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This article provides an overview of evolutionary robotics techniques applied to online 
distributed evolution for robot collectives, namely, embodied evolution. It provides a 
definition of embodied evolution as well as a thorough description of the underlying 
concepts and mechanisms. This article also presents a comprehensive summary of 
research published in the field since its inception around the year 2000, providing various 
perspectives to identify the major trends. In particular, we identify a shift from considering 
embodied evolution as a parallel search method within small robot collectives (fewer than 
10 robots) to embodied evolution as an online distributed learning method for designing 
collective behaviors in swarm-like collectives. This article concludes with a discussion of 
applications and open questions, providing a milestone for past and an inspiration for 
future research.

Keywords: embodied evolution, online distributed evolution, collective robotics, evolutionary robotics, collective 
adaptive systems

1. iNTRODUCTiON

This article provides an overview of evolutionary robotics research where evolution takes place in 
a population of robots in a continuous manner. Ficici et  al. (1999) coined the phrase embodied 
evolution for evolutionary processes that are distributed over the robots in the population to allow 
them to adapt autonomously and continuously. As robotics technology becomes simultaneously 
more capable and economically viable, individual robots operated at large expense by teams of 
experts are increasingly supplemented by collectives of robots used cooperatively under minimal 
human supervision (Bellingham and Rajan, 2007), and embodied evolution can play a crucial role 
in enabling autonomous online adaptivity in such robot collectives.

The vision behind embodied evolution is one of the collectives of truly autonomous robots that 
can adapt their behavior to suit varying tasks and circumstances. Autonomy occurs at two levels: not 
only the robots perform their tasks without external control but also they assess and adapt—through 
evolution—their behavior without referral to external oversight and so learn autonomously. This 
adaptive capability allows robots to be deployed in situations that cannot be accurately modeled 
a priori. This may be because the environment or user requirements are not fully known, or it may 
be due to the complexity of the interactions among the robots as well as with their environment 
effectively rendering the scenario unpredictable. Also, onboard adaptivity intrinsically avoids the 
reality gap (Jakobi et al., 1995) that results from inaccurate modeling of robots or their environ-
ment when developing controllers before deployment because controllers continue to develop after 
deployment. A final benefit is that embodied evolution can be seen as parallelizing the evolutionary 
process because it distributes the evaluations over multiple robots. Alba (2002) has shown that such 
parallelism can provide substantial benefits, including superlinear speedups. In the case of robots, 
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this has the added benefit of reducing the amount of time spent 
executing poor controllers per robot, reducing wear and tear.

Embodied evolution’s online nature contrasts with “tradi-
tional” evolutionary robotics research. Traditional evolutionary 
robotics employs evolution in the classical sequential centralized 
optimization paradigm: parent and survivor selection are cen-
tralized and consider the entire population. The “robotics” part 
entails a series of robotic trials (simulated or not) in an evolution-
based search for optimal robot controllers (Nolfi and Floreano, 
2000; Bongard, 2013; Doncieux et  al., 2015). In terms of task 
performance, embodied evolution has been shown to outperform 
alternative evolutionary robotic techniques in some setups such 
as surveillance and self-localization with flying UAVs (Schut et al., 
2009; Prieto et al., 2016), especially regarding convergence speed.

To provide a basis for a clear discussion, we define embod-
ied evolution as a paradigm where evolution is implemented 
in multirobotic (two or more robots) system. Two robots are 
already considered a multirobotic system since it is still possible 
to distribute an algorithm among them. These systems exhibit the 
following features.

Decentralized: There is no central authority that selects parents 
to produce offspring or individuals to be replaced. Instead, robots 
assess their performance, exchange, and select genetic material 
autonomously on the basis of locally available information.

Online: Robot controllers change on the fly, as the robots go 
about their proper actions: evolution occurs during the opera-
tional lifetime of the robots and in the robots’ task environment. 
The process continues after the robots have been deployed.

Parallel: Whether they collaborate in their tasks or not, the 
population consists of multiple robots that perform their actions 
and evolve concurrently, in the same environment, interacting 
frequently to exchange genetic material.

The decentralized nature of communicating genetic material 
implies that the selection is executed locally, usually involving 
only a part of the whole population (Eiben et  al., 2007), and 
that it must be performed by the robots themselves. This adds a 
third opportunity for selection in addition to parent and survivor 
selection as defined for classical evolutionary computing. Thus, 
embodied evolution extends the collection of operators that 
define an evolutionary algorithm (i.e., evaluation, selection, vari-
ation, and replacement (Eiben and Smith, 2008)) with mating as 
a key evolutionary operator.

Mating: An action where two (or more) robots decide to send 
and/or receive genetic material, whether this material will or will 
not be used for generating new offspring. When and how this 
happens depends not only on predefined heuristics but also on 
evolved behavior, the latter determining to a large extent whether 
robots ever meet to have the opportunity to exchange genetic 
material.

In the past 20 years, online evolutionary robotics in general 
and embodied evolution in particular have matured as research 
fields. This is evidenced by the growing number of relevant 
publications in respected evolutionary computing venues such 
as in conferences (e.g., ACM GECCO, ALIFE, ECAL, and 
EvoApplications), journals (e.g., Evolutionary Intelligence’s 
special issue on Evolutionary Robotics (Haasdijk et al., 2014b)), 
workshops (PPSN 2014 ER workshop, GECCO 2015 and 2017 

Evolving collective behaviors in robotics workshop), and tutorials 
(ALIFE 2014, GECCO 2015 and 2017, ECAL 2015, PPSN 2016, 
and ICDL-EPIROB 2016). A Google Scholar search of publica-
tions citing the seminal embodied evolution paper by Watson 
et al. (2002) illustrates this growing trend. Since 2009, the paper 
has attracted substantial interest, more than doubling the yearly 
number of citations since 2008 (approximately 20 citations per 
year since then).1

To date, however, a clear definition of what embodied evolu-
tion is (and what it is not) and an overview of the state of the art in 
this area are not available. This article provides a definition of the 
embodied evolution paradigm and relates it to other evolutionary 
and swarm robotics research (Sections 2 and 3). We identify and 
review relevant research, highlighting many design choices and 
issues that are particular to the embodied evolution paradigm 
(Sections 4 and 5). Together this provides a thorough overview 
of the relevant state-of-the-art and a starting point for researchers 
interested in evolutionary methods for collective autonomous 
adaptation. Section 6 identifies open issues and research in other 
fields that may provide solutions, suggests directions for future 
work, and discusses potential applications.

