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In developing a humanoid robot, there are two major objectives. One is developing a
physical robot having body, hands, and feet resembling those of human beings and being
able to similarly control them. The other is to develop a control system that works similarly
to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a
control systemwith a brain-oriented logical structure for the second objective is proposed.
The proposed system autonomously adapts to the environment and implements a
clearly defined “consciousness” function, through which both habitual behavior and goal-
directed behavior are realized. Consciousness is regarded as a function for effective
adaptation at the system-level, based on matching and organizing the individual results of
the underlying parallel-processing units. This consciousness is assumed to correspond
to how our mind is “aware” when making our moment to moment decisions in our
daily life. The binding problem and the basic causes of delay in Libet’s experiment are
also explained by capturing awareness in this manner. The goal is set as an image in
the system, and efficient actions toward achieving this goal are selected in the goal-
directed behavior process. The system is designed as an artificial neural network and aims
at achieving consistent and efficient system behavior, through the interaction of highly
independent neural nodes. The proposed architecture is based on a two-level design.
The first level, which we call the “basic-system,” is an artificial neural network system that
realizes consciousness, habitual behavior and explains the binding problem. The second
level, which we call the “extended-system,” is an artificial neural network system that
realizes goal-directed behavior.

Keywords: goal-directed behavior, habitual behavior, autonomous adaptation, image processing, binding problem,
Libet’s experiment, model of consciousness, brain-oriented system

INTRODUCTION

Aims, Position, and Purpose of Research
In developing a humanoid robot, there are two major objectives. One is developing a physical robot
having body, hands, and feet resembling those of human beings and being able to similarly control
them (Jeffers and Grabowski, 2017; Tian et al., 2017). The other is to develop a control system that
works similarly to our brain, to feel, think, act, and learn like ours (Dennett, 1994; Tani, 2017;
Zorpette, 2017; Reggia et al., 2018). In this article, we propose an architecture as a basic logical
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structure of a brain-oriented control system toward realization of
humanoid robot that feels, thinks, acts, and learns for the second
objective. The reason for focusing on the architecture is that
making the logical structure of the robot control system similar to
our brain has the same importantmeaning as creating the physical
structure of the robot resembling that of a human. The main
behavioral characteristics of the humanoid robot will depend
strongly on the basic logical structure of the control system.

To realize major operational characteristics of the brain in
the system, we incorporate various findings from neuroscience
and psychology to the proposed system. Knowledge on computer
systems technology to realize highly complicated systems as well
as latest artificial neural network designs is adopted at various
levels to provide an integrated architecture.

Although the proposed robot’s action is primitive by focusing
on clearly defining the architecture, the control system of the
robot has a function similar to consciousness and autonomously
adapts to the environment. As an autonomous adaptation system,
the robot feels, thinks, and learns through interactions with the
environment. In addition, the duality of our behavioral character-
istics—habitual behavior and goal-directed behavior—which has
been the subject of research in a wide field including psychology
and neuroscience (Deutsch and Strack, 2006; Kahneman, 2011;
Mannella et al., 2016), is also realized in the control system by
adopting a two-layer logical structure.

Themodel of consciousness included in the architecture clearly
shows that consciousness is an essential function of the parallel-
processing system and proposes the method of realizing con-
sciousness and “self ” from an engineering point of view. In
addition, the model is positioned as improved model of global
workspace theory (GWT) (Baars, 1988; Dehaene, 2014) and
explains “unity,” which is one of the basic characteristics of con-
sciousness (Brook and Raymont, 2017).

The proposed architecture comprehensively accounts for the
two major problems regarding consciousness still under debate,
the time delay in Libet’s experiment (Libet, 2004), and the binding
problem (Feldman, 2013). This shows that the proposed architec-
ture is not only valid as a brain-oriented architecture but also use-
ful as a brainmodel from the viewpoint of information processing.
Although the function level of the robot in this article is primitive,
the proposed architecture can be applied to different problems
and has high scalability. By expanding on the basic architecture,
it will become possible to realize a humanoid robot with both
mind and body. The architecture can be useful not only for
humanoid robots but also for various types of autonomous robots,
in general-purpose artificial intelligence (AI) development, and
for understanding the brain.

