
November 2017 | Volume 4 | Article 591

Code
published: 15 November 2017
doi: 10.3389/frobt.2017.00059

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Maxime Petit,

Imperial College London,
United Kingdom

Reviewed by:
Tobias Fischer,

Imperial College London,
United Kingdom

Uriel Martinez-Hernandez,
University of Leeds,

United Kingdom
Ingo Keller,

Heriot-Watt University,
United Kingdom

*Correspondence:
Giulia Vezzani

giulia.vezzani@iit.it

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 28 July 2017
Accepted: 30 October 2017

Published: 15 November 2017

Citation:
Vezzani G and Natale L (2017)

Real-time Pipeline for Object
Modeling and Grasping Pose

Selection via Superquadric Functions.
Front. Robot. AI 4:59.

doi: 10.3389/frobt.2017.00059

Real-time Pipeline for object
Modeling and Grasping Pose
Selection via Superquadric Functions
Giulia Vezzani1,2* and Lorenzo Natale1

1 iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy, 2 University of Genova, Genova, Italy

This work provides a novel real-time pipeline for modeling and grasping of unknown
objects with a humanoid robot. Such a problem is of great interest for the robotic
community, since conventional approaches fail when the shape, dimension, or pose of
the objects are missing. Our approach reconstructs in real-time a model for the object
under consideration and represents the robot hand both with proper and mathematically
usable models, i.e., superquadric functions. The volume graspable by the hand is repre-
sented by an ellipsoid and is defined a priori, because the shape of the hand is known in
advance. The superquadric representing the object is obtained in real-time from partial
vision information instead, e.g., one stereo view of the object under consideration, and
provides an approximated 3D full model. The optimization problem we formulate for the
grasping pose computation is solved online by using the Ipopt software package and,
thus, does not require off-line computation or learning. Even though our approach is for
a generic humanoid robot, we developed a complete software architecture for executing
this approach on the iCub humanoid robot. Together with that, we also provide a tutorial
on how to use this framework. We believe that our work, together with the available
code, is of a strong utility for the iCub community for three main reasons: object mod-
eling and grasping are relevant problems for the robotic community, our code can be
easily applied on every iCub, and the modular structure of our framework easily allows
extensions and communications with external code.

Keywords: grasping, object modeling, real-time optimization, C++, superquadric functions

1. INTRodUCTIoN

Industrial robotics shows how high performance in manipulation can be achieved if a very accurate
knowledge of the environment and the objects is provided. On the contrary, grasping of unknown
objects or whose pose is uncertain is still an open problem. In this work, we present a novel frame-
work for modeling and grasping unknown objects with the iCub humanoid robot.

The iCub humanoid robot is provided with two 7DOF arms, 5 fingers human-like hands, whose
fingertips are covered by tactile sensors and two cameras, as described in Metta et al. (2010).
Therefore, it turns out to be a suitable platform for investigating objects perception and grasping
problem: the stereo vision system and the tactile sensors can be exploited together to get proper
information for modeling and grasping unknown objects. The method and the code, we propose in
this work, consist of reconstructing an object model through the stereo vision system of the robot
and using this information to compute a suitable grasping pose. Once the robot reaches the desired
grasping pose on the object surface, the tactile response of the fingertips is used to achieve a stable
grasp for lifting the object.

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00059&domain=pdf&date_stamp=2017-11-15
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00059
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:giulia.vezzani@iit.it
https://doi.org/10.3389/frobt.2017.00059
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://www.frontiersin.org/Journal/10.3389/frobt.2017.00059/full
http://loop.frontiersin.org/people/386790
http://loop.frontiersin.org/people/36032

2

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

The iCub community put a great effort into the development
of a sharable and reusable code. With this work, we want to
contribute in this direction, detailing the code we designed for
implementing our grasping approach for a possible user inter-
ested in executing our technique on the robot.

2. ModeLING ANd GRASPING VIA
SUPeRQUAdRIC ModeLS

The superquadric modeling and grasping framework we make
use of is based on the idea that low-dimensional, compact, math-
ematical representation of objects can provide computational and
theoretical advantages in hard problems tackled in robotics, such
as trajectory planning for exploration, grasping and approaching
toward objects. This takes inspiration from theories conceived
during the 90s and 2000s (Jaklic et al., 2013) where superquadric
functions were proposed as a mathematical and low-dimensional
model for representing objects.

