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Today, agricultural vehicles are available that can automatically perform tasks such as
weed detection and spraying, mowing, and sowing while being steered automatically.
However, for such systems to be fully autonomous and self-driven, not only their
specific agricultural tasks must be automated. An accurate and robust perception system
automatically detecting and avoiding all obstacles must also be realized to ensure safety
of humans, animals, and other surroundings. In this paper, we present a multi-modal
obstacle and environment detection and recognition approach for process evaluation in
agricultural fields. The proposed pipeline detects and maps static and dynamic obstacles
globally, while providing process-relevant information along the traversed trajectory.
Detection algorithms are introduced for a variety of sensor technologies, including range
sensors (lidar and radar) and cameras (stereo and thermal). Detection information is
mapped globally into semantical occupancy grid maps and fused across all sensors
with late fusion, resulting in accurate traversability assessment and semantical mapping
of process-relevant categories (e.g., crop, ground, and obstacles). Finally, a decoding
step uses a Hidden Markov model to extract relevant process-specific parameters along
the trajectory of the vehicle, thus informing a potential control system of unexpected
structures in the planned path. The method is evaluated on a public dataset for multi-
modal obstacle detection in agricultural fields. Results show that a combination of multiple
sensor modalities increases detection performance and that different fusion strategies
must be applied between algorithms detecting similar and dissimilar classes.

Keywords: occupancy grid maps, mapping and localization, obstacle detection, precision agriculture, sensor
fusion, multi-modal perception, inverse sensor models, process evaluation

1. INTRODUCTION

In recent years, autonomous robots and systems have influenced the automation of various agricul-
tural tasks. Numerous scientific approaches have shown that adapting robotic advances can improve
workflow, minimize manual labor, and optimize yield. Today, however, conventional scenarios still
have the human operator in a centralized position of the farming process, supported by various non-
centralized controls units. Due to the global trend in automation, the operator will evidently become
an observer in upcoming farming scenarios and to a greater extent manage than operate the process.
One key aspect of reaching this goal is to ensure safe operation of driverless systems by perceiving
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the environment from which potential obstacles are detected and
avoided. No sensor can single-handedly guarantee this safety in
diverse agricultural environments, and, thus, a heterogeneous and
redundant set of perception sensors and algorithms are needed for
this purpose.

Contrary to self-driving cars whose primary purpose is to travel
from A to B, an autonomous farming vehicle must also process
the traversed area along its way. Common agricultural tasks are
harvesting, mowing, pruning, seeding, and spraying. For these
tasks, a simple representation of the environment into traversable
and non-traversable areas is insufficient. Instead, an agricultural
vehicle requires a distinction between, e.g., traversable areas, such
as road and soil, and processable areas, such as grass, crops, and
plants. Therefore, obstacle detection in an agricultural context
does not simplify to purely identifying objects that protrude from
the ground. High grass or crop may appear non-traversable while
actually being processable, whereas flat obstacles such as plant
seedlings may appear traversable while being non-traversable. A
need, therefore, exists for a system that can detect and recognize a
large variety of object categories, while at the same time combine
the extensive and perhaps unmanageable amount of information
into process-specific parameters relevant for either the driver or
an autonomous controller.

This paper presents a multi-modal obstacle and environment
detection and recognition approach for process evaluation in
agricultural fields. The proposed architecture describes a percep-
tion pipeline from data acquisition to classification of process-
relevant properties along the vehicle path. Detection algorithms
are presented for lidar, radar, stereo camera, and thermal camera,
individually. Information from all detections is mapped into a
global 2D grid-based representation of the environment and fused
across object categories, detection algorithms, and sensor modal-
ities. Finally, relevant properties for processing the field such as
traversability and yield information along planned trajectories are
decoded. The proposed method is evaluated on a public grass
mowing dataset recorded in Lem, Denmark, October 2016. The
dataset includes both static and dynamic (moving) obstacles, such
as humans, vehicles, vegetation, barrels, and buildings as well as
structures in the environment such as the grass field and roads.

To the knowledge of the authors, no similar architectures
or baselines targeting agricultural applications have previously
been published. The proposed architecture, therefore, represents a
novel set of procedures to perform acquisition, detection, fusion,
mapping, and process evaluation in a multi-modal setup for an
unstructured environment in agriculture. As such, the contribu-
tions of the paper are as follows:

• An architecture for multi-modal obstacle and environment
detection covering detection algorithms, mapping, fusion
across sensors and object classes, and path decoding.

• A process evaluation method combining mapped environment
detections over time into agriculturally relevant properties
using a Hidden Markov model.

• An evaluation on a public agricultural dataset, including lidar,
radar, stereo camera, and thermal camera sensor data recorded
during grass mowing.

The authors’ approach extends agricultural technology with-
out replacing current work habits, and allows incorporation of

state-of-the-art algorithms for comprehensive environment detec-
tion and recognition via an efficient mapping approach. Further-
more, it allows for easy changeability and extendability, which
is needed in a daily agricultural scenario. In comparison to
model-based or parametrized approaches, the non-parametric
two-dimensional occupancy grid mapping has more desirable
properties for agricultural scenarios, where mainly the vegetated
area is of interest. Analytical solutions as well as relevant heuristics
have been applied to build the inverse sensor models (ISM) which
incorporate the sensor information as well as its localization.

The proposed architecture is depicted in Figure 1. A sensor
platform is mounted on a tractor traversing a field along a pre-
planned trajectory. A number of exteroceptive sensors collect
synchronized perception data used for object detection, whereas
proprioceptive sensors are used for global localization of the
vehicle. For each sensor modality, an inverse sensor model (ISM)
includes an algorithm for detecting a number of object cate-
gories (e.g., human, vegetation, and building) and a mapping to
align detection information from various algorithms using a 2D
occupancy grid map (OGM) representation in the local sensor
frame. Detection algorithms include deep learning methods for
object detection, semantic segmentation, and anomaly detection
on color images, dynamic thresholding on thermal images, point-
wise feature extraction and classification of lidar point clouds,
and tracking of radar detections. In the fusion and mapping step,
OGMs for all sensors and object categories are first localized
globally and then updated temporally with the occupancy grid
map algorithm by late fusion on a decision level. Finally, they
are fused spatially to extract a global map of the environment.
We present both binary (occupied/unoccupied) and semantical
(object category-specific) maps, allowing further processing in
subsequent algorithms. A final decoding step operates on the
fused semantical maps and applies a Hidden Markov model
to extract relevant process-specific parameters (e.g., harvesting,
mowing, or weed-spraying) along the predefined trajectory of
the vehicle. The final output could be used to alert a driver
with human-understandable information, or directly by a control
system for completely autonomous operation.

The paper is divided into six sections. Section 2 introduces
related work on obstacle detection in agricultural applications.
Section 3 presents the proposed method consisting of each of
the four building blocks from Figure 1. Section 4 presents the
experimental dataset and results for static and dynamic obsta-
cle and environment detection as well as decoding of process-
relevant parameters. Section 5 provides a discussion of the overall
approach, while Section 6 concludes the paper and suggests future
work.

2. RELATED WORK

Robotic automation is emerging for numerous agricultural tasks.
The main objective is to reduce production costs and manual
labor, while increasing yield and raising product quality (Luettel
et al., 2012; Bechar and Vigneault, 2017). A significant milestone
is to make robots navigate autonomously in dynamic, rough,
and unstructured environments, such as agricultural fields or
orchards. To some extent, this has been possible for around
two decades with automated steering systems utilizing global
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FIGURE 1 | System architecture including information flow.

navigation systems (Abidine et al., 2004). To eliminate the need for
a human operator, however, strict safety precautions are required
including accurate and robust risk detection and obstacle avoid-
ance.

Today, only small robots are commercially available that incor-
porate obstacle avoidance and operate fully autonomously in vari-
ous agricultural domains (Harvest Automation, 2012; Lely, 2016).
Commercialized self-driving tractors or harvesters, however, cur-
rently only exist as R&D projects (ASI, 2016; Case, 2016; Kubota,
2017).

In scientific research, the concept of an autonomous farming
vehicle with obstacle avoidance dates back to 1997 where a camera
was used as an anomaly detector to identify structures different
from crop (Ollis and Stentz, 1997). Since then, several systems
have been proposed for detecting and avoiding obstacles (Cho and
Lee, 2000; Stentz et al., 2002; Griepentrog et al., 2009; Moorehead
et al., 2012; Emmi et al., 2014; Ball et al., 2016).

A simplified representation of the environment into traversable
and non-traversable regions is common for autonomous navi-
gation (Papadakis, 2013). A path may be non-traversable if it
is blocked by obstacles, or if the terrain is too rough or steep.
Similarly, anomaly or novelty detection is used to find anything
that does not comply with normal appearance and is, thus, used
to detect obstacles (Sofman et al., 2010; Ross et al., 2015; Chris-
tiansen et al., 2016a). However, for many agricultural tasks, such
as harvesting, mowing, and weed spraying, further distinction
between obstacles and traversable vegetation is necessary. In one
application, apparent obstacles such as crops or high grass may
be traversable, whereas in another, small plants at ground level
may represent obstacles and thus be non-traversable. Distinction
into object, vegetation, and ground is common (Wellington and
Stentz, 2004; Lalonde et al., 2006; Bradley et al., 2007; Kragh
et al., 2015), whereas a few approaches explicitly recognize classes
such as humans, vehicles and buildings (Yang and Noguchi, 2012;
Christiansen et al., 2016b).