Related Works, Methods, and Main Results
Recent developments in AI, particularly in deep learning, have
shown remarkable achievements, such as mastering the game of
Go (Silver et al., 2016), but current research is largely targeted
toward particular fields and problems, and efforts toward brain-
oriented design and human-like control systems aremuch smaller
in comparison.

Even in the rapidly developing field of neuroscience, the whole
brain’s function as a control system has yet to be clarified. The

neural mechanism behind “consciousness,” a basic phenomenon
of the brain, and “goal-directed behavior,” the basis of everyday
behavior, are still under debate (Gremel and Costa, 2013; Hart
et al., 2013; Mannella et al., 2016). Human behavior is believed
to be comprised of two distinct behavior characteristics, habitual
behavior and goal-directed behavior, known as the duality of
human behavior (Dezfouli and Balleine, 2013). Duality in human
behavior has been widely studied in many fields, for example, fast
and slow thinking by Kahneman (2011) in behavioral economics,
and reflective-impulsive behavior model by Deutsch and Strack
(2004, 2006) in psychology, but the basic neural mechanism has
not been clarified.

We have previously proposed a conceptual control system that
autonomously learns and makes behavior decisions based on
primitive consciousness using an artificial neural network. We
had proposed a model of consciousness as a system-level function
and presented an artificial neural network system that enables fast
decision of optimal behavior (Kinouchi and Kato, 2013; Kinouchi
and Mackin, 2015). However, our previous proposal primar-
ily explained only habitual behavior, and goal-directed behavior
could not be explained yet.

On another front, various attempts have been proposed by
Franklin et al. Haikonen has proposed the Haikonen cognitive
architecture (HCA) and has been operating a robot with con-
sciousness that adapts autonomously using a neural network
(Haikonen, 2003, 2007, 2012). Franklin has been running a
hybrid adaptation system, Learning Intelligent Distribution Agent
(Franklin and Patterson, 2006; Franklin et al., 2013, 2014). In
these, the method of action decision and the model of con-
sciousness are both developed in accordance with Baars’s pro-
posed GWT (Baars, 1988; Baars and Franklin, 2007). In addi-
tion, Dehaene et al. proposed the global neuronal workspace
that extended GWT from the viewpoint of neuroscience and
tried to demonstrate it based on brain observation (Dehaene and
Changeux, 2011; Dehaene, 2014). However, in these, perceptual
filtering focused on only the most “salient” information is per-
formed as an action selection based on GWT. As the salient
information is not always optimal information for the system, the
system’s own profits is not strictly reflected in the action selection.
We assume that the basis of action decision of autonomously
adaptation system is to increase the profit of the system itself as
much as possible at each time. Moreover, “self ” that is an essential
element of consciousness should correspond to the system itself
trying to make the profit as large as possible.

First, we modified, reorganized and refined our previously
proposed model as a core system for efficiently realizing habitual
behavior (Kinouchi, 2009; Kinouchi and Kato, 2013; Kinouchi
and Mackin, 2015). Hereafter, we call this core system the
“basic-system.” The basic-system autonomously adapts to the
environment with functions of action decision based on profit
optimization of the system at each time.

The main functions of the basic-system consist of primitive
operations; (a) detecting objects from the environment and recog-
nizing the objects, (b) action decision for the recognized objects,
and (c) preparing next action including system-level learning. The
importance of object handling function has been pointed out in
the field of neuroscience, and then it is configured as a dedicated
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functional unit that enables the system to handle a bundle of
signals, such as attributes of the object, collectively for processing.
In action decision, an optimal action plan is calculated in a short
time by using a recurrent neural network based on theBrain-State-
in-a-Box (BSB), proposed byAnderson (1983) andGolden (1993).
In addition, proposed circuit provides a function of powerful pat-
ternmatch detection that detectsmatched pattern from thousands
of parallel signals representing attributes of objects. This function
is provided based on the findings related to pyramidal neuron
(Spruston, 2008; Stuart and Spruston, 2015).

