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Robots collaborating naturally with a human partner in a confined workspace need to
understand and predict human motions. For understanding, a model-based approach
is required as the human motor control system relies on the biomechanical properties
to control and execute actions. The model-based control models explain human motions
descriptively, which in turn enables predicting and analyzing human movement behaviors.
In motor control, reaching motions are framed as an optimization problem. However,
different optimality criteria predict disparate motion behavior. Therefore, the inverse
problem—finding the optimality criterion from a given arm motion trajectory—is not
unique. This paper implements an inverse optimal control (IOC) approach to determine
the combination of cost functions that governs a motion execution. The results indicate
that reaching motions depend on a trade-off between kinematics and dynamics related
cost functions. However, the computational efficiency is not sufficient for online prediction
to be utilized for HRI. In order to predict human reaching motions with high efficiency
and accuracy, we combine the IOC approach with a probabilistic movement primitives
formulation. This hybrid model allows an online-capable prediction while taking into
account motor variability and the interpersonal differences. The proposed framework
affords a descriptive and a generative model of human reaching motions which can be
effectively utilized online for human-in-the-loop robot control and task execution.

Keywords: inverse optimal control, human motion modeling, reaching motion prediction, human-in-the-loop
control, human–robot collaboration, probabilistic movement primitives

1. INTRODUCTION

As robots become more present in our social lives, the necessity for interaction and collaboration
between humans and robots is becoming more apparent. Although there are several major facets of
providing robots with such capability, e.g., motion planning or decision-making, the human aspect
has to be prioritized and integrated into robot interaction skills. Requirements for such a human-
in-the-loop formulation is twofold: describe (understand) how human motions are controlled
and generate (predict) human-like motions. A descriptive model helps us understand how the
biomechanical properties are used by the central nervous system (CNS) for controlling human body
to execute a vast collection of motor behaviors. Such an understanding is useful for a multitude of
problems, e.g., motor performance evaluation for detecting disabilities due to neural disorders by
comparing control models of patients and healthy subjects (Manto et al., 2012); sports performance
evaluation by analyzing the identified control models of athletes (Yarrow et al., 2009); detection
of deviations of personal motion behaviors w.r.t. the previously identified motor control models,
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e.g., due to exhaustion (Shadmehr et al., 2010). Specifically, for
human–robot interaction (HRI), the robot can plan its motions
in a way to allow the human partner to rely more on energy-
efficient control models. In addition, person-specific control
models enable the robot to detect the underlying cause of behav-
ioral anomalies for providing better assistance and safety.

A generative model allows estimating human-like motion tra-
jectories. In this work, the focus is using such models to predict
humanmotions, rather than transferring them to robots to gener-
ate human-like movement behaviors. For close dyadic collabora-
tion, where the partners share a workspace with the possibility of
overlapping motions, they should be able to predict each other’s
intent and the required motion that can support this intention.
Considering how swiftly two humans work together in a confined
workspace, the challenges for a human–robot team become obvi-
ous; the robot has to take into account human partner’s intention
and movement in order to control its own motion for achieving
effective cooperative task executions. In essence, early prediction
of the humanmotion allows an immediate initiation of the replan-
ning process and an early adaptation of the robot motion (Dinh
et al., 2015; Gabler et al., 2017; Oguz et al., 2017). Therefore, the
ability of understanding andpredicting humanmotions effectively
is the key to achieving swift close human–robot collaboration.

The focus in this work is twofold. First, descriptive models
of human reaching motions are investigated and experimentally
evaluated. Second, a hybrid framework is proposed, which com-
bines those descriptive models with a data-driven probabilistic

approach and realizes online-capable human motion prediction
(Figure 1). Such a framework not only enables effective robot
control for human-in-the-loop scenarios but also they can be
directly used for controlling the robot.

Currently, there is no commonly accepted model that explains
how the human CNS controls human motions and the latent
biomechanical properties of the human motion are not fully
understood. Knowing the underlying principles of humanmotion
execution is essential for reproducing human-like motion behav-
iors accurately in a given setting. However, not every single person
exhibits the same motion patterns. These differences might be
due to their learning experiences and physiological differences
(Rosenbaum, 2009). Moreover, even the motion behaviors of the
same person show variations due to motor noise (Todorov and
Jordan, 2002). Considering all those intricacies, finding motion
behaviormodels, even for simple reaching tasks, poses challenging
research questions.

As the observations of the human motions’ behavioral aspect
suggest an appealing modeling problem, the human body as a
biomechanical system introduces challenges in terms of formulat-
ing methods for finding those models. Motor control redundancy
and the non-linear characteristic of the human arm as a dynamical
system are the most important problems to tackle. A common
feature of motor control is that the task requirements can be
met by infinitely many diverse movements. Thus, stating only the
boundary conditions of the motion for given dynamics leads to
an ill-defined problem. The ambiguity caused by this problem

FIGURE 1 | The overall framework, where the focus is twofold: understanding (upper left) and prediction (upper right) of human motion behaviors. For understanding,
biomechanically inspired cost function distributions are learned from demonstrations by model-based inverse optimal control; and for online prediction, data-driven
probabilistic movement primitives are used. The two approaches are interconnected to each other in order to account for the inter-and intra-personal movement
behavior variations in terms of both motion trajectories and also the cost distributions.
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can be resolved if an optimality principle is applied. Accordingly,
the basis of many scientific theories on human motor control
is formed by optimality principles (Engelbrecht, 2001). A large
number of models of open-loop motor control exist and each
model claims to describe human motion, but several models are
incompatible with others (Todorov, 2004). The characteristics of
the human armmovements and the human as an organism define
the starting point for the derivation of a cost function. Many cost
functions have been proposed tomodel human reachingmotions,
however, all of those methods are only verified for specific set-
tings, mostly in 2D (Flash and Hogan, 1985; Uno et al., 1989;
Harris and Wolpert, 1998). Hence, their generalization capability
to awider range of human reachingmotion behavior in 3D space is
unclear. Moreover, as some recent studies suggest, humans might
be optimizing two classes of cost functions, one for kinematics and
the other for dynamics (Berret et al., 2011; Albrecht et al., 2012).
However, finding the contribution of such multiple cost functions
is also not trivial as it is a non-linear optimization problem.

Building on the results of prior research studies and their
insights, we hypothesize humans utilize multiple models, rather
than a single one, to control their motions. Since kinematics is
essential for producing smooth motions, and the human arm
is a dynamical system, it is reasonable to consider kinematics
and dynamics related costs in combination. Hence, we identify
possible costs from literature to account for both aspects. In
order to find the contribution of each model for the realization
of human motion behaviors, we frame such an inverse optimal
control (IOC) problem as a bi-level optimization formulation.
However, this formulation treats the human motion generation
as a deterministic problem. In essence, it is only suitable for
modeling average behavior over a group of humans. In order
to afford both intra- and interpersonal motion variability, we
propose a hybrid framework by extending the IOC formulation
with a data-driven probabilistic method. Specifically, by utiliz-
ing probabilistic movement primitives (ProMPs), our framework
allows for integrating person-specific variations into the IOC-
based average motion behavior models during online interaction.
Therefore, we can learn a distribution of motion behavior per
person, and rollout predictive trajectories from this distribution
online, while updating at the same time the multiple model
representation to describe the person-specific cost optimization
behavior.

We conducted a comprehensive experiment in 3D (Figure 2)
that covers significantly more cases than prior studies (Albrecht
et al., 2011). This extended experiment provides us with crit-
ical insights on the interplay between the parameters of the
reaching tasks and the contribution of kinematics and dynamics
relatedmodels.We identify a trade-off between thosemodels with
respect to the initial and final joint angle configurations. With the
proposed hybrid framework, we are able to determine personal
preferences as well as the motor variability per person. It also
enables accurate and computationally efficient online prediction
of human motion behaviors, which can be integrated into any
human–robot collaboration scenario.

In this work, we focus on building descriptive as well as genera-
tive models for humanmotion behavior. By utilizing suchmodels,
we aim for efficient and accurate prediction of human motions

during human–robot collaboration to realize a natural interaction
between partners. To that end, the main contributions of this
paper are:

− We propose a hybrid framework, consisting of a model-based
approach and a data-driven probabilistic method, for predict-
ing human motions.

− We identify a trade-off between kinematics and dynamics
related costs depending on the reaching task.

− Our hybrid framework takes into account interpersonal dif-
ferences and person-specific motor variability during online
observations.

