
CODE
published: 29 March 2018

doi: 10.3389/frobt.2018.00024

Edited by:
Ugo Pattacini,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Carlo Ciliberto,

University College London,
United Kingdom
Matej Hoffmann,

Czech Technical University in Prague,
Czechia

*Correspondence:
Vincent Padois

vincent.padois@sorbonne-
universite.fr

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 04 August 2017
Accepted: 28 February 2018
Published: 29 March 2018

Citation:
Eljaik GJ, Lober R, Hoarau A and

Padois V (2018) Optimization-Based
Controllers for Robotics Applications

(OCRA): The Case of iCub’s
Whole-Body Control.
Front. Robot. AI 5:24.

doi: 10.3389/frobt.2018.00024

Optimization-Based Controllers for
Robotics Applications (OCRA): The
Case of iCub’s Whole-Body Control
G. Jorhabib Eljaik, Ryan Lober, Antoine Hoarau and Vincent Padois*

Sorbonne Université, CNRS UMR 7222, Institut des Systèmes Intelligents et de Robotique, ISIR, Paris, France

OCRA stands for Optimization-based Control for Robotics Applications. It consists of a
set of platform-independent libraries which facilitates the development of optimization-
based controllers for articulated robots. Hierarchical, weighted, and hybrid control
strategies can easily be implemented using these tools. The generic interfaces provided
by OCRA allow different robots to use the exact same controllers. OCRA also allows
users to specify high-level objectives via tasks. These tasks provide an intuitive way of
generating complex behaviors and can be specified in XML format. To illustrate the use of
OCRA, an implementation of interest to this research topic for the humanoid robot iCub
is presented. OCRA stands for Optimization-based Control for Robotics Applications. It
consists of a set of platform-independent libraries which facilitates the development of
optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid
control strategies can easily be implemented using these tools. The generic interfaces
provided by OCRA allow different robots to use the exact same controllers. OCRA also
allows users to specify high-level objectives via tasks. These tasks provide an intuitive
way of generating complex behaviors and can be specified in XML format. To illustrate
the use of OCRA, an implementation of interest to this research topic for the humanoid
robot iCub is presented.

Keywords: whole-body controller, iCub, optimization, tasks, hierarchical, code:c++

1. INTRODUCTION

Whole-body control (WBC) is a research direction in robotics, where humanoids are faced with the
problem of executing multiple tasks simultaneously. As stated by the IEEE Technical Committee on
Whole-Body Control:

A control system that is specifically designed to guarantee the execution of a single
task, even if it uses all the joints of a robot, cannot be considered WBC.

This is indeed the core of the software introduced in this work, but it goes further by drawing addi-
tional requirements from the identification of typical concerns in the control of articulated robots,
such as (1) standardization of the problem formulation, which is done in the form of an optimization
problem; (2) flexibility in the solver choice; (3) independence of tasks from the problem formulation
with user-friendlyways to introduce them; (4) addition of constraints, contactmodeling and support
for both fixed and floating-base robots. OCRA draws its origins from these design requirements.
It stands for Optimization-based Control for Robotics Applications and consists of a set of

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 241

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00024
https://creativecommons.org/licenses/by/4.0/
mailto:vincent.padois@sorbonne-universite.fr
mailto:vincent.padois@sorbonne-universite.fr
https://doi.org/10.3389/frobt.2018.00024
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00024&domain=pdf&date_stamp=2018-03-29
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://www.frontiersin.org/Journal/10.3389/frobt.2018.00024/full
https://loop.frontiersin.org/people/189645
https://loop.frontiersin.org/people/309219
https://loop.frontiersin.org/people/539245
https://loop.frontiersin.org/people/165250
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

platform-independent libraries which facilitates the development
of optimization-based controllers. It builds on top of ORC which
was originally a framework developed by CEA-List,1 later used at
the Institute of Intelligent Systems and Robotics (ISIR) to develop
whole-body controllers with simulations on XDE (Salini et al.,
2013).

Examples of software addressing similar problems include the
Stack of Tasks (SOT) (Mansard et al., 2009), OpenSOT (Rocchi
et al., 2015), and CoDyCo2 controllers (Nori et al., 2015). Nev-
ertheless, they either lack the level of desired flexibility or do not
meet the proposed design requirements. SOT and OpenSOT use
strictly hiearchical methods, and while OpenSOT is intended for
torque-controlled robots similar to OCRA, SOT originally targets
velocity-controlled robots. When it comes to solvers, OpenSOT
relies solely on QPOases while SOT’s controller and solver are
tight together.

Another software that has been used in the formulation of
this type of controllers is Roboptim (2016). It is, however, an
optimization framework for robotics and it is up to the user to
formulate the control problem, workout the prioritization strategy
and address the different components to achieve a whole-body
controller.

CoDyCo’s controllers on the other hand, although aimed at
WBC, are tailored to be task-specific and do not constitute aWBC
library.

OCRA has been designed to exploit a client–server paradigm,
where the server is responsible for running the whole-body con-
troller, send control inputs to the robot and host user-defined
tasks, while the client is built by the user according to their needs
on task servoing, planning, or higher-level control.