In the literature, obstacle detection systems often rely on a
single sensormodality (Rovira-Mas et al., 2005; Reina andMilella,
2012; Fleischmann and Berns, 2015). These systems, however, are
easily affected by varying weather and lighting conditions and,

thus, present single points of failure. Christiansen et al. (2017)
discusses advantages and disadvantages of various sensor tech-
nologies. For instance, a color camera captures visual information
similar to humans and can be used to recognize visually distinc-
tive objects. Similarly, a thermal camera captures heat radiation
and can distinguish living obstacles such as humans and animals
from the background. However, cameras in general are unable
to reliably detect object positions and are easily interfered by
direct sunlight and changes in weather conditions. On the other
hand, lidar and radar sensors are robust to varying weather and
lighting conditions and recognize structural differences with high
precision. However, the lack of visual information only allows
for a few distinguishable object classes. Therefore, a safety system
must have a heterogeneous and complementary sensor suite with
multiple sensing modalities that have an overlapping frustum1

and complement each other in terms of detection capabilities and
robustness. Sensor fusion is the concept of combining information
from multiple sources to reduce uncertainty in locality and class
affiliation. Early fusion combines raw data from different sensors,
whereas late fusion integrates information at decision level. In
both cases, sensor data need to be compatible.

Lidar, radar, and stereo cameras are all range sensors operating
in the domain of metric 3D coordinates. Lidar and radar have
been fused with early fusion using a joint extrinsic calibration
procedure (Underwood et al., 2010) and with late fusion for
augmented traversability assessment (Ahtiainen et al., 2015). Sim-
ilarly, lidar and stereo camera have been fused with late fusion for
traversability assessment (Reina et al., 2016). Often, a grid-based
representation such as occupancy grid maps (Elfes, 1990) is used,
allowing simple probabilistic fusion and subsequent path planning
on the late fused decision level. Monocular cameras operate in
the domain of non-metric pixels and can be fused directly under
assumption of negligible parallax errors. Examples are available of
color and thermal camera fusion for object detection using both
early (Davis and Sharma, 2007) and late (Apatean et al., 2010)
fusion.

1The sensor frustum is the perceptible volume of a sensor, also referred to as the
field of view or lobe.
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Fusion across domains is possible only when a transformation
between them exists. By projecting 3D points onto correspond-
ing 2D images, range sensors can be fused with cameras. With
this approach, lidar and color cameras have been combined for
semantic segmentation and object recognition using both early
(Dima et al., 2004; Wellington et al., 2005; Häselich et al., 2013)
and late (Laible et al., 2013; Kragh and Underwood, 2017) fusion.
Similarly, image data in pixel-space have been transformed to
metric 3D coordinateswith inverse perspectivemapping (Bertozzi
and Broggi, 1998; Konrad et al., 2012). Here, a ground plane
assumption is used to invert the perspective effect applied during
image acquisition, such that image data are compatible with, e.g.,
lidar and radar data.

In this paper, sensor data from lidar, radar, stereo camera,
and thermal camera are fused with a probabilistic 2D occupancy
grid map. This data representation has been chosen as its non-
parametric property allows the representation of diffuse agricul-
tural environments. Furthermore, it simplifies path planning and
is already a standard in the automotive industrial research (Garcia
et al., 2008; Bouzouraa and Hofmann, 2010; Konrad et al., 2012;
Winner, 2015). Traditionally, occupancy grid maps represent
traversable and non-tranversable areas in a binary decision. The
occupancy grid mapping used in this paper, however, is applied in
amuch richer fashion, due to the extension tomultiple semantical
layers. Thus, techniques for finding an optimal path, such as the
A* search algorithm, cannot be directly applied. Furthermore, the
finding of an optimal path online in agricultural processes is not
mandatory, due to the fact that a full area coverage is aimed, which
is inherently defined by the topology and shape of the field. The
quantification of the area which lies ahead, and, therefore, the
prediction of process characteristics is of higher interest. While
the direct deduction from the semantical grid maps becomes
unfeasible, a so-called decoding for inferring process-relevant
information is introduced.

In this work, generative models for inferring process-relevant
information out of the mapped sensors’ detections are used.
Generative models have a number of applications in prediction,

missing data imputation or probabilistic inference (Rabiner, 1989;
Hinton and Salakhutdinov, 2006). One mathematical framework
of generative models is the HiddenMarkovModel (HMM) which
is able to respect the time-domain and noisy sensor data of a
process. Applications to robotics and grid maps have shown the
incorporation of learning and decoding of hidden property infor-
mation from the environment which makes HMMs a suitable
approach to infer properties out of the semantical grid maps
(Stachniss, 2009; Walter et al., 2013; Vasquez et al., 2017).

3. METHOD

In the following, each step from the system architecture in
Figure 1 is explained in detail. Section 3.1 describes the recording
setup including sensor specifications. Section 3.2 describes the
fusion and mapping approach that takes in inverse sensor models
and combines these to generate fused obstacle maps. Section 3.3
describes the inverse sensor models, consisting of sensor-specific
detection algorithms and transformations to 2D occupancy grid
maps. Finally, section 3.4 describes the process evaluation that
uses the fused maps to decode process-relevant properties along
the trajectories of the tractor.

3.1. Sensor Platform
The sensor suite presented by Kragh et al. (2017) was used to
record multi-modal sensor data. The dataset has recently been
made publicly available.2 It includes lidar, radar, stereo camera,
thermal camera, IMU, and GNSS.3 The sensors were fixed to a
common platform and interfaced to the Robot Operating System
(ROS) (Koubaa, 2016). A tractor-mounted setup and a close-up of
the platform are shown in Figure 2.

The exteroceptive sensors and their properties are listed in
Table 1. Proprioceptive sensors used for localization included

2https://vision.eng.au.dk/fieldsafe/ (Accessed: March 15, 2018).
3Global Navigation Satellite System.

FIGURE 2 | Recording platform. (A) Platform attached to tractor-mounted mower. (B) Sensor setup. Reprinted from Kragh et al. (2017) with permission.
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TABLE 1 | Sensors.

Sensor Model Resolution FOV (°) Range (m) Data rate (fps)

Stereo camera Multisense S21, CMV2000 1,024×544 85×50 1.5 – 50 10
Web camera Logitech HD Pro C920 1,920×1,080 70×43 n/a 20
360° camera Giroptic 360cam 2,048×833 360×292 n/a 30
Thermal camera Flir A65, 13mm lens 640×512 45×37 n/a 30
Lidar Velodyne HDL-32E 2,172×32 360×40 1–100 10
Radar Delphi ESR 32 targets/frame 90×4.2 0–60 20

20×4.2 0–174

Adapted from Kragh et al. (2017) with permission.

a Vectornav VN-100 IMU and a Trimble BD982 dual antenna
GNSS system. All sensors were synchronized in ROS. Lidar, stereo
camera, and thermal camera were registered before recording
in a semi-automatic calibration procedure (Christiansen et al.,
2017). All remaining sensors were registered by hand, by esti-
mating extrinsic parameters of their positions. Global localization
from IMU and GNSS was obtained with the robot_localization
package (Moore and Stouch, 2014) available in ROS, by simply
concatenating the world referenced position and orientation. The
overall localization accuracy was thus determined by the sensor
accuracies of the GNSS (8 and 15mm SDs for horizontal and
vertical positions, and <0.5° for yaw) and IMU (1.0° SDs for roll
and pitch).

3.2. Fusion and Mapping
Occupancy grid maps are used in static obstacle detection for
robotic systems, which is a well-known and a commonly stud-
ied scientific field (Hähnel, 2004; Thrun et al., 2005; Stachniss,
2009). They are components of almost all navigation and colli-
sion avoidance systems designed to maneuver through cluttered
environments. Another important application is the creation of
obstaclemaps for traversing unknown areas and the recognition of
known obstacles, thereby supporting localization. Recently, occu-
pancy grid maps have been applied to combine lidar and radar in
automotive applications with the goal of creating a harmonious,
consistent, and complete representation of the vehicle’s environ-
ment as a basis for advanced driver assistance systems (Garcia
et al., 2008; Bouzouraa and Hofmann, 2010; Winner, 2015).

3.2.1. Occupancy Grid Mapping
Two-dimensional occupancy grid maps (OGM) were originally
introduced by Elfes (1990). In this representation, the environ-
ment is subdivided into a regular array or a grid of quadratic
cells. The resolution of the environment representation directly
depends on the size of the cells. In addition to this compartmental-
ization of space, a probabilisticmeasure of occupancy is associated
with each cell. This measure takes any real number in the interval
[0,1] and describes one of the two possible cell states: unoccupied
or occupied. An occupancy probability of 0 represents a space that
is definitely unoccupied, and a probability of 1 represents a space
that is definitely occupied. A value of 0.5 refers to an unknown
state of occupancy.