2. RELATED WORK

Many experimental studies have revealed that armmotions exhibit
invariant parameters which do not significantly change with
movement speed, load, or direction (Soechting and Lacquaniti,
1981; Lacquaniti and Soechting, 1982; Papaxanthis et al., 2003).
Formotor control, these parameters are utilized to describe point-
to-point reaching motions (Soechting and Flanders, 1991). It is
assumed that the CNS follows some specific principles when
planning the motions (Engelbrecht, 2001). Therefore, optimal
control theory becomes the central mathematical formulation
to model, describe, and understand motor control by the CNS
(Bertsekas et al., 1995; Todorov, 2004), as it emphasizes the opti-
mality of biological movements byminimizing some performance
criteria. In literature, several optimal control models have been
proposed to describe the point-to-point arm movements, e.g.,
the minimum hand jerk (Flash and Hogan, 1985), the minimum
torque change (Uno et al., 1989), and the minimum variance
(Harris and Wolpert, 1998). These models are proven to be effi-
cient in representing the experimental data. However, they are
only verified within specific settings, and exhibit, in some cases,
dissimilar patterns. Hence, the exact variables optimized in the
brain still remain unclear. Later studies suggest that, instead of a
single cost function, the CNS might actually consider a weighted
combination of costs during the optimization (Cruse and Brüwer,
1987; Rosenbaum et al., 1995; Desmurget et al., 1998; Wolpert
and Kawato, 1998; Gielen, 2009). It has already been verified
that the trade-off between the objective (task-related) and the
subjective (subject-related) cost functions exists in the CNS (Liu
and Todorov, 2007), however, there is still no clear explanation
about how the subjective costs are combined in reaching motions.
In Berret et al. (2011), this cost combination hypothesis was tested
in point-to-bar reaching motions on a vertical 2D plane. An
inverse optimal control framework, which was initially proposed
in Mombaur et al. (2010) for locomotion planning, was applied
to identify the contribution of different cost functions. Though
their results support the idea of the combined cost functions,
an in-depth analysis on how this combination is formed in 3D
reaching motions and whether there is a relationship between the
degree of contribution and the reaching task parameters is still
missing.

Inverse reinforcement learning (IRL), also sometimes used syn-
onymously with inverse optimal control (IOC), is another line
of formulation to find control models, or optimal policies given
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FIGURE 2 | Experimental setup. (A) Overview of the experimental setup. T1 to T9 denote the nine target areas. RP means the reference point used to adjust the
sitting position of the subject. S is the center of the shoulder joint and L is the distance between S and RP which is defined as 80% of the subject’s arm length.
(B) Top view of the subject. S, E, and W are the shoulder joint, the elbow joint, and the wrist joint, respectively. As in the arm model defined, q2 and q3 are the yaw
rotation of the shoulder joint and the pitch rotation of the elbow joint. (C) Back view of the subject. q1 is the pitch rotation of the shoulder joint.

some demonstrations or observations. However, most of the state-
of-the-art methods operate on features rather than raw states,
without relying on the dynamical system as a hard constraint on
the optimization problem. In essence, the best combination of
features, which are extracted during an agent interacting with the
environment, is solved forminimizing a pre-defined cost function
(Ziebart et al., 2008; Ratliff et al., 2009; Theodorou et al., 2010;
Levine et al., 2011; Mainprice et al., 2016). A recent approach
by Finn et al. (2016) extends such IRL formulation by tackling
the requirement on defining informative features with using neu-
ral networks to parameterize the cost function. Essentially, this
approach learns non-linear cost functions from user demonstra-
tions, at the same time as learning a policy to perform the task.
This formulation can be applied to complex, non-linear cost func-
tion representations and high-dimensional problems. However,
this is still not directly comparable to solving optimal control
problems where the dynamical system is a constraint at each time
step, and hence the resulting behaviors are not guaranteed to be
generated by the underlying model.

In contrast to creating an optimal control model, another
approach to predict human motions is to use data-driven meth-
ods. These methods focus more on finding a representation
from a given data set (Mainprice and Berenson, 2013; Koppula
and Saxena, 2016). Statistical approaches require training data
to discover patterns for different arm motions. In that sense, a
rigorous and time-consuming data collection process is unavoid-
able. Other data-driven approaches which do not rely on statis-
tical formulations, e.g., dynamic movement primitives (DMPs)
(Ijspeert et al., 2013), require only a minimal set of training
data. In an earlier work, we combined optimal control models
with DMPs to predict human reaching motion behaviors while
avoiding obstacles (Oguz et al., 2016). In that regard, Interaction
Primitives (IPs) were developed based on DMPs as a compact

representation of a dyadic activity to predict and plan interaction
behaviors (Amor et al., 2014). IPs are learned as a distribution
over DMP parameters by training on two interacting partners’
trajectories. These IPs encode reciprocal dependencies of dyad
movements during the execution of a specific task. The robot then
mimics one partner by using the learned model to interact with
a human in a similar task. In essence, the learned distributions
are conditioned on an observed partial trajectory to predict a
human partner’s movement for the rest of the task, which in turn
enables the robot to correlate its own motion w.r.t. the human to
achieve a successful cooperation. Recently, Environment-adaptive
Interaction Primitives (EaIPs) were proposed by extending the IPs
with the integration of environmental parameters of the task (Cui
et al., 2016). Hence, EaIPs enable inferringmovement behavior by
conditioning on not only the partner trajectory but also the task
and environment related features. However, these are pure data-
driven approaches, and thus, they can neither elicit the underlying
principles of human interaction movement control, nor provide
any means to analyze optimality of observed movements. In addi-
tion, our proposed hybrid framework is flexible to integrate such
interaction primitives as the data-driven part of the formulation
to predict human motions, which can further be integrated into
a trajectory optimizer for the robot motion planning in HRI
scenarios (Oguz et al., 2017).

Finally, human motor control by the CNS is recognized as a
stochastic system (Todorov and Jordan, 2002), thus the variance
of the motion should be considered in the trajectory prediction.
In Paraschos et al. (2013), a probabilistic movement primitives
(ProMPs) approach was proposed with the ability to encode the
variance in a general probabilistic framework for representing and
learning movement primitives (Schaal et al., 2005). The ProMPs
has been successfully implemented in human–robot interaction
(Wang et al., 2013) and human–robot collaboration (Maeda et al.,
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2016a,b) scenarios for controlling the robot motion. For a close
cooperation between the robot and human, a precise prediction of
the human behavior is essential (Mainprice and Berenson, 2013).
However, while predicting human motions with the ProMPs, the
integration of the kinematics and dynamics of the human arm
is not straightforward. Our work combines an optimal control
model with the ProMPs, in order to make use of the advantages
from both methods.

3. OPTIMALITY CRITERIA FOR HUMAN
REACHING MOTIONS

In this section, we explain the formulation of finding the opti-
mality criteria for human reaching motions in 3D. Many of the
influential studies in neuroscience have relied on the hypothesis
that the human as a biological entity should minimize a quanti-
tative measure (Engelbrecht, 2001). Based on this, the reaching
motion can be formulated as an optimal control problem (OCP),
where a given cost function is optimized and used to describe the
motion characteristic. Later studies on motor control, learning,
and adaptation suggest that instead of a single cost function, a
composite of different performance criteria can better explain
human behaviors (Berret et al., 2011). In order to identify how
these cost functions are combined, an inverse optimal control
framework is presented in this section. Through this framework,
we attempt to reveal the underlying principles of human reaching
behavior while utilizing those models also for predicting human
motions.

3.1. Model of the Musculoskeletal System
To formulate the reaching motions as an OCP, a representation
of the arm dynamics is required and serves as a constraint during
the optimization. A widely used approximation of the arm model
in 3D is to consider it as articulated rigid bodies. By ignoring the
handmovements, a commonmodel of themusculoskeletal system
for the arm consists of four degree-of-freedoms (DoFs) (Van der
Helm, 1994a,b), where the shoulder joint has three rotations (roll,
yaw, and pitch) and the elbow joint has one rotation (pitch). In our
experiments, the recorded 3D reaching motions merely use the
roll rotation of the shoulder joint, thus it is neglected in ourmodel.
This simplification can highly increase the computational effi-
ciency of the OCP, while still preserving enough accuracy on the
results. From the classical Lagrangian formalism (Murray et al.,
1994), the dynamics of the 3-DoF arm model can be expressed as

τ = M(q)q̈ + C(q, q̇)q̇ + G(q), (1)
where the variable q = (q1, q2, q3)⊤ denotes the joint angles
and τ = (τ1, τ2, τ3)⊤ represents the torques. Time derivatives
of q, i.e., q̇ and q̈, are the joint angle velocities and joint angle
accelerations, respectively.M, C, and G are the inertia matrix, the
Coriolis/centripetal terms, and the gravitational vector, respec-
tively. The viscous frictions and elastic properties of the tissues are
neglected as they are difficult to estimate. A visualization of the
arm model is presented in Figures 2B,C. The upper arm length
and the forearm length, as well as the mass, inertia, and distance
to the center of mass are defined as described in Lemay and Crago
(1996) and Valero-Cuevas et al. (2009). When the arm is in fully
stretched out position, q1, q2, and q3 all have zero rotations.

3.2. Inverse Optimal Control as a Bi-Level
Optimization Problem
The purpose of IOC is to identify the formulation of the OCP,
specifically the cost function it optimizes, which best reproduce
the observations. Anumericalmethod for solving an IOCproblem
is to reformulate it as a bi-level optimization problem (Berret et al.,
2011). This method relies on the assumption that the optimal cost
function is a composite of several plausible basic cost functions.
The contribution of each basic cost function is defined through
a weight vector, and this weight vector is identified by using the
bi-level optimization framework presented in equation (2)

Upper level program : min
α

Φ(x∗
α, xobs),

with
N∑
i=1

αi = 1,

⇕

Lower level program : min
x,u

J(x, u|α) :=
N∑
i=1

αiJi,

s.t. g(x, u) ≤ 0, h(x, u) = 0.

(2)

3.2.1. Lower Level Program
The lower level program of the bi-level optimization is a direct
OCP (Bertsekas et al., 1995) given by

min
x,u

J(x, u|α) :=
N∑
i=1

αiJi, s.t. g(x, u) ≤ 0, h(x, u) = 0.

