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In this paper, we explore the potential of mobile robots with simulation-based internal 
models for safety in highly dynamic environments. We propose a robot with a simulation 
of itself, other dynamic actors and its environment, inside itself. Operating in real time, 
this simulation-based internal model is able to look ahead and predict the consequences 
of both the robot’s own actions and those of the other dynamic actors in its vicinity. 
Hence, the robot continuously modifies its own actions in order to actively maintain 
its own safety while also achieving its goal. Inspired by the problem of how mobile 
robots could move quickly and safely through crowds of moving humans, we present 
experimental results which compare the performance of our internal simulation-based 
controller with a purely reactive approach as a proof-of-concept study for the practical 
use of simulation-based internal models.

Keywords: robot safety, multi-robot systems, swarm robotics, internal modeling, internal simulations

1. inTrODUcTiOn

A new generation of intelligent mobile robots is required to operate in dynamic human environ-
ments. Two examples are museum tour guide robots and hospital portering robots. For robots such 
as these, safety is an overriding concern. Designing control systems that assure the safety of mobile 
robots in human environments is very challenging, not least because humans are unpredictable. 
Conventional safety features for mobile robots in human environments include: moving at very low 
speed, flashing lights or alarms to alert humans of the robot’s presence, and having proximity sensors 
to detect obstacles—including humans—and to bring the robot to a complete halt. If, despite these 
measures, a human fails to notice the robot, then they are likely to collide. Safety therefore relies, in 
large measure, on the intelligence of the human rather than the robot. But if mobile robots need to 
move fast through crowds of moving humans, in an emergency situation, for example, then we need 
a much smarter approach to collision avoidance.

In this paper, we explore the potential of mobile robots with simulation-based internal models 
for safety in dynamic environments. We propose a robot with a simulation of itself, other dynamic 
actors and its environment, inside itself.

Operating in real time, this simulation-based internal model is able to look ahead in time and 
predict the consequences of both the robot’s own actions and those of the other dynamic actors in its 
vicinity. Hence, the robot continuously modifies its own actions in order to actively avoid collisions 
while also achieving its own goals. We present experimental results which compare the performance 
of our internal simulation-based controller with a purely reactive obstacle avoidance approach.

The idea of internal models can be retraced at least as far back as 1943 when Craik (1967) pre-
sented his idea of “small-scale models”:

If the organism carries a “small-scale model” of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events in 
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FigUre 1 | Illustration of the task. A smart robot (marked in blue) using the 
consequence engine CE has to traverse a corridor from left to right without 
colliding with the h-robots (marked in red). Solid lines show the past 
trajectories, and arrows represent the current movement direction of the 
robots. The light blue circle around the smart robot marks a safety (exclusion) 
zone. The left panel shows a set of initial conditions with the task depicted as 
a dashed line. The right panel shows the realized trajectories at the end of an 
episode of the experiment.
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dealing with the present and future, and in every way 
to react in a much fuller, safer, and more competent 
manner to the emergencies which face it.

An Internal Model is a mechanism for internally representing 
both the system itself and its current environment. An example 
of a robot with an Internal Model is a robot with a simulation 
of itself and its currently perceived environment, inside itself.  
A robot with such an Internal Model has, potentially, a mecha-
nism for generating and testing what-if hypotheses; i.e.,

 1. what if I carry out action x..? and, …
 2. of several possible next actions xi, which should I choose?

Holland (1992), p. 25, writes: “an Internal Model allows a sys-
tem to look ahead to the future consequences of current actions, 
without actually committing itself to those actions.” This leads to 
the idea of an Internal Model as a consequence engine—a mecha-
nism for estimating the consequences of actions. Dennett (1995), 
in his book Darwin’s Dangerous Idea, elaborates the same idea 
in what he calls the “Tower of Generate-and-Test,” a conceptual 
model for the evolution of intelligence that has become known as 
Dennett’s Tower. Dennett’s tower is a set of conceptual creatures 
each one of which is successively more capable of reacting to (and 
hence surviving in) the world through having more sophisticated 
strategies for generating and testing hypotheses about how to act 
in a given situation.

The ground floor of Dennett’s tower represents Darwinian 
creatures; these have only natural selection as the generate and 
test mechanism, so mutation and selection is the only way that 
Darwinian creatures can adapt—individuals cannot. All biologi-
cal organisms are Darwinian creatures. A small subset of these 
are Skinnerian creatures, which can learn, but only by generat-
ing and physically testing all different possible actions, then 
reinforcing the successful behavior—providing of course that 
the creature survives. On the second floor, Dennett’s Popperian 
creatures—a sub subset of Darwinians—have the additional abil-
ity to internally model the possible actions so that some (the bad 
ones) are discarded before they are tried out for real. A robot 
with an Internal Model, capable of generating and testing what-if 
hypotheses, is thus an example of an artificial Popperian creature 
within Dennett’s scheme. The ability to internally model possible 
actions is of course a significant innovation.

In biology and neuroscience, the concept of internal models 
is thought to be behind most of the exceptional sensorimotor 
skills that can be observed in nature, since it is essential for 
high-performance control as implemented in biological systems 
(Haruno et  al., 2001; Wolpert et  al., 2011). The use of internal 
models has been demonstrated in a large number of biological 
systems ranging from dragonflies (Mischiati et  al., 2015) to 
humans (Flanagan et al., 2001). Indeed, it has been proposed that 
thinking—including anticipation—is “simulated interaction with 
the environment,” in what is known as the simulation theory of 
cognition; see the influential work of Hesslow (2002, 2012).

In previous work, we proposed a simulation-based internal 
model architecture (Winfield, 2014) centered upon what we call 
a Consequence Engine (CE). To demonstrate the effectiveness of 

the CE approach for safety, we have undertaken a series of experi-
ments involving one smart (as in using a CE) robot and several 
other (i.e., Braitenberg style) robots acting as proxy-humans in 
our scenario. The goal of the smart robot is to move as quickly 
as possible from one end of a corridor to the other while safely 
avoiding the proxy-human robots which are moving around ran-
domly. In this paper, these proxy-human robots will be referred 
to as h-robots.

However, this work is not intended as an engineering solution 
to this particular problem of safety in human–robot interaction 
(HRI). At best, the other robots in this scenario can be seen as 
proxies for humans who are not paying attention because they 
are absorbed in using their smartphones while walking on the 
sidewalk. Instead, this scenario is used as a case study and proof of 
concept for the use of a CE in HRI. In particular, it is designed to 
include higher order interactions in addition to the interactions 
between the robot running the CE and other robots, which were 
the focus of Winfield et al. (2014). Interactions between robots 
and the environment are called second-order interactions, and 
interactions between other robots third-order interactions. 
Second-order effects were addressed by choosing a narrow cor-
ridor for the experiment and third-order effects were addressed 
by employing a sufficient number of other robots in the confined 
space of the corridor to generate high robot density. Nevertheless, 
we believe that the concept of a CE has the potential to be an effec-
tive means to accomplish improved safety in HRI scenarios. The 
way in which the conditions needed to test the CE naturally led to 
an experiment resembling conditions for HRI safety strengthens 
this belief.

This scenario is illustrated in Figure  1 showing a possible 
initial condition for the experiment as well as one possible safe 
solution.