2. CONTeXT

Embodied evolution considers collectives of robots that adapt 
online. This section positions embodied evolution vis à vis other 
methods for developing controllers for robot collectives and for 
achieving online adaptation.

2.1. Offline Design of Behaviors  
in Collective Robotics
Decentralized decision-making is a central theme in collective 
robotics research: when the robot collective cannot be centrally 
controlled, the individual robots’ behavior must be carefully 
designed so that global coordination occurs through local 
interactions.

Seminal works from the 1990s such as Mataric’s Nerd Herd 
(Mataric, 1994) addressed this problem by hand-crafting 
behavior-based control architectures. Manually designing robot 
behaviors has since been extended with elaborate methodologies 
and architectures for multirobot control (see Parker (2008) for 
a review) and with a plethora of bioinspired control rules for 
swarm-like collective robotics (see Nouyan et  al. (2009) and 
Rubenstein et al. (2014) for recent examples involving real robots 
and Beni (2005), Brambilla et al. (2012), and Bayindir (2016) for 
discussions and recent reviews).

Automated design methods have been explored with the hope 
of tackling problems of greater complexity. Early examples of 
this approach were applied to the robocup challenge for learning 
coordination strategies in a well-defined setting. See the study 
by Stone and Veloso (1998) for an early review and Stone et al. 
(2005) and Barrett et  al. (2016) for more recent work in this 
vein. However, Bernstein et al. (2002) demonstrated that solving 
even the simplest multiagent learning problem is intractable in 

1 See https://plot.ly/~evertwh/17/ for more details and the underly-
ing data.
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polynomial time (actually, it is NEXP-complete), so obtaining an 
optimal solution in reasonable time is currently infeasible. Recent 
works in reinforcement learning have developed theoretical tools 
to break down complexity by operating a move from consider-
ing many agents to a collection of single agents, each of which 
being optimized separately (Dibangoye et al., 2015), leading to 
theoretically well-founded contributions, but with limited practi-
cal validation involving very few robots and simple tasks (Amato 
et al., 2015).

Lacking theoretical foundations, but instead based on the 
experimental validation, swarm robotics controllers have been 
developed with black-box optimization methods ranging from 
brute-force optimization using a simplified (hence tractable) 
representation of a problem (Werfel et al., 2014) and evolution-
ary robotics (Hauert et al., 2008; Trianni et al., 2008; Gauci et al., 
2012; Silva et al., 2016).

The methods vary, but all the approaches described here 
(including “standard” evolutionary robotics) share a common 
goal: to design or optimize a set of control rules for autonomous 
robots that are part of a collective before the actual deployment 
of the robots. The particular challenge in this kind of work is to 
design individual behaviors that lead to some required global 
(“emergent”) behavior without the need for central oversight.

2.2. Lifelong Learning in evolutionary 
Robotics
It has long been argued that deploying robots in the real world 
may benefit from continuing to acquire new capabilities after 
initial deployment (Thrun and Mitchell, 1995; Nelson and Grant, 
2006), especially if the environment is not known beforehand. 
Therefore, the question we are concerned with in this article is how 
to endow a collective robotics system with the capability to perform 
lifelong learning. Evolutionary robotics research into this question 
typically focuses on individual autonomous robots. Early works in 
evolutionary robotics that considered lifelong learning explored 
learning mechanisms to cope with minor environmental changes 
(see the classic book by Nolfi and Floreano (2000) and Urzelai 
and Floreano (2001) and (Tonelli and Mouret, 2013) for exam-
ples and Mouret and Tonelli (2015) for a nomenclature). More 
recently, Bongard et al. (2006) and Cully et al. (2015) addressed 

resilience by introducing fast online re-optimization to recover 
from hardware damage.

Bredeche et  al. (2009), Christensen et  al. (2010), and Silva 
et al. (2012) are some examples of online versions of evolutionary 
robotics algorithms that target the fully autonomous acquisition 
of behavior to achieve some predefined task in individual robots. 
Targeting agents in a video game rather than robots, Stanley et al. 
(2005) tackled the online evolution of controllers in a multiagent 
system. Because the agents were virtual, the researchers could 
control some aspects of the evaluation conditions (e.g., restart-
ing the evaluation of agents from the same initial position). This 
kind of control is typically not feasible in autonomously deployed 
robotic systems.

Embodied evolution builds on evolutionary robotics to 
implement lifelong learning in robot collectives. Its clear link with 
traditional evolutionary robotics is exemplified by work such as 
by Usui and Arita (2003), where a traditional evolutionary algo-
rithm is encapsulated on each robot. Individual controllers are 
evaluated sequentially in a standard time sharing setup, and the 
robots implement a communication scheme that resembles an 
island model to exchange genomes from one robot to another. It 
is this communication that makes this an instance of embodied 
evolution.

3. ALGORiTHMiC DeSCRiPTiON

This section presents a formal description of the embodied evolu-
tion paradigm by means of generic pseudocode and a discussion 
about its operation from a more conceptual perspective.

The pseudocode in Algorithm  1 provides an idealized 
description of a robot’s control loop as it pertains to embodied 
evolution. Each robot runs its own instance of the algorithm, and 
the evolutionary process emerges from the interaction between 
the robots. In embodied evolution, there is no entity outside the 
robots that oversees the evolutionary process, and there is typi-
cally no synchronization between the robots: the replacement of 
genomes is asynchronous and autonomous.