(3)
The goal of OCP is to find the optimal trajectory which min-

imizes a given cost function J. Here, J is assumed to be a linear
combination of N basic cost functions Ji (i= 1. . .N) which are
weighted by the weight vector α= (α1, α2, . . ., αN). The vari-
ables x and u are the vector of system states and control signals,
respectively. With above explained arm model, the system states
in this work are given as x⊤ = (q⊤, q̇⊤, q̈⊤). Since the joint
torques τ are smoothly generated by muscle contractions (Uno
et al., 1989), the control signals are defined as the time derivative
of torquesu = τ̇ . Thus theOCPof reachingmotions can be stated
mathematically as: find the admissible system state trajectory x∗

α(t)
and control signal trajectory u∗

α(t) in time T, which minimize the
cost function J with respect to a given weight vector α, while sat-
isfying the system dynamics and the task constraints. For reaching
motions, the task constraints contain two parts: the initial condi-
tion x(0)= xs and the final condition x(T)= xe as the boundary
constraints; limitations on joint angles qmin ≤ q(t)≤ qmax as the
inequality constraint. The constraints of joint angle velocities and
joint angle accelerations are set to a large range since during the
preliminary analysis they are identified to be merely active.

One classical method to solve OCP is to first transform it into a
non-linear programming (NLP) problem with constraints, then
solve it by using structure exploiting numerical NLP solution
methods. In our work, we utilize the multiple shooting method
(Diehl, 2011) with ACADO toolkit (Houska et al., 2011) to resolve
OCPs.

3.2.2. Selection of Basic Cost Functions
The core part of the IOC framework is to select a set of reasonable
basic cost functions. For arm movements, several cost functions
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TABLE 1 | Cost functions proposed in literature.

Criterion Equation

Hand jerk JHJ =
∫ T
0

...
x2 +

...
y2 +

...
z 2dt

Joint angle acceleration JJA =
∫ T
0 q̈21 + q̈22 + q̈23dt

Joint angle jerk JJJ =
∫ T
0

...
q2
1 +

...
q2
2 +

...
q2
3dt

Torque change JTC =
∫ T
0 τ̇2

1 + τ̈2
2 + τ̇2

3 dt

Torque JTor =
∫ T
0 τ2

1 + τ2
2 + τ2

3 dt

Absolute work (energy) JEnr =
∫ T
0 (

∑3
i=1 |q̇iτi|)dt

Geodesic JGeo =
∫ T
0 (q̇⊤Mq̇)1/2dt

Variables x, y, z are the hand positions in Cartesian space. M denotes the inertia matrix.
Corresponding references for the proposed criteria are given as: minimum hand jerk
(Flash and Hogan, 1985), minimum joint angle acceleration (Ben-Itzhak and Karniel, 2008),
minimum joint angle jerk (Wada et al., 2001), minimum torque change (Uno et al., 1989),
minimum torque (Nelson, 1983), minimum absolute work (Nishii and Murakami, 2002;
Berret et al., 2008), and minimum geodesic (Biess et al., 2007).

were proposed in the past. These cost functions can be categorized
into subjective and objective cost functions. Subjective cost func-
tions refer to the decision from a subject, such as the minimum
hand jerk (Flash and Hogan, 1985), while objective cost functions
are task related. Since the integration of objective cost functions
into OCP is difficult, only subjective cost functions are considered
in this work. In literature, various subjective cost functions are
proven to be useful in explaining human reaching motions (see
Table 1). Generally, these cost functions can be grouped as two
classes: (a) kinematic cost functions: theminimumhand jerk (Flash
and Hogan, 1985), the minimum joint angle acceleration (Ben-
Itzhak and Karniel, 2008), and the minimum joint angle jerk
(Wada et al., 2001) are typical ones and (b) dynamic cost functions:
the minimum torque change (Uno et al., 1989), the minimum
torque (Nelson, 1983), and the minimum absolute work (Nishii
and Murakami, 2002; Berret et al., 2008) (also referred as mini-
mumenergy throughout this work) belong to this class; and finally
the minimum geodesic criterion (Biess et al., 2007) is a junction of
kinematic and dynamic cost functions, which yields the shortest
path in configuration space while taking the kinetic energy into
consideration. An example of the optimal end-effector trajectories
solved from OCPs with respect to different basic cost functions
is given in Figure 3. Among these proposed cost functions, we
select five of them as the basic cost functions for IOC, which are
the minimum hand jerk JHJ, the minimum joint angle jerk JJJ, the
minimum torque change JTC, the minimum energy JEnr, and the
minimum geodesic JGeo. The minimum joint angle acceleration
is ignored since it gives quite similar solution to the minimum
joint angle jerk, then the identification between these two cost
functions is difficult. In addition, the minimum torque criterion
is also neglected because in our preliminary tests we found it has
the largest error in describing the reaching motions. Thus, the
combined cost function J for the direct OCP is defined as

J = α1JHJ + α2JJJ + α3JTC + α4JGeo + α5JEnr. (4)

One more important issue in combining the basic cost func-
tions, due to the different units, is that the range of the objective
values of different cost functions are usually considerably differ-
ent, thus they cannot directly be equally compared in equation
(4). To overcome this problem, we introduce another scalar factor
vector S, with the purpose to balance the objective values of

selected basic cost functions to the same range. Thus, equation (4)
is transformed into

J =
∑
i

SiαiJi, i ∈ {HJ, JJ,TC,Geo, Enr}. (5)

To obtain the scalar factor vector for a given reaching task, five
optimal trajectories x∗

i with respect to each basic cost function
are first computed by solving the corresponding OCPs. Based on
the results, the range of the objective value of each basic cost
function can be defined through the minimal andmaximal values
asRangei = [Ji,min, Ji,max]. Since all selected basic cost functions are
integral cost terms and always produce positive values during the
optimization, the minimal values are zeros for all cost functions
Ji ,min = 0. Then the scalar factor vector can be generated directly
by comparing the maximal values Ji ,max. In our experimental data,
we found that the minimum joint angle jerk JJJ tends to have the
largest maximal objective value, therefore, we set the scalar factor
of theminimum joint angle jerk to 1, then the ratios between other
basic cost functions and the minimum joint angle jerk are chosen
to be the corresponding scalar factors

Si =
Ji,max

JJJ,max
. (6)

Note that the scalar factor vector varies when at least either the
initial condition xs or the final condition xe changes. Thus before
running the IOC for each given observation, the scalar factor
vector needs to be determined in order to ensure the accuracy of
the result.

3.2.3. Upper Level Program
The purpose of the upper level program is to find the optimal
weight vector α* which minimizes the distance error between
the optimal trajectory x∗

α obtained from the lower level pro-
gram and the observation xobs. This optimization problem can be
represented as

min
α

Φ
(
x∗

α, xobs
)

, with
N∑
i=1

αi = 1, (7)

where Φ is a metric which measures the distance error.
Selecting a goodmetricΦ is crucial in the bi-level optimization

framework since it highly affects the decision on the optimal
weight vector. The recorded observations are usually the position
trajectories in Cartesian space represented by x, y, z coordinates.
These observations cannot be directly compared byΦ because, on
the one hand, the system states x are defined as joint angles, on the
other hand, the position trajectories usually contain uncertainties,
which come from: (1) the error from the torso movement and
(2) the difference between the subject’s actual arm length and the
definedmusculoskeletal system’s arm length. No consistent results
can be derived if a direct comparison to the position trajectories
is implemented in Φ.

To address this problem, we transform the recorded position
trajectories to the relative position trajectories in arm model coor-
dinate system through the following steps:

1. Record the Cartesian position trajectories of the shoulder joint
ts = (ts,x, ts,y, ts,z), the elbow joint te = (te,x, te,y, te,z), and the
wrist joint tw = (tw,x, tw,y, tw,z).
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FIGURE 3 | An example of the optimal end-effector trajectories solved from OCPs with respect to different basic cost functions. The variance in their predictions is
clear. Only exception is the similarity of the predicted trajectories by minimum joint angle acceleration and the minimum joint angle jerk as they overlap in the figure.

2. Derive the observed joint angle trajectory through the arm
geometry as qobs =G(ts, te, tw). Since the roll rotation of the
shoulder joint is neglected in ourwork, the translation function
G can be easily obtained.

3. Compute the relative position trajectory (end-effector trajec-
tory) in arm model coordinate system by using the kinematic
relationship of the proposed armmodel as tobs = δ(qobs), where
δ represents the function of the forward kinematics.

The relative end-effector trajectory tobs eliminates the error
caused by different arm lengths and the torso movements, thus
it can be compared to the solution calculated from the lower level
program.

Based on the feature compared in Φ, two different types of the
distance metric can be formulated: one is the joint angle metric,
where the observed joint angle trajectory qobs is compared to the
optimal system states trajectory x∗

α, which also contains the joint
angle trajectory q∗

α; another is the end-effector trajectory metric,
where at first the optimal end-effector trajectory t∗α is computed
from the optimal joint angle trajectory q∗

α by using the same for-
ward kinematics function δ, then the distance error is calculated
between the relative end-effector observation tobs and t∗α.

