5/S1 moment (Figure 4B) though this reduction might be lower 
than expected. Even though both the hip and lumbar motors could 
output a maximum torque of 67 Nm, the L5/S1 moment was only 
reduced by 28 Nm. Since the duration of the OCP lifts is shorter 
than the experimental subject, it is likely that the solver reduced 
the cost of the motion by lifting the box faster. Though it unclear 
if this will happen in real life, it is plausible: the support provided 
by the exoskeleton can be used to reduce the L5/S1 moment or to 
increase the maximum L5/S1 moment that the wearer can gener-
ate. With slight modifications to our problem formulation, we can 
simulate a lift in which the exoskeleton supports the wearer and 
also a lift in which the wearer uses exoskeleton to enhance their 
strength. Understanding this behavioral component in greater 
detail is important to the success of exoskeleton in reducing the 
risk of injury.

The torque waveforms computed for the hip and lumbar 
motors on the exoskeleton indicate that the demands on the hip 
and lumbar motors are quite different (Figure  7C). While the 
torque that the lumbar motor must provide is similar to the net 
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torque at the L5/S1 joint of the wearer (Figure 4B), the torque 
that the hip motor must provide is different from the hip torque 
developed by the human (Figure  5D). The torque of the hip 
motor drops below 0 just as the box is touched because the hip 
MTG is deeply flexed. This deep hip flexion stretches the passive 
element in the MTG enough to generate the 125 Nm required 
to hold the position. This places an additional demand on the 
exoskeleton design. Not only should it be adjustable to physically 
fit the subject, but also it should be adjustable to fit the flexibility 
of the subject.

The interaction forces between the exoskeleton and the 
human subject indicate that extra attention must be given to the 
design of the interface between the exoskeleton and the pelvis.  
It must comfortably transmit large normal forces, shear forces, 
and moments to the human wearer. In our present approach, 
these forces are computed but do not influence the motion. 
For future extensions of this work, we are evaluating how the 
reduction of these forces could be made as a part of the OCP. 
As well, it would be of interest to replace our current kinematic 
constraints at the contact points with force-based constraints, 
allowing a relative movement of the exoskeleton.

We have necessarily made simplifications in modeling the 
human body and its interaction with the exoskeleton and the 
box. At the kinematic level, we have simplified the movement 
of the lumbar spine by approximating it as two coupled revolute 
joints. In addition, the shoulder joint is approximated as a revo-
lute joint and does not include a scapulothoracic joint. Both of 
these approximations likely contributed to the kinematic error 
between the real and virtual shoulder markers. At the dynamic 
level, we have ignored activation dynamics of the muscles. The 
lack of activation dynamics has likely contributed to the relative 
roughness of the joint torques that appear in our results.

The solutions of the OCPs provide information that is useful 
during the mechanical design of the exoskeleton: the torque and 
power requirements of the actuators; the forces and moments that 
the parts of the exoskeleton must withstand; and the forces act-
ing between the exoskeleton and the wearer. The detailed model 
and accurate OCP solutions that we have presented cannot be 
computed in real time and thus cannot be used to control the 
exoskeleton. However, the results of the OCPs are nonetheless 
useful for identifying two control strategies that the exoskeleton 
might employ.

One control strategy is to use the exoskeleton to compensate 
for the extension moment created by the weight of the upper 
body. To employ this strategy, the exoskeleton needs to know 
the mass and CoM location of the upper body and its inclination 
angle with respect to the vertical. The mass and CoM location of 
the upper body can be calculated using a few measurements of 
the subject’s body (Zatsiorsky, 2002) and then manually entered 
into the control system of the exoskeleton as part of a one-time 
customization of the device to the subject. The inclination angle 
of the wearer’s upper body with respect to the vertical can be 
measured using an inertial measurement unit (IMU) placed on 
the torso module. This strategy could reduce the L5/S1 extension 
moment of the subject in this study by up to 112 Nm—a 56% 
reduction of the L5/S1 moment required to perform the 15 kg 

box lift. For many applications, an exoskeleton that compensates 
for the weight of the torso will provide a meaningful reduction 
in the L5/S1 moment and thus lower the risk of low-back injury.

A second control strategy is to compensate for the weight of 
the upper body and the load being lifted. This strategy is more 
difficult to realize because the exoskeleton needs to have meas-
urements of the kinematics of the lower body and the external 
forces acting on the lower body. This approach can be realized 
if the human subject is wearing (in addition to the exoskeleton) 
force-sensing insoles, goniometers at the knees, and goniometers 
at the ankles. Alternatively, the kinematics of the upper body 
could be measured along with the forces acting between the 
hands and the load being moved. Measuring or calculating the 
forces acting between the hands and the load would require  
the use of specialized gloves, or instrumented objects—options 
that are impractical for many applications. In principle, this 
approach could reduce the L5/S1 extension moment of the 
subject in this study by 199.4 Nm—100% of the L5/S1 moment 
required to perform the task.

While humans can adapt to working in novel environments 
quickly (Franklin et  al., 2008), adaptation does not happen 
instantaneously. Thus, it is likely that an additional layer of 
control, beyond the two strategies discussed, will be needed so 
that the human has time to get used to lifting with the extra 
assistance. How best to adapt the online control of the exoskel-
eton to the human wearer remains an open area of research.
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VIdeo s1 | An overview of our results is presented using a side-by-side animation 
of the human subject, the human-only OCP, and the with-exo OCP. This animation 
shows that the motions between the three data sets are similar, but with a few 

notable differences: the OCP solutions display more rounded backs, and swing the 
arms through a wider path. Since the rounded backs of the OCPs compare well 
to the data of Kingma et al. (2004), we can conclude that the OCPs are producing 
movements consistent with the average subject, and that our experimental sub-
ject lifts with an usually straight back. Finally, the animation of the forces that the 
exoskeleton applies to the human subject shows that these forces are small until 
the box is lifted. During the lift, the exoskeleton applies large forces to the subject 
at the pelvis, the torso, and the thighs. Although these forces are mostly normal to 
the surfaces of the body, the shear forces at the pelvis are large enough to demand 
that special attention is paid to the design of the pelvis module.
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