Some steps in this generic control loop can be implicit or 
entwined in particular implementations. For instance, robots 
may continually broadcast genetic material over short range, 
so that other robots that come within this range receive it 

ALGORiTHM 1 | An individual robot’s control loop for embodied evolution.

initialize robot;
for ever do

Sense - Act cycle (depends on robotic paradigm);  
perf ← calculate performance;

if  mating? then //E.g., is another robot nearby?
transmit my genome; //and optional further information
g ← receive mate’s genome;
store(g);

end

if  replacement? then //E.g., time or virtual energy runs out
parents ← select parents;
offspring ← variation(parents);
activate(offspring)//Time-sharing: control is handed over to the new candidate controller

end

end
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automatically. In such a case, the mating operation is implicitly 
defined by the selected broadcast range. Similarly, genetic mate-
rial may be incorporated into the currently active genome as it 
is received, merging the mating and replacement operations. 
Implicitly defined or otherwise, the steps in this algorithm are, 
with the possible exception of performance calculation, necessary 
components of any embodied evolution implementation.

The following list describes and discusses the steps in the 
algorithm in detail.

Initialization: The robot controllers are typically initialized 
randomly, but it is possible that the initial controllers are devel-
oped offline, be it through evolution or handcraft (e.g., see the 
work by Hettiarachchi et al. (2006)).

Sense–act cycle: This represents “regular,” i.e., not related to the 
evolutionary process, robot control. The details of the sense–act 
cycle depend on the robotic paradigm that governs robot behav-
ior; this may include planning, subsumption, or other paradigms. 
This may also be implemented as a separate parallel process.

Calculate performance: If the evolutionary process defines an 
objective function, the robots monitor their own performance. 
This may involve measurements of quantities such as speed, 
number of collisions, or amount of collected resources. Whatever 
their nature, these measurements are then used to evaluate and 
compare genomes (as fitness values in evolutionary computa-
tion). The possible discrepancy between the individual’s objective 
function and the population welfare will be discussed further in 
Section 6.2.

Mating: This is the essential step in the evolutionary process 
where robots exchange genetic material. The choice to mate 
with another robot may be purely based on the environmental 
contingencies (e.g., when robots mate whenever they are within 
communication range), but other considerations may also play 
a part (e.g., performance, genotypic similarity). The pseudocode 
describes a symmetric exchange of genomes (both with a trans-
mit and a receive operation), but this may be asymmetrical for 
particular implementations. In implementations such as that of 
Schwarzer et al. (2011) or Haasdijk et al. (2014a), for instance, 
robots suspend normal operation to collect genetic material 
from other, active robots. Mating typically results in a pool of 
candidate parents that are considered in the parent selection 
process.

Replacement: The currently active genome is replaced by 
a new individual (the offspring), implying the removal of the 
current genome. This event can be triggered by a robot’s internal 
conditions (e.g., running out of time or virtual energy, reaching 
a given performance level) or through interactions with other 
robots (e.g., receiving promising genetic material (Watson et al., 
2002)).

Parent selection: This is the process that selects which genetic 
information will be used for the creation of new offspring from 
the received genetic information through mating events. When 
an objective is defined, the performance of the received genome 
is usually the basis for selection, just as in regular evolutionary 
computing. In other cases, the selection among received genomes 
can be random or depend on non-performance related heuristics 
(e.g., random, genotypic proximity). In the absence of objective-
driven selection pressure, individuals are still competing with 

respect to their ability to spread their own genome within the 
population, although that cannot be explicitly captured during 
parent selection. This will be further discussed in Section 5.2.

Variation: A new genome is created by applying the varia-
tion operators (mutation and crossover) on the selected parent 
genome(s). This is subsequently activated to replace the current 
controller.

From a conceptual perspective, embodied evolution can be 
analyzed at two levels that are represented by two as depicted in 
Figure 1.

The robot-centric cycle is depicted on the right in Figure 1. It 
represents the physical interactions that occur between the robot 
and its environment, including interactions with other robots and 
extends this sense–act loop commonly used to describe real-time 
control systems by accommodating the exchange and activation 
of genetic material. At this particular point, the genome-centric 
and robot-centric cycles overlap. The cycle operates as follows: 
each robot is associated with an active genome, and the genome 
is interpreted into a set of features and control architecture (the 
phenotype), which produces a behavior that includes the trans-
mission of its own genome to some other robots. Each robot 
eventually switches from an active genome to another, depending 
on a specific event (e.g., minimum energy threshold) or duration 
(e.g., fixed lifetime), and consequently changes its active genome, 
probably impacting its behavior.

The genome-centric cycle deals with the events that directly 
affect the genomes existing in the robot population and therefore 
also the evolution per se. Again, the mating and the replacement 
are the events that overlap with the robot-centric cycle. The 
operation from the genome cycle perspective is as follows: each 
robot starts with an initial genome, either initialized randomly 
or a  priori defined. While this genome is active, it determines 
the phenotype of the robot, hence its behavior. Afterward, when 
replacement is triggered, some genomes are selected from the 
reservoir of genomes previously received according to the parent 
selection criteria and later combined using the variation opera-
tors. This new genome will then become part of the population. 
In the case of fixed-size population algorithms, the replacement 
will automatically trigger the removal of the old genome. In some 
other cases, however, there is a specific criterion to trigger the 
removal event producing populations of individuals that change 
their size along the evolution.

The two circles connect on two occasions, first by the “exchange 
genomes” (or mating) process, which implies the transmission of 
genetic material, possibly together with additional information 
(fitness if available, general performance, genetic affinity, etc.) to 
modulate future selection. Generally, the received information is 
stored to be used (in full or in part) to replace the active genome 
in the later parent selection process. Therefore, the event is trig-
gered and modulated by the robot cycle, but it impacts on the 
genomic cycle. Also, the decentralized nature of the paradigm 
enforces that these transmissions occur locally, either one-to-one 
or to any robot in a limited range. There are several ways in which 
mate selection can be implemented, for instance, individuals may 
send and receive genomic information indiscriminately within 
a certain location range or the frequency of transmission can 
depend on the task performance. The second overlap between 

http://www.frontiersin.org/Robotics_and_AI
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the two cycles is the activation of new genomic information 
(replacement). The activation of a genome in the genomic cycle 
implies that this new genome will now take control of the robot 
and therefore changes the response of the robot in the scenario 
(in evolutionary computing terms, this event will mark the start 
of a new individual evaluation). This aspect is what creates the 
online character of the algorithm that, together with the locality 
constraints, implies that the process is also asynchronous.