In our preliminary tests, we found that the end-effector trajec-
tory metric has a better performance than the joint angle metric.
Possible reason is that the three joint angles actually have differ-
ent degrees of influence on the reaching motions (Nguyen and
Dingwell, 2012). However, it is not straightforward to determine
the contribution of different joint angles, which could introduce
further uncertainties and errors. Similar problem also occurs
when combining the joint angle metric and the end-effector met-
ric, since they have different units and it is difficult to balance
them into the same range. Therefore, in our work, the distance
metric of the upper level program only considers the end-effector
trajectories, which can be treated as comparing two 3-dimensional
signals. The dynamic time warping (DTW) algorithm (Vintsyuk,

1968) is implemented to calculate the distance error. In time series
analysis, DTW is used for measuring the similarity between two
temporal sequences which may vary in speed. The sequences are
first warped in the time dimension and then compared to each
other. With this, equation (7) can be stated as

min
α

Φ
(
x∗
a , x

obs
)

:= min
α

D
(
t∗α, tobs

)
, (8)

where D denotes the DTW calculation.
To solve equation (8), common gradient-based methods and

stochastic optimization algorithms are not applicable because of
two reasons. First, the metric Φ is non-differentiable with respect
to the weight vector α; second, before each calculation of Φ, a
direct OCP must be solved in advance, thus it usually takes a few
minutes for one evaluation. Specifically, the stochastic optimiza-
tion algorithms (e.g., particle swarm optimization (Eberhart and
Kennedy, 1995)) are also not suitable here, since they requiremore
samples which will result in infeasible computation time. Hence,
the upper level program is optimized by a robust derivative-free
optimization (DFO) method. Here, we use the method called
CONDOR (Berghen and Bersini, 2005) for COnstrained, Non-
linear, Direct, parallel optimization, which is a parallel extension
of the Powell’s method (Powell, 2004) based on the trust region
algorithm (Sorensen, 1982). Through a local approximation of Φ,
it can find the optimal solution more efficiently than the common
pattern search and stochastic optimization techniques. To reduce
the computation time, the initial value ofα should be set properly
before the optimization. Since among the five elements of α only
four are actually independent, and OCPs corresponding to the
costs J(α) and J(λα), λ > 0 are identical, a practical strategy is to
fix one element to one and then adjust the remaining components
with respect to it (Mombaur et al., 2010). As all the basic cost func-
tions are scaled into the same range, the value of other components
can be restricted to stay in [0,1]. During the optimization process,

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 277

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Oguz et al. Hybrid Framework for Human Motion Prediction

if any element is found larger than one, the optimization should
be restarted with setting this element to one. In our experimental
data, setting the weight of joint angle jerk to one gives the best
results in most cases. After around 100 iterations, the algorithm
converges to a local minimum. Note that due to the high non-
linearity of the problem formulation, the global minimum is not
available in the bi-level optimization (Albrecht et al., 2012). In
order to get more accurate results while keeping a reasonable
computation time, we set the initial value of α to (0.5, 1, 0.5,
0.5, 0.5) and solve it three times with different initial search radii
(Powell, 2004) as 0.15, 0.3, and 0.45, so that most range is covered
within three IOC calculations. The one results in the minimum
distance error is considered as the final optimal weight vector α*
and is normalized for later analysis.

3.3. Representation of the Reaching
Motions
From the IOC formulation, we acquire a weighted combination
of cost functions, which specifies the contribution of each model
for the realization of a reaching motion. For each specific motion
behavior, one composite model needs to be found. However, we
can only have a limited number of different compositemodels, due
to the computational time limit. To utilize the composite model
in general cases, a mapping from the motion parameters to the
contribution of cost functions is required. According to the results
of the initial experiment we conducted, which is detailed out in
Section 5.1.3, a correlation between the initial and the final joint
angles (qs, qe) and the optimal weight vectorα* is identified.Here,
we use theGaussian Process Regression (GPR)model (Rasmussen
and Williams, 2005) to represent the mapping as

α∗ = GPR
(
qs, qe

)
, (9)

where GPR denotes the GPR model. The optimal weight vector
returned by the GPR model is a distribution with mean and vari-
ance. Note that the GPR model can be replaced by other similar
stochasticmodels, but we find that theGPRmodel ismore suitable
in our case since it requires less data. This GPR model provides a
connection between the IOC formulation and the ProMPs in our
hybrid online prediction framework.

4. HYBRID ONLINE PREDICTION
FRAMEWORK

In literature, many prediction methods for human motion were
proposed. Among them, two classes of the methods are widely
used: (1) model-based methods, where a motion model is created
based on minimizing a criterion, such as the minimum hand jerk
model (Flash and Hogan, 1985), the minimum joint angle jerk
model (Wada et al., 2001), and the minimum variance model
(Harris and Wolpert, 1998). Then the solution to the model is
considered as the prediction; (2) data-driven methods, where a set
of data (observations) should be available before building a gen-
erative model for predicting human motions. The characteristic
of the motion can be learned from the data and then the predic-
tion is generated by reproducing this characteristic and in some
cases with variation. Gaussian Mixture Models (McLachlan and

Basford, 1988; Calinon et al., 2010), dynamic movement primi-
tives (Ijspeert et al., 2013), and probabilistic movement primitives
(Paraschos et al., 2013) are typical data-driven methods. In this
section, we propose a hybrid online prediction framework for
reaching motions by combining a model-based method and a
data-driven method. Instead of using the motion model with
single cost function, a composite model is obtained by the IOC
framework. In order to dealwith themotor variability of the reach-
ing motion (Todorov and Jordan, 2002), this composite model
is combined with the ProMPs. ProMPs are selected due to both
their capability on learning a model with a very small amount
of observations (in our experiments 5–10 samples seem to be
enough), and also their computational efficiency for rolling-out
predictive trajectories online. Especially, it is known that GMMs
tend to perform poorly in high-dimensional spaces when few data
points are available (Calinon, 2016). In the rest of this section, first
a brief explanation of the ProMPs is presented, then a comparison
between the predictions of the composite model and the ProMPs
is discussed. Finally, the hybrid prediction framework is explained
in detail.

4.1. Probabilistic Movement Primitives
The ProMPs is a probabilistic formulation for movement primi-
tives. It is able to capture the variance information of trajectories
and represent the behavior in stochastic systems. Given a discrete
trajectory X= {xt}, t= 0. . .T defined by states xt over time T, a
weight vector ω is used to represent the trajectory as

yt = [xt, ẋt]⊤ = Φ⊤
t ω + ϵy, (10)

where Φt = [ϕt, ϕ̇t] denotes the n× 2 dimensional time-
dependent basis matrix for states xt and the velocities ẋt. n is
the number of basis functions and ϵy ∼ N (0, Σy) is zero-
mean independent and identically distributedGaussian noise. The
mean of the trajectory can be obtained by weighting Φt with ω.
The probability of observing a trajectory X with a given ω is
represented by a linear basis function model as

p(X|ω) =
∏
t

N
(
yt|Φ

⊤
t ω,Σy

)
. (11)

In order to capture the variance, a Gaussian distribution
p (ω; θ) = N (ω|µω,Σω) over the weight vector ω is intro-
duced with parameters θ = {µω , Σω}. Then the distribution of
yt at time t is given by

p(yt; θ) =
∫

N
(
yt|Φ

⊤
t ω,Σy

)
N (ω|µω,Σω) dω

= N
(
yt|Φ

⊤
t µω,Φ⊤

t ΣωΦt + Σy

)
. (12)

With equation (12), the mean and the variance of the states
for any time point t can be derived. If a set of observations is
available, the parameters θ can be learned by using the maxi-
mum likelihood estimation (Lazaric and Ghavamzadeh, 2010). In
reaching motions, the distribution p(ω; θ) can be considered as
a representation of the motor variability. For more details of the
ProMPs please refer to Paraschos et al. (2013).
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TABLE 2 |Different perspectives of the composite model prediction and the ProMPs
prediction.

Perspective Composite model ProMPs

Underlying principle Yes No
Optimality Yes No
Computation time High Low
Motor variability No Yes

4.2. Comparison Between the Composite
Model Prediction and the ProMPs
Prediction
Both the composite model formulation and the ProMPs frame-
work have clear advantages and drawbacks, but they are also
complementary. By combining them into a hybrid prediction
framework, the advantages of both methods can be exploited at
the same time (Table 2).

The composite model represents the underlying principles
of reaching motion control. Several motion models have been
proven to be accurate in describing the movements, such as the
minimum hand jerk model on some tasks, and the minimum
torque change model on others, in 2D reaching motions. The
composite model we proposed inherits those capabilities and
extends it to the 3D reaching motions. It helps us explain how
humans execute and control their reachingmotions, while extract-
ing such information from the data-driven methods is not trivial.
However, the biggest obstacle in implementing the composite
model prediction in online case is the computation time. Before
rolling out the optimal trajectory, an OCP needs to be solved,
which usually takes several minutes, even when the state-of-the-
art solvers are used (Diehl, 2011). However, in real world settings,
the reaching motions take no longer than a few seconds, thus the
data-driven methods are more suitable in the online case, as they
are computationally more efficient.

Another important reason of using the ProMPs as the data-
driven method in the hybrid prediction framework is that it
allows describing the motor variability given sample demon-
strations (Paraschos et al., 2013). As explained in Todorov and
Jordan (2002), human motor control is a stochastic system with
signal-dependent noise (Harris andWolpert, 1998), thus reaching
motions are expected to show variance. Since it is not straight-
forward to consider the variance within an IOC problem, we
formulate our composite model as a deterministic OCP. On the
other hand, as the ProMPs formulation employs a probabilistic
function to represent the motion, the obtained model is not a
single trajectory but a distribution of trajectories. Hence, while
the composite model describes an optimal average behavior as
an initial guess, the ProMPs enables capturing the multiplicative
noise due to motor control. However, to understand the control
model due to such noise, the model-based IOC computation and
a follow-up GPR update is still required.