In Vezzani et al. (2017), we proposed a novel approach that
solves the grasping problem by modeling the object and the
volume graspable by the hand with superquadric functions. The
latter is represented by an ellipsoid and is defined a priori, because
the shape of the hand is known in advance. The superquadric rep-
resenting the object is obtained in real-time from partial vision
information instead, e.g., one stereo view of the object under
consideration, and provides an approximated 3D full model. Both
the modeling and the grasping problem are cast into an optimiza-
tion framework and solved in real-time with the software package
Ipopt (Wächter and Biegler, 2006).

In this article, we do not go into the mathematical details
(extensively reported in Vezzani et al. (2017)) whereas we focus
on the description of the code designed for using the approach
on the iCub, since we believe it to be useful for any user interested
in object modeling and grasping tasks. A brief mathematical
description of the methodologies is reported in the README.
md files of the Github repositories.1

3. Code STRUCTURe

We designed two modules, namely, superquadric-model and
superquadric-grasp, which implement, respectively, the modeling
and the grasping approached described in Vezzani et al. (2017).

Our leading idea is to develop a self-contained code that pro-
vides query services to the user. In this respect, our code handles
only the information strictly necessary for the superquadric
modeling and grasping approach and minimizes the dependen-
cies from external modules. The user is asked to write a wrapper
code that communicates with the two modules and makes them
properly interact. In this respect, we provide a tutorial code,2
implementing a possible use case of our modules, that can be
adapted by the user to fit in his own pipeline (see Section 3.3).

In the next paragraphs, we first describe the implementation of
the superquadric-model and superquadric-grasp modules, which

1 https://github.com/robotology/superquadric-model, https://github.com/robotology/
superquadric-grasp.
2 https://github.com/robotology/superquadric-grasp-example.

is based on the Yarp middleware (Metta et al., 2006). Then, we
outline a possible use case implementing a complete pipeline for
object modeling and grasping.

3.1. Superquadric-Model
The superquadric-model module computes the superquadric
function best representing the object of interest given a partial
3D point cloud of the object.

The module, whose structure is outlined in Figure 1, consists
of the SuperqModule class, derived from the YARP RFModule
class. The SuperqModule launches following two separate YARP
Rate Threads:

•	 the SuperqComputation class, which manages the superquadric
computation;

•	 the SuperqVisualization class, which can be enabled to show
the estimated superquadric or the object 3D points overlapped
on the camera image.

The SuperqModule also provides some Thrift IDL services3
suitable for getting information on the internal state of the
module and setting the thread parameters on the fly. Thrift is a
software framework for scalable cross-language development,
which allows to build services working efficiently with different
programming languages.

While there are two threads to decouple the functionalities of
computation and visualization, the threads share some variables
(in particular the computed superquadric) to increase their speed.

3.1.1. SuperqComputation
The SuperqComputation thread includes the following steps:

•	 Once the object point cloud is provided (see Section 3.3 for
a detailed description of how extract the object point cloud),
the superquadric is estimated by using Ipopt (Wächter and
Biegler, 2006), a C++ software package for large-scale nonlin-
ear optimization. The user can formulate its own optimization
problem with the Ipopt C++ interface4 and, then, solve it
through the Ipopt solver.

•	 A median filter with an adaptive window of width m can be
enabled to stabilize the estimated superquadric over the time.
Even if the object is not supposed to move during a grasping
task, it may happen that the user, or anyone interacting with the
robot, moves the object in a different location. In this case, the
superquadric modeler should be able to track the object and the
estimated superquadric should not be affected by previous esti-
mations in different poses. For this reason, the window width of
the median filter changes according to the object velocity. If the
object location changes (i.e., its velocity increases), the window
width becomes smaller. On the contrary, if the object is not
moved, the window width can be increased. In this way, when
the object pose is constant, its superquadric estimation is more
stable and accurate, while it is not affected by past estimations
if the object pose changes. The median filter and the object
velocity estimation are achieved by using, respectively, the iCub
MedianFilter Class and the iCub AWLinEstimator Class.

3 https://thrift.apache.org/docs/idl.
4 https://www.coin-or.org/Ipopt/documentation/node23.html.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md
http://README.md
https://github.com/robotology/superquadric-model
https://github.com/robotology/
https://github.com/robotology/superquadric-grasp-example
https://thrift.apache.org/docs/idl
https://www.coin-or.org/Ipopt/documentation/node23.html

FIGURe 1 | Superquadric-model code structure. The class SuperqModule, derived from the YARP RFModule class, launches two threads, respectively for
superquadric computation and visualization. The class provides some thrift services to the user for interacting with the module. More detail on the user box is
provided in Section 3.3 and in Figure 2.