OCRA contributes to the building of the iCub mindware
through the implementation of an iCub server along with com-
munication utilities for the construction of clients. It facilitates
the creation of a vast type of whole-body behaviors, with special
attention to interaction. It also addresses the needs of different
types of users, from the advanced one who desires to implement
particular low-level control laws, to the more practical one who
prefers to state at the metatask-level.

In Section 2, a generic overview of the main design require-
ments and features of OCRA, along with a list of software depen-
dencies is presented. Section 3 introduces the main concepts
involved in optimization-based control which allow the reader
to have a deeper insight in the inner workings of the software.
Concepts such as tasks, constraints, quadratic programming based
control (and motivations for its use), prioritization strategies,
and optimization solver are covered. Section 4 spans OCRA’s
structure, shedding light on its libraries and the main classes
they are composed of as well as how these were used for iCub
implementations. The same section continues with a more in-
depth description of the iCub server and a generic client through
sequence diagrams, as well as a brief explanation on how to
automatically build a template client. Finally, Section 5 draws final
conclusions.

1http://www-list.cea.fr/en/.
2European Project Whole-body Compliant Dynamical Contacts in Cognitive
Humanoids.

2. OCRA

OCRA is a set of libraries and tools for the implementation
of QP-based whole-body controllers for torque/force-controlled
articulated robots. Robots like the humanoid iCub or the KUKA
LightWeight Robot (LWR)manipulators (floating/fixed base) can
be controlled using this open source software. In particular, for the
iCub, the set of necessary libraries is implemented and distributed.

One main design requirement from OCRA’s inception is that
(1) it should be heavily task-oriented. This means, that a user can
specify a set of tasks to be performed by the robot, e.g., follow
a CoM trajectory, while maintaining balance and make one hand
follow another trajectory and (2) the specifications of these tasks
have to be easy to provide. This is achieved through an XML file
that we call the tasks set.

Features that make OCRA flexible include: the possibility to
choose between different types of tasks and their prioritization
strategies; two different optimization solvers; various types of con-
straints and the tools to create a client–server architecture, where
the server runs a reactive controller with the tasks and constraints,
and one or more clients perform the computation of the right
instantaneous tasks values through local trajectory controllers
(e.g., PIDs), motion planning, model predictive control, or any
higher-level control schemes.

The required dependencies of this software are given inTable 1.

3. OPTIMIZATION-BASED CONTROL

Traditionally, redundancy resolutions for robotic control prob-
lems find analytical solutions by ensuring that lower-priority tasks
are executed in the null-space of higher-priority tasks. In prior-
itized inverse kinematics, acceleration or torque based control,
the jacobian of low-priority tasks is projected onto the null-space
of higher-priority ones (Khatib, 1987; Sentis and Khatib, 2006;
Peters et al., 2008). Inequality constraints are, however, difficult to
deal with in these approaches. They are usually transformed into
avoidance tasks, which try to prevent the robot from hitting the
original constraint (Khatib, 1986; Padois et al., 2007). This type of
active avoidance (passive or active) method is doomed to fail as
the number of constraints is necessarily higher than the number
of DOF (2n joints limits for an n DOF robot) and it thus requires
tomake decision reactively about which avoidance tasks should be
used in order to guarantee the respect of all constraints while still

TABLE 1 | Required dependencies table for ocra and ocra-icub.

Dependency Minimum version ocra ocra-icub

YARP 2.3 X X
Eigen 3.2 X X
orocos_kdl 1.2 X X
iDynTree 0.4.0 X
yarpWholeBodyInterface 0.35 X
Boost 1.64 X X
CMake 2.8.11 X X
TinyXML 2.6.2 X
YCM 0.4.0 X

For the sake of clarity, it is not shown that ocra is naturally a dependency of ocra-icub.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 242

http://www-list.cea.fr/en/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

achieving the operational tasks in the most efficient way possible
(Padois, 2016).

OCRA resorts to convex optimization for the formulation of
the whole-body controller, as it has been stated multiple times
before this point. The controller is written as a linearly constrained
quadratic multi-objective optimization problem where strict or
soft hierarchies are used to express the priorities between the
tasks. Linearly constrained due to the constraints being strictly
linear (or linearized if not), quadratic because each objective is
the quadratic error of a task and multi-objective because multiple
tasks are combined. The result of this optimization are the optimal
actuation inputs to the system (i.e., joint torques) given the set
of prioritized tasks to be performed and the constraints that
have to be respected. Among these constraint, this optimization
problem includes inequality constraints, coming from control
input saturations or any other variable which should never cross
certain limits. Under these conditions, the solution space can be
proved convex and finding the optimal solution to the whole-
body control problem is equivalent to finding the set of active
constraints. In fact, methods in which optimization is avoided end
up using algorithms that pretty much search for this active set,
not explicitly and in a suboptimal way. It is then indisputable that
the strong background in convex optimization outruns analytical
methods used to heuristically activate constraints.