The basic-system is designed with priority on shortening
response time and realized as a parallel-processing system that can
quickly select desirable actions. To adapt itself to the environment,
the system learns using an actor–critic reinforcement learning
method, which is a kind of learning method without a teacher or
a supervisor, under the control of evaluation unit incorporated in
the system. Conscious phenomenon is regarded as activities for
effective adaptation at the whole system-level, based on informa-
tion integration and reconfiguration of individual results of the
underlying paralleled functional units for preparing next action.
The contents of consciousness are mainly composed of recon-
figured information from attributes of the objects and evaluated
value of the evaluation unit after action decision. And, these
contents are transmitted to the related functional units in the
whole system for speedy next action decision. These activities
account for how our mind is “aware” when making our moment
to moment decisions in our daily life.

Moreover, the binding problem and basic cause of the time
delay in Libet’s experiment is also explained comprehensively
based on the above understandings for consciousness. In explain-
ing both the binding problem and the Libet’s delay, it is important
that “the content of consciousness is reconfigured for the next
action after action decision.” Furthermore, for the binding prob-
lem, it is shown that functions handling bundled signals and a
powerful patternmatch detection functions also play an important
role.

Next, to realize goal-directed behavior, we added functions
for goal management to the basic-system. Hereafter, we call this
enhanced system the “extended-system.” In the extended-system,
both habitual behavior and goal-directed behavior are compre-
hensively realized. The goal is represented and handled as a kind
of object in the system, and efficient actions toward achieving the
goal are successively executed.

In the extended-system, it is necessary to represent, to handle,
and to recollect related reward and actions as well as the goal. To
execute these functions effectively, the image handling functions
are provided. In this article, we use the term “image” as “informa-
tion generated inside the system that the system can operate as an
object (processing target)” based on Haikonen (2003). Using these
functions, it is possible to retrieve past experiences from long-
term memory and refer to these contents for decision-making.

These operations are realized by repeated execution of the func-
tions corresponding to the basic-system, aimed at higher reward
acquisition over a long-time span. Here, consciousness is more
than just “awareness” of a simple decision-making process but
includes a kind of “will” or “intention” of the mind aiming at
acquiring a higher level of reward, by processing sequential chains
of multiple images.

BASIC CONDITIONS AND OUTLINE OF
THE SYSTEM

Methods and Basic Conditions of the
Control System
To grasp the fundamental logical structure of the brain as easily
as possible, we adopt following method. First, we assume that
“the brain is a kind of information processing system that satisfies
certain conditions.” Then, we clarify what functions are required,
and what kind of logical configuration is necessary and efficient
on the system satisfying the conditions. In this method, we do not
directly imitate the structure of the brain or conscious phenom-
ena. We expect that consciousness is designed or generated as one
of the functions necessary for satisfying the system conditions;
moreover, logical functions related to conscious phenomenon are
totally included in the system. Based on the classification of Reggia
(2013), our method is a kind of computational modeling of the
“simulated consciousness” in a broad sense, but it also encom-
passes a part of the “instantiated consciousness.” The validity or
effectiveness of the logical structure is checked based on whether
or not the major characteristics of the brain can be explained
using the logical structure. As themain characteristics of the brain,
consciousness, and related phenomenon, binding problem, delay
of Libet’s experiment, duality, etc., are used for validations.

Basic conditions of the control system are shown below.

(i) The control system autonomously adapts to the environment
through learning. We consider that autonomous adaptation
is themost fundamental and important system characteristic
of the animal brain. To adapt itself to the environment with-
out a teacher or a supervisor, the control system incorporates
a functional unit that evaluates reward and punishment,
acts under its own decision based on the evaluated value,
and self-adapts based on the results of the action. As a
humanoid robot control system, when the system receives
a reward, the evaluation unit becomes a pleasant state,
and on the other hand, when receiving a punishment, it
becomes an unpleasant state. The degree of pleasant and
unpleasant varies according to the degree of reward and
punishment.

(ii) The system design is based on maximum performance and
efficiency. The aim is not only to realize high performance
but also to base the system design on maximum efficiency
design. The assumption is that our brain is in a kind of opti-
mal design state through natural selection process. By choos-
ing maximum efficiency and optimal design from among
various design possibilities, as a result, we expect that the
selected design approaches that of the brain. Moreover, to
realize many complexed functions with high performance,
parallel processing is basically introduced.