An occupancy grid is an efficient approach for representing
uncertainty, combiningmultiple sensormeasurements at the deci-
sion level, and for incorporating different sensor models (Winner,
2015). To learn an occupancy grid M given sensor information

z, different update rules exist (Hähnel, 2004). For the authors’
approach, a Bayesian update rule is applied to every cell m∈M at
position (w,h) as follows: Given the position xt of a vehicle at time
t, let x1:t = x1, . . ., xt be the positions of the vehicle’s individual
steps until t, and z1:t = z1, . . ., zt the environmental perceptions.
For each cell m of the occupancy probability grid P(m| z1:t, x1:t)
represents the posterior probability that this cell is occupied by an
obstacle. Thus, occupancy probability grids seek to estimate

P (m|z1:T, x1:T) = Odd−1

( T∏
t=1

Odd (P (m|zt, xt))

)
,

Odd (P (m|zt, xt)) =
P (m|zt, xt)

1 − P (m|zt, xt)
. (1)

This equation already describes the online capable, recursive
update rule that populates the current measurement zt to the grid,
where P(m|z1:t, x1:t) is the so-called inverse sensor model (ISM).
The ISM is used to update the OGM in a Bayesian framework,
which deduces the occupancy probability of a cell, given the sensor
information.

3.2.2. Extension to Agricultural Applications
Contrary to robotic or automotive applications, OGM techniques
are not directly applicable to agricultural applications. Common
applications want to detect non-traversable areas or objects occu-
pying their paths. Such unambiguous information is used to quan-
tify the whole environment sufficiently for all derivable tasks such
as path planning and obstacle avoidance.When assumptions like a
flat operational plane or minimum obstacle heights are made, the
projection of the sensor’s frustum to the ground plane is sufficient
for all tasks.

In agricultural applications, a crucial task is to quantify the
environment as the machines act on and process it. This involves
features such as processed areas, processability, crop quality, den-
sity, and maturity level in addition to traversability. In order to
map these features, single occupancy grid maps are no longer
sufficient. Instead, semantical occupancy grid maps (SOGM)
that allow different classification results to be mapped are used.
Furthermore, sensor frustums are no longer oriented parallel to
the ground, but rather oriented at a downward angle to gather
necessary crop information (Korthals et al., 2017b).

The extension to SOGM or inference grids is straightforward
and defined by anOGMMwithW cells inwidth,H cells in height,
and N semantical layers (see Figure 3A):

M : {1, . . . ,W} × {1, . . . ,H} → m = [0, 1]N. (2)

Frontiers in Robotics and AI | www.frontiersin.org March 2018 | Volume 5 | Article 285

https://www.frontiersin.org/Robotics_and_AI
https://www.frontiersin.org
https://www.frontiersin.org/Robotics_and_AI/archive


Korthals et al. Obstacle Detection and Process Evaluation

A

B C

FIGURE 3 | Semantical OGM framework and supercell clustering. (A) Semantical occupancy grid mapping framework. (B) Supercell with N= 2 layers and
corresponding histograms with K= 2 bins. (C) Conversion of supercells to a graph of centroids labeled with feature vectors.

Compared to a single layerOGMwhich allows the classification
into three states {occupied, unoccupied, unknown}, the SOGM
supports a maximum of 3 N different states allowing much higher
differentiability in environment and object recognition. The cor-
responding ISMs are fused by means of the occupancy grid map
algorithm to their nth associated semantical occupancy grid.

The location of information in the maps is required to be
completed by mapping under known poses approaches (Thrun
et al., 2005). The ISMs are mapped locally in the maps while
the maps themselves are globally referenced enabling consistent
storing and loading of information. Furthermore, it allows smooth
local mapping in the short term without discrete jumps caused
by global positioning systems using a Global Navigation Satellite
System (GNSS) (Korthals et al., 2017b).

3.2.3. Mapping Capabilities
SOGMs contain a generic representation of the environment.
However, for many applications, only part of this vast amount
of information is required. Therefore, in the following, we intro-
duce three methods of fusing SOGMs. The first two methods
are cell-wise layer fusions given in equations (3) and (4), while
the third method is a cell-clustering technique working across
layers given in equation (5). These are used in the evaluation for
binary traversability assessment, class-specific obstacle mapping,
and process evaluation.

The first approach introduced in equation (3) is based on a
super Bayesian independent opinion pooling PB (Pathak et al.,

2007). It is applicable for the case when separate SOGMs with
identical feature representations (same object classes) are main-
tained. Second, equation (4) introduces a non-Bayesianmaximum
pooling fusion method PM is applied to heterogeneous feature
representations (varying object classes) (Liggins et al., 2001). The
fusion techniques are cell-wise and, therefore, do not introduce
any clustering:

PB(m) =
1

1 +
∏

n
1−P(mn)
P(mn)

, (3)

PM(m) = max
n

P (mn) . (4)

Unlike single-layer OGM approaches, an SOGM incorporates
multiple OGMs with varying classes residing in the map storage.
For many applications cell-wise consideration, which is the disre-
garding of the cells’ surroundings, is not a feasible approach due
to noisy or sparse data and potential positional offsets between
layers. Thus, clustering on SOGMs was introduced by Korthals
et al. (2017a) using a Supercell Extracted Variance Driven Sam-
pling (SEVDS) algorithm, which tends to find clusters that consist
of mainly non-contradicting cells:

H (c) = D (c) + ΓG (c)with D (c) =
N∑

n=1
en (var (h (c))) . (5)

In equation (5), c is the supercell of interest and G is the
contour function, which can be smoothed via the scalar factor
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Γ. The distribution term D of a supercell c is defined as the
sum of Eigenvalues e of the covariance matrix of the probability
histogram h(c) (see Figures 3B,C). The contour term G is taken
from Van den Bergh et al. (2015) and evaluates cell-wise updates
that penalize irregular shapes, e.g., a single cell extending into
an adjacent supercell. A scalar factor of Γ= 1 is used as in the
original paper.

As depicted in Figure 3C, for every found supercell, a triple
C = (Tc,Lc,Pc) consists of its centroid location Tc, a list of adjacent
supercells Lc, and a feature vector Pc ∈ RN, with N being the
number of SOGM layers. Odd(Pc) is calculated as:

Odd (Pc) =

(∏
m∈c1

Odd (P (m)) , . . . ,
∏
m∈cN

Odd (P (m))

)T

.

(6)
3.2.4. Recency Weighting for Dynamic Obstacles
When evaluating the detection dynamic obstacles, static obstacle
detections are ignored by introducing recency weighting to the
mapserver via two new parameters. A ForgetValue indicates the
amount of temporal memory in the map. A value of 0 indicates no
forgetting, such that all information remains in the map, once it is
introduced. A value of 1, however, indicates total forgetting (no
memory), such that the map is cleared every time the forgetting
is applied. The second parameter is a ForgetRate that indicates the
rate at which the forgetting is applied. A rate of 2 means that two
times every second, all cells in the map are updated with respect
to the ForgetValue:

P (mt) = (P (mt−) − 0.5)

× (1 − ForgetValue)
∑
n∈N

γ

(
t − n

ForgetRate

)
+ 0.5.

(7)
First, P (mt−) is centralized at 0 where t– addresses the cell

property just before the update. γ indicates the discrete Dirac
function which builds up the sampling function with its sampling
rate ForgetRate. With every forgetting step, the updated posterior
probability converges to 0.5 which indicates no knowledge over
the cell m. Thus, equation (7) is a basic exponential smoothing
filter with P(mt−) being the start excitation (Biber, 2005).

3.3. Inverse Sensor Models
In the following, individual inverse sensor models (ISM) are
introduced and explained in detail for each of the sensors. An
ISM consists of an algorithm for detecting a number of object
categories and a mapping to align detection information using a
2D occupancy grid map (OGM) in the local sensor frame.

3.3.1. Cameras
In this section, multiple ISMs are described for the stereo camera
and thermal camera. First, the individual detection algorithms
operating on image data are explained. Then, two procedures for
aligning detections to OGMs are proposed.

3.3.1.1. Detection Algorithms
A total of four detection algorithms for the stereo camera have
been used; Locally Decorrelated Channel Features (LDCF) for

pedestrian detection (Dollár et al., 2014), an improved version
of You Only Look Once (YOLO) (Farhadi and Redmon, 2017;
Redmon et al., 2016) for object detection, a Fully Convolu-
tional Neural Network (FCN) for semantic segmentation (Long
et al., 2015), and DeepAnomaly (Christiansen et al., 2016a)
for anomaly detection. The algorithms all use a single color
image from the stereo camera. For the thermal camera, a heat
detection algorithm (HeatDetection) is used to detect objects
that are warm compared to the background using a dynam-
ically adjusted threshold (Christiansen et al., 2014). Figure 4
presents examples of output predictions from the detection
algorithms.

LDCF is a pedestrian detection algorithm delimiting instances
by bounding boxes with fixed aspect ratios. The model is trained
on the INRIA Person Dataset (Dalal and Triggs, 2005). The
detector is publicly available in a MATLAB-based framework by
Dollar (2015) and has been converted to C+ + and wrapped in a
ROS-package4 (Kragh et al., 2016).

YOLO is a deep learning-based object detector delimiting
instances by bounding boxes of variable aspect ratios. The detector
is developed in the deep learning framework Darknet (Redmon,
2013) and trained on ImageNet (Russakovsky et al., 2015) and
Microsoft COCO (Lin et al., 2014) for detecting 80 object cate-
gories. For running the algorithmwithin the proposed framework,
a ROS-package5 has been developed which also applies a remap-
ping of the 80 object classes into three classes (human, object, and
unknown).

FCN uses the backbone of VGG (Simonyan and Zisserman,
2014) to make a fully convolutional semantic segmentation algo-
rithm that classifies all pixels in an image. The model is developed
in Caffe (Jia et al., 2014) and is publicly available.6 The model
is trained on the 59 most frequent classes of the Pascal Context
dataset (Mottaghi et al., 2014). Unlike the more popular Pascal
VOC dataset (Everingham et al., 2013) with only 20 object classes,
Pascal Context provides full image annotations of 407 classes. In
Christiansen et al. (2016b), the 59 object classes are remapped
to only 11 classes to investigate semantic segmentation in an
agricultural context. In Kragh et al. (2016), the detector has been
wrapped in a ROS-package.7 In the current work, predictions are
remapped to six classes (human, object, grass, ground, vegetation,
and undefined).