The primary concern of this section is to present the necessary
equations and relationships to understand the critical aspects of
the types of controllers which can be developed with OCRA.
Generally speaking, an optimization-based controller formulates
the control problem as one of minimizing control objective func-
tions while respecting the control constraints. Specifically, the
problem is formulated as a convex linearly constrained QP using
the second-order rigid body dynamics of the robot. Therefore,
the control objectives (Tasks) are expressed as either accelerations,
torques, or wrenches, allowing for complex dynamic interactions
with the environment, and the control constraints are expressed
directly in the QP as linear equalities and inequalities.

3.1. Tasks
Tasks allow users to decompose complex whole-body behaviors
into atomic control objectives, which can be planned by a user
or automatically with planners. Here, a task represents a control
objective for the robot, and more specifically, an error between
some desired task value and the current value of the task in terms
of the control variable. These tasks are expressed as the squared
norm of these errors in either accelerations, torques, or wrenches
and can be expressed in both joint and operational-space. In
Section 3.4, the expression of these tasks in terms of the control
variables is provided, but Table 2, below, shows their standard
formulations.

In Table 2, ν and ν̇ are the generalized velocities and accel-
erations of the robot. They can be more or less directly related
to the derivatives of the generalized coordinates q. Indeed, for
robots whose root link can float freely in Cartesian space, e.g.,
humanoids, it is necessary to consider the pose of the root link
w.r.t. the world reference frame. The primary method for doing
so is to account for the root link pose directly in the generalized
coordinates, q, of the robot (Sentis and Khatib, 2005; Mistry et al.,

TABLE 2 | Different types of tasks.

Task Definition

Operational-space acceleration T
(

ξ̈des
)

=
∥∥∥J(q)ν̇ + J̇(q, ν)ν − ξ̈des

∥∥∥
Joint-space acceleration T

(
ν̇des

)
=

∥∥∥ν̇ − ν̇des
∥∥∥

Operational-space wrench T
(
eωdes

)
=

∥∥∥eω − eωdes
∥∥∥

Joint torque T
(

τ des
)

=
∥∥∥τ − τ des

∥∥∥
Superscript “des” stands for desired.

2010). The terms J and J̇ are link Jacobians and their deriva-
tives. The variable eω represents an external wrench, and τ , the
system torques, while ξ̈ is operational-space acceleration. The
corresponding desired values of each term inTable 2 should not be
confused with the raw trajectory given by the user (subscript ref).
These set-points are used as inputs to a task-level PD controller
in the case of operational-space acceleration tasks and a PI in the
case of wrench (eω) tasks, such that:

ξ̈des(t + ∆t) = ξ̈ref(t + ∆t) + Kpϵ(t) + Kdϵ̇(t), (1)
eωdes(t + ∆t) = eωref(t + ∆t) + Kpϵ(t) + Ki

∫
ϵ(t)dt, (2)

where ξ̈ref and eωref are feedforward terms, while ϵ and ϵ̇ are pose
error and its derivative (these being representation dependant).
Kp, Kd, and Ki are proportional, derivative, and integral gains and
by default, Kd = 2

√
Kp. Task servoing is necessary to compensate

for drift and tracking errors associated with using second-order
control techniques. Additionally, it is often the case that only
position values are specified by the user, and these must be con-
verted to accelerations—task servoing provides this service. For
joint-space accelerations the servoing is done in similar fashion as
for ξ̈des.

3.2. Constraints
As with all real world control problems, there are limits to what
the system being controlled can do. For example, the control input
is typically bounded, which for robots with revolute joints means
that the torque which can be generated by the actuators is limited
to plus or minus some value. Likewise, the joints themselves
generally have limited operating ranges for various mechanical
reasons. In addition to these common limiting factors, it may be
reasonable to maintain the robot in some region of its state space
that will ease control, e.g., avoid slipage of the contact points or
avoid contact with the environment.

In Table 3, the •min and •max values represent the lower and
upper limits of a variable. The term Ccj

eωj ≤ 0 represents
the linearized friction cone constraint for a point contact, and
eJ(q)ν̇+e J̇(q, ν)ν = 0, its coupled “nomotion” constraint, which
ensures that the contact does not move. For details on these
constraint expressions and the way to express them through lin-
earization as functions of joint torques or generalized acceleration,
the reader is directed to Salini et al. (2011). In addition to these
nearly universal robotic constraints, particular care must be taken
to ensure that the motions generated by the controller respect the
system dynamics, i.e., the equations of motion.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 243

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

TABLE 3 | Possible constraints in OCRA.