2. MaTerials anD MeThODs

2.1. internal Model-Based consequence 
engine
2.1.1. Architecture
The architecture discussed here is based upon the Consequence 
Engine (CE) (Winfield, 2014; Winfield et al., 2014; Vanderelst and 
Winfield, 2017). A schematic view of this architecture is shown in 
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FigUre 2 | The Consequence Engine (CE) architecture, and its relationship with the robot’s controller. Modules dealing with different kinds of information are color 
coded.
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Figure 2. The CE allows the robot to evaluate the consequences 
of each of its next possible actions, which are executed inside 
the simulator contained in the CE using an internal model, after 
which the consequences of every action are evaluated in turn. 
This process is relatively independent of the robot’s controller 
in that the CE only provides estimates of the consequences of 
the next possible actions but the robot itself chooses and then 
executes the next action in the real world. The CE thus acts to 
moderate the robot controller’s action selection mechanism.

The CE architecture consists of several modules. The CE is 
initialized with information about the current situation by the 
Object Tracker-Localizer (OTL) then loops through all possible 
next actions. In the simplest case, this set of actions is fixed by 
design but it could as well be dynamically generated. For each 
candidate action, the CE simulates the robot itself executing 
the action, as well as all other entities tracked by the OTL and 
described by the internal model, as well as the environment. It 
thus generates a set of simulation outputs, such as, for example, 
trajectories of all agents, which are then evaluated by the Action 
Evaluator (AE). The evaluations of the physical consequences 
performed by the AE are then passed to a separate Safety Logic 
(SL) module implementing the definition of safety as defined 
by the specific task. This evaluation results in a safety value (cf. 
Section 2.2 for details) for each action. Once the CE has generated 

a complete set of consequences and their evaluation in the form 
of safety values, all next possible actions together with their cor-
responding safety values are passed to the Action Selection (AS) 
mechanism of the robot. This AS module then selects one of the 
actions according to this evaluation for execution by the robot 
controller.

2.1.2. Modules
The AE, SL, and AS are discussed in detail in Section 2.2 in the 
context of the set of possible actions and their corresponding 
safety values.

2.1.2.1. Object Tracker-Localizer
The OTL has been implemented using a commercial motion 
capture system and fitting the robots with reflective markers. 
The motion capture system supplies the robot with position and 
pose data for all robots. This system is discussed in more detail 
in Section 2.4.5. In principle, this module could also be imple-
mented locally on the robot using a camera and computer vision, 
or by all agents broadcasting their own position and orientation.

2.1.2.2. Simulation-Based Internal Model
The simulation-based internal model comprises three modules: 
the Robot Model, Robot Controller, and World Model. The Robot 
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Model is a model of the robot running the CE as well as all other 
robots, The Robot Controller is a duplicate of the robot’s real 
controller, and the World Model is a virtual duplicate of the envi-
ronment. After it has been initialized with the current situation by 
the OTL, i.e., the environment and pose of both the smart robot 
and all other robots in the environment, the simulation-based 
model can generate simulated trajectories and any consequences, 
i.e., collisions. The internal model and its implementation in this 
research is described in detail in Section 2.3.

2.1.2.3. Action Evaluator
The AE checks the trajectories generated by the internal simula-
tion for each action against the safety action defined as a part of 
the task of the robot. It labels the actions as safe or dangerous 
and passes this information on to the SL. For more detail on the 
safety definition used in the experiment and the AE itself, refer 
to Section 2.2.1.

2.1.2.4. Safety Logic
The SL combines the information about the safety for each action 
from the AE with the task description of the robot in the form 
of the base value and assigns a safety value for each action by 
modifying the corresponding base value. This module weights 
the safety of an action against how well the action performs the 
task of the robot. A more in-depth discussion on how the SL 
combines these two aspects can be found in Section 2.2.3.

2.1.2.5. Action Selection
The AS selects an action from the set of possible next actions 
according to their safety value. Ordinarily, this means that it 
chooses the action with the best safety value. The practical mean-
ing of this choice in the context of the experiment is discussed in 
Section 2.2.4.

2.2. From actions to safety Values
2.2.1. Safety Definition and Action Evaluator
To be able to decide which actions to use, a safety concept is 
needed. A very simple measure was chosen in order to make the 
decision process as transparent as possible to facilitate experi-
mentation and debugging.

An action for a robot is considered safe if no other robot or 
obstacle such as a human1 is closer to it than some safety distance 
for any given time. The safety distance was chosen to be 0.22 m 
(refer to the end of Section 3 for a short discussion on the specific 
value of this parameter). This safety distance is intentionally 
chosen to be considerably larger than the range of the IR sensors 
of the robots.

In the context of the CE architecture, this means that the AE 
has to check for every possible next action that no other robot 
gets closer than this safety distance for any given time using the 
predicted trajectory obtained by the simulation. The AE therefore 
literally evaluates the consequences of each possible action for 
this safety criterion.

Note that these predicted trajectories are not simple ballistic 
continuations of the current pose and speed of the h-robots for a 

1 Walls are not considered as obstacles in this specific sense.

given action but also take into account what can be called second 
order effects, i.e., interactions of the robots with the environment, 
and third-order effects, i.e., interactions between robots. In this 
regard, the approach introduced here goes beyond most biologi-
cally inspired internal models considered in literature, which are 
mostly body and physics models and do not take interaction into 
account.

2.2.2. Task Description and Action Space
The task of the smart robot is described using Potential Functions 
(PFs) (cf. Spears and Spears (2012) for an introduction to the con-
cept). The PF encodes the goal of where the smart robot is to move 
toward and also the preferred way of getting there, effectively 
following the gradient of the PF. In this particular experiment, 
the task of the robot is to move from one end of a corridor to the 
other end of the corridor. This task is described by the PF

 
s x y x y
( ), = −

−
− .1 10

30 300  
(1)

This PF describes a trough with an incline from the start to the 
goal of the robot. The parameters were chosen in a way to encour-
age movement toward the goal and at the same time slightly dis-
courage movement away from the shortest path from the starting 
point to the goal, which is the trajectory used by the baseline 
experiment in our proof-of-concept experiment (cf. Section 2.4). 
To limit the set of possible next actions to a finite number, this PF 
is sampled on a 6 × 3 grid with dimensions of 2 m × 0.8 m to cre-
ate the set of next possible actions for the smart robot.2 This limits 
the set of next possible actions to a finite number of actions. Each 
of these actions is formed of the sub-actions MoveTo(x,y) and 
Avoidance (cf. Section 2.4.4). Even though this set of actions 
is discrete, the overall behavior of the robot is continuous and 
since the CE operates at about 2 Hz on the computer used for 
the simulations, the robot can change the current action several 
times between moving from one grid point to another, effectively 
interpolating its actions between the grid points. This also means 
that the robot can in principle move to and stop at any grid point. 
However, this behavior is highly unlikely as this means that all 
other actions with a MoveTo(x,y) grid location closer to the 
goal have to be classified by the CE as resulting in an unsafe situ-
ation for the time it takes the robot to move to and stop at the grid 
location, which is a possible but unlikely scenario as the other 
robots constantly move.

The values of the samples from the PF on this grid for the 
respective actions are the so-called base values of these actions. 
The choice of PFs to generate these base values is arbitrary and 
could as well be substituted by any number of other ways to assign 
a value to an action depending on the task the robot is to perform.

As these base values and the set of possible next actions define 
the task of the robot, they are chosen by the designer of the robot. 