DeepAnomaly is a deep learning-based detection algorithm for
detecting anomalies (Christiansen et al., 2016a). The backbone
is AlexNet (Krizhevsky et al., 2012) trained on ImageNet, and
the anomaly detector is modeled using 150 images from the
dataset in Christiansen et al. (2017). The output consists of coarse
predictions of the whole image.

HeatDetection uses a heat detection principle from Chris-
tiansen et al. (2014) for detecting warm objects using a thermal

4ROS package available at https://github.com/PeteHeine/pedestrian_detector_ros.
git (Accessed: March 15, 2018).
5ROS package available at https://github.com/PeteHeine/yolo_v2_ros (Accessed:
March 15, 2018).
6Model is available at https://github.com/shelhamer/fcn.berkeleyvision.
org (Accessed: March 15, 2018).
7ROS package available at https://github.com/PeteHeine/fcn8_ros (Accessed:
March 15, 2018).
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A B

C D

FIGURE 4 | Camera detections for stereo and thermal camera. Written and informed consent was obtained from all depicted individuals. (A) Object detection using
YOLO. (B) Anomaly detections (highlighted with red) using DeepAnomaly. (C) Semantic segmentation using FCN. (D) Thermal camera detections (highlighted with
yellow) using HeatDetection.

camera. The median temperature is determined for all image
pixels of the current image, and the dynamic threshold is defined
3.0°C above the median temperature. In this work, the median
temperature is determined for the bottom 80% of the image to
not include image sections of the sky. Subtracting the image by the
dynamic threshold and clipping values below zero results in a heat
map of howmuch each pixel has exceeded the dynamic threshold.
A ROS-package is publicly available.8

3.3.1.2. Mapping of Detections to OGM
Camera detections are mapped to an OGM representation
(Korthals et al., 2017b) using two procedures as presented in
Figure 5. The top branch denoted Bounding Boxes to OGMs is for
mapping detections represented by bounding boxes. The bottom
branch denoted Segmentations toOGMs is formapping segmented
image detections. Finally, a few exceptions exist for DeepAnomaly
and two FCN classes where segmented elements are converted
to bounding box representations using a connected component
module before mapping to OGM. The code has been made pub-
licly available as ROS packages.9,10 Below, the two branches are
described in more detail.

3.3.1.2.1. Bounding Boxes to OGMs. This procedure maps detec-
tions to OGMs by first converting 2D bounding boxes to 3D

8ROS package available at https://github.com/PeteHeine/dynamic_heat_
detection (Accessed: March 15, 2018).
9ROS package available at https://github.com/PeteHeine/image_inverse_sensor_
model2 (Accessed: March 15, 2018).
10ROS package available at https://github.com/PeteHeine/image_boundingbox_to_
3d (Accessed: March 15, 2018).

cylinders. First, the distance to an object is estimated using depth
from stereomatching. The distance is defined as themedian depth
inside the bounding box. The estimated distance is assigned to
each bounding box corner and mapped to 3D using conventional
camera geometry. Bounding box corners are converted to a cylin-
der represented by a center position, width, and height. Finally, 3D
detections are mapped to an OGM as the output of the top branch
in Figure 5.

Various heuristics are used for modeling the OGM’s uncertain-
ties. Areas outside the camera’s field of view (FOV) are set to 0.5.
Areas inside the FOV with no detections w.r.t. m are set to 0.4
indicating lower probabilities of occupancy. Detections w.r.t. m
are given a value between 0.5 and 0.8 to indicate that the areas are
occupied by the corresponding detections. A value of 0.5 repre-
sents the minimum prediction or class probability by a detection
algorithm, whereas a value of 0.8 represents themaximum. Values
in between are scaled linearly. Amaximumvalue of 0.8was chosen
to avoid early saturation under fusion.

Imprecise localization of a detection is modeled by a Gaus-
sian distribution. For a camera, the uncertainty of distance
(radial coordinate) and angle (angular coordinate) to the object
are independent. This is incorporated by modeling each polar
coordinate (radial and angular) with independent uncertainties.
In Figure 5, the localization uncertainty caused by the radial
coordinate is larger than the uncertainty caused by the angular
coordinate.

A detection algorithm is less likely to detect distant obstacles
or to guarantee that an obstacle is not there. To model this,
the certainty of not detecting an obstacle is reduced linearly by
the distance from the nearest to the most distant grid cells. In
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FIGURE 5 | Converting detections to OGMs. Written and informed consent was obtained from all depicted individuals.

Figure 5, the probability increases linearly with distance from
0.4 to 0.5.

3.3.1.2.2. Segmentations to OGMs. Inverse perspective mapping
(IPM) is used for mapping image segmentations to a grid map.
IPM projects an image from the camera frame to the ground
plane surface using a geometrical transformation (Bertozzi and
Broggi, 1998; Konrad et al., 2012). The purpose of IPM is to
remove/inverse the perspective effect by changing the viewpoint
from the camera to a bird’s-eye view. Areas outside the camera
FOV are set to 0.5. Areas inside the FOVwith no detections are set
to 0.4. Detections are given a value between 0.5 and 0.8 to indicate
that the areas are occupied.

The IPM algorithm is able to approximate the actual mapping
for flat elements on the surface such as grass. However, elements
protruding or positioned above the ground surface (e.g., humans
and many obstacles) are imprecisely mapped. For this reason,
segmentations of anomalies, humans, and other obstacles are con-
verted to bounding boxes using a connected component module
as illustrated in Figure 5. The OGM for a grass-segmented image
is presented in the bottom of the figure.

3.3.2. Lidar
The inverse sensor model for the lidar sensor consists of a detec-
tion algorithm and a mapping to align detection information to
a local 2D occupancy grid map (OGM) in the sensor frame.
The detection algorithm operates directly on 3D point clouds
with approximately 70,000 points/frame generated at 10 fps by
the Velodyne HDL-32E lidar. First, 13 features are calculated
per point using neighborhood statistics that depend on local
point densities (Kragh et al., 2015). Second, a Support Vector
Machine (SVM) classifies each point as either ground, vegeta-
tion, or object. It further assigns probability estimates (Wu et al.,
2004) to each class to describe the certainty of each classifica-
tion. The SVM classifier was trained on the same data used in
Kragh et al. (2015).

The mapping from detection probabilities to a local 2D grid
is handled by projecting and resampling 3D points into 2D grid
cells. For each 2D grid cell, class probabilities of all 3D points
whose flattened projection lies inside are averaged and normal-
ized such that the three class probabilities sum to 1. This results
in three 2D probability grids: P∗

object, P∗
vegetation, and P∗

ground. The
three classes are combined into two OGMs (lidar-SVM-object
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FIGURE 6 | Lidar and radar detections and OGMs. (A) Point cloud with pseudo-colored probability estimates of the object class. Blue and red denote low and high
probabilities, respectively. (B) Resulting lidar OGM for the object class illustrating low (bright) and high (dark) probabilities. (C) Radar detection example with
confirmed (green) and unconfirmed (red) radar tracks overlaid on point cloud. (D) Resulting radar OGM.

and lidar-SVM-vegetation) by incorporating the ground probabil-
ities into the object and vegetation classes probabilistically with
Bayesian fusion. For each grid cell m in an OGM, the log odds
ratio of, e.g., the object class is:

logOdd (Pobject (m)) = logOdd
(
P∗
object (m)

)
+ logOdd

(
1 − P∗

ground (m)
)

= log
(
P∗
object (m)

)
− log

(
1 − P∗

object (m)
)

− log
(
P∗
ground (m)

)
+ log

(
1 − P∗

ground (m)
)
.

(8)

Figure 6A shows an example of a point cloud colored by object
probabilities from the SVM classifier, while Figure 6B shows the
corresponding object OGM.

3.3.3. Radar
The Delphi ESR automotive radar provides a list of up to 32
targets for each frame. Each target is represented by an angle, a
range, and an amplitude. Most targets, however, represent inter-
nal noise in the radar and have low amplitudes. Simply filtering
out these targets with a threshold eliminates radar returns from
low-reflective objects such as humans and animals. Therefore,
instead the approach from the authors’ previous paper (Kragh
et al., 2016) was used in combination with a tracking algorithm
between subsequent frames known as the Kuhn–Munkres assign-
ment algorithm (Munkres, 1957). Only radar targets that are less
than 2m apart between two consecutive frames are associated. A
track i is described by its current position and its track length Li. It
is confirmed when Li > Lmin = 3m and converted to a detection
pseudo-probability by:

Pradar,i = 0.5 + 0.5Li − Lmin

Li
. (9)

The addition of 0.5 makes the detector report only positive
information of occupancy, thus not indicating absence of objects.

The mapping from detection probabilities to a local 2D grid is
handled by converting from polar to Cartesian coordinates and
resampling into 2D grid cells. For each 2D grid cell, class proba-
bilities of all detections lying inside are averaged. This results in a
2D probability grid P∗

radar. Finally, the log odds ratio for each grid
cellm in the radar OGM (radar-tracking) can be expressed as:

logOdd (Pradar (m)) = log
(
P∗
radar (m)

)
− log

(
1 − P∗

radar (m)
)
.