3

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

•	 If prior information is available on the object shape (e.g., given
by a classifier or a vision recognition system), the module can
use it to speed up the superquadric estimation. Particularly,
if the object is labeled as cylinder, box or sphere, specific con-
straints can be used for improving the accuracy and reducing
the execution time of the optimization problem.

The user can communicate with the SuperqComputation
thread, through the SuperqModule, in the two different modes:

•	 In streaming mode—the 3D point cloud of the object should
be sent to the module through a YARP Buffered port as a YARP
Property. The user can access the current estimated super-
quadric through a dedicated YARP Buffered port as a YARP
Property, where the main components of the superquadric are
grouped as: dimensions, exponents, center, and orientation.

•	 In one-shot mode—the user can ask the module to compute
the object superquadric by sending a single point cloud through
a YARP RpcClient Port and getting a YARP Property including
the estimated superquadric parameters as reply. In case the user
asks for the superquadric filtered by the median filter, he should
send a set of point clouds of the object in the same pose.

The superquadric computation, together with the super-
quadric filtering process, takes 0.1 s in average on Intel®Core™
i7-4710MQ Processor @2.50 GHz. This values is compatible with
our real-time requirements.

3.1.2. SuperqVisualization
The visualization thread overlaps the estimated superquadric or
the 3D points used by the optimizer on the camera image, for

real-time visual inspection by the user (see Figure 3 (4)). The
average visualization time is equal to 0.01 s and can be enable or
disabled by the user while the SuperqModule is running.

3.2. Superquadric-Grasping
The superquadric-grasp module implements the approach pro-
posed in Vezzani et al. (2017) for the computation of grasping
poses by using a superquadric modeling the object.

The superquadric-grasp module consists of the GraspModule
class, derived from the YARP RFModule class. The GraspModule
splits pose computation and visualization and grasp execution in
three different classes:

•	 GraspComputation class, computing the pose for grasping the
object;

•	 GraspVisualization class, showing the object model and the
main information about the computed poses;

•	 GraspExecution class, which allows executing the grasping task
once the pose is computed and one of the robot hand is selected.

As for the superquadric-model module, the superquadric-grasp
implementation provides several Thrfit IDL services to the user
to interact with the module and for getting information on the
state of the module. The superquadric-grasp module structure is
similar to the superquadric-model one, shown in Figure 1.

3.2.1. GraspComputation
This class handles the pose candidates’ computation:

•	 Given the superquadric modeling the object, received as a
YARP Property (see 3.1.1), the grasping poses for one or both

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

the hands (according to the user query) are computed together
with a suitable trajectory by using the method proposed in
Vezzani et al. (2017). The optimization problem is formulated
and solved through the Ipopt C++ interface.

•	 The user can exploit some prior information for adapting
the grasp computation to the desired scenario. In particular,
the user can provide the module the height of the support on
which the object is located (i.e., a table) to prevent the robot
hand from hitting it. In addition, the constraints about the
final hand pose can be modified according to the experimental
scenario. For instance, the user can define the robot workspace
by simply varying the variable upper and lower bounds of the
optimization problem from the configuration files.

The pose computation process takes 2.0 s in average,
which is consistent with the time requirements of a grasp task
execution.

3.2.2. GraspExecution
The GraspExecution class controls the arm movements to accom-
plish the grasping task. In particular:

•	 The approaching step, i.e., the pose reaching through the
trajectory waypoints, is executed through the YARP Cartesian
Interface (Pattacini et al., 2010);

•	 Once the final pose is reached, the grasp is executed by using
a precision grasp method described in Regoli et al. (2016) and
available in the Tactile Control library.5 The hand fingers close
until the tactile sensors on the fingertips detect contact. Then,
each finger is controlled to find a stable grasp for the object.
Alternatively, the grasp can be performed by simply closing the
fingers until a minimum pressure of the fingertips is measured.
However, such an approach does not guarantee stability while
lifting the object.

3.2.3. GraspVisualization
The visualization thread overlaps the computed poses and the
received object superquadric on the camera image, for real-time
visual inspection by the user (see Figure 3 (5)). Some additional
information, such as the volume graspable by the hand and the
trajectory waypoints can be shown at the same time.