2 In the actual implementation, not all grid points are sampled at all times, instead 
the attention radius mechanism (cf. section 2.3.5) restricts the grid points sampled. 
In practice, this means that on average, around half of the grid points are sampled 
(cf.  Figure 13, which shows that on average around 10 simulations are executed 
per time step).
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FigUre 3 | Example of how an intelligent robot running a CE chooses the 
best action from the set of possible actions and the base values using the AE 
and SL. The panel Potential Function depicts a color coded rendition of the 
example potential function. Furthermore, the panel Set of Possible Actions 
depicts the discretization of space employed. The simulated trajectories for 
all actions in the set of possible actions generated by the internal simulator 
are depicted in the panel Trajectories. The trajectories of the intelligent robot 
are depicted as solid blue lines and the ones of the other robot as red 
dashed lines, respectively. Because of the finite time simulated ahead, the 
trajectories of the intelligent robot do not reach the designated targets of the 
actions for the three most distant targets. Note that the trajectories of the 
other robot are identical for most of the actions, which is the case if the two 
robots do not interact, so the lines lie exactly on top of each other. The panel 
Action Evaluator depicts the evaluation of the trajectories by the AE by 
coloring the trajectories red for which a safety violation is detected. The SL 
combines the results of the AE with the PF, which is represented graphically 
by overlaying the corresponding panels in Safety Logic. The last panel Action 
Selection depicts the action selected for execution by the AS of the robots by 
only showing the corresponding trajectories of the two robots.
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However, in principle, they could also be generated dynamically 
by an algorithm.

2.2.3. Safety Values and Safety Logic
Safety values are generated by the SL based on the results of the 
AE and describe the safety of an action. In this work, these safety 
values are represented by scalar values but could in principle also 
be represented by something more expressive such as a vector of 
different safety values to describe different kinds of safety (safety 
of the robot, safety of other robots, safety of humans).

The scalar safety values used in this work consist of two parts: 
the base value and the safety modifier. As described in Section 
2.2.2, the base value encode the default task of the robot to be 
followed if no danger is imminent while the SL adjusts the base 
value with a safety modifier if the AE detects imminent danger 
according to the safety definition (cf. Section 2.2.1).

This assessment is performed by the SL according to the 
specific safety definition, which in practice severely discourages 
any actions failing those safety conditions by modifying the safety 
value, effectively pruning these actions from the set of possible 
next actions. A safety modifier of −100 maxactions (s(x, y)) added to 
the base value of an action, for which the AE has detected danger, 
is a typical choice as it ensures that the penalty of a dangerous 
action is much larger than the base values.

If more complex decisions have to be made by the robot, the 
rules employed by the SL can also be used to weigh several factors 
against each other. In the context of this work, safety values consist 
of a base value defined by a PF and a safety modifier as described 
in Section 2.2.2. In this case, the step of the SL modifying the base 
values with safety modifiers can in principle also be performed 
before discretizing space by modifying the PF and therefore the 
base values directly.

2.2.4. Action Selection
The AS of the robot chooses the action with the best, i.e., highest, 
safety value. In this experiment, that means the action, which fol-
lows the gradient in the modified PF while avoiding dangerous 
situations. Note that the AS is part of the robot controller, and 
the robot can thus also in principle choose to select actions with 
a worse safety value than the safety value of the best action as 
determined by the SL.

2.2.5. Putting Everything Together
The complete process is depicted schematically in Figure  3. It 
starts with the set of possible actions and a PF defining the task 
of the robot moving to the right end of the corridor. The CE then 
loops through this set and generates trajectories for both the smart 
robot and the h-robot (in this example, there is only one h-robot). 
The AE then checks the trajectories for danger according to the 
safety definition and the SL combines this information with the 
base values (as described by the PF in this example) to assign 
safety values to the action. The AS of the robot then chooses the 
action with the best safety values.

2.3. internal simulator
The internal model is implemented using a slightly modified off-
the-shelf simulator (cf. Section 2.3.1). All models of other robots 

and the environment are hard-coded to simplify the experiment 
in order to be able to focus on the architecture itself. In principle, 
all models, i.e., world model as well as model for other entities and 
so on, could also be based on a learned internal model.

In general, simulations used in robotics often use advanced 
physics and sensor models, to test and develop robots and the 
corresponding controllers before they are implemented in hard-
ware to save development time and reduce the risk associated 
with bugs, faults, and failures. Examples of standard robotic 
simulations include Gazebo (Koenig and Howard, 2004), Webots 
(Michel, 2004), Player-Stage (Vaughan and Gerkey, 2007), 
and Morse (Echeverria et  al., 2011). When using a simulator, 
the so-called reality gap (Jacobi et  al., 1995), created by the 
approximation of the performance of real sensors and actuators 
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FigUre 5 | Trajectory of a robot performing the test action for 489 s used for 
the simulation error calibration. The measured trajectory of the robot is 
depicted as a blue line, and the location of the arena walls in the frame of 
reference of the simulation is depicted as a black line. The mismatch 
between the area formed by the trajectory measurements and the arena 
show the calibration error of 3° of the motion capturing system.

FigUre 4 | Schematic search trees for a one step search (a), full search  
(B), depth-only search (c) resulting from multistep simulations.

6

Blum et al. Simulation-Based Internal Models for Safer Robots

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 74

by the simulator by the respective sensor and motor model, has 
to be taken into account. This topic will be further discussed in 
Section 2.3.3.

2.3.1. The Stage Robot Simulator
The simulator running the internal simulation is a modified Stage 
simulator (Vaughan and Gerkey, 2007; Vaughan, 2008). It was 
modified to act as simulation server in a service-oriented archi-
tecture accepting SimRequest messages (cf. Figure 11) over a 
network. These requests consist of a number of robots, their initial 
poses, the configuration for their controllers, and the simulation 
time. Upon execution, the server returns complete trajectories for 
all robots for the simulation time. This also means that in a typical 
situation, where the CE has to run numerous simulations to loop 
through the set of possible next actions, the available simulation 
power can be arbitrarily scaled up by employing several simula-
tion servers and a transparent load balancer.

The simulation contains a copy of the environment, the robots 
used, their sensors, and their controllers. The controllers execute 
exactly the same code as the real robots and the sensors and 
motors are calibrated to the real ones empirically. In principle 
also, learned robot models and controllers could be used. The 
performance of the simulation and the resulting simulation 
budget is discussed in Section 2.3.4.

2.3.2. Decision Search Tree
Most internal model-based architectures in robotics perform 
only a projection of one time-step into the future, especially when 
dealing with learned body models. In this work, the goal is to 
simulate much further—possibly several orders or magnitude— 
into the future than one time-step employing the speed and 
precision of the off-the-shelf simulator and full knowledge of the 
world.

As depicted in Figure 4, these multistep simulations lead to 
search trees if the robot can perform more than one action since 
it can in principle decide during each time step to change the cur-
rent action. Performing simulations of only one step and doing 
depth-only search are two extremes of traversing the full deci-
sion tree. Searching a full decision tree is not practical because 
of the curse of dimensionality, so some sort of pruning has to be 
devised, especially for deeper  searches. Choosing a depth-only 
search as used here in contrast constitutes one of the most simple 
and straightforward ways of accomplishing that goal. Using 
depth-only search is a valid simplification if the robot controllers 
in the simulation are stateless (cf. Section 2.4.4).