(10)
Figure 6C shows an example of confirmed (green) and uncon-

firmed (red) radar tracks overlaid on the corresponding point
cloud, while Figure 6D shows the resulting radar OGM.

3.4. Process Evaluation
Farming scenarios are commonlywell-defined and the trajectories
are always planned in advance to yield optimal efficiency. How-
ever, the field may consist of many different properties that can
only be revealed by sensing the current environment. Common
properties are cropable, traversable, or non-traversable, where of
course the yield itself is of special interest.

The environment of the field is made up of structures in
space that are sensed by diverse sensors. While the well-defined
vehicle trajectory traverses this area, this path is of particular
interest to forecast implement parameters or steering sugges-
tions. Furthermore, due to imperfections in sensor calibration,
registration, and synchronization, areas of detections may not
always overlap and will, therefore, always have spots where only
certain sensors sense a property. This phenomenon evolves along
the frustum and, therefore, along the planned trajectory. Thus,
changes in real-world scenes are sequential in space, and the
sequential nature can be used to learn property relationships
between the various semantical occupancy grid map (SOGM)
layers to analyze scenes. In this section, a hierarchical model
that maps an observed SOGM along a trajectory to properties is
presented.
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A B

C D

FIGURE 7 | Generative model and Hidden Markov model framework for identifying properties in the mapped data. (A) Conceptual representation of the proposed
framework with the generative sampling on the left and a corresponding scenario with observations along the red tractor trajectory on the right. (B) Generative model
for property identification. Only on is observed. (C) Left–right structure of one intra-property model λw for the inter-property model (exit transition per state is not
visualized). (D) Ergodic inter-property model of the HMM.

Figure 7A shows the kind of structured information that is
envisioned parsing from the trajectory over an SOGM. The lowest
level corresponds to the feature vectors extracted from equation
(6). The middle layer corresponds to a property (e.g., cropable),
and the top root node represents the trajectory. The cost of obtain-
ing such hierarchical annotations would be very high due to the
complexity of the annotation task. Typically, agricultural datasets
are not labeled with all desired properties. As a result, models
for learning such structures should also be able to operate in an
unsupervised framework.

The problems to address are twofold. Learning: in order to
categorize or classify mappings along the trajectory into prop-
erties, statistical characterizations of the patterns of observation
sequences must be learned. Classification: given observations
along a trajectory, an algorithm is needed to classify these into
properties.

3.4.1. A Generative Model for Inducing Properties
Over SOGMs
For the given task of path traversal, a hierarchical approach is
targeted that not only models the single property at a certain

location, but also the whole object itself. The probability making
observation O = (o1,. . .,oIJ) with property w can be expressed as
the joint probability

P (O,w; λ) =
I∏

i=1
P (wi)

J∏
j=1

P (oj|wi; λ) (11)

with the hidden variable w, P(w) being the discrete property
probability, and λ being the generative property model for the
observed feature vector O. The amount of properties along a
path are enumerated by I while the length of a single property is
denoted by J.

The inter-property model λw = (S, O,A, Φ, Π) is a corre-
sponding Hidden Markov Model (HMM) with states s, obser-
vations O, transition probability A, emission probability Φ, and
start probability Π for every single property w. The emission
probability is modeled as a beta mixture model (BMM) over the
N semantical occupancy grids with δ as normalization weight and
the beta function B with its parameters α and β:

Φ(δ, α, β) =
N∑

n=1
δnB (αn, βn) . (12)
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At the lowest level of the hierarchical structure specified by the
model in Figure 7A is a sequence of probabilistic feature vectors.
In reality, there are infinitely many feature vectors. Moreover,
due to imperfections in localization and mapping, regions among
semantical layers may not overlap perfectly and can be noisy as
depicted in Figure 7A.

As discussed before, it is expected that trajectories are com-
posed of a sequence of semantically meaningful properties that
manifest themselves in various property-compositions. The fea-
ture vectors themselves can be directly modeled as a BMM as
stated in equation (12). While a direct classification might be
suitable, a sequence along the trajectory (which is along the field
of view) may represent a true underlying property even better and
can only be revealed when taking spatially earlier readings into
account. Therefore, a generativemodel is introduced inFigure 7B,
where the interpretable properties generate probability feature
vectors (the features of a supercell).

The distribution of properties in the field will be stochastic
in nature (e.g., a trajectory may contain segments of crop, weed,
and non-traversability), and the distribution of the feature vectors
themselves is beta-distributed and property-dependent. While
the number of such properties is expected to be very large, it is
assumed that for a given dataset a limited number of properties
can describe the property space fairly well.

The generative model is shown in Figure 7B. K properties in
the vocabulary and feature vectors Pc ∈ RN are assumed (see
equation (6)). A set of T trajectories can be generated as follows:
for each trajectory t, I properties are drawn from a unigram
distribution U. We then draw J feature-vectors from the specific
generative property-model. Thus, in this model, each trajectory
is a bag of properties and each occurrence of a property is a
sequence of feature-vectors. The resulting hirachical model is
shown as a concatenation of Figure 7D, as an ergodic model for
the inter-properties, and Figure 7C, as left-right model for the
inter-property realization.

3.4.2. Model Estimation and Decoding
An HMM, as shown in Figure 7C, for each of the K properties is
produced. It is modeled as a left-right structure with an additional
exit transition for each state to follow the aforementioned idea
of non-perfectly overlapping detections. Thus, property burn-in,
settling, and burn-out behaviors can bemodeled in the beginning,
middle, and end of the trajectory. Therefore, a minimum of three
states s are necessary to model these behaviors for every property
w. Since properties may have very diverse features in the start and
end sequence, all states have their own emission probability.

The HMMs for the properties are now put together as shown
in Figure 7D. For the sake of simplicity, a black circle represents
the hub for all property transitions in the ergodic model. P(wk)
represents the probability of the property wk. This approach is
trained in a supervised fashion and thus, the objective function
for one property w tends to find the most likely model λw, given
an observation O and its corresponding (GT) sequence S

λw = argmaxλwP(O, S|λw). (13)

Equation (13) can be estimated by instance counting, which
counts the hidden state transitions and output states, and uses

the relative frequencies as estimates for the transition probabilities
of λw. The inter-property model can be trained in the same way.
Given the GT, the parameters α and β can be directly determined
by theMethod of Moments. For decoding, the likelihood P (O|λw)
that a given model λw has produced a given observation sequence
O is calculated by the Viterbi algorithm (Rabiner, 1989).

4. EVALUATION

In this section, we evaluate the proposed architecture for obstacle
detection, recognition, andmapping on static and dynamic obsta-
cles, individually. Furthermore, we evaluate the process evaluation
on the mapped data with a spatial resolution of 10 cm per cell.

4.1. Dataset
The publicly available FieldSAFE dataset (Kragh et al., 2017) for
multi-modal obstacle detection in agricultural fields was used
for the evaluation. The dataset includes 2 h of recording during
mowing of a grass field in Denmark. Figure 8A illustrates exam-
ples of static obstacles in the dataset, whereas Figure 8B shows
examples of dynamic obstacles (humans) and their GT traversed
paths overlaid on the path of the tractor. Figure 8C shows a
static orthophoto of the field together with pixel-wise manu-
ally labeled GT classes. In the following section, the annotated
orthophoto is used as ground truth for evaluating the proposed
architecture.

4.2. Static Scenario
Two different evaluations have been performed: evaluation A for
detecting process-relevant classes exclusively, and evaluationB for
detecting occupied areas with respect to traversability.

For evaluation A, GT labels were grouped into four differ-
ent process-relevant classes (Vulnerable obstacles, Processable,
Traversable, and Non-traversable). The Vulnerable obstacles class
included GT label Mannequin and covered regions with which
a collision must be avoided under any circumstance. The Pro-
cessable class included GT label Grass and represented the crop.
The Traversable class included GT labels Grass and Ground and
represented areas that could be traversed by the vehicle. Finally,
the Non-traversable class included GT label Vegetation and repre-
sented areas that must be avoided to not damage the vehicle. For
evaluating the process-relevant detection, each of the four classes
was considered in its own property map. Included GT classes
were marked as occupied, whereas all other classes were treated
as unknown.

For evaluation B, GT labels were grouped into three differ-
ent properties (occupied, unoccupied, and unknown) according
to their traversability. The labels Vegetation, Mannequin, and
Object were combined to the occupied property. The label Unde-
fined was considered an unknown property, whereas the remain-
ing classes Ground and Grass were combined to the unoccupied
property.

To quantify the detection of static obstacles and to compare it
against the GT data from subsection 4.1, the evaluation pipeline
from Figure 9A was applied. The mapserver’s maps, which con-
tain all fused classifier information, were stored as explained in
Korthals et al. (2017a). The single maps were stitched together,
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FIGURE 8 | FieldSAFE dataset. (A) Examples of static obstacles. (B) Examples of moving obstacles (from the stereo camera) and their paths (black) overlaid on
tractor path (gray). (C) Colored and labeled orthophotos. Left: orthophoto with tractor tracks overlaid. The red track includes only static obstacles, whereas the blue
track also has moving obstacles. Right: annotated orthophoto with pixel-wise labels. Adapted from Kragh et al. (2017) with permission. Written and informed consent
was obtained from all depicted individuals.

such that they meet the size and resolution of the GT data.
Afterward, different combinations of the maps were applied as
represented in Table 2 to achieve the corresponding results in the
evaluation step.