This conceptual representation matches what has been defined 
as distributed embodied evolution by Eiben et  al. (2010). The 
authors proposed a taxonomy for online evolution that differenti-
ates between encapsulated, distributed, and hybrid schemes. Most 
embodied evolution implementations are distributed, but this 
schematic representation also covers hybrid implementations. In 
such cases, the robot locally maintains a population that is aug-
mented through mating (rather like an island model in parallel 
evolutionary algorithms). It should be noted that encapsulated 
implementations (where each robot runs independently of the 
others) are not considered in this overview.

4. eMBODieD evOLUTiON: THe STATe  
OF THe ART

In this section, we identify the major research topics from the 
works published since the inception of the domain, all summarized 
in Table 1. Table 1 provides an overview of published research on 
embodied evolution with robot collectives. Each entry describes 
a contribution, which may cover several papers. The entries are 
described in terms of their implementation details, the robot 

behavior, experimental settings, mating conditions, selection, 
and replacement schemes. The glossary in Table 2 explains these 
features in more detail.

First, we distinguish between works that consider embodied 
evolution as a parallel search method for optimizing individual 
behaviors and works where embodied evolution is employed to craft 
collective behavior in robot populations. The latter trend, where the 
emphasis is on collective behavior, has emerged relatively recently 
and since then has gained importance (32 papers since 2009).

Second, we consider the homogeneity of the evolving popula-
tion; borrowing definitions from biology, we use the term mono-
morphic (resp. polymorphic) for a population containing one 
(resp. more than one) class of genotype, for instance, to achieve 
specialization. A monomorphic population implies that individu-
als will behave in a similar manner (except for small variations 
due to minor genetic differences). On the contrary, polymorphic 
populations host multiple groups of individuals, each group with 
its particular genotypic signature, possibly displaying a specific 
behavior. Research to date shows that cooperation in monomor-
phic populations can be easily achieved (e.g. (Prieto et al., 2010; 
Schwarzer et al., 2010; Montanier and Bredeche, 2011, 2013; Silva 
et  al., 2012)), while polymorphic populations (e.g., displaying 
genetic-encoded behavioral specialization) require very specific 
conditions to evolve (e.g., Trueba et  al. (2013); Haasdijk et  al. 
(2014a); Montanier et al. (2016)).

A notable number of contributions employ real robots. Since 
the first experiments in this field, the intrinsic online nature 
of embodied evolution has made such validation compara-
tively straightforward (Ficici et al., 1999; Watson et al., 2002). 
“Traditional” evolutionary robotics is more concerned with 
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TABLe 1 | Overview of Embodied Evolution research.
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D
is

tr
ib

ut
ed

 

H
yb

ri
d

 

S
im

ul
at

io
n 

R
ea

l r
o

b
o

ts
 

M
o

no
m

o
rp

hi
c 

P
o

ly
m

o
rp

hi
c 

in
d

iv
id

ua
l 

b
eh

av
io

r

C
o

o
p

er
at

io
n 

D
iv

is
io

n 
o

f 
la

b
o

r 

Ta
sk

N
o

 o
f 

ro
b

o
ts

 

P
an

m
ic

ti
c 

P
ro

xi
m

it
y 

O
th

er
 

P
er

fo
rm

an
ce

 

R
an

d
o

m
 

G
en

o
ty

p
ic

 
d

is
ta

nc
e

Fi
xe

d
 li

fe
ti

m
e

va
ri

ab
le

 li
fe

ti
m

e

e
ve

nt
 b

as
ed

Li
m

it
ed

 li
fe

ti
m

e

Ficici et al. (1999); Watson et al. 
(2002)

• • • • Phototaxis 8 • •   •

Simões and Dimond (2001) • • • • Obstacle 
avoidance

6 • • •

Usui and Arita (2003) • • • • obstacle 
avoidance

6 • • •

Bianco and Nolfi (2004) • • • • Self-assembly 64 • • •

Hettiarachchi et al. (2006); 
Hettiarachchi and Spears (2009)

• • • • Navigation 
with obstacle 
avoidance

60 • • •

Wischmann et al. (2007) • • • • Foraginga 3 • • •

Perez et al. (2008) • • • • Obstacle 
avoidance

5 • • •

König and Schmeck (2009); König 
et al. (2009)

• • • • Obstacle 
avoidance with 
gate passing

26; 30 • • •

Pugh and Martinoli (2009) • • • • • Obstacle 
avoidance

1–10 • • • •

Prieto et al. (2009); Trueba et al. 
(2011, 2012)

• • • • • Surveillance, 
foraging, 
construction

20 • • • •

Bredeche and Montanier (2010, 
2012) Bredeche (2014)

• • • • • None 20; 4000 • • •

Prieto et al. (2010) • • • • • Surveillance 8 • • • •

Schwarzer et al. (2010) • • • • • None Up to 40 • • •

Schwarzer et al. (2011) • • • • Phototaxis 4 • • •

Montanier and Bredeche (2011, 
2013)

• • • • None 100 • • • •

Huijsman et al. (2011) • • • • • Obstacle 
avoidance

4–400 • • • •

(Continued)
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Karafotias et al. (2011) • • • • • Obstacle 
avoidance, 
phototaxis, and 
patrolling

10 • • •

Silva et al. (2012, 2013, 2015, 
2017)

• • • • • • Navigation, 
aggregation, 
surveillance, and 
phototaxis

2–20 • • •

Weel et al. (2012a,b) • • • • Foraging 10; 50 • • •

García-Sánchez et al. (2012) • • • • Obstacle 
avoidance

4–36 • • • •

Haasdijk and Bredeche (2013) 
Haasdijk et al. (2013, 2014a); 
Noskov et al. (2013); Haasdijk 
and Eigenhuis (2016); Bangel and 
Haasdijk (2017); Kemeling and 
Haasdijk (2017)

• • • • • Foraging 100 • • •

Trueba et al. (2013) Trueba (2017) • • • • • • Synthetic 
mapping, 
gathering, 
self-location

40; 20; 9 • • • • • •

O’Dowd et al. (2014) • • • •  Foraging 10 • • •

Fernandez Pérez et al. (2014) • • • • Foraging 50 • • • •

Fernandez Pérez et al. (2015) • • • • Foraging 100 • • •

Hart et al. (2015); Steyven et al. 
(2016)

• • • • Foraging 100 • • •

Heinerman et al. (2015, 2016) • • • • • Obstacle 
avoidance

6 • • •

Montanier et al. (2016); Bredeche 
et al. (2017)

• • • • Foraging 100; 500 • • • •

Fernandez Pérez et al. (2017) • • • • Foraging 200 • • •
aAs a proxy for predator avoidance.
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with real robots, thus including real-world validation in their 
research methodology.