(iii) The system is constructed by artificial neural networks. An
artificial neural node is a processing element inspired by
biological neural cells and is used as a basic computational
element in deep learning and artificial neural networks. It
is most effective from the viewpoint of high parallelism
and flexible learning function. The processing speed of the
element is assumed to be equivalent to an actual nerve
cell.
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Operating Environment of the Robot and
Basic Configuration of the System
Because we prioritized understanding of the basic logical struc-
ture, the control system, the robot, and the environment are
limited to indispensable functions or items and set as simple as
possible. The robot and its operational environment are illus-
trated in Figure 1A. The robot has functions that detect objects,
recognize the objects, approach or avoid the objects, and earn
rewards or punishments through acquisition of the objects. The
robot walks randomly when there is no object in sight. When
one or more objects are captured, the robot selects one preferred
object and acts for it. These behaviors are controlled by the control
system in the robot head. (In the following, the control system is
called “system.”) Conceptual configuration of the system is shown
in Figure 1B. The perception module detects and recognizes an
object, and the action decision module determines an action,

FIGURE 1 | Schematic configuration of the robot in the environment (A) and
control system (B), and two step approaches for goal-directed behavior (C).

and the motor module executes the action. The memory module
includes episodic memory. The system control module controls
the operation of the whole system. Focusing on habitual behavior
and goal-directed behavior, we designed the system in two stages
as shown in Figure 1C. First, the basic-system realizes habitual
behavior. Next, the extended-system, functional expansion of the
basic-system, realizes goal-directed behavior.

BASIC FUNCTIONS IN THE SYSTEM
DESIGN

To configure an autonomous adaptive system using a neural net-
work based on the basic conditions shown in the previous section,
the following basic functions are further required.

a. Handling group of signals as a bundle and handling the bundle
as an object.

b. Managing a signal as the signal with samemeaning, even when
used in various areas in the system.

c. Time management by the system itself and timing adjustment
of a number of parallel operating functional units consistently.

In the case of computers, these functions are usually designed
and implemented based on human designer. However, in the case
of an autonomous adaptive system in which the system changes
the system configuration itself, these functions must be imple-
mented as basic functions in advance. On the premise of these
functions, many dedicated functional units, such as recognition
and action decision function, can operate in the autonomous
adaptation system.

Handling a Group of Signals as a Bundle
and Handling the Bundle as an Object
It has been reported that when animals or humans “perceive”
something, inputs are selected from various stimuli to form an
object, and then the object is later identified from detailed infor-
mation and location information (Kahneman andTreisman, 1992;
Pylyshyn, 2001; Xu and Chun, 2009). Object handling functional-
ity has been reported to have a strong relationship with working
memory features (Bays et al., 2011).

In computer systems, for effective operation, it is essential that
the system can express andmanage information composed of data
that change over time, such as files and packets, as a bundle or a
data set (Gray andAndreas Reuter, 1993; Patterson andHennessy,
1994; Stalling, 2005).Various data or signals can be simultaneously
exchanged or activated in a processor, but the data that can be
processed by a program is limited to the data satisfying a specific
condition, such as being on a general register or memory. For
data satisfying the specific condition, a program can process the
data regardless of whether that are data from an external source
or internally generated data.

We have previously proposed the “object-handler” for bundling
and handling information described earlier (Kinouchi and
Mackin, 2015). In this article, we further clarify the functions
of the object-handler for bundling signals, as well as using
these bundles as an object. Only information maintained by the
object-handler can be handled as an object regardless of where the
signal originated from.
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Management of Signal Meaning
Information that is widely used in the system must be interpreted
with the same meaning throughout the system. In this article, for
information that needs to be used over a wide area or over time,
a node serving as a reference of the meaning of each signal is
provided, thereby managing the meaning throughout the system.
Hereafter, we call this node the “reference node.” The meaning
of each reference node is determined by the corresponding code
conversion units, such as pattern and color recognition units.