It is worth noticing that the mapping technique is very prone to
misclassification, which can be caused for example by sun blinded
cameras or systematic errors. To address the second case, a blind
spot has been applied at the location of the tractor so that the
mapping of self-classification, heavily caused by the radar, was
overcome. This approach has been applied to all the following
evaluations as well.

The resulting tri-state maps from GT data and mapping were
compared tile-wise against each other, such that the true posi-
tives (TP), false positives (FP), and false negatives (FN) could be
calculated for the entire map.

To do so, the binary mapping G: m → {0, 1} is defined which
converts the cellm to an indicator. Furthermore, GGT refers to the
map constructed from the GT data, and GM that maps the cellm,
given the estimated posterior P(m) evaluated on the subset of seen
cells M′ = {m ∈ M|P(m) < 0.5 − ϵ ∨ P(m) > 0.5 + ϵ}. Thus,

M′ refers to all observed cells which properties are known. To
overcome floating-point quantization noise, a slack variable with
ϵ = .01 was introduced to the evaluation:

GM (m) =

{
1, if P (m|z1:T, x1:T) > 0.5
0, otherwise

,

GGT (m) =

{
1, ifm occupied
0, ifm unoccupied

. (14)

The function GM only takes the estimated map, and GGT only
takes the GT map into account. TP, FP, and FN can then be
calculated by cell-wise multiplication between the estimated map
GM and the GT map GGT

TP =
∑
m∈M′

GGT (m)GM (m), FP =
∑
m∈M′

(1 − GGT (m))GM (m),

FN =
∑
m∈M′

GGT (m) (1 − GM (m)) . (15)
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FIGURE 9 | Examples for different stitched mapping results for different evaluations of Table 2A (C–E), Table 2B (F), and evaluation pipelines (A,B). Red circles
emphasize correct object/mannequin detections. Grayscale encoding: black =̂ occupied, white =̂ unoccupied, gray =̂ unknown. (A) Evaluation pipeline from static
recording to evaluation with stitching. (B) Evaluation pipeline from dynamic recording using drone video and recorded data as input. (C) cam-YOLO-human (top) and
fused human class (bot.). (D) cam-FCN-ground (top) and fused ground class (bot.). (E) lidar-SVM-veg. (top) and fused vegetation class (bot.). (F) radar-tracking (left),
Bayesian fusion among class (mid.), and complete fused map (right).
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TABLE 2 | Evaluation of static obstacle detection and mapping.

(A) Evaluation A. Process-relevant object detection for single classifiers, classifier combinations, and sensor combinations

Single classifiers Fusion among class Fusion among sensors

Classifier F1 Prec. Rec. H Fus. F1 Prec. Rec. H Fus. F1 Prec. Rec. H

Vulnerable Obstacles (Mannequin)
cam-LDCF-human 1.3 0.7 25.9 83.2 max. 3.2 1.6 73.4 86.2
cam-FCN-human 3.4 1.7 73.6 75.6 bay. 12.6 7.1 57.4 84.3
cam-YOLO-human 11.7 6.9 36.1 75.5

Processable (Grass)
cam-FCN-grass 85.2 94.2 77.8 75.2

Traversable (Grass & Road & Ground)
cam-FCN-grass 83.4 96.3 73.6 75.2 max. 84.6 96.0 75.6 75.3 max. 90.1 89.2 91.0 92.3
cam-FCN-ground 24.0 96.8 13.7 75.1 bay. 82.0 97.2 71.0 75.2 bay. 87.7 90.8 84.8 92.2
lidar-SVM-ground 89.7 89.4 90.1 81.1

Non-traversable (Vegetation)
lidar-SVM-veg. 83.6 81.4 86.0 87.9 max. 84.3 80.1 89.1 92.3
cam-FCN-veg. 46.6 32.2 84.7 81.2 bay. 84.8 81.3 88.7 92.3

(B) Evaluation B. Traversability assessment of static obstacles for single classifiers, classifier combinations, and sensor combinations

Single classifiers Bayesian among class Max-pooling among class

Classifier F1 Prec. Rec. H F1 Prec. Rec. H F1 Prec. Rec. H

Cam-FCN-human 3.8 25.3 2.1 75.6 13.0 67.4 7.2 89.2 88.8 88.3 89.4 92.5
Cam-LDCF-human 0.7 3.7 0.4 83.2
Cam-YOLO-human 1.2 6.8 0.7 75.5
Radar-tracking 2.6 3.5 2.1 15.9
Thermal-heatdetection 7.3 16.6 4.7 88.6
Lidar-SVM-object 7.8 66.8 4.1 89.7

Cam-FCN-object 4.1 30.8 2.2 76.3 22.3 72.3 13.2 89.5
Cam-YOLO-object 2.0 3.9 1.3 75.6
Cam-deepanomaly 2.0 3.8 1.4 75.6
Radar-tracking 2.6 3.5 2.1 15.9
Lidar-SVM-object 7.8 66.8 4.1 89.7

Lidar-SVM-veg. 83.5 81.4 85.8 87.9 84.6 88.3 81.6 92.3
Cam-FCN-veg. 46.7 32.2 84.4 81.2

The vertical lines encapsulate groups of algorithms on the left side and present their fused results on the right hand side. Values in percentages.

The Precision, Recall, F1 score, and entropy H were calculated
as follows:

Precision =
TP

FP + TP
, Recall = TP

FN + TP
,

F1 = 2 Recall · Precision
Recall + Precision

, (16)

H (P (M)) = −
∑
m∈M

P (m) logP (m)

+ (1 − P (m)) log (1 − P (m)). (17)

Table 2A shows the results of evaluation A, i.e., detecting
process-relevant classes exclusively. The results are grouped by the
process-relevant classes, and the three columns show individual
algorithm detection results, fusion across algorithms, and fusion
across sensors, respectively. Here, both competitive (Bayesian)
fusion and complementary (max-pooling) fusion were applied for
the two fusion scenarios.

Table 2B shows the results of evaluation B, i.e., detecting occu-
pied areas with respect to traversability. The first column shows

individual detection results for each of the algorithms. These are
grouped by object categories such that different algorithms from
different sensors that detect similar classes are grouped together.
In the second column, algorithms from each group of cate-
gories are fused with competitive (Bayesian) fusion. For classifiers
detecting the same object classes, competitive fusion increases the
precision while maintaining information gain (entropy). In the
third column, detections from all sensors (and algorithms) are
fused with complementary (max-pooling) fusion. For classifiers
detecting different object classes, complementary fusion increases
recall while maintaining precision. In practice, this results in a
more complete detection of the environment.

Figures 9C–E show an excerpt from the corresponding evalu-
ation in Table 2A. The constructed maps were built from travers-
ing the depicted red track in Figure 8C. The gray area rep-
resents unknown or not-seen areas, white denotes a vote for,
and black against the desired class. Figure 9C shows the single
cam-YOLO-human classification in the top image, whereas the
bottom image consists of the combination of all camera-based
human classifications. While the single classifier already showed
plausible results with correct human classifications highlighted
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with red circles, it still missed some detections. The combination
of classifiers overcame this issue and also increased certainty
for classifications where no humans resided. Figure 9D shows
the ground and crop classifications of cam-FCN-ground in the
top image and the corresponding combination in the bottom.
While the camera-based classification showed significant noise at
the borders, the classifiers supplemented each other to achieve
a denoised and extended classification of the ground. Figure 9E
shows the lidar-SVM-vegetation classification in the top image
and a combination with camera-based classifiers at the bottom.
The lidar already achieved results that were qualitatively close to
the GT data. While in the fused result artifacts resulting from
the ISM approach are visible at the outer borders, the overall
score increased due to the gain of new information and increased
certainty of already perceived information. Figure 9F shows an
excerpt from the evaluation in Table 2Bwhere a classical retrieval
of an occupancy grid map was aimed. The radar classification
depicted on the left provided a quite clean obstacle detection
which in combination with the remaining object classifiers in the
middle led to a richer andmore precise result. Finally, the fusion of
all classifiers and sensors on the right resulted in a quite complete
occupancy map.

4.3. Dynamic Scenario
To evaluate the detection of dynamic obstacles, themapserver was
applied in exactly the sameway as for the static scenario. However,
instead of evaluating a stitched map combining information from
traversing the entire field, the mapserver was queried temporally
for each available timestamp t in the GT data. In order to evaluate
only the detection of dynamic and non-static obstacles, recency
weighting as introduced in 3.2.4 was applied. The ForgetValue and
ForgetRate are evaluated exhaustively at the end of this section.
However, for the following evaluations, a high ForgetRate of 6 and
a high ForgetValue of 0.8 were used, as these values ensured a
responsive mapping where only recent measurements were taken
into account. In this way, the mapserver continuously updated the
positions of moving objects, while still allowing an appropriate
amount of information fusion of non-synchronized sensors.