2.3.3. Reality Gap: Simulation Error Measurements
There is a reality gap between every simulator and the physical 
object it represents. To measure that gap, six robots were used in 
the arena described in Section 2.4.5 executing the simple action 
GoStraight(0.8);Avoidance. Their trajectories were 
recorded for 489 s. The resulting real trajectories are depicted in 
Figure 5.

From the mismatch between the trajectories and the arena 
walls, it is obvious that the calibration of the motion capturing 
system placed its coordinate system rotated by about 3° and also 
slightly offset. This is due to the calibration process of the motion 

capturing system using a manually placed ground plate with 
markers to establish the motion capturing coordinate system.

Simultaneously, the movement of the robots was projected 
into the future via simulation for different simulation times. After 
finishing the experiment, the error between the simulated trajec-
tories and the actual real trajectories was calculated for all time 
steps and simulation times. The results are depicted in Figure 6.

The figure shows normalized errors, which means that the 
cumulative error is divided by the length of the real trajectory. 
Thus, there are numerical errors for small simulation times as the 
measured error is divided by a small number, so the increased 
error for short simulation times is a purely numerical artifact. For 
longer simulation times, there is a linear increase in the median 
error, which is most probably due to the misalignment between 
the motion capturing coordinate system, which is the same as 
used for the simulation, and the real coordinate system. This error 
is far larger than the one caused by inaccuracies of the simulation, 
which are expected to be scaling roughly quadratic in time.

In general, simulation errors are mitigated to some extent by 
the fact that the CE, which is running at 2  Hz, is periodically 
updating the simulations it performs by new simulations in a 
memoryless fashion discarding old simulation results. As seen 
in Figure 6, the simulation error is the smaller the shorter into 
the future an event is occurring. This means, for example, that 
the closer two robots get, the better the predictions of a possible 
interaction becomes.

The virtual sensors of the simulated robot, in particular the IR 
sensors, have to be calibrated to the real sensors. This calibration 
was performed with a focus on reproducing the behavior of the 
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FigUre 6 | The simulation error is depicted as a function of simulation time 
on a logarithmic scale. A linear model for the median as a function of 
simulation time is also shown as a yellow line.

FigUre 7 | The area of attention used by the CE is indicated by a solid line. 
Also shown is the area defined by the safety radius as the lightly blue shaded 
area.
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real robot, i.e., turn rates and radii when performing avoidance 
behavior close to walls and other robots. However, the particular 
calibration employed here led to the effect of simulated robots 
getting stuck on walls or in rare cases on other robots.3 This effect 
occurs only for long simulation times and only rarely. In real 
experiments, measurement errors and motor, i.e., movement, 
noise of the real robots mitigates this effect completely. For pure 
simulations in contrast, i.e., simulated robots using a CE to inter-
nally simulate other simulated robots, this effect can be observed 
in 10–20% of experiments. This effect is only relevant for the 
simulation study performed in Section 3 as all other experiments 
were conducted with real robots. For this study, the simulation 
runs in which this effect occurred were discarded while perform-
ing the statistical analysis so they have no effect on the statistical 
validity of this study.

2.3.4. Simulation Budget
The CE runs at approximately 2 Hz so there is a budget of 0.5 s to 
loop through all possible actions, simulate their outcome, asses 
the consequences, assign a safety value to each action, and then 
choose the best possible action. In relation to the computational 
power necessary for the simulation, the other tasks are negligible, 
so for simplicity they are not considered for the analysis.

As mentioned in Section 2.3.1, simulation time runs at about 
600 times real time on the used hardware configuration,4 so 300 s 
can be simulated effectively during one update cycle. This simula-
tion time is the simulation budget which has to be allocated to the 
different possible next actions.

Considering the maximum speed of an e-puck robot of about 
0.1  ms−1, simulation times should be roughly in the range of 
about 10 s in order to give the robot running the CE a chance to 
avoid other robots, which corresponds to 1 m traveled distance at 
maximum speed. This means that the simulation budget is about 
30 different future actions.

3 This effect is probably due to the response of the virtual IR sensor being too weak. 
However, it proved impossible to at the same time reproduce correct trajectories 
and eliminate this effect.
4 Lenovo T440s, Intel i5 4200 @ 1.6 GHz, 12 GB RAM.

As discussed in Section 2.4.2, the arena used in the experiment 
(2.2 m × 1.8 m) is discretized into a grid of 6 × 5 points to generate 
the set of possible actions. Assuming a simulation time of 10 s, 
this already completely saturates the simulation budget.

This is the reason why some modifications to the implementa-
tion have been performed, adding heuristics to use the simulation 
budget more efficiently. These heuristics are discussed next.

2.3.5. Attention Mechanism
The naive implementation loops the consequence engine through  
all possible actions. This is in principle the best possible option but 
not always feasible because of limited computational resources, 
i.e., the limited simulation budget. Furthermore, the simulation 
error (cf. Section 2.3.3) increases with time, so it might not make 
sense to simulate areas far away, which also implies long simula-
tion times, since no significant information can be gained because 
of the large simulation error before an interaction actually occurs.

To address these issues, a simple heuristic in the form of an 
area of attention around the robot was implemented. Actions 
with goals outside of this attention area are not considered by 
the consequence engine. Furthermore, other robots outside of the 
attention area are not simulated to make more efficient use of 
the simulation budget. Coincidentally, this also leads to a more 
realistic virtual sensing of other robots since it is similar to a 
limited sensing radius.

The shape and size of the attention area chosen are depicted 
in Figure 7. As a comparison, the size of the safety area used in 
the safety definition (cf. Section 2.2.1) of the experiment is also 
shown and the physical size of the robot depicted is to scale.

The size of the attention radius was chosen purely based on 
empirical knowledge gained in simulation. The shape of the atten-
tion area was chosen to be similar to the ones often encountered 
in prey animals with a reduced radius at the opposite side of the 
direction of movement. This choice was purely empirical but 
seems justified since the robot is always trying to move toward 
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FigUre 8 | Experimental setup of the corridor with one smart and five 
h-robots. The smart robot is required to move from the left end of the corridor 
to the right, as indicated by the task arrow, avoiding the other h-robots which 
are also moving in the corridor.

8

Blum et al. Simulation-Based Internal Models for Safer Robots

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 4 | Article 74

its goal so it is moving away from other robots behind itself. 
The shape and size of the attention radius could be optimized 
but performance was well within desired design criteria so this 
avenue of optimization was not further pursued.

2.3.6. Adaptive Simulation Time
The amount of time simulated into the future is a further param-
eter of the architecture. On the one hand, there is a minimum 
viable simulation time dictated mainly by physics in that the robot 
needs enough time to be able to react and avoid another robot. On 
the other hand, very long simulation times lead to high prediction 
errors because of imperfectly measured initial conditions and an 
imperfect simulator, making them not feasible even in a situation 
where computational resources are no limitation.

Furthermore, simulating too far into the future also poses a 
problem as it increases the probability of a dangerous situation. 
A very similar result has been obtained in a simulation study 
with virtual e-puck robots for a different task (Johansson and 
Balkenius, 2008). Simulating infinitely far into the future would 
lead almost certainly to a dangerous situation, resulting in an 
effectively paralyzed robot as all possible future actions ultimately 
lead to danger. This issue could be resolved by using a discount 
factor for the safety modifiers in the SL discounting dangerous 
situations which are further into the future (cf. Section 2.2.3). 
However, as the simulation times are limited to the order of 
10 s by the computational resources available at the time of this 
experiment, dangerous situations farther into the future than this 
simulation time are discounted naturally by not being considered 
at all.