When a functional unit uses signals whose meaning is already
managed, the signal is supplied from the reference node. This
method is based on the “in situ” representation proposed by van
der Velde (2013). The system can be easily configured by allowing
each unit to send and receivemanaged information bidirectionally
from the reference node. In Figure 2, many functional units con-
nected to the output of the reference node can receive signals at the
same time.When one functional unit outputs a signal to the signal
line, other functional units can receive the signal as a signal whose
meaning is managed. In Figure 2A, a pair of unidirectional serial
connection is provided for bidirectional transmission. In this way,
signals whose meanings are managed by the reference node can
be mutually transmitted and received between a large number of
function units. Excitation of the reference node is unnecessary
when merely transmitting and receiving the managed signals
between the function units. Since this connection has a function
similar to that of “bus” used in computers (Hwang and Briggs,
1984; Patterson and Hennessy, 1994), it is shown simplified as a
bus in Figure 2B. When modifying the meaning of the reference
node, a code conversion unit that determines the meaning of the
reference node excites the reference node by the output of the code
conversion unit.

System Time Management
In digital computers, the time adjustment between the functional
units operating in parallel is controlled using a clock running

FIGURE 2 | Management of signal meaning by the reference nodes and bus.
Configuration of a pair of unidirectional serial connection for bidirectional
transmission (A) and configuration represented by bus (B).

at a constant rate with high accuracy (Patterson and Hennessy,
1994). However, it is difficult to adopt this method in the system.
The reason is that the processing time of the functional unit in
the system is not necessarily fixed and learning for adaptation
may change the processing time of the unit itself. Nonetheless, for
the system to operate parallel functional units satisfying the basic
condition (ii) for high performance, timing adjustment between
various units is essential.

For basic timing adjustment, we used the case where the units
in the system are excited simultaneously in wide-area mutual
stimulation. The case indicates that the activation of each unit
occurs at the same time and each unit can base the start timing
from this signal. The excitement of the recurrent network for
action decision described in Section “Decision Phase” provides
this simultaneous excitation as a base point of timing and keeps
the track of the system time by the number of iterations from
this base point. However, the repetition time of this base point
is long and not constant; the system subsidiarily uses together a
constant period clock with short repetition time and low precision
for a narrow time width. A method of dividing or slicing the clock
time is also used to share the bus among various function units
accessing the bus at the same time.

CONFIGURATION AND FUNCTIONS OF
THE BASIC-SYSTEM

In this section, the configuration of the basic-system and how
habitual behavior is realized by the basic-systembased on the basic
conditions is described. The configuration of the basic-system is
shown in Figure 3. One processing cycle of the basic-system is
composed of three phases, the preprocessing phase, the decision
phase, and the postprocessing phase. Through repeated iteration
of the processing cycle, habitual behaviors are executed as shown
in Figure 4. In the preprocessing phase, the objects are detected,
and in the decision phase, action for the object is decided. The
instruction for action is issued immediately after the decision
phase. In the postprocessing phase, the information in the system
is reorganized and prepared for the next cycle. The reason for
issuing an action instruction immediately after deciding an action
is that fast response to a stimulus is a major feature of habitual
behavior related to the basic condition (ii). For primitive animals,
the length of response time to a stimulus often becomes a matter
of life or death.

The basic time of the system is counted by the number of pro-
cessing cycles. Since, many networks widely excite simultaneously
for action decision, the basic point for time management of the
system is set at the last point in each decision phase. The execution
time of one processing cycle will be simply called a cycle hereafter.

Preprocessing Phase
Here, we describe the main process in the preprocessing phase
of preparing information necessary for action decision, which
consists of the following two steps:

a. Detecting information to be operated by the system and man-
aging it as a bundle of information.

b. Executing pattern recognition and color recognition for bun-
dled objects.
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FIGURE 3 | Configuration of the basic-system, module configuration in panel (A) and bus configuration in panel (B).

Object Detection and Management
Object detection and management are described according to
Figure 3. When a group of stimuli generated in the sensed signals
buffer, the object detector detects these signals as one bundle, and
a primitive-object-handler in a free state captures it and sets it as a
candidate of object. The primitive-object-handlers are functional
units that maintain and manage temporary information of the
candidate of object composed of sensed signals corresponding
figure and location. From this point, the location of the candidate
of object is tracked. Then, a free object-handler takes over the
information of the candidate of object from the primitive-object-
handler, and the object-handler starts management of the infor-
mation as object. At the same time, the object-handler requests to
recognize pattern or color of the object maintained in the object-
handler to related functions. The object-handlers are functional
units that maintain and manage the temporary information as
bundles of information composed of sensed signals, location,
and recognized attributes, such as pattern or color, of the object.