Since 2010, there have been a number of experiments that 
employ large (≥100) numbers of (simulated) robots, shifting 
toward more swarm-like robotics where evolutionary dynamics 
can be quite different (Huijsman et  al., 2011; Bredeche, 2014; 
Haasdijk et al., 2014b). Recent works in this vein focus on the 
nature of selection pressure, emphasizing the unique aspect of 
embodied evolution that selection pressure results from both 
the environment (which impacts mating) and the task. Bredeche 
and Montanier (2010, 2012) showed that environmental pres-
sure alone can drive evolution toward self-sustaining behaviors. 
Haasdijk et al. (2014a) showed that these selection pressures can 
to some extent be modulated by tuning the ease with which robots 
can transmit genomes. Steyven et al. (2016) showed that adjusting 
the availability and value of energy resources results in the evolu-
tion of a range of different behaviors. These results emphasize that 
tailoring the environmental requirements to transmit genomes 
can profoundly impact the evolutionary dynamics and that 
understanding these effects is vital to effectively develop embod-
ied evolution systems.

5. iSSUeS iN eMBODieD evOLUTiON

What sets embodied evolution apart from classical evolutionary 
robotics (and, indeed, from most evolutionary computing) is the 
fact that evolution acts as a force for continuous adaptation, not 
(just) as an optimizer before deployment. As a continuous evo-
lutionary process, embodied evolution is similar to some evolu-
tionary systems considered in artificial life research (e.g. Axelrod 
(1984); Ray (1993), to name a few). The operations that imple-
ment the evolutionary process to adapt the robots’ controllers are 
an integral part of their behavior in their task environment. This 
includes mating behavior to exchange and select genetic material, 
assessing one’s own and/or each other’s task performance (if a task 
is defined) and applying variation operators such as mutation and 
recombination.

This raises issues that are particular to embodied evolution. 
The research listed in the previous section has identified and 
investigated a number of these issues, and the remainder of this 
section discusses these issues in detail, while Section 6.2 discusses 
issues that so far have not benefited from close attention in 
embodied evolution research.

5.1. Local Selection
In embodied evolution, the evolutionary process is generally 
implemented through local interactions between the robots, i.e., 
the mating operation introduced above. This implies the concept 
of a neighborhood from which mates are selected. One common 
way to define neighborhood is to consider robots within com-
munication range, but it can also be defined in terms of other 
distance measures such as genotypic or phenotypic distance. 
Mates are selected by sampling from this neighborhood, and 
a new individual is created by applying variation operators to 
the sampled genome(s). This local interaction has its origin in 
constraints that derive from communication limitations in some 
distributed robotic scenarios. Schut et  al. (2009) showed it to 

TABLe 2 | Glossary.

Field Comment

Implementation Distributed implementations have one genome 
for each robot, and an offspring is created only 
as the result of a mating event or by mutating the 
current genome. Hybrid implementations have 
multiple genomes per robot, and offspring can be 
created from this internal pool and from genomes 
“imported” through mating events. As stated earlier, 
the encapsulated scheme is not considered embodied 
evolution as there is no exchange of genomes between 
robots in this case.

The experiments can use real robots or simulation.

Robot behavior A monomorphic population contains individuals with 
similar genotypes (with variations due to mutation). 
A polymorphic population is divided into two (or 
more) subgroups of genetically similar individuals, and 
different genotypic signatures from one group to the 
other, e.g., to achieve specialization.

We distinguish between experiments that target 
efficient individual behavior vs. collective behaviors 
(i.e., social behaviors, incl. cooperation)

Experimental settings Identifies the task(s) considered in the experiment, 
e.g., obstacle avoidance, foraging, … None 
indicates that there is no user-defined task and that 
consequently, selection pressure results from the 
environment only. The number of robots used 
is also included. n1 − n2 indicates the interval for 
one experiment and n1; n2 gives numbers for two 
experiments.

Mating conditions Mating can be based on proximity: two robots can 
mate whenever they are physically close to each other 
(e.g., in infrared communication range). In panmictic 
systems, robots can mate with all other robots, 
regardless of their location. Other comprises systems 
where robots maintain an explicit list of potential mates 
(a social network), which may be maintained through 
gossiping.

Selection scheme Parents are selected from the received and internal 
genomes on the basis of their performance if a 
task is defined. Random parent selection implies 
only environment-driven selection. Currently, the only 
examples of other selection schemes use genotypic 
distance, but this category also covers metrics such 
as novelty.

Replacement scheme Genomes can have a fixed lifetime, variable 
lifetime, or limited lifetime (similar to variable lifetime, 
but with an upper bound). event-based replacement 
schemes do not depend on time but on events such 
as reception of genetic material (e.g., in the microbial 
GA used by Watson et al. (2002)).

robustness at the level of the evolved behavior (mostly caused 
from the reality gap that exists between simulation and the 
real world) than is embodied evolution, which emphasizes the 
design of robust algorithms, where transfer between simulation 
and real world may be less problematic. In the contributions 
presented here, simulation is used for extensive analysis 
that could hardly take place with real robots due to time or 
economic constraint. Still, it is important to note that many 
researchers who use simulation have also published works 
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be beneficial in simulated setups as an exploration/exploitation 
balancing mechanism.

Embodied evolution, with chance encounters providing the 
sampling mechanism, has some similarities with other flavors 
of evolutionary computation. Cellular evolutionary algorithms 
(Alba and Dorronsoro, 2008) consider continuous random 
rewiring of a network topology (in a grid of CPUs or computers) 
where all elements are evaluated in parallel. In this context, locally 
selecting candidates for reproduction is a recurring theme that 
is shared with embodied evolution (e.g., García-Sánchez et  al. 
(2012); Fernandez Pérez et al. (2014)).