Contrary to the static evaluation where GT annotations were
dense and pixel-wise, the GT annotations of dynamic obstacles
were point-based (Kragh et al., 2017). Therefore, tile-wise com-
parison between GT data and the fused map was unfeasible.
Instead, point-wise GT annotations were compared to clusters of
detections for each timestamp. Figure 10A illustrates the dynamic
evaluation scenario. First, the different mapserver layers were
fused. The resulting tri-state (occupied, unoccupied, unknown)
likelihoodmap was then clustered for each state with 8-connected
clustering. Clusters smaller than MinClusterSize were pruned to
suppress noise. Finally, TP, FP, and FN were accumulated over
time in the GT data by comparing the detected clusters cj with
index j and the GT positions pi with index i:

TP =
∑
t

TPt, TPt = |{pi|∃cj : pi ∈ cj}| ,

FP =
∑
t

FPt, FPt = |{cj|pi /∈ cj}| ,

FN =
∑
t

FNt, FNt = |{pi|pi /∈ cj}| . (18)

Regions that remained unknown (P(m)= 0.5) did not affect
the evaluation, and only detected clusters and GT positions
inside the sensor frustum were taken into account. Similar to
the static scenario, precision, recall, and F1-score metrics were
calculated using equation (17). Figure 10B shows an example
from the dynamic evaluation. The GT positions are denoted by
colored circles, while the detected clusters are represented by
white regions beneath. In the depicted example, one true-positive,
one false-positive, and one false-negative were counted due to the
fact that the yellow and red positions were inside the sensors’
frustum.

Figure 9B illustrates the evaluation pipeline for the tempo-
ral sequences. In an offline-procedure, all necessary GT infor-
mation like person identifiers (ID), their status (visible/non-
visible and standing/sitting/lying), the geo-referenced locations,
and the timestamps was extracted. Afterward, the mapserver ran
in a common setup with the forgetting feature, where for every
given GT timestamp the current maps of the mapserver were
extracted. In an evaluation step, themaps were clustered and com-
pared to the GT information to achieve the presented results in
Figures 10C,D.

Table 3 lists 9 different sensor/algorithm setups that were
evaluated. Setup 1 includes all sensors and algorithms, setup 2
includes all stereo camera algorithms, whereas setup 3–9 concern
individual sensors and detection algorithms.

Figure 10C shows precision, recall, and F1-scores for setup
3–9, when varying the MinClusterSize used in the clustering.
Figure 10C (right) shows results for clusteringwithout subsequent
dilation, whereas Figure 10C (left) introduces dilation by the
vehicle radius of all clusters as is common in robotic navigation
and planning algorithms (Dudek and Jenkin, 2010). In the current
evaluation, dilation effectively mitigated the influence of localiza-
tion inaccuracies and resulted in better scores. Objects that were
detected and mapped with slight displacements from their GT
positions were thus more likely to be included by dilated clusters.
This indicated that a large part of false-negative detections were
located close to GT positions. Setup 4 (lidar) and 9 (radar) had
undefined F1-scores for MinClusterSizes above 0.7 and 0.6m,
respectively. This was caused by the two sensors providing precise
3D measurements, which made their detections precisely located
and narrow in space. Since the human objects had small foot-
prints, no clusters with areas above these values were generated.
For the same reason, a MinClusterSize of 0.5m was chosen as a
compromise, such that most of the noisy sensor readings were
filtered out, while small and correct detection footprints from
humans were still kept.

Table 4 shows precision, recall, and F1-scores for the fusion
setups 1 and 2 using MinClusterSize= 0.5 and no subsequent
cluster dilation. For setup 1 (all sensors and algorithms), com-
plementary (max-pooling) fusion performed much better than
competitive fusion. This was caused by the fact that detections
from different sensors did not overlap perfectly due to localiza-
tion errors. Competitive fusion, therefore, falsely combined non-
overlapping detections, whereas the complementary fusion toler-
ated the localization issues by effectively summing all detection
contributions. For setup 2 (camera-based detection), however,
competitive (Bayesian) fusion was superior to complementary
fusion. This was caused by the fact that the same camera was
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FIGURE 10 | Evaluation of dynamic scenario. (A) Dynamic evaluation of TP, FP, and FN acquisition. (B) Dynamic evaluation example. Valid clusters are colored
white, and GT positions of humans and the tractor are overlaid. (C) Precision, recall, and F1-score over increasing minimum cluster size for different setups from
Table 3. ForgetRate= 6 and ForgetValue= 0:8. Left: No dilation. Right: Dilation by vehicle radius of 2:5m. (D) F1-score over increasing ForgetValue with different
ForgetRate (FR).

used by all algorithms, thereby mitigating localization errors and
ensuring overlapping detections.

Figure 10D shows precision, recall, and F1 scores for setup 1
(all sensors), when varying the ForgetRate (1–6) and ForgetValue

(0.1–0.9) of themapserver. Similar to the above cases,MinCluster-
Size= 0.5 and no subsequent cluster dilation was applied. Clearly,
all scores were dramatically influenced by the two parameters.
A ForgetValue of 0.8 and ForgetRate of 6 seemed to be the best
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TABLE 3 | Listing of setups and the detection algorithms they comprise.

Class Object Heat Object Objects/human Human Human Anomaly

Algorithm Detection DynamicHeat SVM FCN LDCF YOLO DeepAnomaly

9 (Radar) 3 (IR) 4 (Lidar) 5 6 7 8

Setup 2 (Camera)

1

TABLE 4 | Sensor fusion of setup 1 and 2 with different fusion strategies.

Setup Fusion F1 (%) Precision (%) Recall (%)

1 Max 70.81 57.23 92.86
Bayes 42.58 39.76 45.83

2 Max 57.32 51.14 65.22
Bayes 61.22 56.96 66.18

compromise between memory and responsiveness, such that only
the most recent measurements were taken into account. A too
large ForgetValue (close to 1) resulted in no memory, meaning
that valuable information fromprevious frameswas not taken into
account. Contrarily, a too small ForgetValue (close to 0) resulted
in too long memory (approaching the static scenario), effectively
letting outdated information of obstacle positions stay in the map.
Similarly, a too small ForgetRate resulted in too long memory,
whereas the performance seemed to approach an upper limit with
larger ForgetRates.

4.4. Process Evaluation
The above-mentioned approaches were able to classify single
observations point-wise and did not take into account surround-
ing classifications when determining classes of current observa-
tions. In agricultural processes, however, observations obtained
from the surroundings are typically identical and homogeneous
in particular. Furthermore, certain transitions between classes are
rather unlikely. For example, if the classification of the current
pose is Grass, it is rather unlikely that the classification of the
next pose is Ground. From the processable class Grass to the
traversable class Road, there are commonly ground, borders, or
trenches. To utilize these dependencies between the individual
classes, we use a Hidden Markov Model (HMM) and calculate
the belief P(O,w; λ) about the class model λ from equation 11.
The observation per pose is the feature vector from equation
(6) of homogeneous clusters extracted via SEVDS (see equation
(5)). The sequence of observations along some trajectory contains
the upcoming poses of the vehicle as depicted in Figure 7A. A
consequence of having metric grid maps is that via the shape
constraints in equation 5, implicit sizes of clusters can be given.
This influences the step size of every pose to decode along the
trajectory, so that empirically shape parameters for given step sizes
can be found.

To compare the capabilities of the HMM against the static
scenario from subsection 4.2, the same process-relevant classes
(denoted in brackets) were chosen to train four different models
(I := 4 w.r.t. equation (11)): Vulnerable Obstacles (Mannequin),
Processable (Grass), Traversable (Ground), and Non-Traversable
(Vegetation). It is worth mentioning that the class Grass was

removed from themodelTraversable tomake itmutually exclusive
against the model Processable.

The entire training was performed in a supervised fashion on
the mapped data from the static scenario. All inter-property mod-
els as depicted in 7c had five hidden states (J := 5 w.r.t. Equation
11) due to the fact, that less states result in worse performance
and more states do not show any improvements. The minimum
amount of states can be explained by the necessary modeling of
the burn-in and out behaviors as stated in 3.4.2, while more states
do not improve the performance as the models tends to exit after
the fifth state. Furthermore, the training set was extracted out
of randomly generated trajectories, while the test set represented
trajectories driven by the vehicle. It was desired to forecast the
class along the trajectory for as long as possible, but the max-
imum length was constrained by two factors: First, the applied
mapserver only had a locally bounded area, where the maximum
allowed range reading was equal to the size of the outer boundary
minus the inner boundary (Kragh et al., 2016). For the presented
experiments, the boundaries were set to 35 and 10m, respectively,
which resulted in a maximum forecast of 25m. Second, not all
sensors exploited this maximum range reading and further, closer
areas tended to be more precise in information due to the nature
of the occupancy grid mapping algorithm. Thus, to have a fair
comparison, the decodingwas done for a close range starting from
the tractor at 0 to 12.5m (Figure 11A) and a far range extending
the former range from 12.5 to 25m (Figure 11B).

For training, the HMM was initialized as follows: all start and
property probabilities were uniformly distributed with an additive
Gaussian noise. The transmission probabilities of the property
models were randomly initialized. The beta distribution mean for
emission was set by k-means++ (Arthur and Vassilvitskii, 2007),
while the variance was kept constant. Training and decoding was
performed on all available detection algorithms as presented in
Table 2B.

5. DISCUSSION

The proposed architecture is an extension of the authors’ previous
paper on occupancy grid mapping in agriculture (Kragh et al.,
2016). The current study has unified the system architecture and
extended the previous approach by a class-specific evaluation of
static obstacles plus a method for detecting andmapping dynamic
obstacles over time. Furthermore, this paper has introduced a pro-
cess evaluation method combining mapped environment detec-
tions over time into agriculturally relevant properties.