4.3. Prediction Framework
The idea of the hybrid prediction framework is, for a given reach-
ing task, to use the compositemodel to generate the initial training
data for the ProMPs. Then in the online phase, the ProMPs
can rollout predicted trajectories with high efficiency while also

FIGURE 4 | Overview of the prediction framework (upper right in Figure 1). qs

and qe are the initial and final joint angle configurations. α* is the estimated
optimal weight vector and t∗α is the corresponding optimal solution from OCP.
tm denotes the mean of the converged trajectory distribution extracted from
the ProMPs, αn is the new obtained optimal weight vector, which is used to
update the GPR model.

learning the variance by using each motion observation as new
training data. After several observations, the parameters of the
ProMPs converge (the details is explained in Section 5.2.2), then
the mean of the converged trajectory distribution is calculated
to update the composite model. An overview of the framework
is given in Figure 4, and the details of this hybrid model are
explained next.

4.3.1. Initialization With the Composite Model
Usually for a given reaching task, the starting position and the
target position are known. Through the inverse kinematics, the
initial joint angle configuration qs and the final joint angle config-
uration qe can be approximated. By using the GPR model trained
on the IOC results, a distribution of the estimated optimal weight
vector is available. However, due to the limited amount of data
for training the GPR model, the variance cannot be learned accu-
rately. Thus, only the mean value of the distribution α* is used
here. After solving the OCP with respect to α*, the optimal joint
angle trajectory q∗

α and its corresponding end-effector trajectory
t∗α are obtained. t∗α is considered as the training data for the
ProMPs. As the OCP gives a deterministic solution, no variance
information can be derived. Hence the ProMPs is initialized by
learning the parameters from the optimal trajectory t∗α, while
setting the variance to a large value.

4.3.2. Predicting While Learning
During online prediction, a trajectory along with the variance for
each time point is generated by the ProMPs. This variance infor-
mation is useful for human–robot interaction scenarios where the
robot should also consider the uncertainties of human behaviors.
The observations recorded during the prediction are utilized to
update the ProMPs to get a more accurate representation of the
variance. After each movement, the observation is added to the
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data storage which contains all the previous observations. Sub-
sequently, the ProMPs update their parameters from the new
data storage. With the incorporation of each motion observation,
parameters of the ProMPs as well as the variance information
converge.

4.3.3. GPR Model Updating
Once the ProMPs system becomes stable, the mean of the con-
verged trajectory distribution tm can be extracted. This trajectory
can be considered as the average behavior of the recorded subject
for this reaching task. Then in a separate updating process, tm
is used by the IOC framework to get the corresponding optimal
weight vector. The new optimal weight vectorαn is used to update
the GPR model. Therefore, with more information returned from
the real recordings, the GPR model also becomes more accurate
in describing the mapping from the initial and final joint angles to
the optimal weight vector.

4.4. Motor Variability and Interpersonal
Variance
The motor variability is essential in describing human behaviors
(Todorov and Jordan, 2002), as it can be considered as the uncer-
tainties of human motions (e.g., the noise in motor command). It
represents the fact that for a given reaching task, even the same
subject is expected to execute the motion in slightly different
trajectories. This phenomenon has been reported in sensorimotor
control by demonstrating such variability on observed experimen-
tal data for a multitude of tasks, e.g., locomotion (Winter, 1989),
writing (Bernstein, 1967), pointing (Tseng et al., 2002), reaching
(Haggard et al., 1995), and grasping (Cole and Abbs, 1986). Usu-
ally for simple tasks, this difference is not large and can bemodeled
as a probabilistic distribution (Knill and Pouget, 2004; Koppula
and Saxena, 2013). However, such probabilistic models cannot
explain the underlying cause of observing such motor variability,
which is known to be due to additive and multiplicative noise
in the motor control and is treated as the intra-subject variance
in this work. Apart from the motor variability, there are also
motion behavior differences between subjects (Vu et al., 2016a),
which we call interpersonal variance in this work. The existence of
such a disparity can be verified through the contribution of basic
cost functions, as shown in the next section. The interpersonal
variance suggests that humans plan their motions in a personal
way, which reflects the dissimilarity of the control structure due to
learning and adaptation effects, along with biomechanical differ-
ences. Thus, the updated GPR model from the hybrid prediction
framework is actually a person-specific model.

5. EXPERIMENTS AND RESULTS

In this section, two experiments and their corresponding results
are presented. One is designed for the IOC framework with the
purpose of understanding the characteristics of human reaching
motions, and the other is used to test the performance of the
hybrid online prediction framework.

5.1. Experiment for the IOC Framework
To cover the reaching motions in a relatively large range,
we designed an experiment for point-to-point reaching tasks

consisting of 12 starting postures and 9 target regions. The
recorded trajectories were analyzed through the IOC framework.
Based on the obtained optimal weight vectors, we find that the
contribution of basic cost functions has a relationship with the
initial and final joint angle configurations. Besides, the composite
cost function is proven to have less error in describing the reaching
motions in almost all tasks compared to the single cost models.
This result encourages us to use the composite model in the
prediction rather than a model with single cost function. In the
rest of this subsection, at first the details about the experimental
setup are presented, then the results from the IOC framework are
discussed.

5.1.1. Experimental Setup and Data Collection
A visualization of the experimental setup is presented in
Figure 2A. Participants were required to sit before a board which
was placed vertical to the ground surface. Nine target areas and
one reference point were marked on the board as square regions
with the side length equal to 5 cm. The distances between the
target areas and the reference point are shown inFigure 5B. Before
the experiment, the sitting height of the participant was adjusted
by setting a straight line between the reference point and the
center of the shoulder joint vertical to the board surface. Then the
distance between the center of the shoulder joint and the board
surface was selected as 80% of the arm length. These distances
were chosen to ensure that the participants can reach all nine
targets easily without moving their torso.

Since we want to cover a large range of reaching motions,
every participant was asked to reach the nine targets from 12
different starting arm postures. According to the joint angle limits
we defined in the arm model, these starting postures were chosen
from the combination of three different q1, two different q2, and
two different q3 (3× 2× 2= 12) configurations (see Table 3).
As shown in Figure 5A, the pitch rotation of the shoulder joint
q1 is selected as three configurations: up, middle, and down,
respectively. The yaw rotation of the shoulder joint q2 and the
rotation of the elbow joint q3 are chosen from the stretched to the
side configurations and a configuration in the middle of the joint
angle limits. With nine targets for each starting posture, 108 (12
starting postures× 9 targets) cases of the reaching motions were
considered in the experiment.

Before the recording, the arm posture was determined by mea-
suring all three joint angles to ensure all participants shared the
same starting joint angle configuration. The participants were
given the following instructions. First, in order to discard the
decision-making process of target selection, the subject needs
to reach the nine targets in a fixed order as from target one to
target nine. Second, the participant should strictly put his arm
in the previously set starting posture before executing the follow-
up reaching task. A set of special reference tools were prepared
and put beside the participants. These tools consist of two bars
and their end points indicate the positions of the elbow and wrist
joints for the given starting posture. Reference tools were placed
in appropriate positions so that during the reaching motion they
do not block any potential motion trajectory. Third, in order
to eliminate the effect of locating targets during the movement,
before the execution of the reaching tasks, the participants should
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FIGURE 5 | Experimental setup. (A) Visualization of 12 starting joint angle configurations. P1 to P4 are the postures with q1 in the middle (no rotation), while P5 to P8
are the postures with q1 in the up region and P9 to P12 with q1 in the down region. (B) Target areas on the board surface. RP denotes the reference point.
Observations are the actual positions where the 108 averaged trajectories terminate on the board surface.

TABLE 3 | Actual starting joint angle configurations.

Posture q1,S(
◦) q2,S(

◦) q3,S(
◦)

Mean SD Mean SD Mean SD

P1 10.95 5.01 6.58 4.66 12.72 3.49
P2 11.21 5.73 8.78 9.47 33.39 6.51
P3 11.93 3.70 31.90 5.82 13.15 3.74
P4 13.00 6.37 34.45 6.80 37.92 8.53
P5 −22.29 5.21 12.46 5.18 14.11 3.86
P6 −23.47 5.71 15.82 6.41 37.88 7.51
P7 −22.89 5.33 37.31 7.91 16.10 5.09
P8 −23.64 5.66 41.07 8.42 35.75 7.88
P9 42.15 6.16 6.98 7.43 12.28 4.58
P10 40.22 4.40 7.08 5.28 35.40 5.59
P11 35.36 5.09 36.14 5.61 10.06 5.76
P12 35.14 5.45 36.88 6.85 43.44 6.69

P1 to P12 are the 12 predefined starting postures. q1,S, q2,S, and q3,S are the three starting
joint angles with respect to the stretched out posture. The values are computed by using
all 15 subjects’ data.

look at the targets rather than the reference tool. Fourth, the
participants were told to avoid using the roll rotation of the
shoulder joint, which is ignored in our arm model. In addition,
all participants were trained before the experiments to get familiar
with the setup and the task. If any unintendedmotionwas detected
during the recording, corresponding tasks were executed again.
Between each starting posture, enough rest time was provided for
avoiding fatigue. To reduce the noise, every target in every starting
posture was reached two times, thus a total of 216 (108 cases× 2
times) trajectories were recorded for one participant.