General constraint Equation

Actuator limits τmin ≤ τ ≤ τmax

Joint position limits qmin ≤q≤qmax

Joint velocity limits ν̇min ≤ ν̇ ≤ ν̇max

Contact constraints Ccj
eωj ≤ 0

eJ(q)ν̇+e J̇(q, ν)ν = 0

3.3. Dynamics
The principle constraint of the controllers in OCRA is that of the
system dynamics. This means that any solution found must be
dynamically feasible, and consequently, respect the equations of
motion,

M(q)ν̇ + C(q, ν)ν + g(q)︸ ︷︷ ︸
n(q,ν)

= S⊤τ+eJ⊤(q)eω (3)

M(q)ν̇ + n(q, ν) = S⊤τ+eJ⊤(q)eω. (4)

In (3), M(q) is the generalized mass matrix, C(q, ν)ν and
g(q) are the Coriolis-centrifugal and gravitational terms, S is a
selection matrix indicating the actuated degrees of freedom, eω is
the concatenation of the external contact wrenches, and eJ their
concatenated Jacobians. Grouping C(q, ν)ν and g(q) together
into n(q, ν), we can simplify the equations to (4). Additionally,
the variables ν̇ , τ , and eω, can be grouped into the same vector,

x =

 ν̇
τ

eω,

 (5)

forming the control variable, and allowing (4) to be rewritten as,[
−M(q) S⊤ eJ⊤(q)

]︸ ︷︷ ︸
A

x = n(q, ν)︸ ︷︷ ︸
b

. (6)

Equation 6 provides an affine equality constraint, Ax= b,
which can be used to ensure that the minimization of the control
objectives respects the system dynamics.

3.4. Quadratic Programming Based Control
Given the control objectives defined by the task errors from
Section 3.1, the control constraints from Section 3.2, and the
optimization variable defined by (5), we can now form a generic,
single task, optimization-based whole-body control problem as,

min
x

Ti(x)

s.t. Gx ≤ h (7)
Ax = b,

where the objective function, Ti(x), is the task error, representing
for example, the squared error between a desired acceleration or
wrench and the system’s (see Section 3.1). The inequality con-
straints, generically represented by, Gx≤ h, contain the concate-
nation of all of the affine inequalities defined in Table 3, while the

affine equality constraints, shown by Ax= b, obligatorily contain
the equation of motion constraints from (6), and possibly the
coupled “no motion” constraints of any contacts which might be
active.

The form of this problem will be referred to throughout this
work as the full problem, which is also the default formulation
used in OCRA. The user can choose to work with the reduced
problem, in which the dynamics are not explicit in the constraints,
but projected onto the different control objectives, and with the
optimization variable, x, in this case, consisting of the control
inputs, τ , and external wrenches eω, i.e., x = [τ⊤ eω⊤]

⊤.
The reduced problem has the advantage of having less optimiza-
tion variables, which can improve the solution time as shown in
Section 3.5 of Salini (2012), at the expense of complicating the
writing of the tasks and constraints in terms of the optimization
variable. The inclusion of the generalized joint accelerations, ν̇ , in
the full problem, yields clarity and simplicitywhenwriting the cost
functions and the constraints on the joint velocities, acceleration
and joint limits.

3.5. Prioritization Strategies
Up to this point, only one task objective function is considered in
the whole-body controller in Section 3.4. If multiple task objective
functions are combined (using operations that preserve convex-
ity) in the resolution of the control problem, then they can be
performed simultaneously. In these cases, it is important to select
a strategy for the resolution of the optimization problem. The
strategy will in turn, determine how tasks interact/interfere with
one another. The two prevailingmethods for dealingwithmultiple
tasks are hierarchical (Saab et al., 2013; Escande et al., 2014) imple-
mented as WOCRA and weighted prioritization (Bouyarmane
and Kheddar, 2011; Salini et al., 2011) implemented as HOCRA.
A hybrid scheme can also be used providing the best of the former
two methods (Liu et al., 2016).

4. SOFTWARE

4.1. Structure
4.1.1. OCRA Libraries
The main concepts introduced in previous sections are
materialized in the different interfaces, abstract, and concrete
classes OCRA is composed of. These are encapsulated in four
essential components or libraries. These are: ocra-optim,
ocra-control, ocra-coms, and ocra-utils.

The first of these libraries, ocra-optim, defines the lowest-
level data structures required to build an optimization problem
such as variables, functions, and constraints, as well as the basic
concept of a solver and prioritization strategies. Table 4 shows the
main classes in this library, their type, and a brief description.

The ocra-control library goes up one level of abstraction,
containing all the classes necessary to build the model of a robot,
implement a control law, account for the floating-base dynamics
and build the different types of tasks, constraints and trajectories.
The two main prioritization techniques described in Section 3.5
are, respectively, implemented through HOCRA and WOCRA. Again,
the main classes in this library along with their brief description
are collected in Table 5.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 244

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

TABLE 4 | Main classes composing the ocra-optim library.

ocra-optim

Main classes Features

Variable Represents the mathematical concept of
variable

Function Base for any type of function
Constraint Templated base class to build

equality/inequalities constraints
LinearizedCoulombFunction Builds a discretized cone representing a

Coulomb Friction cone
Solver Base class for optimization solvers
CascadeQPSolver Implements a hierarchical solver

OneLevelSolver Used for building solvers with one level of
importannce to all tasks. It also contains
specific implementations with QuadProg++
and QPOases. This is the solver used in wocra

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances, while green labels
stand for implemented classes.