[We assume that the primitive-object-handlers are related to func-
tion of the fragile memory, a kind of short-term memory, and the
object-handlers are related to function of the working memory,
based on Sligte et al. (2009, 2010); Scimeca et al. (2015); Block
(2011) and Bays et al. (2011).]

Only the bundles of information managed by the object-
handler can be processed for action decision by the system. This
means that even if a bundle of information or signals is generated
in the system itself, the bundle managed by the object-handler can
be treated as an objective for action decision of the system. This
method is applied to the image handling used in the extended-
system. Details will be described later.

Object Recognition
Here, object recognition is described according to Figure 5. The
object-handler instructs recognition units, such as pattern or
color recognition, to recognize the object allocated to the object-
handler, and maintains the attributes of the object as a result of
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FIGURE 4 | Outline of habitual behavior in the basic-system, basic processing cycle (A) and cycles for execution of reinforcement learning (B).

FIGURE 5 | Configuration of the recognition unit.

recognition mentioned earlier. In these operations, up to four
object-handlers operate concurrently in the preprocessing phase
considering the capacity of the workingmemory (Bays et al., 2011;
Block, 2011).

The recognition unit is composed of a combination of autoen-
coder and feature selector as shown in Figure 5. The autoencoder
extracts effective features for efficient expression of the sensed
signals of the object, and then the feature selector specifies the
features of each attribute. An important characteristic of this unit
is that it operates bidirectionally. In forward processing, the unit
recognizes the sensed signals as a pattern and outputs the attribute
of the pattern. In backward processing, a group of attributes are
input to the recognition unit from the opposite direction, and a
pattern corresponding to the group of attributes is regenerated. In

this case, the feature selector reproduces the feature group from
the attribute pattern. Next, the autoencoder reproduces the input
pattern based on the reproduced feature group. In the prepro-
cessing phase, the recognition unit operates only in the forward
direction, and in the postprocessing phase the recognition unit
operates in the reverse direction.We have currently adopted a very
simple recognition function. In the field of deep learning, which
is rapidly developing in recent years, combination of autoencoder
and feature selector is frequently used (Ranzato et al., 2007; Ben-
gio, 2009; Larochelle et al., 2009). We expect that this method can
be applied to improve the recognition function.

Decision Phase
Outline of the Decision Phase Operation
In the decision phase, satisfying the basic condition (ii), the
system quickly selects the most desirable pair for the system at
that time from a large number of objects and action pairs, and
issues the result immediately as an action instruction using the
recurrent neural network in Figure 6. The configuration of the
recurrent neural network is equivalent to the BSB, proposed by
Anderson (1983) and generalized byGolden (1986, 1993). Golden
has revealed that the BSB is a gradient descent algorithm in the
direction to reduce the cost represented by the cost function
(corresponding to the energy function). BSB has been studied
mainly as a method for categorization.

In this article, the cost function expressed by the quadratic
expression of connection weights between nodes, corresponds to
the desirability of the system (system desirability D). As shown
in the following section, by changing the connection weights
according to action evaluation, such as pleasant/unpleasant, the
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FIGURE 6 | Conceptual network configuration for action decision.

cost function can be modified and trained by the experience of
the system. By performing the steepest descent algorithm under
this cost function, optimization operation for the desirability of
the system is possible using a recurrent neural network.

Detail Processing in Decision Phase
As shown previously, each object-handler maintains attributes
and location information of the assigned object. Attribute of object
i (Obi) is expressed by a vector AObi = (a1 , a2, . . . , ak1). When
Obi has corresponding micro-feature j, then aj = 1, and when
Obi has no corresponding micro-feature j, then aj = 0. Similarly,
location of Obi is expressed by a vector LObi = (l1 , l2, . . . , lk1).
When Obi is found at distance lj, then lj = 1, and when Obi is
not found at distance lj, then lj = 0. (For simplification, only one
distance lj is set to 1 and others are set to 0.)