The data were collected from fifteen subjects (11 males, age:
27± 4; weight: 67± 9 kg, height: 172± 5 cm) who all gave written
informed consent for their participation. All the participants were
right-handed with normal vision ability. None of them received

any information about the purpose of the experiment. The study
was approved by the ethics committee of the Technical Univer-
sity of Munich School of Medicine. The reaching motions were
recorded by the multicamera motion capture system Qualisys at a
frequency of 250Hz. With the built-in filter function, the smooth
position trajectories of the shoulder, elbow, and wrist joints can be
directly obtained from the tracking system and used for the IOC
calculations.

5.1.2. Average Motion Behavior
In our IOC framework, we are interested in the control structures
for the human reachingmotion behavior in a general sense, rather
than the individual differences. We also intend to provide a base
model to be extended for person-specificmotion behaviors during
prediction. Hence, we compute the average trajectories from all 15
subjects, and the IOC problems are solved for these trajectories.
Besides, the averaging process also saves a lot of computation
time. Since the IOC calculation for one trajectory roughly takes
4 h, the analysis on all 1,620 (15 subjects× 108 cases) trajectories
would require an immense amount of time. Table 3 gives the
mean values and the SDs of 12 starting joint angles calculated
from all subjects’ data. The SDs indicate that for the same starting
posture, all subjects started their reaching motions with a rela-
tively small joint angle difference, which enables the feasibility of
averaging the trajectories. If not mentioned explicitly, all the IOC
results presented in the following part are based on the averaged
trajectories.

5.1.3. Results for the IOC Framework
After the IOC calculations, we obtained one optimal weight vector
for each reaching task. The contribution of basic cost functions in
108 different cases are analyzed next.
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5.1.3.1. Performance in Describing the Reaching Motions
To verify the performance of the composite model, the optimal
trajectory solved with it is compared to the optimal trajectories
computed for each single basic cost function. The distance error
between each optimal trajectory and the average motion behav-
ior is measured through the DTW-based comparison separately.
The results show that, almost for all cases, the composite model
has a better performance in describing the reaching motions.
Even though the distance metric we used in the upper level
program of the IOC framework only considers the end-effector
trajectory, the composite model still has less errors in the joint
angle trajectories. Figure 6 presents the distance error averaged
from all 108 cases. The p-test results indicate that, there are
significant decreases on the distance error when comparing the
compositemodel to all other five basic cost functions (pi < 0.0001,
i= 1, . . . , 5). In joint angle trajectories, except the minimum
joint angle jerk cost function (p= 0.1813), we still observe sig-
nificant decreases (p< 0.0001). The reason is, in 3D reaching
motions, the observed joint angle trajectories are bell-shaped,
which are quite close to the results derived from the minimum
joint angle jerk cost function, especially when the reachingmotion
enforces approaching the joint angle limits (e.g., reaching tar-
get one). After we removed the cases of reaching target one in
the comparison, there is still a significant decrease (p< 0.05),
now for all the cases, on the distance error in describing the
joint angle trajectories with the composite model. Furthermore,
it should be noted that, optimizing only dynamics related cost

functions leads to inconsistent arm trajectories in terms of joint
and Cartesian displacements (a single case is shown in Figure 3).
By contrast, even though maximizing smoothness in joint space
(angel jerk, i.e., kinematic cost) was efficient to fit the angular
and Cartesian displacements, it is reported by Vu et al. (2016b)
that it fails to describe the movement in torque space accurately.
It appears that the composite optimality criterion comprising
different biomechanical properties is the only model that can
explain both kinematic and dynamic aspects of the reaching
behaviors.

5.1.3.2. Influence of the Initial and Final Conditions
In order to get a deeper understanding of the human reach-
ing motions, an analysis on identifying the possible factors
which influence the contribution of basic cost functions is per-
formed. We conduct the N-way independent analysis of variance
(ANOVA) on our results with four factors, the three starting joint
angles q1,s, q2,s, q3,s and the target index T. As ANOVA checks
the importance of one or more factors by comparing the response
variable means at different factor levels, the results obtained can
be utilized to identify the factors which have statistical signifi-
cant influence on the examined variable. In Table 4, we list the
corresponding results from our ANOVA analysis when select-
ing the response variable as the contribution of five different
basic cost functions as well as the sum of dynamics related cost
functions (the minimum torque change+ the minimum energy),
respectively.

HJ JJ TC Geo Enr Composite
0

2

4

6

8

10

12

D
is

ta
n

c
e
 e

r
r
o

r
 (

c
m

)

HJ JJ TC Geo Enr Composite
0

5

10

15

20

25

D
is

ta
n

c
e
 e

r
r
o

r
 (
°

)

HJ JJ TC Geo Enr Composite
0

5

10

15

20

25

D
is

ta
n

c
e
 e

r
r
o

r
 (
°

)

A B

C
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TABLE 4 | Results of ANOVA tests.

RV:factor Sum.Sq. Mean.Sq. F p

HJ:q1,S 0.9624 0.4812 19.5487 0.0000
HJ:q2,S 0.1872 0.1872 7.6063 0.0078
HJ:q3,S 0.0068 0.0068 0.2750 0.6020
HJ:T 0.1635 0.0204 0.8303 0.5796
JJ:q1,S 0.4115 0.2058 10.7701 0.0001
JJ:q2,S 0.0150 0.0150 0.7830 0.3799
JJ:q3,S 0.0176 0.0176 0.9223 0.3409
JJ:T 0.2026 0.0253 1.3255 0.2494
TC:q1,S 0.1005 0.0503 12.7500 0.0000
TC:q2,S 0.0081 0.0081 2.0525 0.1573
TC:q3,S 0.0004 0.0004 0.1092 0.7423
TC:T 0.0603 0.0075 1.9122 0.0753
Geo:q1,S 0.1202 0.0601 3.0653 0.0543
Geo:q2,S 0.0056 0.0056 0.2844 0.5959
Geo:q3,S 0.0232 0.0232 1.1812 0.2816
Geo:T 0.0894 0.0112 0.5702 0.7980
Enr:q1,S 0.2760 0.1380 7.7557 0.0010
Enr:q2,S 0.1525 0.1525 8.5667 0.0049
Enr:q3,S 0.0331 0.0331 1.8596 0.1779
Enr:T 0.2721 0.0340 1.9113 0.0755
Dyn:q1,S 0.6702 0.3351 19.3833 0.0000
Dyn:q2,S 0.2308 0.2308 13.3516 0.0006
Dyn:q3,S 0.0411 0.0411 2.3760 0.1287
Dyn:T 0.3356 0.0420 2.4267 0.0246

RV denotes the response variable, selected as the contribution of each basic cost function
(HJ: hand jerk, JJ: joint angle jerk, TC: torque change, Geo: geodesic, Enr: energy) and the
dynamic related cost functions (Dyn: dynamics, which is the sum of the minimum torque
change and the minimum energy). Four variables are considered as the factors, which are
the three starting joint angles q1,S, q2,S, q3,S and the target index T. RV:factor indicates
the ANOVA result of the influence of the factor on the corresponding response variable
(e.g., HJ:q1,S means the influence of q1,S on the contribution of the minimum hand jerk
cost function). Sum.Sq. and Mean.Sq. are the sum of squares due to each source and
the mean squares for each source, respectively. F is the F-statistic, which is the ratio of
the mean squares. p is the p-values, which represents the probability that the F-statistic
can take a value larger than a computed test-statistic value. Other ANOVA results (e.g.,
the degree of freedom) are not listed here.

From ANOVA analysis, it can be concluded that the starting
joint angles of the two shoulder rotations have influences on
the contributions of the cost functions: q1,s has influence on the
contribution of the hand jerk (F(2,58)= 19.5487, p< 0.0001), the
joint angle jerk (F(2,58)= 10.7701, p< 0.001), the torque change
(F(2,58)= 12.7500, p< 0.0001), the energy (F(2,58)= 7.7557,
p< 0.001), and the dynamics (F(2,58)= 19.3833, p< 0.0001);
while q2,s has influence on the hand jerk (F(1,58)= 7.6063,
p< 0.01), the energy (F(1,58)= 8.5667, p< 0.01), and the dynam-
ics (F(1,58)= 13.3516, p< 0.001). For the target position, only
the dynamics is affected (F(8,58)= 2.4267, p< 0.05). Finally, the
starting joint angle of the elbow rotation q3,s has no influence on
the contribution of basic cost functions (all p> 0.05).

In order to identify how the target position, which can be
expressed by the three final joint angles q1,E, q2,E, q3,E, affects the
contribution of the dynamics, an individual analysis is conducted
on the trajectories of each subject with one starting posture (fully
stretched out posture P1) and six targets (top row: T1, T4, and T6,
bottom row:T3, T6, andT9). Thus 90 (15 subjects× 6 trajectories)
IOC calculations are performed. Then p-test is utilized to find if
there is a significant difference between different final joint angles.
The results suggest that only q1,E has influence on the contribution
of the dynamics related cost, which indicates that only the height

of the targets matters. This can be verified in Figure 7, where we
compare the contributions of the dynamics related cost between
two sets of targets (top vs bottom row). From these results, the
interpersonal variance can also be observed, where the changes
are different for each subject, and sometimes this difference can
be considerably large.