3.2.4. Communication with the Module
Unlike the superquadric-model framework, the user can com-
municate with the GraspModule only in one-shot mode. In
particular, the user can query the module to:

•	 Compute the grasping poses and approaching trajectory, pro-
viding to the module the estimated superquadric of the object
as a Yarp Property (as described in 3.1.1) and selecting one or
both the hands. The solutions are given back to the user as a
Yarp Property.

•	 Ask the robot to reach the final pose and grasp the object by
selecting one robot hand. In the current code implementation,

5 https://github.com/robotology/tactile-control.

the robot performs a simple lifting test to check the stability of
the grasp.

The additional thrift services allows setting on the fly param-
eters for grasp computation, visualization, and execution.

3.3. How to Use the Superquadric
Framework
To use our grasping approach, the user is supposed to design
a wrapper code to combine together the outcomes of the
superquadric-model and superquadric-grasp modules. In addi-
tion, the implementation of a complete modeling and grasping
pipeline requires the use of external modules for point cloud
computation. We provide a tutorial code, which takes advantage
of modules developed by the iCub community to achieve the
modeling and grasping task. Hereafter, we report the main steps
of the complete pipeline. The entire commented code is available
on Github,6 together with a detail description on how to run the
code in the README.md file.

 1. The object is labeled with a name through a recognition
system.7 The object label, together with information on its
2D bounding box, are stored by the Object Property Collector8
(Moulin-Frier et al., 2017). The wrapper code is given the
object name by the user (through a RpcPort) and uses it for
asking the object property collector for the relative 2D bound-
ing box.

 2. The 2D blob of the object is computed by the lbpExtract
module, once it is provided with the bounding box informa-
tion. This uses Local Binary Pattern (LBP) (Ojala et al., 1996)
to analyze the texture of what is in the robot view (a table in
our experimental scenario). This texture is used for getting a
general blob information both as an image, containing general
white blobs of where the objects are, and as a Yarp Bottle con-
taining lists of bounding box points. Then, the general blob
information allow using grabCut algorithm (Rother et al.,
2004) to properly segment all the objects on the table.

 3. Given the 2D blob, the wrapper code reconstructs the 3D
point cloud by querying the Structure from Motion module
(Fanello et al., 2014). This module uses a complete Structure
From Motion (SFM) pipeline for the computation of the
extrinsics parameters between two different views. These
parameters are then used to rectify the images and to compute
a depth map.

 4. Then, the wrapper code asks the superquadric-model to
estimate the superquadric modeling the object by sending the
acquired point cloud to the module.

Bottle cmd, superq_bottle;
//Fill the Bottle for querying
superquadric-model.

6 https://github.com/robotology/superquadric-grasp-example.
7 https://github.com/robotology/iol/tree/master/src/himrepClassifier.
8 https://github.com/robotology/icub-main/tree/master/src/modules/
objectsPropertiesCollector.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology/tactile-control
http://README.md
https://github.com/robotology/superquadric-grasp-example
https://github.com/robotology/iol/tree/master/src/himrepClassifier
https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector
https://github.com/robotology/icub-main/tree/master/src/modules/objectsPropertiesCollector

FIGURe 2 | Modules communication for the implementation of the modeling and grasping pipeline. The wrapper code manages the interaction between external
modules and the superquadric-model and superquadric-grasp frameworks. Pipeline steps enumerated as in Section 3: (1) The wrapper code asks the object
property collector for the bounding box information of the object. (2) Given that, lbpExtract module provides the 2D blob of the object. (3) The wrapper code sends
the 2D blob of the object to the Structure From Motion module for getting the relative 3D point cloud. (4) The 3D point cloud is then sent to the superquadric-model
for computing the superquadric modeling the object. (5) The wrapper code sends the estimated superquadric to the superquadric-grasp module, which computes
suitable poses. (6) Finally, the superquadric-grasp is asked to perform the grasping task.

5

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

cmd.addString(“get_superq”);
Bottle &bottle_point = cmd.addList();
for (size_t i = 0; i < points.size(); i++)
{
Bottle &in = bottle_point.addList();
in.addDouble(points[i][0]);
in.addDouble(points[i][1]);
in.addDouble(points[i][2]);

}
superqRpc.write(cmd, superq_bottle);
//Then, extract the estimated superqua-
dric from the Bottle superq_bottle.