5.2. Objective Functions vs Selection 
Pressure
In traditional evolutionary algorithms, the optimization process 
is guided by a (set of) objective function(s) (Eiben and Smith, 
2008). Evaluation of the candidate solutions, i.e., of the genomes 
in the population, allows for (typically numerical) comparison of 
their performance. Beyond its relevance for performance assess-
ment, the evaluation process per  se has generally no influence 
on the manner in which selection, variation, and replacement 
evolutionary operators are applied. This is different in embod-
ied evolution, where the behavior of an individual can directly 
impact the likelihood of encounters with others and so influence 
selection and reproductive success (Bredeche and Montanier, 
2010). Evolution can not only improve task performance but can 
also develop mating strategies, for example, by maximizing the 
number of encounters between robots if that improves the likeli-
hood of transmitting genetic material.

It is therefore important to realize that the selection pressure 
on the robot population does not only derive from the speci-
fied objective function(s) as it traditionally does in evolutionary 
computation. In embodied evolution, the environment, including 
the mechanisms that allow mating, also exert selection pressure. 
Consequently, evolution experiences selection pressure from the 
aggregate of objective function(s) and environmental particulari-
ties. Steyven et al. (2016) researched how aspects of the robots’ 
environment influence the emergence of particular behaviors 
and the balance between pressure toward survival and task. The 
objective may even pose requirements that are opposed to those 
by the environment. This can be the case when a task implies 
risky behaviors or because a task requires resources that are also 
needed for survival and mating. In such situations, the evolution-
ary process must establish a tradeoff between objective-driven 
optimization and the maintenance of a viable environment where 
evolution occurs, which is a challenge in itself (Haasdijk, 2015).

5.3. Autonomous Performance evaluation
The decentralized nature of the evolutionary process implies 
that there is no omniscient presence who knows (let alone deter-
mines) the fitness values of all individuals. Consequently, when 
an objective function is defined, it is the robots themselves that 
must gage their performance and share it with other robots when 
mating: each robot must have an evaluation function that can 
be computed onboard and autonomously. Typical examples of 
such evaluation functions are the number of resources collected, 

the number of times a target has been reached, or the number of 
collisions. The requirement of autonomous assessment does not 
fundamentally change the way one defines fitness functions, but it 
does impact their usage as shown by Nordin and Banzhaf (1997), 
Walker et al. (2006), and Wolpert and Tumer (2008).

Evaluation time: The robots must run a controller for some 
time to assess the resultant behavior. This implies a time sharing 
scheme where robots run their current controllers to evaluate 
their performance. In many similar implementations, a robot 
runs a controller for a fixed evaluation time; Haasdijk et al. (2012) 
showed that this is a very important parameter in encapsulated 
online evolution, and it is likely to be similarly influential in 
embodied evolution.

Evaluation in varying circumstances: Because the evolu-
tionary machinery (mating, evaluating new individuals, etc.) is 
an integral part of robot behavior, which runs in parallel with 
the performance of regular tasks, there can be no thorough 
re-initialization or re-positioning procedure between genome 
replacements. This implies a noisy evaluation: a robot may 
undervalue a genome starting in adverse circumstances and 
vice versa. As Nordin and Banzhaf (1997) (p. 121) put it: “Each 
individual is tested against a different real-time situation leading 
to a unique fitness case. This results in ‘unfair’ comparison where 
individuals have to navigate in situations with very different pos-
sible outcomes. However, […] experiments show that over time 
averaging tendencies of this learning method will even out the 
random effects of probabilistic sampling and a set of good solutions 
will survive.” Bredeche et  al. (2009) proposed a re-evaluation 
scheme to address this issue: seemingly efficient candidate solu-
tions have a probability to be re-evaluated to cope with possible 
evaluation noise. A solution with a higher score and a lower 
variance will then be preferred to one with a higher variance. 
While re-evaluation is not always used in embodied evolution, 
the evaluation of relatively similar genomes on different robots 
running in parallel provides another way to smooth the effect of 
noisy evaluations.

Multiple objectives: To deal with multiple objectives, evolu-
tionary computation techniques typically select individuals on 
the basis of Pareto dominance. While this is eminently possible 
when selecting partners as well, Pareto dominance can only be 
determined vis à vis the population sample that the selecting 
robot has acquired. It is unclear how this affects the overall 
performance and if the robot collective can effectively cover the 
Pareto front. Bangel and Haasdijk (2017) investigated the use 
of a “market mechanism” to balance the selection pressure over 
multiple tasks in a concurrent foraging scenario, showing that 
this at least prevents the robot collective from focusing on single 
tasks, but that it does not lead to specialization in individual 
robots.

6. DiSCUSSiON

The previous sections show that there is a considerable and 
increasing amount of research into embodied evolution, address-
ing issues that are particular to its autonomous and distributed 
nature. This section turns to the future of embodied evolution 
research, discussing potential applications and proposing a 
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research agenda to tackle some of the more relevant and immedi-
ate issues that so far have remained insufficiently addressed in 
the field.

6.1. Applications of embodied evolution
Embodied evolution can be used as a design method for engi-
neering, as a modeling method for evolutionary biology, or as a 
method to investigate evolving complex systems more generally. 
Let us briefly consider each of these possibilities.

Engineering: The online adaptivity afforded by embodied 
evolution offers many novel possibilities for deployment of robot 
collectives: exploration of unknown environments, search and 
rescue, distributed monitoring of large objects or areas, distrib-
uted construction, distributed mining, etc. Embodied evolution 
can offer a solution when robot collectives are required to be 
versatile, since the robots can be deployed in and adapt to open 
and a  priori unknown environments and tasks. The collective 
is comparatively robust to failure through redundancy and the 
decentralized nature of the algorithm because the system con-
tinues to function even if some robots break down. Embodied 
evolution can increase autonomy because the robots can, for 
instance, learn how to maintain energy while performing their 
task without intervention by an operator.

Currently, embodied evolution has already provided solutions 
to tasks such as navigation, surveillance, and foraging (see Table 1 
for a complete list), but these are of limited interest because of the 
simplicity of the tasks considered in research to date. The research 
agenda proposed in Section 6.2 provides some suggestions for 
further research to mitigate this.