5.1.3.3. Transition Between Different Reaching Tasks
According to the previous results, three factors are identified
to be related to the contribution of basic cost functions, which
are the two starting joint angles of the shoulder joint q1,S,
q2,S and the change of the pitch rotation of the shoulder joint
q1,Change = q1,E − q1,S. In order to identify how exactly these fac-
tors affect the contribution, two 3D scatter plots are given in
Figures 8A,B. Considering the musculoskeletal loading as the
criterion to describe the comfortableness of the reaching motions
(Kee and Lee, 2012; Zenk et al., 2012), the fully stretched down
posture can be treated as the most comfortable posture. Then the
more rotations required to execute the reaching tasks from the
fully stretched down posture, the more uncomfortable the motion
is. It can be observed that, for comfortable reaching motions (left-
down region of the figures), the dynamics related cost function
has less contributionwhile the kinematics has higher, compared to
the uncomfortable reaching tasks (right-up region of the figures),
where the opposite trend is observed. Based on this, we propose a
discomfort metric by combining the three factors along with their
corresponding joint angle limits as

Dis =
(
90 − q1,S

180

)
+ β1

q2,S
180

+ β2

(q1,Change
180

)
, (13)

where Dis denotes the discomfort value calculated by a linear
combination of the three factors by using the weights β1 and β2.
Then for a given pair of weights (β1, β2), a set of discomfort values
can be derived for all 108 reaching tasks Disi (i= 1. . .108). Each
discomfort value has its corresponding contribution value of the
dynamics related cost function Ci (i= 1. . .108), hence a simple
linear least square regression model can be created from the data
set (Disi, Ci) (i= 1. . .108) as

y = θ1 + θ2x. (14)

By changing the weights, different linear regression models
yβ1,β2 are obtained. The coefficient of determination (Ross, 2014)
R2 for each model is given by

R2
β1,β2 = 1 −

∑108
i=1 (Ci − yi,β1,β2)

2∑108
i=1 (Ci − C̄)2

, (15)

where Ci is the actual contribution value, yiβ1,β2 represents the
calculated contribution value from the linear regression model
yβ1,β2, C̄ is the mean value of C. R2 measures of how well a
model can represent the data, and falls between 0 and 1. The
higher the value of R2, the better the model is at predicting the
data. Therefore, the optimal pair of the weights is derived by
maximizing R2

(β∗
1 , β∗

2 ) = max
β1,β2

R2
β1,β2 . (16)
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Solving equation (16) with respect to the contribution of the
dynamics yields the optimal weights as β∗

1 = 0.8150 and β∗
2 =

−0.4477. By using the discomfort values derivedwith this optimal
weights, the contribution of the kinematics related cost function
can also be explained. Corresponding results are presented in
Figures 8C,D.

Since humanmotor control is considered as a stochastic system
and we do not know exactly how these factors are combined
(e.g., linear or non-linear), the discomfort metric presented here
is a proof-of-concept of the transition between different reaching
tasks. Due to the absence of the description of the variance, the
results contain noise, but the trade-off between the dynamics and
the kinematics is still observable. This finding supports the idea
to use a GPR model to describe the mapping from the initial and
final joint angle configurations to the optimal weight vector.

5.2. Experiment for Hybrid Prediction
Framework
In this subsection, an experiment designed to test the performance
of the proposed hybrid online prediction framework is presented.
The experiment is based on a simple pick-and-place task with one
picking position and four targets. The accuracy of the ProMPs
predictions as well as the updating process is analyzed here.

5.2.1. Experimental Setup and Data Collection
As shown in Figure 9, the experiment is designed as a pick-and-
place task with LEGO bricks. The picking position is fixed during
the experiment, and four placing regions with different heights are
selected as targets. Each region consists of four possible positions
as four corners of a square for placing the bricks. Experiment
includes 16 pick-and-place movements (4 targets× 4 times) per
subject. Every subject is required to repeat the whole experiment
ten times, thus in total 160 trajectories, 40 for each target, are
recorded for one subject. We collected the data from five subjects

and performed the analysis on those 800 trajectories. We neglect
the hand and finger movements and only predict the position of
the wrist joint.

5.2.2. Results of the Hybrid Prediction Framework
Here, we present the corresponding results from the prediction
experiment. First, the prediction accuracy of ProMPs is tested by
looking into the distance error between the prediction and the
observation. Then, the updating process for the GPR model is
analyzed both to provide the evidence on the interpersonal vari-
ance, and also to demonstrate the ability of our hybrid prediction
framework in describing this variance.

5.2.2.1. Performance of the Predictions by ProMPs
We conduct an offline analysis to investigate the performance of
the ProMPs-based predictions more in depth. After initialization,
the ProMPs are utilized to generate predictions for the observa-
tions. For each observation, we use the first 30% of the observed
points to rollout the prediction, and the distance error between the
prediction and the observation is measured through DTW. After
each prediction, the observation is used to update the ProMPs in
order to learn the variance as well. For the next observation, the
updated ProMPs is then used, and this updating process keeps
running until the last observation.

The distance errors for each subject and each target are pre-
sented inFigures 10A–D. The distance error is calculated between
the prediction and the observation. Note that, this comparison is
performed in Cartesian space, while during the initialization of
the ProMPs, the trajectory generated from the composite model
is a relative end-effector trajectory in arm model coordinate sys-
tem (see Section 3.2.3). Since the relative end-effector trajectory
ignores the shoulder translations and the torsomovements, which
are not avoidable in real reaching motions, and the model’s arm
length is usually different than the actual arm length of the subject,

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 2714

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Oguz et al. Hybrid Framework for Human Motion Prediction

-50
-60

0

-40

-20

10

q
1,S

 ( °)

0

0

q
1
,C

h
a
n

g
e

(°
) 20

20

q
2,S

(°)

40

60

30
40

5050

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-50
-60

0

-40

-20

10

q
1,S

 ( °)

0

0

q
1
,C

h
a
n

g
e

(°
) 20

20

q
2,S

 ( °)

40

60

30
40

5050

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3 0.4 0.5 0.6 0.7 0.8

Discomfort

0

0.2

0.4

0.6

0.8

1

D
y

n
a

m
ic

s
 c

o
n

tr
ib

u
ti

o
n

 r
a

ti
o

Observations

y = 0.8259x - 0.2711

Least-Squares ellipse fitting

0.3 0.4 0.5 0.6 0.7 0.8

Discomfort

0

0.2

0.4

0.6

0.8

1

K
in

e
m

a
ti

c
s

 c
o

n
tr

ib
u

ti
o

n
 r

a
ti

o

Observations

y = -0.6427x + 0.9618

Least-Squares ellipse fitting

A B

C D

FIGURE 8 | Transition between different cases. (A,B) Contribution of the dynamics (left) and the kinematics (right) related costs with respect to three factors. q1 ,S,
q2 ,S are the two starting joint angles of the shoulder rotations, q1 ,Change is the change between the final and the initial angle of the pitch rotation of the shoulder joint.
The colors indicate the contribution ratio of corresponding cost. (C,D) Relationship between the proposed discomfort metric and the contribution of the dynamics
and the kinematics related costs. Red lines are the linear regression models created based on the discomfort value with respect to the optimal weights (β∗

1 , β∗
2 ).

Another least-squares ellipse fitting is also presented to demonstrate the trend with variance.

the first prediction has large error. However, this initial error
diminishes by later updates, and after several updates (around 5),
the distance error becomes stable with a small value (around 2–
4 cm for trajectory distance error averaged over the data points).
In the end, as shown in Figure 10F, the predictions get closer to
the observations for each subject.

During the prediction process, the variance is also learned by
updating the ProMPs. We initialized the variance to a large value,
and observe that after several updates the ProMPs converges
to a stable distribution. Figure 10E shows the Kullback–Leibler
(KL) divergence of comparing the updated ProMPs distribution
with the previous one for target one. The results indicate that
after around 10 iterations the distribution converges for each
subject. An example of the learned distribution, which is defined
by the mean values and the corresponding variances for each
point in all dimensions, is presented in Figures 10G–I. Hence, the
motor variability is captured by person-specific distribution in the
ProMPs. Subsequently, the mean trajectory from the distribution
is treated as the average behavior of that specific subject for the
corresponding reaching task.

5.2.2.2. Updating the GPR Model
Due to the limited amount of available training data, the mapping
represented by the GPR model is not accurate enough. Besides,
because of the interpersonal variance, the error between the esti-
mated weight vector and the actual one can be large in some
cases. Thus, we need to update the GPRmodel through a separate
updating process. To do this, we first extract the mean trajectory
from the converged ProMPs learned from 40 observations, and
then apply the same IOC calculation on this trajectory to get a
new weight vector. This new weight vector is used to update the
GPR model. Note that, since we also want to model the interper-
sonal variance, the GPR model is updated separately with respect
to each subjects’ behavior. A comparison of the distance error
between the observation and the optimal trajectories solved with
the previous weight vector and the new weight vector is presented
in Figures 11A–D. As we only want to look into the distance error
caused by the weight vector, the trajectories compared here are
the relative end-effector trajectories, which have less error due to
ignoring the shoulder translations and the torso movements. The
results indicate that the error diminishes after the update. After
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FIGURE 9 | Experiment for the hybrid online prediction framework. S is the
starting position and T1 to T4 are the four target regions. Each region consists
of four possible placing positions as four corners of a square for the LEGO
bricks.

several updates on the GPR model, the interpersonal variance
can be represented in each person-specific GPR model. We also
observe that even for the same tasks the new weight vectors vary
between different subjects (Figures 11E–H). This supports the
existence of the interpersonal variance while emphasizing the
importance of this updating process in our framework.