A simple heuristic was designed to dynamically adapt the 
simulation time using the simulation results themselves. For that, 
minimum and maximum simulation times (in this experiment 
7.5 and 15 s) are fixed. The simulation times are adapted for each 
possible action individually while looping through the set of all 
possible actions. If a particular action does not lead to a danger-
ous situation, the simulation time is increased by 50% for the next 
update, and if it leads to a dangerous situation, it is decreased by 
20% and the simulation is re-run immediately. Both increase and 
decrease of simulation times are limited by the minimum and 
maximum simulation times. The asymmetry between increase 
and decrease is a balance between the limited simulation budget 
and the necessity to react to a dangerous situation as fast as 
possible and the desire to maximize performance of the overall 
algorithm by not choosing too short simulation times.

2.4. evaluation experiment
In this experiment, a smart robot using the consequence engine 
(CE) has to traverse a corridor from left to right without collid-
ing with the five other moving h-robots of which the controller 
is known to the smart robot. In this work, the same controller 
model applies to all robots since they are identical. As introduced 
in Section 1, these five h-robots can be regarded as proxy-humans, 
for example, in a hospital corridor. An illustration of the task can 
be seen in Figure 1, and the corresponding experimental setup is 
depicted in Figure 8.

Human behavior is vastly more complex than the one of the 
simple robots used in this experiment. However, research has 

shown that in some situations, such as, for example, in escape panic 
situations (Helbing et al., 2000) or even in the simple situation of 
pedestrians on a sidewalk (Helbing and Molnar, 1995), humans 
can be modeled very simply or with simple swarm rules. More 
complex models for human crowds exist (Musse and Thalmann, 
1997). This makes it reasonable to use the simplified behavior of 
the proxy-human h-robots as a starting point of the investiga-
tion of internal models for safety purposes. In future work, more 
sophisticated models of humans, possibly learned by the smart 
robot, should be investigated. These models should include con-
trollers, physical models, and intentions of the humans.

2.4.1. Experimental Overview
The experimental setup consists of six e-puck mobile robots (cf. 
Figure 10) moving in a rectangular arena of 2.2 m × 1 m. This 
scenario is depicted in Figure 8.

Units in this section are [m] and [rad], respectively, if not 
stated otherwise. The origin of the coordinate system is placed in 
the center of the arena and the axes are parallel to the walls of the 
arena with the x-axis parallel to its long side and pointing toward 
the goal of the smart robot.

2.4.2. Infrastructure and Physical Setup
Figure 9 shows the physical setup consisting of an arena of size 
2.2 m × 1.8 m, a motion capture system, and an overhead camera.

The off-the-shelf motion capturing system5 running at 
50  Hz implements the OTL and broadcasts the positions of 
all robots via simple UDP messages to all participants of the 
wireless network at a reduced rate of 15 Hz (cf. also Figure 11). 
This reduced rate was chosen to be slightly faster than the 
internal operating loop of the robots, which runs at 10 Hz in 
order for the newest position measurement not to be older 
than the last control loop iteration mimicking the infrared 
sensors of the robots. The communication between the robots 
and the simulation server and between sub-components is 

5 Vicon Motion Systems Ltd., http://www.vicon.com/.
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FigUre 9 | Experimental infrastructure showing the arena on the bottom, 
the camera used to document the experiments, and the Vicon motion 
capturing system overhead.

FigUre 10 | Two e-puck robots with markers and IR sensors. The e-puck 
with Linux board fitted in between the e-puck motherboard (lower) and the 
e-puck speaker board (upper). Note the yellow “hat,” which provides a matrix 
of pins for the reflective marker spheres, which allow the tracking system to 
identify and track each robot.
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based on the Google Protocol Buffers library6 and executed 
via TCP. All robots, the simulation server, the tracking system, 
and the logging system are connected via an IEEE 802.11  g 
wireless network in infrastructure mode. Additionally, a video 
camera is recording the experiments for later analysis and 
demonstration.

2.4.3. Robots
E-puck mobile robots (Mondada et al., 2009), equipped with a 
Linux extension board (Liu and Winfield, 2011), were used as a 
mobile base. Additionally, optical markers are arranged in indi-
vidual patterns on top of the robots to facilitate tracking with the 
motion capture system. Two of the robots are shown in Figure 10.

The robots are equipped with infrared sensors, which are used 
for basic obstacle avoidance, a camera, which is not used, and 
virtual sensors to sense their own pose and that of all other robots. 
These virtual sensors are simulated making use of the broadcast 
position messages of the motion capturing system.

2.4.4. Robot Controllers
All robots run a stateless controller with a fixed set of sub-actions. 
Those sub-actions are as follows:

•	 GoStraight(speed): move straight with a maximum 
speed of 1 ms−1

•	 Avoidance: Braitenberg style avoidance using IR sensors
•	 MoveTo(x,y): move to coordinate (x,y) using the virtual 

global position sensors.

Additionally, there are sub-actions not used during experi-
ments but for the automated experimentation such as for moving 
robots into initial poses or related to hardware calibration and 
debugging and so on:

•	 Stop: do nothing
•	 TurnLeft(speed): turn left with speed

6 https://code.google.com/p/protobuf/.

•	 TurnRight(speed): turn right with speed
•	 CalibrateIR: calibrate IR sensors
•	 ResetDSPIC: reset the basic robot microcontroller board
•	 PrintProximityValues: print the values measured by 

the IR sensors to stdout.

Actions are composed of a number of concatenated sub-
actions and are executed at 10 Hz by the robots, independently of 
each other and independently of the CE. These actions form the 
vocabulary used for the set of all possible actions. The simulated 
robots in the CE run exactly the same code as the real ones, also 
at 10 Hz in simulated time, i.e., faster than real time.

2.4.5. Experimentation-Centered Implementation
Figure 11 shows the flow of information between the different 
modules of the implementation of the architecture described 
in Section 2.1. There are some organizational differences to the 
abstract architecture (compare Figure 2).

The main difference to the abstract architecture is the high-
level controller. This module contains the CE, the SL, and the 
AS of the smart robot as well as all the logging, book-keeping, 
and experimentation tools. The simulation server is also run 
on the same computer. It is very centralized for the sake of 
experimentation efficiency, i.e., mainly the logging of trajec-
tories, safety values, and decisions. Since it also manages the 
automated experimentation, it can control all the robots used in 
the experiment. This feature is only used between experiments to 
set up new initial conditions and so on by changing the control 
actions for the low level controller (cf. Section 2.4.4), effectively 
remote controlling the robots on a high level in the sense that 
the robots still perform the actions completely independently 
of the high-level controller. In Figure  11, this mechanism is 
represented by the flow of CtrlRequest messages from the 
high-level controller to the robot controllers. While experiments 
are run, the different robots act completely independently of the 
high-level controller. Only the smart robot is influenced by the 
outcome of the AE.