 5. Once the superquadric is estimated, the user code asks the
superquadric-grasp module to compute pose candidates for
grasping the object.

Bottle cmd, reply;
//Fill the Bottle for querying
superquadric-grasp.
cmd.addString(“get_grasping_pose”);
//hand_for_computation can be “right“,

“left” or “both”
cmd.addString(hand_for_computation);
graspRpc.write(cmd, reply);

//Then, extract the grasping pose
candidate from the Bottle reply.

 6. Finally, the user can ask the superquadric-grasp to perform the
grasping task.

Bottle cmd, reply;
//Fill the Bottle for moving the arm.
cmd.addString(“move”);
cmd.addString(hand_for_moving);
graspRpc.write(cmd, reply);
//The grasp is executed.

Figure 2 outlines the structure of the entire pipeline, fol-
lowing the steps described in this section. In Figure 3, we
show some typical outcomes of all the steps described above.
In addition, in the README.md files of the superquadric-
model and superquadric-grasp repository, we provide two
videos of the execution of the modeling and the grasping
pipeline.9

9 superquadric-model demo: https://www.youtube.com/watch?v=MViX4Ppo4WQ&
feature=youtube. superquadric-grasp demo: https://www.youtube.com/
watch?v=eGZO8peAVao.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md
https://www.youtube.com/watch?v = MViX4Ppo4WQ&feature = youtube
https://www.youtube.com/watch?v = MViX4Ppo4WQ&feature = youtube
https://www.youtube.com/watch?v = eGZO8peAVao
https://www.youtube.com/watch?v = eGZO8peAVao

6

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

4. KNoWN ISSUeS

In this section, we report the limitations of our approach, together
with possible solutions for facing them.

•	 Our approach is currently an open-loop approach. Once the
object model and the grasping pose are computed, the robot
reaches for the final pose without checking if the object pose
changes. However, we could monitor the object pose, by
estimating only the pose of the reconstructed superquadric -
leaving its shape unchanged - with new point clouds while the
robot is moving and until the object is in the robot field of view.
This is a viable solution since our modeling approach is com-
patible with real-time requirements (as shown in Section 3.1).

•	 A further limitation caused by the open-loop nature of our
approach is the missing compensation of errors between the
robot stereo vision and system. To properly run the grasping
pipeline, the user is required to properly calibrate the vision
and the robot kinematics. In case errors between the two are
still a problem for grasping the object, empirical offsets can
be added for compensating for the errors. More information
are provided in the README.md of the superquadric-grasp
repository.

•	 A quite strong limitation of our approach is that it cannot
automatically distinguish between good and wrong poses. For
this reason, the user need to supervise the entire process and
ask for a new model and pose in case the current outcome is
not suitable for grasping the objects. In particular, this prob-
lem arises when the object cannot be represented with a single
superquadric for its geometric shape. As future work, we aim

at extend our approach for modeling more complex objects
with multiple superquadrics.

5. CoNCLUSIoN

In this work, we detail the implementation of the modeling and
grasping approach pipeline described in Vezzani et al. (2017).
We developed two modules, namely superquadric-model and
superquadric-grasp, that respectively model objects through super-
quadric functions and computes suitable grasping poses for the
iCub robot. Our leading idea was to develop a self-contained code
that provides query services to the user. Our software handles only
the information strictly necessary for the modeling and grasping
approach and minimizes the dependencies from external modules.
The user is supposed to design a wrapper code to combine together
the outcomes of the two modules. We provide also an example of
a external code in the superquadric-grasp-example repository for
the implementation of a complete modeling and grasping pipeline.

In the next future, we would like to improve the approach
we use for reaching the final grasping pose, which is a current
limitation of our approach, as described in Section 4. The iCub
proprioception is in fact affected by a number of impairments,
mainly caused by elastic elements, which introduce errors in the
computation of direct kinematics. Also, the iCub is provided with
moving cameras for simulating the human oculomotor system.
This makes the knowledge of extrinsic parameters and, thus, the
object information estimation quite noisy. These sources of error
might be crucial for grasping tasks, when a final pose is required to
be reached with errors in order of 1 cm. We can solve this problem

FIGURe 3 | Outcomes of the modeling and grasping pipeline. (1) The object is stored by the object property collector with the label object. (2) LbpExtract provides
the 2D blob of the object. (3) The 3D point cloud is extracted from the disparity map, by querying the Structure From Motion module. (4) The superquadric modeling
the object is reconstructed. (5) The grasping pose and approaching trajectory for the right hand are computed. (6) The robot grasps the object. (Steps (1), (2), (4),
and (5) are represented by screenshots from the visualizers.).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://README.md