6. DISCUSSION

Facilitating efficient and safe co-existence of humans and robots
is a multifaceted challenge. In this paper, we focus on developing
a human motion modeling and prediction framework that can be
effectively used for robot control during dyadic interaction.One of
the key insights of this work is that the interpersonal difference is
not negligible regarding the contribution of cost functions. Even
though motor variability was acknowledged in previous studies
and some stochastic optimal control formulations were suggested
as models for the motor control functionality of the CNS, the
interpersonal variance has not been studied in such detail. The
research presented in this work is a first step for combiningmodel-
based and probabilistic data-driven approaches in order to look
into this topic, especially from the perspective of how this can
be used for human-in-the-loop robot control. In essence, the
hybrid framework enables personalized modeling and prediction
of human motion behaviors, which can be integrated into robot
control to provide personalized, safe, and efficient assistance to the
human partner. However, there are still many aspects that need
further investigation both for human motion modeling and its
effective integration on robot control.

6.1. On the Human-in-the-Loop Robot
Control and HRI
As robots have become ubiquitous in our daily lives, the goal
is to provide safe yet natural interaction between human–robot
dyads. To this end, novel robot control architectures which take
into account human motion behavior are required. As robots are

expected to adapt their motion behaviors with respect to their
human counterparts, understanding how humans control and
execute their motions is critical. The outcome of human motion
modeling is twofold: on the one hand, the models learned can
be used to predict human motions during interaction so that
the robot can take proactive actions. On the other hand, such
models enable building robot control architectures for realizing
human-like motions to provide natural interaction. The proposed
hybrid framework focuses on the former, and it also lays out the
underlying control mechanism for human motor control while
demonstrating the trade-off between kinematic and dynamic
properties used for arm reaching control. Even though there were
recent studies on transferring such optimal control formulations
learned from human motion data to robot control (e.g., locomo-
tion (Mombaur et al., 2010), reaching motion (Albrecht et al.,
2011)), our findings would enhance such methods by building
adaptive control methods to achieve a similar trade-off as human
motor control seems to utilize.

The model-based optimal control formulation can further be
utilized for other HRI settings, e.g., in physical HRI to provide
the required assistance by the robot to the human partner in
order to reduce the effort spent by the human which can be
detected from the increase in dynamics related costs contribution.
In addition, the trade-off analysis can be extended to understand
how reciprocal influence of partners’ movement affect the cost
distribution, which in turn help us construct suitable control
and motion planning strategies for the robot to provide optimal
assistance constrained on similar cost distributions.

As humans collaborate with each other naturally and safely in
close proximity, we hypothesized that one crucial requirement
for dyads is to be able to estimate the collaborating partner’s
motions. In that regard, it is also essential for a robot to predict the
motion of human partners. This prediction needs to be efficient
(online-capable) in order to choose actions proactively, and to
(re-)plan the motion in a way to realize a collision-free trajectory
while still achieving the task. The proposed hybrid framework
enables such an efficient prediction as well as an update on the
cost combination per person. The ProMP-based human motion
prediction component of this work has already been integrated
into a stochastic trajectory optimization framework (Oguz et al.,
2017). The efficiency of our motion prediction enables the robot
to re-optimize its motion frequently at short intervals while con-
sidering the predicted human motion distribution as a dynamic
obstacle to avoid. Hence, any changes in the expected move-
ment can still be taken into account to achieve a responsive and
safe interaction. Furthermore, since our hybrid architecture also
updates personal motion models during interaction, the effect of
robot movement on human partner’s motion can still be captured,
which is expected to increase the accuracy of predictions during
the course of the interaction.

In that regard, Interaction Primitives (IPs) (Amor et al., 2014)
and its extension Environment-adaptive IPs (EaIPs) (Cui et al.,
2016) also provide a data-driven approach to predict a human
partner’s movement and then to plan the robot motion accord-
ingly. As ProMP formulation already builds on the idea of learning
a distribution over some demonstrated trajectories, it can also
be extended to account for the coupling between two agents by
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FIGURE 10 | Results of predicting with the ProMPs. (A–D) Distance error between the observations and the ProMPs predictions of five subjects for target one to
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learning a distribution over two persons’ trajectories executed
during a joint interaction task. Similarly, learning a joint dis-
tribution including the environment-related features would be a
feasible improvement. The learned humanmotionmodels can still
be fed to the IOC formulation to extract the optimal cost distri-
butions that best describes those interactive movement behaviors.
The reciprocal influence of partners on their individual cost uti-
lization poses an interesting research question that can be ana-
lyzed from the IOC perspective. Our modular hybrid framework
also allows integration of any movement representation that can
effectively predict humanmovement behaviors. In that regard, the
IOC formulation can easily be integrated with (Ea)IPs to model,
understand, and predict human interaction behaviors.

Finally, one critical issue has to be noted. Since those formu-
lations only rely on data-driven formulations, there is no guar-
antee on a safe and effective motion generation for the robot,
especially in close proximity interaction scenarios. However, our
approach has the potential to utilize underlying cost function

distributions learned from human movement behaviors for robot
motion generation, which can then be combined with a learning
approach to achieve a generalized safe policy. In that regard, we
can combine the reachability analysis (Akametalu et al., 2014)
with our model-based optimal control formulation to ensure the
safety when the robot is planning its interaction movement. In
essence, by the reachability analysis, the states that lead to an
unsafe situation will be eliminated, and the learning process is
performed within the safe region (Fisac et al., 2017). This analysis
and the required computations are based on the dynamical model
of the system and may not be feasible with the purely data-driven
approaches, such as IPs.

6.2. Limitations
The IOC framework enables the identification of combination
of basic cost functions in 3D reaching tasks. The results suggest
a trade-off between the dynamics and kinematics related cost
functions. With a proper definition of the system model and
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FIGURE 11 | Results of the GPR model updating process. (A–D) The distance error between the optimal trajectories solved with respect to the initial weight vector
and the updated weight vector for target one to target four, respectively. (E–H) The contribution of basic cost functions calculated from the mean trajectories of five
subjects for target one to target four, respectively.

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 2718

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Oguz et al. Hybrid Framework for Human Motion Prediction

a set of reasonable cost functions, the IOC framework can be
generalized to other problems, e.g., locomotion planning (Mom-
baur et al., 2010), car driving (Kraus et al., 2010). However, there
are several limitations of the IOC framework, one of which is the
complexity of finding the global minimum. Even though we tried
to cover an extensive search range of the weight vector, the result
is arguably still an approximation of the global minimum. Due to
the complex non-linear formulation of the IOC framework, no
efficient method has been proposed on addressing this problem
yet. Second, the lack of the description of variance weakens the
accuracy in terms ofmodeling themotion behavior. Since the IOC
framework results in a deterministic solution, it cannot consider
the interpersonal variance and the motor variability during the
optimization. When we represent the trade-off between kinemat-
ics and dynamics related costs regarding the reaching tasks, the
variance makes it hard to identify a clear relationship. Therefore,
the discomfort metric we proposed is a proof-of-concept, and
a deeper investigation is required to uncover how exactly the
motion parameters affect the contribution of basic cost functions.

In the proposed hybrid prediction framework, we combine a
model-based prediction method with a data-driven method. A
GPR model is used to represent the mapping from the initial and
final conditions to the optimal weight vector. However, due to
the limited amount of data, the GPR model is not sufficient for
representing the variance in motion behavior. It is also found to
be effective only when the reaching motions are in the descrip-
tive range of the training data. For prediction purpose, we use
the trajectory obtained from the composite model to initialize
the ProMPs. The reason we want to include this initialization
phase other than directly using the ProMPs is that the subsequent
updates on the composite models are much faster than solving
the IOC problem from scratch for each person (e.g., 100 upper
level optimization iterations take around 4 h vs. 15 iterations
take around half an hour). It also allows to make the prediction
immediately without extra data collection. Note that, because of
the fact that the arm model ignores the shoulder translation and
the torso movements, which are not avoidable in real reaching
motions, the current initialization process still has some errors. If
a full upper body model is considered in the IOC framework, this
error could be minimized. However, this will immensely increase
the computational load, hence this extension may not be feasible.

7. CONCLUSION

In this work, we investigate the underlying principles of human
reaching motions and propose a hybrid framework to utilize our
findings in motion prediction. To uncover the criteria of the
reachingmotion control, we implement an inverse optimal control
framework to identify the contribution of basic cost functions
which can best represent the human behaviors. The IOC results
indicate a trade-off between the dynamics and kinematics related
cost functions depending on the reaching tasks. Then to apply
the composite cost function for predicting human motions, we
combine the model-based optimal control formulation with the
data-driven probabilistic movement primitives method. With this
hybrid prediction framework, we learn the motor variability as
well as the interpersonal variance at the same time. The demon-
strated high accuracy and efficiency of this hybrid framework
encourages its usage in HRI settings. For human-in-the-loop
robot control, a high-level planner for the robot can exploit such a
hybrid model to choose its next task, plan a collision-free motion
trajectory, and as a result achieve safe, efficient, and natural dyadic
interaction with the human partner.
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