The provided evaluation measured the end-to-end ability of
both fused and individual algorithms to detect and map ele-
ments with the provided architecture. That is, detections were
not evaluated in local sensor frames, but were instead evaluated
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A B

FIGURE 11 | Results for decoding the corresponding classes along the trajectory at close and far range. (A) Confusion matrix for near field. (B) Confusion matrix for
far field.

after projection to local 2D grids and after global mapping. A
deficiency of such an evaluation was that it did not clarify why
a given algorithm or sensor performed badly. The end-to-end
detection errormayhave originated frommultiple sources, such as
sensor noise, detection or local localization errors by algorithms,
errors in intrinsic and extrinsic calibration parameters, inaccurate
grid map representations, robot localization errors, and errors in
the ground truth annotations. To isolate and quantify these error
sources, GT data would be necessary for each link in the chain.
However, annotations of obstacles were only available as global
GPS-coordinates and not in the local vehicle frame or sensor
frames (e.g., pixel-wise or bounding box annotation in camera
images).

After fusing all sensors, the complete architecture reached an
F1-score of 88.8% in static traversability assessment (Table 2B)
and 70.8% in dynamic obstacle detection (Table 4). The presented
performance measures are useful for showing relative improve-
ment with fusion and for comparing proposed methods. The
metrics, however, cannot quantify the safety-level of the system in
real operation. A very low F1-score for e.g., camera-based human
detectors in Tables 2A,B suggests that the combined localization
and detection is of insufficient performance. However, an actual
safety system should not be evaluated on F1-scores of a map, but
instead on, e.g., the decoded process-relevant properties along the
traversed trajectory as in Figure 11. As of today, no self-driving
cars are certified for full autonomy, and, to the authors knowledge,
no regulations describe exactly what detection accuracy, preci-
sion, frequency, etc. would be required for certification. Instead,
self-driving car manufacturers document their traveled distances
during testing without incidents andwithout human intervention.
An actual certification might end up building on measures like
these. And most likely, autonomous vehicles in agriculture will
follow and possibly extend the regulations of self-driving cars,
once available.

As shown in Tables 2A,B, classification performance generally
increased as more sensors were introduced. However, different
sensors detecting the same class may not always lead to a signifi-
cant increase in accuracy. In fact, this was the case for the radar.
The fusion of all sensors in Table 2B gave an F1-score of 88.873%.

The same setup without the radar gave an F1-score of 88.871%,
which was hardly a significant improvement. The specific radar
and detection algorithm pair could, thus, be left out of the fusion
setup, as it did not contributewithmore information.On the other
hand, even with insignificant improvements, additional sensors
may still provide a more robust and redundant setup, thus miti-
gating single points of failure. And with another radar, specifically
targeting agricultural scenarios (e.g., by penetrating vegetation),
actual improvements in accuracy may be possible.

The results in Figure 10C (right) showed that the F1-score
could be improved significantly by introducing a cluster dilation
corresponding to the vehicle size in the dynamic evaluation.
Effectively, the dilation mitigated the influence of localization
and demonstrated the potential of the detectors when being
less sensitive to localization errors. An optimized localization, a
model-based approach, or temporal tracking of detected clusters
would, therefore, potentially increase the combined detection and
localization results.

As previously mentioned, localization errors could also origi-
nate from inaccurate grid map representations in the ISMs. This
could be caused by extrinsic and intrinsic calibration errors for
each sensor, such that detections in the local sensor-frames were
incorrectly transformed to the vehicle-frame.

Multiple heuristic models were introduced in the ISM to con-
vert detections into occupancy probability estimates. Heuristic
model parameters have been selected to model both detection
and localization uncertainties for a given algorithm. In future
work, these issues could be addressed by supervised training of a
function approximator for mapping detections from local sensor-
frames to the vehicle-frame as well as converting detection cer-
tainties to occupancy probabilities. Effectively, this could limit the
number of heuristics and improve both localization and detection
accuracy. One example is the heuristic model used for converting
2D bounding boxes to anOGMusing a stereo camera as explained
in paragraph 3.3.1.2. The uncertainty for localizing an object is
modeled using assumed radial and the angular variances. How-
ever, the true radial and angular variances can be estimated more
accurately from sensor calibrations. A more extensive approach
would be to train the ISMs end-to-end, such that environment
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detections were directly output in local vehicle coordinates. How-
ever, this would contradict our applicable architecture approach
that allows easy setup of different sensor combinations and would
require a much larger dataset for training.

The semantical occupancy mapping technique used compet-
itive (Bayesian) fusion for similar modalities followed by com-
plementary (max-pooling) fusion for dissimilar modalities. This
was both an intuitive and a reasonable procedure for fusing infor-
mation and was demonstrated to increase the F1-score. More
advanced procedures such as instance boosting could be trained
to learn the optimal combination of semantical maps. Such pro-
cedures would expectedly be less prone to misclassifications such
as cameras blinded by the sun or potential systematic errors.
Comprising the three possible levels of fusion, which are fusion
on raw data, feature level, or decision level, our approach focuses
on decision level fusion. Other approaches like Kalman filtering
techniques tend to work on raw data and at feature level which
might result in better fusion results, but also demand more effort
in designing the filters themselves. Furthermore, varying setups
cannot be considered easily due to necessary redesign of the filter.
On the other hand,model-free approaches like particle filters have
proven their capabilities also for occupancy grid map approaches
by Korthals et al. (2016), but would need deeper insights into
the sensors’ design to build up proper fusion. As stated before,
this approach pursues the easy changeability and extendabil-
ity of sensors and other information sources. Considering this
condition, the occupancy grid mapping technique tends to be
the most versatile approach, which allows the combination and
incorporation of information also after the sensor data has been
mapped.

Process evaluation was implemented to be executed at runtime.
The Hidden Markov Model (HMM) was applied to decode the
most recent SOGM along the upcoming vehicle trajectory. This
approach allowed the process evaluation along a vehicle trajectory
to predict and steer machine parameters for upcoming situa-
tions. The training and decoding was performed such that intra-
property-HMMs modeled the process-relevant classes for a grass
mowing scenario which were linked together in a inter-property-
HMM. Results showed a detection rate of over 90% for every
class in near-field situations, whereas the detection rate degraded
noticeably in far-field situations. The drop performance can be
explained by the map-building process. Far-field areas have only
been observed a few times and are, therefore, prone to classi-
fication errors. Near-field areas have been observed more often
and are less sensitive to similar noise. Furthermore, detection
algorithms are expected to perform better at short range. Thus,
the proposed HMM approach for combining the classifications
inside the SOGM has proven its capabilities to learn the process’s
statistics and correct combination of SOGMs to predict the correct
classes. Other approaches such as boosting are applicable for
classifier fusion as well. However, the structure of HMM is better
suited for modeling the statistics and consecutiveness of the given
processes.

However, with our proposed architecture pipeline and infor-
mation processing we have shown that with each combination
of classifiers, an overall increase of the F1-score can be reached.

With up to 88.8% in a 10 cm cell-wise, globally mapped eval-
uation for obstacle scenarios, our approach represents a state-
of-the-art solution for environment classification in agricultural
scenarios. Similar results were achieved for mapping semantical
classes so that further mowing processes can be prospectively
controlled by this information. Finally, the proposed applica-
tion of HMMs to decode process-relevant information directly
from the SOGMs has shown that our architecture is online
applicable.

6. CONCLUSION AND FUTURE WORK

In this work, we have presented an information processing archi-
tecture for global mapping and process evaluation in an agricul-
tural grass mowing scenario. The proposed architecture consists
of four components: Sensor Platform, Inverse Sensor Models,
Fusion and Mapping, and Process Evaluation. The sensor plat-
form comprises all applied sensors for localization and environ-
ment data acquisition, such as stereo camera, radar, lidar, and
thermal camera. The inverse sensor models (ISMs) describe the
sensors’ data processing for detecting and localizing process-
relevant properties and objects in the environment, such as
grass, vegetation, and humans. The ISMs are 2D grid-based,
non-parametric representations of the detection outputs. Fusion
and mapping is performed on the ISMs which are referenced
and fused based on the occupancy grid mapping algorithm
into a semantical occupancy grid map (SOGM) stack. Process
evaluation applies a Hidden Markov model-based approach to
first train and then quantify the environment along the vehi-
cle’s trajectory to reveal process-relevant information out of the
SOGMs.

To evaluate the capabilities of the mapping approach, we com-
pared the mapping and fusion of ISMs in a static and dynamic
obstacle scenario against the FieldSAFE dataset. For both sce-
narios, we reported detection results for individual classifiers,
fusion among classifiers, and fusion among sensors. In the static
case, detection and localization results improved when introduc-
ing information fusion, first through competitive fusion among
classifiers detecting similar classes, and second through com-
plementary fusion among sensors and algorithms detecting dif-
ferent classes. For detecting humans in the dynamic evalua-
tion, only classifiers that were able to detect these were fused
accordingly, before a grid cell clustering was applied to retrieve
consistent human hypotheses. Furthermore, the SOGM method
was extended with forgetting capabilities to adapt the mapping
approach to dynamic environments. Similar to the static evalua-
tion, a combination of multiple sensors led to an overall improve-
ment in detection of dynamic obstacles.

In future work, we want to incorporate geodata acquired
by satellites, drones, or planes from which we directly derive
process-relevant information into the detection pipeline. This
approach will overcome issues such as complex sensor registra-
tion, weather conditions, and false detections for static properties
and objects in the environment, and will, therefore, improve and
harden our setup. Furthermore, we want to apply supervised
training of the mapping from sensor-frames to the vehicle-frame
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for ISMs, thereby reducing heuristics and improving global
localization.
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