Evolutionary biology: In the past 100 years, evolutionary 
biology benefited from both experimental and theoretical 
advances. It is now possible, for instance, to study evolution-
ary mechanisms through methods such as gene sequencing 
(Blount et  al., 2012; Wiser et  al., 2013). However, in  vitro 
experimental evolution has its limitations: with evolution in 
“real” substrates, the time scales involved limit the applicability 
to relatively simple organisms such as Escherichia coli (Good 
et al., 2017). From a theoretical point of view, population genet-
ics (see Charlesworth and Charlesworth (2010) for a recent 
introduction) provides a set of mathematically grounded tools 
for understanding evolution dynamics, at the cost of many 
simplifying assumptions.

Evolutionary robotics has recently gained relevance as an 
individual-based modeling and simulation method in evolution-
ary biology (Floreano and Keller, 2010; Waibel et al., 2011; Long, 
2012; Mitri et al., 2013; Ferrante et al., 2015; Bernard et al., 2016), 
enabling the study of evolution in populations of robotic indi-
viduals in the physical world. Embodied evolution enables more 
accurate models of evolution because it is possible to embody not 
only the physical interactions but also the evolutionary operators 
themselves.

Synthetic approach: Embodied evolution can also be used to 
“understand by design” (Pfeifer and Scheier, 2001). As Maynard 
Smith (1992), a prominent researcher in evolutionary biology, 
advocated in a famous (Maynard Smith, 1992)’s Science paper 
(originally referring to Tierra (Ray, 1993)): “so far, we have been 
able to study only one evolving system and we cannot wait for 

interstellar flight to provide us with a second. If we want to dis-
cover generalizations about evolving systems, we have to look at 
artificial ones.”

This synthetic approach stands somewhere between biol-
ogy and engineering, using tools from the latter to understand 
mechanisms originally observed in nature and aiming at identify-
ing general principles not confined to any particular (biological) 
substrate. Beyond improving our understanding of adaptive 
mechanisms, these general principles can also be used to improve 
our ability to design complex systems.

6.2. Research Agenda
We identify a number of open issues that need to be addressed so 
that embodied evolution can develop into a relevant technique to 
enable online adaptivity of robot collectives. Some of these issues 
have been researched in other fields (e.g., credit assignment is a 
well-known and often considered topic in reinforcement learning 
research). Lessons can and should be learned from there, inspiring 
embodied evolution research into the relevance and applicability 
of findings in those other fields.

In particular, we identify the following challenges.
Benchmarks: The pseudocode in Section 3 provides a clarifi-

cation of embodied evolution’s concepts by describing the basic 
building blocks of the algorithm. This is only a first step toward 
a theoretical and practical framework for embodied evolution. 
Some authors have already taken steps in this direction. For 
instance, Prieto et  al. (2015) propose an abstract algorithmic 
model to study both general and specific properties of embodied 
evolution implementations. Montanier et  al. (2016) described 
“vanilla” versions of embodied evolution algorithms that can be 
used as practical benchmarks. Further exploration of abstract 
models for theoretical validation is needed. Also, standard 
benchmarks and test cases, along with systematically making the 
source code available, would provide a solid basis for empirical 
validation of individual contributions.

Evolutionary dynamics: Embodied evolution requires new 
tools for analyzing the evolutionary dynamics at work. Because 
the evolutionary operators apply in  situ, the dynamics of the 
evolutionary process are not only important in the context of 
understanding or improving an optimization procedure, but they 
also have a direct bearing on how the robots behave and change 
their behavior when deployed.

Tools and methodologies to characterize the dynamics of 
evolving systems are available. The field of population genetics 
has produced techniques for estimating the selection pressure 
compared to genetic drift possibly occurring in finite-sized 
populations (see, for instance, Wakeley (2008) and Charlesworth 
and Charlesworth (2010) for a comprehensive introduction). 
Similarly, tools from adaptive dynamics (Geritz et al., 1998) can 
be used to investigate how particular solutions spread within the 
population. Finally, embodied evolution produces phylogenetic 
trees that can be studied either from a population genetics 
viewpoint (e.g., coalescence theory to understand the temporal 
structure of evolutionary adaptation) and graph theory (e.g., to 
characterize the particular structure of the inheritance graph). 
Boumaza (2017) shows an interesting first foray into using this 
technique to analyze embodied evolution.
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Credit assignment: In all the research reviewed in this article 
that considers robot tasks, the fitness function is defined and 
implemented at the level of the individual robot: it assesses its 
own performance independently of the others. However, collec-
tively solving a task often requires an assessment of performance 
at group level rather than individual level. This raises the issue of 
estimating each individual’s contribution to the group’s perfor-
mance, which is unlikely to be completely captured by a fitness 
function (e.g. all individuals going toward the single larger food 
patch may not always be the best strategy if one aim to bring back 
the largest amount of food to the nest).

Closely related to our concern, Stone et al. (2010) formulated 
the ad hoc teamwork problem in multirobot systems, involving 
robots that each must “collaborate with previously unknown 
teammates on tasks to which they are all individually capable of 
contributing as team members.” As stated by Wolpert and Tumer 
(2008), this implies devoting substantial attention to the problem 
of estimating the local utility of individual agents with respect to 
the global welfare of the whole group and how to make a tradeoff 
between individual and group performance (e.g., Hardin (1968); 
Arthur (1994)).

While a generally applicable method to estimate an individual’s 
local utility in an online distributed setting has so far eluded 
the community, it is possible to provide an exact assessment 
in controlled settings. Methods from cooperative game theory, 
such as computing the Shapley value (Shapley, 1953), could be 
used in embodied evolution but are computationally expensive 
and require the ability to replay experiments. However, replaying 
experiments is possible only with simulation and/or controlled 
experimental settings. While these methods cannot apply when 
robots are deployed in the real world, they at least provide 
a method to compare the outcome of candidate solutions to 
estimate individuals’ marginal contributions and choose which 
should be deployed.