TABLE 5 | Main classes composing the ocra-control library.

ocra-control

Main classes Features

Controller Used to implement control laws
Model Provides dynamic and static terms from

the equations of motion
FullDynamicEquationFunction Creates the dynamics equation as a

linear function of the optimization
variable

ModelContacts Concatenates the contact variables and
Jacobians for a model

ControlFrame Generic representation of a frame
Feature Used by tasks to compute errors and

Jacobians
Task –
TaskBuilder Builds task-specific features
*TaskBuilder Task-specific implementations of

TaskBuilder. “*” is replaced by Com,
FullPosture, Orientation, etc.

TaskConstructionManager –

*LimitConstraint (torque and joint limits)
Trajectory Helper class to build trajectories. These

can be minimum jerk, linearly
interpolated, gaussian processes or
time-optimal

WocraController QP-based controller using a weighted
prioritization strategy

HocraController QP-based controller using a hierarchical
prioritization strategy

Blue labels indicate abstract classes that can be later implemented. Orange labels
are assigned instead to concrete classes without particular inheritances. Red labels to
interfaces and green labels to implementations.

The last two libraries are agnostic to the paradigm suggested
by OCRA. That is, a client–server model. In order to implement
it, the ocra-coms library is provided and comes with the generic
classes to create a server and a client and tomanage the communi-
cation between them. Table 6 lists the main classes in this library
along with their description.

TABLE 6 | Main classes composing the ocra-coms library.

ocra-coms

Main classes Features

ControllerServer Must be inherited to implement the server
side

ServerCommunications Helps the server establish YARP-based
communication with the client

ClientCommunications Helps the client establish YARP-based
communication with the server

ClientManager Implements the functionalities of YARP
RFModule on the client side. Holds the main
client thread

ControllerClient Implements the functionalities of YARP
RateThread on the client side. Main thread
hosted by ClientManager

TaskConnection Used on the client side to connect and
communicate with the tasks started by the
server

TrajectoryThread Used to create trajectories on the client side

Blue labels indicate abstract classes that can be later implemented. Orange labels are
assigned instead to concrete classes without particular inheritances.

TABLE 7 | Main classes composing the ocra-icub library.

ocra-icub

Main classes Features

ModelInitializer Retrieves model configuration information
from the server to create a local copy of the
robot model

OcraWbiModel Implements the abstract Model class from
ocra-control for the iCub robot

IcubControllerServer Implements ControllerServer for the
iCub robot

Module Module that launches the controller thread,
parses controller options and the tasks set
XML. Basically a yarp:os:RFModule

Thread Main controller thread started. Created by
Module, contains the controller, tasks
manager, and solves the whole-body
control problem

Orange labels mean concrete class without any particular inheritance. Green labels are
for classes that implement some base class from the main OCRA libraries. Yellow labels
stand indicate classes that are used to build a client, while gray labels are for those used
to build a server.

Finally, the ocra-utils library as its name states, is a set of
utilities to aid the other libraries: helpers to perform file opera-
tions, xml parsing, data structure conversions, errors descriptors,
among others.

4.1.2. OCRA for iCub
The classes needed to implement a server for the iCub robot
and a generic client are present in the ocra-icub library. As
can be seen from the green implementation labels in Table 7,
most of the main classes are implementations of base classes from
ocra-control and ocra-coms. In the following section, two
main detailed explanations are provided: how to use these classes
to obtain a client–server architecture for iCub, and how objects of
the different classes interact.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 245

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 1 | A server (ocra-icub-server) and a client (icub-client) are here
represented in dark green as YARP modules. In light green, we see the
underlying OCRA libraries associated to their construction, as well as for the
communication between them and the parsing of the tasks set.

Given the classes involved in the construction of this task-
oriented, client-server paradigm for whole-body control, as well
as the particular implementations for iCub, we present for the
sake of clarity in Figure 1 an illustration of a typical server–client
architecture with the underlying OCRA libraries used to build
each component. This section proceeds with a time-based illus-
tration of the interaction logic between the different objects of our
system in the form of sequence diagrams (IEEE, 2009) as shown in
Figures 2 and 3. Given the amount of classes in the package, it
might be difficult to see the global interaction among them along
with the intended architecture. The next two sections attempt to
clear this out by showing the inner interactions of both client and
server, independently and between them.

4.1.3. iCub Server
Figure 2 depicts the sequence diagram for the ocra-icub-
server. The user starts by executing the server from terminal
issuing the command ocra-icub-server [options] (1).

The default options are specified in its initialization file
ocra-icub-server.ini or hardcoded in the source code. After
the execution of the server, an object of type ResourceFinder
is created, which is responsible for the parsing of the former
options. Right after, a yarp RFModule is created (3) and started
(4), whose first task will be to configure the server (6), ask
the ResourceFinder to find the desired type of controller (7),
i.e., WOCRA or HOCRA, the solver to be used, i.e., QUAD-
PROG or QPOASES, the XML file with the description of
the tasks that the client will manipulate, etc. At this point, a
yarpWholeBodyInterface object is created (8) and initialized.
This class serves as an interface to the robot, and as such will allow
us to set the control references obtained, as well as to obtain the
state of the robot. Now themodule is ready to create (12) and start
(13) the main thread of the client.