This implementation choice however does not constitute a 
functional difference to the abstract architecture and could as well 
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FigUre 11 | Flowchart of the complete experimental system including all the logging, book-keeping, and status messages used for experimental control and 
logging. This diagram not only contains all the elements needed for the CE but also all elements needed for automated experimentation so there are more 
control- and logging messages than would be needed for the operation of the CE.
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be implemented on the robots themselves (with some complica-
tions for the logging system).

Thus, the high-level controller, i.e., the CE, and the simulation 
server described in Section 2.3 are run on the same computer.7 
The high-level controller of the architecture, i.e., the consequence 
engine, is implemented in Python. The low level robot controllers 
and the simulation are implemented in C/C++.

2.4.6. Initial Conditions and Goal
The smart robot is placed in an arena of size 2.2 m × 1 m at the 
initial position (−1, 0) oriented toward the far end of the arena 
and is to proceed to the other end of the arena at (1, 0) with a 
maximum speed of 0.1  ms−1. Furthermore, a safety radius of 
0.22 m around the smart robot was chosen.

7 Lenovo T440s, Intel i5 4200 @ 1.6 GHz, 12 GB RAM.

Five other h-robots are placed randomly in the area [−0.5, 
1.0]  ×  [−0.3, 0.3] with random orientations and a minimum 
distance to each other of 0.3 m. They execute the simple action 
GoStraight(v);Avoidance with random but fixed speeds 
randomly drawn from the interval v ∈  [0.6, 0.8]. This way the 
h-robots start with distances between each other and the walls 
larger than the range of their infrared sensors (used for avoidance 
behavior) and far enough from the robot running the CE to give it 
a clear start before having to avoid the other robots, as the maxi-
mum simulation time was chosen to correspond to about 1.0 m 
of movement of a robot at maximum speed (cf. Section 2.3.4).

As a baseline experiment, the smart robot moves straight 
toward the goal using only its IR sensors for avoidance. 
Consequently, this strategy leads to a high probability of another 
h-robot entering the safety radius even though actual collisions 
are avoided using the avoidance behavior. This naive baseline 
strategy is then compared to the one using the CE. To increase 
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comparability between the two approaches, all experiments are 
initialized with the same initial conditions for both approaches. 
The initial conditions between pairs of approaches are rand-
omized as described above.

Furthermore, the roles of the six physical robots in the 
experiments are chosen randomly to be either a smart robot or an 
h-robot to mitigate inter-robot heterogeneity between each pair 
of experiments (baseline and CE approach).

In addition to the real robot experiments, the experiments 
were also repeated purely in simulation. Thus in total, four types 
of experiments (baseline real, CE real, baseline simulation, CE 
simulation) were conducted, which were repeated 54 times (real) 
and 88 times (simulation), respectively.

3. resUlTs

One example run of the experiment is depicted in Figure  12. 
Shown are snapshots of the experiment with the predicted tra-
jectories for both the smart robot and the other h-robots from 
the point of view of the smart robot. The CE loops through all 
possible actions, but for clarity, only the simulated trajectories 
for the best action, which was then selected by the AS, are shown.

The reader is also referred to the recorded videos of the real 
experiments for a better illustration. What is remarkable for 
these experiments is how large the safety radius is in relation to 
the robot density of the arena. The robot has to follow a rather 
complex trajectory to avoid all other h-robots and safely reach 
its goal.

From a purely qualitative point of view, it would take a human 
remote controlling the smart robot a very high level of concentra-
tion and practice to come even close to the level of skill shown 
by the smart robot. The main reason for this is that it is difficult 
to mentally keep track of all other h-robots and their predicted 
trajectories, especially if third order, i.e., robot–robot, interac-
tions are involved.

To evaluate the effectiveness and efficiency of the CE approach,  
a statistical analysis of all experiments with real robots and in simula-
tions was performed (cf. Section 2.3.3 for the reality gap relevant for 
pure simulations). The four analyzed metrics were the time it took 
the robot to reach its goal, the distance covered while doing so, the 
fraction of time considered unsafe in relation to the complete run 
time, and the number of simulations performed per time step as a 
cost measure. The results of this analysis are given in Figure 13. For a 
more detailed statistical analysis, refer to Section 4.4. In particular, a 
quantitative statistical comparison between baseline and CE results 
depicted in this figure can be found in Table 1 in Section 4.4.

The first thing to notice is how remarkably close simulation 
and real world experiments are. The two main reasons for this are 
first that the simulator itself is very accurate and well calibrated 
to the real world robots (cf. Section 2.3.3) and second that there 
is almost no measurement noise in the system due to the high 
precision of the motion capture system used for virtual sensing. 
In a real application, estimating the pose of other robots using, for 
example, a camera system is a difficult task. Note that even though 
the differences between experiment and simulation are small, 
most of them are statistically significant (cf. Table 2 in Section 
4.4). In particular, the differences between simulation and real 

experiments in the CE case are significant for all four metrics. This 
is to be expected as there are no simulations without a reality gap.

For the baseline experiment, the smart robot travels with 
maximum speed in a straight line from its start position to the goal 
and only diverts from its path for IR-based obstacle avoidance, 
which operates at a range of a few cm. As both speed and distance 
between start and goal are fixed, the resulting distributions of run 
time and distance covered show very little variance compared to 
the ones for the smart robot employing the CE mechanism.

As expected, the smart robot employing the CE mechanism 
takes more time to reach its goal and covers more distance doing 
so. The increase is moderate and it is about 50% more time used 
and 30% more distance covered. Those are not symmetrical since 
the robot can also stop and thus take longer to reach its goal 
without traveling further. Furthermore, variance in the results is 
increased for the smart robot, which is also to be expected.

The smart robot using the CE mechanism is much safer. In 
simulation, it is almost perfectly safe but the improvement in the 
real experiments is still large. This result is due to the fact that in 
pure simulation the simulated possible next actions are a direct 
continuation of the past trajectories, which were also simulated 
by the same simulator, as there is no reality gap (cf. Section 2.3.3). 
This improvement comes at the cost of having to perform the 
simulations with the corresponding computational cost, while 
the baseline robot can act with a purely reactive controller. Here, 
the trade-off between computational complexity and effective-
ness between the two algorithms can be seen.

The danger ratio is a function of the safety distance parameter 
(cf. Section 2.2.1), which scales differently for the two control-
lers. For the baseline controller, the danger ratio increases almost 
linearly with the safety distance as a larger safety distance only 
increased the statistical chances of another robot being present 
inside of the safety area. For the smart robot running the CE, the 
function behaves more like a threshold function as it is able to 
avoid danger as long as the disk described by the safety distance can 
be maneuvered between the other robots for geometric reasons. 
For small safety distances, this is always possible, and for very 
large safety distances, for example, larger than the corridor width, 
this is impossible. The actual maximum safety distance which still 
allows the smart robot to move through the corridor depends 
on the density of the other robots and the corridor width. In a 
preliminary parameter study (not shown here), a safety distance 
of 0.2 m was identified experimentally as being just below this 
threshold for the experimental configuration presented.