Social complexity: Section 4 shows that embodied evolution 
so far demonstrated only a limited set of social organization 
concepts: simple cooperative and division of labor behaviors. 
To address more complex tasks, we must first gain a better 
understanding of the mechanisms required to achieve complex 
collective behaviors. This raises two questions. First, there is an 
ethological question: what are the behavioral mechanisms at work 
in complex collective behaviors? Some of them, such as positive 
and negative feedback between individuals, or indirect com-
munication through the environment (i.e., stigmergy), are well 
known from examples found both in biology (Camazine et al., 
2003) and theoretical physics (Deutsch et al., 2012). Second, there 
is a question about the origins and stability of behaviors: what 
are the key elements that make it possible to evolve collective 
behaviors, and what are their limits? Again, evolutionary ecology 
provides relevant insights, such as the interplay between the level 
of cooperation and relatedness between individuals (West et al., 
2007). The literature on such phenomena in biological systems 
may provide a good basis for research into the evolution of social 
complexity in embodied evolution.

A first step would be to clearly define the nature of social 
complexity that is to be studied. For this, evolutionary game 

theory (Maynard Smith, 1992) has already produced a number 
of well-grounded and well-defined “games” that capture many 
problems involving interactions among individuals, including 
thorough analysis of the evolutionary dynamics in simplified 
setups. Of course, results obtained on abstract models may not 
be transferable within more realistic settings (as Bernard et  al. 
(2016) showed for mutualistic cooperation), but the systematic 
use of a formal problem definition would greatly benefit the clar-
ity of contributions in our domain.

Open-ended adaptation: As stated in Section 2, embodied 
evolution aims to provide continuous adaptation so that the 
robot collective can cope with changes in the objectives and/or 
the environment. Montanier and Bredeche (2011) showed that 
embodied evolution enables the population to react appropriately 
to changes in the regrowth rate of resources, but generally this 
aspect of embodied evolution has to date not been sufficiently 
addressed.

We reformulate the goal of continuous adaptation as providing 
open-ended adaptation, i.e., having the ability to continually keep 
exploring new behavioral patterns, constructing increasingly 
complex behaviors as required. Bedau et  al. (2000), Soros and 
Stanley (2014), and Taylor et  al. (2016) and others identified 
open-ended adaptation in artificial evolutionary systems as one 
of the big questions of artificial life. Open-ended adaptation in 
artificial systems, in particular in combination with learning 
relevant task behavior, has proved to be an elusive ambition.

A possible avenue to achieve this ambition may lie in the use 
of quality diversity approaches in embodied evolution. Recent 
research has considered quality diversity measures as a replace-
ment (Lehman and Stanley, 2011) or additional (Mouret and 
Doncieux, 2012) objective to improve the population diversity 
and consequently the efficacy of evolution. To date, such research 
has focused on the evolution of behavior for particular tasks with 
task-specific metrics of behavioral diversity that must be tailored 
for each application. To be able to exploit quality diversity in 
unknown environments and for arbitrary tasks, generic measures 
of behavioral diversity must be developed.

Another avenue of research would be to take inspiration 
from the behavior of a passerine bird, the great tit (parus 
major), as recently analyzed by Aplin et al. (2017). It appears 
that great tits combine collective and individual learning with 
varying intensity as they age and that the motivations to pursue 
behaviors also vary with age. Reward-based learning occurs 
primarily in young birds and is often individual, while adult 
birds engage mostly in social learning to copy the behavior 
that is most common, regardless of whether it produces more 
or less rewards than alternative behavior. This combination of 
conformist and payoff-sensitive reinforcement allows individu-
als and populations both to acquire adaptive behavior and to 
track environmental change.

Combining embodied evolution, individual reinforcement 
learning with task-based and diversity-enhancing objectives may 
yield similar behavioral plasticity for collectives of robots.

Safety and robot ethics: To deploy the kind of adaptive 
technology that embodied evolution aims for responsibly, one 
must ensure that the adaptivity can be controlled: autonomous 
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adaptation carries the risk of adaptation developing in direc-
tions that do not meet the needs of human users or that they 
even may find undesirable. Even so, the adaptive process should 
be curtailed as little as possible to allow effective, open-ended, 
learning. The user cannot be expected to monitor and closely 
control the robot’s behavior and learning process; this may in 
fact be impossible in exactly those scenarios where robotic 
autonomy is most beneficial and adaptivity most urgently 
required. There is growing awareness that it may be necessary to 
endow robots with innately ethical behavior (e.g., Moor (2006); 
Anderson and Anderson (2007); Vanderelst and Winfield 
(2018)), where the systems select actions based on a “moral 
arithmetic” (Bentham, 1878), often informed by casuistry, i.e., 
generalizing morality on the basis of example cases in which 
there is agreement concerning the correct response (Anderson 
and Anderson, 2007). Moral reasoning along these lines could 
conceivably be enabled in embodied evolution as well, in 
which case interactive evolution to develop surrogate models 
of user requirements may offer one possible route to allow user 
guidance.

Additional open issues and opportunities will no doubt arise 
from advances in this and other fields. A relevant recent develop-
ment, for instance, is the possibility of evolvable morphofunc-
tional machines that are able to change both their software and 
hardware features (Eiben and Smith, 2015) and replicate through 
3D printing (Brodbeck et al., 2015). This would allow embodied 
evolution holistically to adapt the robots’ morphologies as well 
as their controllers. This can have profound consequences for 
embodied evolution implementations that exploit these develop-
ments: it would, for instance, enable dynamic population sizes, 
allowing for more risky behavior as broken robots could be 
replaced or recycled.

7. CONCLUSiON

This article provides an overview of embodied evolution for robot 
collectives, a research field that has been growing since its incep-
tion around the turn of the millennium. The main contribution of 
this article is threefold. First, it clarifies the definitions and overall 
process of embodied evolution. Second, it presents an overview 
of embodied evolution research conducted to date. Third, it 
provides directions for future researches.

This overview sheds light on the maturity of the field: while 
embodied evolution was mostly used as a parallel search method 
for designing individual behavior during its first decade of exist-
ence, a trend has emerged toward its collective aspects (i.e., coop-
eration, division of labor, specialization). This trend goes hand in 
hand with a trend toward larger, swarm-like, robot collectives.

We hope this overview will provide a stepping stone for the 
field, accounting for its maturity and acting as an inspiration for 
aspiring researchers. To this end, we highlighted possible applica-
tions and open issues that may drive the field’s research agenda.
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