7

Vezzani and Natale Rel-time Pipeline for Object Grasping

Frontiers in Robotics and AI | www.frontiersin.org November 2017 | Volume 4 | Article 59

ReFeReNCeS

Fanello, S. R., Pattacini, U., Gori, I., Tikhanoff, V., Randazzo, M., Roncone, A., et al.
(2014). “3D stereo estimation and fully automated learning of eye-hand coor-
dination in humanoid robots,” in 2014 14th IEEE-RAS International Conference
on Humanoid Robots (Humanoids) (Madrid, Spain: IEEE), 1028–1035.

Fantacci, C., Pattacini, U., Tikhanoff, V., and Natale, L. (2017). “Visual end-effector
tracking using a 3D model-aided particle filter for humanoid robot platforms,”
in IEEE Conference on Intelligent Robots and Systems (IROS) (Vancouver,
Canada: IEEE).

Jaklic, A., Leonardis, A., and Solina, F. (2013). Segmentation and Recovery of
Superquadrics, Vol. 20. Springer Science & Business Media.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 8. doi:10.5772/5761

Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., et al. (2010).
The iCub humanoid robot: an open-systems platform for research in
cognitive development. Neural Netw. 23, 1125–1134. doi:10.1016/j.neunet.
2010.08.010

Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U.,
et al. (2017). Dac-h3: a proactive robot cognitive architecture to acquire and
express knowledge about the world and the self. IEEE Trans. Cogn. Dev. Syst.
doi:10.1109/TCDS.2017.2754143

Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture
measures with classification based on featured distributions. Pattern Recognit.
29, 51–59. doi:10.1016/0031-3203(95)00067-4

Pasquale, G., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Object identification
from few examples by improving the invariance of a deep convolutional neural
network,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Deajeon, South Korea: IEEE), 4904–4911.

Pattacini, U., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010). “An experi-
mental evaluation of a novel minimum-jerk Cartesian controller for humanoid
robots,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Taipei, Taiwan: IEEE), 1668–1674.

Regoli, M., Pattacini, U., Metta, G., and Natale, L. (2016). “Hierarchical grasp
controller using tactile feedback,” in IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids) (Cancun, Mexico: IEEE), 387–394.

Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314.
doi:10.1145/1015706.1015720

Vezzani, G., Pattacini, U., and Natale, L. (2017). “A grasping approach based on
superquadric models,” in IEEE International Conference on Robotics and
Automation (ICRA) (Singapore), 1579–1586.

Wächter, A., and Biegler, L. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math.
Program. 106, 25–57. doi:10.1007/s10107-004-0559-y

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, TF, and handling editor declared their shared affiliation.

Copyright © 2017 Vezzani and Natale. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

by using the approach described in Fantacci et al. (2017), which
provides a precise estimate of the robot end-effector pose over time
and a visual servoing approach without the use of markers. Another
extension of the modeling pipeline consists in using the recognition
system10 described in Pasquale et al. (2016) to classify the objects
of interest according to their geometric property for using some

10 https://github.com/robotology/onthefly-recognition.

prior information on their shape for improving and speeding up
the superquadric estimation process, as mentioned in 3.1.1.

AUTHoR CoNTRIBUTIoNS

GV developed the method and the code and described them in
the manuscript. LN supervised the code and method develop-
ment and the manuscript writing.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.5772/5761
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1016/j.neunet.2010.08.010
https://doi.org/10.1109/TCDS.2017.2754143
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1145/1015706.1015720
https://doi.org/10.1007/s10107-004-0559-y
http://creativecommons.org/licenses/by/4.0/
https://github.com/robotology/onthefly-recognition

	Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions
	1. Introduction
	2. Modeling and Grasping Via Superquadric Models
	3. Code Structure
	3.1. Superquadric-Model
	3.1.1. SuperqComputation
	3.1.2. SuperqVisualization

	3.2. Superquadric-Grasping
	3.2.1. GraspComputation
	3.2.2. GraspExecution
	3.2.3. GraspVisualization
	3.2.4. Communication with the Module

	3.3. How to Use the Superquadric Framework

	4. Known Issues
	5. Conclusion
	Author Contributions
	References