4. DiscUssiOn

4.1. Key Findings
The experiment presented here has shown that a robot can move 
quickly and safely through a corridor occupied by a number 
of moving h-robots acting as proxy-humans by employing a 
simulation-based internal model. The robot was able to leverage 
the predictive capabilities of this internal model to look ahead in 
time and asses the consequences of its own actions as well as those  
of other actors in order to discard dangerous actions before actu-
ally executing them. This way the robot was able to modify its own 
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FigUre 12 | Trajectories for one experiment with a smart robot in simulation (for real experiments, please refer to Videos S1–S5 in Supplementary Material). The 
smart robot is depicted blue and the h-robots red. Solid lines are real trajectories, while dotted ones represent predicted trajectories. Only the simulation result for 
the best action is shown, together with attention radius (cf. Section 2.3.5) and safety radius.
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FigUre 13 | Statistical analysis for 88 simulations and 54 real robot experiments considering four basic metrics and comparing them to the baseline experiment. 
The box plots depict median, 25-quantile, and 75-quantile as a box. Whiskers depict 5-quantile and 95-quantile, and crosses depict data points outside those 
quantiles.

TaBle 1 | Table of test statistics for the Welch’s two sample t-test for both experiment series testing for differences between baseline and CE experiment.

Mean sD Welch’s two sample t-test

Variable Baseline ce Baseline ce df t p

real experiment
Danger ratio [%] 25.197 2.049 16.215 3.452 57.793 10.260 <0.001
Distance covered [m] 1.933 2.652 0.070 0.522 54.885 −10.032 <0.001
Run time [s] 19.636 31.553 1.271 7.918 55.728 −10.920 <0.001
Simulations per timestep 0.000 9.148 0.000 0.763 53.000 88.163 <0.001

simulation
Danger ratio [%] 22.327 0.347 15.494 1.429 88.480 13.251 <0.001
Distance covered [m] 1.933 2.449 0.050 0.443 89.232 −10.860 <0.001
Run time [s] 25.335 35.795 2.705 9.825 100.110 −9.629 <0.001
Simulations per timestep 0.000 8.568 0.000 0.708 87.000 −113.551 <0.001

Details the results of the statistical analysis performed for Section 3 comparing baseline and CE experiments. Shown here are the results of Welch’s two sample t-test for all four 
metrics measured in the experiment comparing the performance of a robot using the CE to the baseline experiment. All variables show significant differences between CE and 
baseline for both real robots and simulation.
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actions to ensure its safety as well as reach its goal. This strategy has 
been shown to be vastly more safe than a purely reactive strategy 
albeit at additional computational cost for the internal simulation. 
By aggressively managing the simulation budget available to the 
robot, a real-time implementation of this architecture has been 
shown to be feasible on a modern laptop computer.

Following Craik and later Holland who envisioned agents 
that employ an internal model to try out different alternative 
actions without having to commit to them (Craik, 1967; Holland, 
1992), the robot can anticipate unsafe situations before they 
arise. In this sense, the robot running the CE can be seen as an 
(admittedly simplistic) implementation of a Popperian creature 

as conceptualized by Dennett (1995), showing in this experiment 
that being able to generate and test what-if hypotheses leads to 
safer behavior.

Furthermore, this experiment has shown how the CE can, with 
its internal simulation mechanism, take into account both second 
order effects, i.e., robots interacting with the environment— 
which in this experiment means interacting with the walls of the 
corridor—and third-order effects, i.e., robots interacting with 
other robots, in order to correctly assess the consequence of the 
smart robot’s actions. These third-order effects are typical in 
swarm scenarios where large numbers of robots are loosely cou-
pled by their interactions. This goes far beyond simple avoidance 
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TaBle 2 | Shown are test statistics for the Welch’s two sample t-test testing for differences between real experiment and simulation for all measured variables.

Mean sD Welch’s two sample t-test

experiment simulation real simulation real df t p

Danger ratio [%]
Baseline 22.327 25.197 15.494 16.215 108.313 −1.042 0.300
CE 0.347 2.049 1.429 3.452 64.305 −3.448 0.001

Distance covered [m]
Baseline 1.933 1.933 0.050 0.070 86.793 −0.014 0.989
CE 2.449 2.652 0.443 0.522 98.467 −2.380 0.019

run time [s]
Baseline 25.335 19.636 2.705 1.271 132.666 16.953 <0.001
CE 35.795 31.553 9.825 7.918 129.846 2.823 0.006

simulations per timestep
Baseline 0.000 0.000 0.000 0.000 NaN NaN NaN
CE 8.568 9.148 0.708 0.763 105.844 −4.520 <0.001

Note that for the variable simulations per timestep, the baseline controller does not perform any internal simulations, so differences cannot be tested as denoted by NaN symbols.
Compares the results of simulation and real robot experiments. Shown are the results of Welch’s two sample t-test between experiments for all four metrics. For the CE case, 
all show significant differences between simulation and real robot experiments. For the baseline experiment, differences are only significant for the run time. In the baseline case, 
differences in simulations per timestep cannot be measured as the baseline controller does not perform any internal simulations (cf. Section 2.4.6).
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of the other robots and could more correctly be classified as 
strategic behavior.

4.2. related Work
4.2.1. Robots with Internal Models
There are two main kinds of internal models: forward models 
(predictors), which predict future sensory inputs as a conse-
quence of given motor inputs, and inverse models (controllers), 
which supply motor commands leading to a desired sensory input 
(Wolpert et al., 1995). Additionally, there are models predicting 
physical properties of the environment (Flanagan et  al., 2001; 
Zago et al., 2004). Together, these models can be used to gener-
ate and test hypotheses about the outcome, i.e., consequences, 
of possible future actions and can also be used to recognize the 
behavior of other agents.

In control theory, the use of internal models is well established 
in areas such a model-driven control (Garcia and Morari, 1982) 
or predictive control (Morari and Lee, 1999). In general, the idea 
is that the use of coupled forward models (predictors) and inverse 
models (controllers) can overcome problems of more complex 
motor tasks posed by sensor and motor delays. In fact, it has been 
shown that for certain classes of problems models are strictly 
necessary (Conant and Ross Ashby, 1970; Francis and Wonham, 
1976). A similar idea is employed in recursive Bayesian estima-
tion such as Kalman (Kalman, 1960) or particle filters (Liu and 
Chen, 1998) where each update step integrates predictions based 
on a model and prior knowledge of the state with measurements 
to generate output estimates of the state.

Anticipation can improve the performance of navigation in 
complex tasks, while for simple tasks, a purely reactive strategy 
can perform better than one using anticipation. Furthermore, 
it has been shown that the quality of the predictions is one of 
the deciding variables for this improvement (Johansson and 
Balkenius, 2006). A second important variable for the improve-
ment in performance by anticipation is the amount of time 

predicted into the future, which has an optimum between not 
predicting far enough into the future and predicting too far 
(Johansson and Balkenius, 2008).

More recently, internal models and simulations have been 
used in developmental robotics inspired by models of human 
motor control with noise and delays (Wolpert and Kawato, 1998). 
Demiris and Khadhouri (2006) implemented internal models 
based on pairs of forward and inverse models for motor actions of 
a robot. Schillaci et al. implemented an internal model based on 
forward and inverse models learned during exploration behavior 
on a humanoid robot. The learned internal models were used 
for arm reaching behavior, tool-use (Schillaci et al., 2012a), and 
human behavior recognition (Schillaci et al., 2012b). A review on 
how internal simulations can be used as tools to model cognition 
in artificial agents can be found in Schillaci et al. (2016).