Before entering the main loop of the thread, however, a cou-
ple of objects of interest are created. First, an object of type
IcubControllerServer (14), which during initialization (16)
will create the desired controller with its internal solver. At this
phase, also communication ports are opened with standardized
names that will be used by the cient for future connections.
IcubControllerServer is then asked by the thread to update
its internal model of the robot (17) and add the tasks specified
by the user via XML (18). This process involves the creation

(19) of an object of type TaskConstructionManager which
will create one or multiple instances (20) of TaskBuilder,
one per type of task found in the XML. These task objects
will then get added to iCubControllerServer (21). Notice
how the tasks are living in the server. The server will then ask
the yarpWholeBodyInterface object to set the torque con-
trol mode on the robot (22) for it to accept torque references.
The latter are computed every cycle of the Thread (24–27) by
iCubControllerServer.

The server will be constantly controlling the robot to achieve
default initial states of the specified tasks. As an example, if
one task is of COM type, it controls the robot to keep it at its
initial position, until a client connects to the server and tells it
to do otherwise. Finally, if the user decides to stop the server
(28), the sequence of object “destructions” is illustrated from (29)
to (37).

4.1.4. Generic Client
A client’s main goal is to connect to the server to provide reference
trajectories to the tasks it hosts. Let us show through Figure 3 the
main interactions within a client and the type of communication
it establishes with the server.

As done previously on the server side, we are going to follow the
sequence diagram in an orderly fashion. First, notice how before
the user can start a client, they need to start the server. This is
evident by the sequence number (2) next to example-client.
Thus, having a server properly started, the client is launched
and the first thing it does is to get model information of the
robot through the class ModelInitializer. This is the first
interaction between the client and the server (4-5), after which a
local model of the robot is built (6). Once the client has access
to the robot model, the main client thread is created (7). This is
of type ControllerClient which is a Yarp RateThread. The
creation of the thread is followed by a ClientCommunications
object (8), which creates and connects local ports to the server for
inter-process communications. Its role will become clearer later
on. The client thread is passed to a ClientManager object (10)
which will handle the life-cycle of the thread and its configu-
ration (11–12). The module subsequently starts (18) the client
thread, which afters initialization will spawn a couple of objects of
interest.

Given the tasks contained in the XML file (taskSet) and fed to
the server, the client will create one or more TaskConnection
objects (18) for each of those tasks that are to be manipulated.
Although not depicted in the diagram, for the sake of clarity, these
objects will open control ports that are then connected to their
corresponding tasks on the server side (19). It is through these
objects that the client will be able to send task-specific messages
to get or set their state.

As it is often the case, the user might want to create reference
trajectories (of even different types) for all or some of the tasks.
To this end one or more objects of type TrajectoryThread
are created (20). These, at the same time, will internally create
TaskConnection objects again to set the references to the tasks
on the server (21). The client thread can then start the trajectory
threads (23) and run in the background until it receives new
references (25–29).

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 246

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 2 | UML sequence diagram displaying the typical interactions within the ocra-icub-server. The time evolution of interactions is followed from top to bottom,
while messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicates that these are threads.

Now that the client has created task connections and trajectory
threads, the client logic starts in the main thread (30–40). In this
main loop, the client can:

• Get or set task-specific states through the TaskConnection
objects (31–34).

• Add, remove or get tasks through the
ClientCommunications object (35–38).

• Set references to tasks trajectories through the
TrajectoryThread objects (39–40).

In order to stop the client, the user can send a SIGINT signal
(ctrl + c) to kill the process and the sequence of “destructions”
will be as in (43–53).

In Section 5.2, a link to a short tutorial can be found where it is
explained how to launch a server and client.

4.1.5. Client Generator
Because each new iCub controller client requires the same basic
setup, a helper tool has been developed to automatically scaf-
fold out the minimum required code for a new client. Invoking
icub-client-generator [name-of-client] from the com-
mand line will produce a directory called name-of-client/, with
all of the minimum client requirements and a complete CMake
build. One then needs only to edit the name-of-client.cpp file
and add control logic. Therefore, anyone can write an iCub client
in just a few minutes.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 247

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

FIGURE 3 | UML sequence diagram displaying the typical interactions within a generic client. The time evolution of interactions is followed from top to bottom, while
messages passed among objects are found in the horizontal dimension. The light yellow background of some lifelines indicate that these are threads.