In contrast to developmental robotics, however, the internal 
models used in the context of control theory are typically mathe-
matical systems of the system (the plant) and stated explicitly 
when designing the controller, for example, as systems of dif-
ferential equations. In robotics, the goal is to have the robot learn 
the internal models—both the inverse and forward models— 
autonomously. An example of such a strategy would be self-
exploration mediated through babbling (Der and Martius, 2006; 
Schillaci and Hafner, 2011; Baranes and Oudeyer, 2013; Martius 
et al., 2014).

Most internal (forward) models consider only short predic-
tions into the future in a tight sensorimotor loop. Internal 
simulation goes further than that in the sense of being more 
complete—often also incorporating the environment—and by 
simulating further into the future. In principle, short predictive 
steps can be chained so there is no clear border between those 
two extremes. An investigation into multistep predictions can, for 
example, be found in Ziemke et al. (2005). Here, internal simu-
lation is used only as a name for a more complicated internal 
prediction mechanisms.
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An internal simulation can—together with the corresponding 
inverse models and the ability to generate and try out actions—
provide a robot with a “functional imagination” (Marques and 
Holland, 2009).

The idea of using an actual simulator instead of learned models 
has also started to be explored in the field of robotics since the 
computational power of robots has been increasing steadily. For 
example, Bongard et al. (2006) show a four-legged robot that can 
use an explicit internal simulation for the tasks of self-modeling and 
action generation for locomotion. Using this architecture, the robot 
can recover from physical damage by re-learning its new self-model 
generating a new gait for the changed morphology. Similarly, a 
swarm of robots has been shown to be able to use internal simulation 
of the robot and its environment to evolve robot controllers, which 
are then used on the real robots (O’Dowd et al., 2011). This system 
has been shown to be able to adapt to changes in the environment. 
More recently, Millard et al. (2014a,b) explore the use of simulation-
based internal models to detect faults in swarm robotics systems.

4.2.2. Safety (with Internal Models)
In physical human–robot interaction (pHRI), safety analysis and 
safe control of personal robots is a relatively understudied area. 
Some notable work in the field has come from the PHRIENDS 
project (Physical Human-Robot Interaction: Dependability and 
Safety) (Alami et al., 2006), which undertook an in-depth study of 
pHRI. The state-of-the-art approach involves a systematic design 
time hazards analysis, which seeks to identify all possible safety 
hazards so that appropriate safe responses can be designed into the 
robot’s control system. Hazards analysis typically uses methods 
such as Failure Modes and Effects Analysis (FMEA) or HAZard 
and OPerability studies (HAZOP) (Bahr, 1997). In Woodman 
et al. (2012), this approach was extended with a framework that 
derives a safety system from the hazards analysis, which is first 
used to verify that safety constraints have been implemented 
correctly then, at run time, serves as a high-level safety enforcer 
by governing the actions of the robot, and preventing the control 
system from performing unsafe operations.

A fundamental limitation of the design time hazards analysis 
approach to safety in pHRI is that it requires the designer to 
anticipate all possible safety hazards—including interactions with 
dynamic actors such as humans. For robots operating in more 
complex dynamic and unknown environments, this becomes 
very difficult and, as was suggested in Woodman et  al. (2012), 
increasingly infeasible; indeed, that paper concluded that new 
approaches are needed, which identify safety hazards instead at 
run time. In this paper, we propose one such approach, using an 
internal self- and other simulator. As far as we are aware, this is the 
first work proposing simulation-based internal models for safety.

4.3. limitations
The sensing task has been strongly simplified in this implementa-
tion by using an external tracking system as a virtual sensor for 
the robot. For a fully embodied implementation, this task has 
to be solved on the robot using sensors such as, for example, 
a camera. These tasks have in principle been solved to a large 
degree but these solutions are often computationally expensive so 
they compete with the internal simulation for the computational 

resources of the robot making a fully embodied implementation 
challenging.

Additionally, the internal models used by the internal 
simulation—forward models, i.e., body models and physical 
models, as well as inverse models, i.e., controllers and inten-
tions/goals—are known a priori to the robot. In general, similar 
models have been shown to be learnable by robots, but are 
often less complex than the ones employed by the simulator. In 
particular, the details and precision of the Stage simulator used 
for the internal simulation cannot yet be matched by learned 
models. In respect to the motivating scenario of humans walk-
ing through a museum, this gap is particularly big. However, 
as discussed in Section 2.4, human behavior can sometimes be 
modeled by simple models such as, for example, for pedestrians 
on a sidewalk or in panic situations.

In this experiment, only one robot was running a CE. This 
implementation of a CE was not designed with the possibility 
of several robots running a CE at the same time in mind, as the 
simulator in simplified terms assumes ballistic movement for the 
other robots. If two robots were to run this CE at the same time, 
a situation similar to two pedestrians moving toward each other 
on a sidewalk would result where both oscillate back and forth 
between avoidance and movement toward the goal. In principle, 
this would result either in none of the robots being able to reach 
the goal or in an unsafe situation. However, as previous work 
on the CE has suggested (Winfield et al., 2014), noise is likely 
to break the symmetry of this situation resolving the dilemma 
naturally.

There are additional limitations of the internal simulation 
itself: the issue of the exploding search tree (cf. Section 2.3.2) 
when performing simulations has not been solved yet and in this 
work a greedy depth-first search has been employed. Without 
resolving this issue, this naive implementation will not scale well 
to other robots employing more complex behavior. However, 
scaling to situations with many more robots with the same robot 
controllers as used in the experiment is straightforward, as the 
penalty on the simulation budget is minimal because of the good 
scaling properties of the Stage simulator (Vaughan, 2008).

Despite these limitations, the use of simulation-based internal 
models for safety in dynamic environments has proven to be 
very successful. Therefore, further exploring this approach holds 
promise for robot safety in pHRI scenarios. Possible future work 
resulting from this discussion is presented in Section 4.4.

4.4. Outlook and Future Work
There are four main possible avenues for potential future work. 
The most obvious avenue would be to use more complex robots 
instead of minimalistic e-puck robots to increase the number of 
free parameters and complexity in order to test the limits of the 
simulation tools and sensing in regard of the reality gap. This not 
only means more complex bodies and dynamics but also more 
complex controllers and behavior of the robots. This would also 
be a first step away from simple robots representing humans 
walking on the sidewalk while not paying attention—who can 
be avoided without them even realizing that they have been 
avoided—toward a more realistic HRI scenario.
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Additionally, for actual embodied implementations, the sens-
ing also has to be embodied so the OTL has to be implemented 
using the sensory modalities of the robot such as, for example, a 
camera instead of an external tracking system. Furthermore, the 
a priori existing internal simulator as used in this experiment has 
to be replaced by learned internal models of the environment and 
the other robots/agents. And finally, the last big open question is 
how the challenge of the exploding search tree can be solved. One 
interesting option for that would be to use a particle filter such as 
Markov chain Monte Carlo probability density estimation instead 
of using single discretized actions.
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FigUre s1 | Exemplary run number 1 of the corridor scenario experiment 
showing only the performance of the CE controller.

FigUre s2 | Exemplary run number 2 of the corridor scenario experiment 
showing only the performance of the CE controller.

FigUre s3 | Exemplary run number 3 of the corridor scenario experiment 
showing only the performance of the CE controller.

FigUre s4 | Exemplary run number 4 of the corridor scenario experiment 
showing only the performance of the CE controller.

FigUre s5 | Exemplary run number 5 of the corridor scenario experiment 
showing only the performance of the CE controller.
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