5. CONCLUSION

The development of intelligent and autonomous robots entails
many challenges, one of which is robust and flexible controllers.
The overall goal of any control software should be to abstract the
control of redundant robots, such as the iCub, to higher and higher

levels of logic in order to facilitate the generation of complex
overall behaviors—behaviors, which should ultimately render the
robot useful. Whole-body control was born from these require-
ments and lays forth the design criteria for OCRA presented
in Section 1. Through its various abstract and concrete classes,
and server–client structure, OCRA attempts to provide a solution

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 248

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

which meets these needs but also balances ease of use with flex-
ibility. The design of OCRA allows users to interact with and
customize the control problem at virtually any level from the real-
time computation of joint torques to high-level controller clients.
This wide array of usability means that OCRA is suitable for any
user from control experts to control novices.We believe that this is
an important step toward improving the usability of such software
because the learning curve should be simple for those who only
want a functioning controller, but the software should also be
flexible enough to allow users to experiments with fundamental
concepts.

At the low-level, this is accomplished by abstracting the various
aspects of the control problem and providing concrete implemen-
tations for the most commonly reused concepts. Users interested
in low-level control concepts can, therefore, experiment with
customizing the abstract interface classes to their own needs, or
simply construct novel controllers using the concrete class imple-
mentations. Higher-level usage on the other hand, is easy to get
started with, thanks to the server–client architecture. If the robot
has been properly interfaced with the OCRA controller server,
then clients can be developed with little effort and most of all,
no deep understanding of the internals of the server side. Various
examples of the different manners in which one can interact with
OCRA are presented in the Supplemental Data Section and vali-
date the variety of ways OCRA can be used to study and develop
autonomy.

Ultimately, OCRA should serve as the basis for increasingly
complex logic, by robustly resolving progressively more complex
layers of the control problem. The server–client architecture is just
the beginning of this process and should be built upon by even
high-levels of problem reasoning, to create greater and greater
levels of robot autonomy.

AUTHOR CONTRIBUTIONS

GE, RL, and AH contributed to the development and inte-
gration of the proposed software framework. VP laid out the

conceptual foundations of the main algorithms in this soft-
ware. GE, RL, AH, and VP contributed to the writing of
the associated paper, JE being the main contributor to the
writing.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contribution of CEA-
List for providing access to the ORC framework as well as to
the engineers/researchers whose work has led to OCRA: Dar-
win Lau, Mingxin Liu, Joseph Salini, Hak Sovannara, and Silvio
Traversaro.

FUNDING

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements No. 600716 (CoDyCo).
This work has also been partially sponsored by the French gov-
ernment research program Investissements d’Avenir through the
Robotex Equipment of Excellence (ANR-10-EQPX-44).

ONLINE MATERIAL

Website: https://ocra-recipes.github.io/web/.
OCRA Documentation: https://ocra-recipes.github.io/web/doxy-

ocra-recipes/html/index.html.
OCRA iCub Documentation: https://ocra-recipes.github.io/web/

doxy-ocra-wbi-plugins/html/index.html.
OCRA Source Code: https://github.com/ocra-recipes/ocra-

recipes.
OCRA iCub Source Code: https://github.com/ocra-recipes/ocra-

wbi-plugins.
Related publications: https://ocra-recipes.github.io/web/

authors/.
Tutorials: https://ocra-recipes.github.io/web/icub/2016/11/26/

using-ocra-with-icub.html.

REFERENCES
Bouyarmane, K., and Kheddar, A. (2011). “Using a multi-objective controller to

synthesize simulated humanoid robot motion with changing contact configu-
rations,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011 (San Francisco, CA: IEEE), 4414–4419. doi:10.1109/IROS.2011.
6094483

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic pro-
gramming: fast online humanoid-robot motion generation. Int. J. Rob. Res. 33,
1006–1028. doi:10.1177/0278364914521306

IEEE. (2009). 1016-2009 – IEEE Standard for Information Technology–Systems
Design–Software Design Descriptions (IEEE). doi:10.1109/IEEESTD.2009.
5167255

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res. 5, 90–98. doi:10.1177/027836498600500106

Khatib, O. (1987). A unified approach for motion and force control of robot
manipulators: the operational space formulation. IEEE J. Rob. Autom. 3, 43–53.
doi:10.1109/JRA.1987.1087068

Liu, M., Tan, Y., and Padois, V. (2016). Generalized hierarchical control. Auton.
Robots 40, 17–31. doi:10.1007/s10514-015-9436-1

Mansard, N., Stasse, O., Evrard, P., and Kheddar, A. (2009). “A versatile general-
ized inverted kinematics implementation for collaborative working humanoid

robots: the stack of tasks,” in International Conference on Advanced Robotics,
2009. ICAR 2009 (Munich: IEEE), 1–6.

Mistry, M., Buchli, J., and Schaal, S. (2010). “Inverse dynamics control of floating
base systems using orthogonal decomposition,” in IEEE International Conference
on Robotics and Automation (Anchorage, AK: IEEE), 3406–3412. doi:10.1109/
ROBOT.2010.5509646

Nori, F., Traversaro, S., Eljaik, J., Romano, F., Del Prete, A., and Pucci, D. (2015).
iCub whole-body control through force regulation on rigid non-coplanar con-
tacts. Front. Rob. AI. 2:6. doi:10.3389/frobt.2015.00006

Padois, V. (2016). Control and Design of Robots With Tasks and Constraints in Mind.
Paris, France: Hdr, Université Pierre et Marie Curie (Paris 6).

Padois, V., Fourquet, J.-Y., and Chiron, P. (2007). Kinematic and dynamic
model-based control of wheeled mobile manipulators: a unified
framework for reactive approaches. Robotica 25, 157–173. doi:10.1017/
S0263574707003360

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., and Schaal, S. (2008). A unifying
framework for robot control with redundant dofs. Auton. Robots 24, 1–12.
doi:10.1007/s10514-007-9051-x

Roboptim. (2016). C++ Library for Numerical Optimization for Robotics. Available
at: http://roboptim.net/

Rocchi, A., Hoffman, E. M., Caldwell, D. G., and Tsagarakis, N. G. (2015).
“Opensot: a whole-body control library for the compliant humanoid robot

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 249

https://ocra-recipes.github.io/web/
https://ocra-recipes.github.io/web/doxy-ocra-recipes/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-recipes/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-wbi-plugins/html/index.html
https://ocra-recipes.github.io/web/doxy-ocra-wbi-plugins/html/index.html
https://github.com/ocra-recipes/ocra-recipes
https://github.com/ocra-recipes/ocra-recipes
https://github.com/ocra-recipes/ocra-wbi-plugins
https://github.com/ocra-recipes/ocra-wbi-plugins
https://ocra-recipes.github.io/web/authors/
https://ocra-recipes.github.io/web/authors/
https://ocra-recipes.github.io/web/icub/2016/11/26/using-ocra-with-icub.html
https://ocra-recipes.github.io/web/icub/2016/11/26/using-ocra-with-icub.html
https://doi.org/10.1109/IROS.2011.6094483
https://doi.org/10.1109/IROS.2011.6094483
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1109/IEEESTD.2009.5167255
https://doi.org/10.1109/IEEESTD.2009.5167255
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1109/JRA.1987.1087068
https://doi.org/10.1007/s10514-015-9436-1
https://doi.org/10.1109/ROBOT.2010.5509646
https://doi.org/10.1109/ROBOT.2010.5509646
https://doi.org/10.3389/frobt.2015.00006
https://doi.org/10.1017/S0263574707003360
https://doi.org/10.1017/S0263574707003360
https://doi.org/10.1007/s10514-007-9051-x
http://roboptim.net/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

Eljaik et al. OCRA for iCub

coman,” in IEEE International Conference on Robotics and Automation (ICRA),
2015 (Seattle, WA: IEEE), 1093–1099. doi:10.1109/ICRA.2015.7140076

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., and Fourquet, J.-Y.
(2013). Dynamic whole-body motion generation under rigid contacts and other
unilateral constraints. IEEE Trans. Robot. 29, 346–362. doi:10.1109/TRO.2012.
2234351

Salini, J. (2012). Dynamic Control for the Task/Posture Coordination of Humanoids:
Toward Synthesis of Complex Activities. Theses, Paris: Université Pierre et Marie
Curie – Paris VI.

Salini, J., Ivaldi, S., Hak, S., and Padois, V. (2013). ISIR Controller in the XDE Frame-
work for the Control of Robots Based on LQP Solvers. Available at: http://chronos.
isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html

Salini, J., Padois, V., and Bidaud, P. (2011). “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011 (Shanghai:
IEEE), 1283–1290. doi:10.1109/ICRA.2011.5980202

Sentis, L., and Khatib, O. (2005). “Control of free-floating humanoid robots through
task prioritization,” in Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, 2005. ICRA 2005 (Barcelona: IEEE), 1718–1723.
doi:10.1109/ROBOT.2005.1570361

Sentis, L., and Khatib, O. (2006). “A whole-body control framework for humanoids
operating in human environments,” in Proceedings 2006 IEEE International
Conference on, Robotics and Automation, 2006. ICRA 2006 (Orlando, FL: IEEE),
2641–2648. doi:10.1109/ROBOT.2006.1642100

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Eljaik, Lober, Hoarau and Padois. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 2410

https://doi.org/10.1109/ICRA.2015.7140076
https://doi.org/10.1109/TRO.2012.2234351
https://doi.org/10.1109/TRO.2012.2234351
http://chronos.isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html
http://chronos.isir.upmc.fr/salini/XDE-ISIRController/documentation/html/index.html
https://doi.org/10.1109/ICRA.2011.5980202
https://doi.org/10.1109/ROBOT.2005.1570361
https://doi.org/10.1109/ROBOT.2006.1642100
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive

	Optimization-Based Controllers for Robotics Applications (OCRA): The Case of iCub's Whole-Body Control
	1. Introduction
	2. OCRA
	3. Optimization-Based Control
	3.1. Tasks
	3.2. Constraints
	3.3. Dynamics
	3.4. Quadratic Programming Based Control
	3.5. Prioritization Strategies

	4. Software
	4.1. Structure
	4.1.1. OCRA Libraries
	4.1.2. OCRA for iCub
	4.1.3. iCub Server
	4.1.4. Generic Client
	4.1.5. Client Generator

	5. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	Online Material
	References