The operation selecting the desirable object–action pair is
speedily executed by iterations based on the BSB as shown in
Figure 6. The cost function is defined by system desirability D
as expressed in Eq. 1. Variables xObi(n, t) and yactj(n, t) repre-
sent the degree of how necessary or desirable object Obi and
action actj is for the system in the nth iteration at time t, and
is implemented as the activation level of neural nodes, which
correspond toObi or actj. Coefficient btij(AObi , LObi , actj) indicates
desirability of object–action pair of object Obi and action actj, and
is implemented as the connection weights between object node i
and action node j

D(n, t) =
∑

Obi,actj

btij(AObi , LObi , actj) xObi(n, t) yactj(n, t). (1)

Activation levels of object or action nodes are increased or
decreased from initial states according to D in a limited num-
ber of iterations. After the iteration, detecting the object and
action node with maximum activation means selecting the semi-
optimum object–action pair for D at time t. In the optimization
process, constraints such as

∑
Obi xObi

2 ≤ 1 and
∑

actj yactj
2 ≤ 1

are applied, but for simplicity, these constraints are abbreviated

in this article. Operations mentioned earlier are executed along
the following equations. The characteristics of neural nodes are
defined by Eqs 2 and 3 with a piecewise-linear activation function

xObi(n + 1, t) = f(ϕi(n, t)) , (2)

f(ϕi(n, t))


= 1 if ϕi(n, t) > 1
= ϕi(n, t)
= 0 if ϕi(n, t) < 1

where

ϕi(n, t) = xObi(n, t) +
∑
actj

btij(AObi , LObi , actj) yactj(n, t). (3)

Equations 4–6 are lead from Eqs 1 to 3

ΔD(n, t)
ΔxObi(n, t)

∼=
∑
actj

btij(AObi , LObi , actj) yactj(n, t)

xObi(n + 1, t)−xObi(n, t)=
∑
actj

btij(AObi , LObi , actj) yactj(n, t),

(4)

xObi(n + 1, t) − xObi(n, t) ∼=
ΔD(n, t)

ΔxObi(n, t)
, (5)

yactj(n + 1, t) − yactj(n, t) ∼=
ΔD(n, t)

Δyactj(n, t)
. (6)

Based on above Eqs 4–6, the desirable object–action pair is
selected using the gradient method in BSB.

The following two extensions are adopted for implementing the
network to the basic-system:

A. The coefficient btij(AObi , LObi , actj) is effective only when an
object of a certain attribute is in a certain place. This means
that a single neural node must be able to detect patterns of
attribute and location signals on its own. Previous artificial
neural models require a large network of neurons for such
pattern detection. To cope with this problem, we proposed
a pattern match detection method inspired by the pyramidal
neurons in the cerebral cortex, inwhich the dendritic structure
support various matching detection. One pyramidal neuron
has thousands of branches in the dendrite, and each branch
processes thousands of paralleled input signals (Spruston,
2008; Kasai et al., 2010; Coward, 2013).
Schematic diagram of the artificial neural node is shown
in Figure 7A. Information is composed of main signal
s0 (0≤ s0 ≤ 1) and sub-signal Sa = (sa1, sa2, . . . , sk3). For
simplicity, sai = 0 or 1. Each branch memorizes a sub-signal
pattern Sa, where WSa is aweight corresponding to this pattern
Sa. This pyramidal neural node outputs s0 · WSa , only when
input pattern Sa is matched with the pattern in the branches.

B. In the method shown in Figure 6, there is another disadvan-
tage. As an object with a specific pattern of attributes and
location is assigned to a fixed physical object node, the same
object that has changed location is assigned as a different
object. The object changed location should be treated as a
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FIGURE 7 | Artificial neural node with pattern match detection (A) and schematic configuration of action decision network using dynamic link nodes (B).

same object. To achieve this, we proposed a method called
dynamic link node (DLN). Schematic configuration is shown
Figure 7B. In this method, we limit the number of object
nodes to 4, and we make four pairs of an object-handler and
an object node. Each object node represents and functions
as an object maintained by the paired object-handler. Each
object-handler supplies attributes and location information
to the paired object nodes. This means that same physical
object node can operate as different object node dynamically
by changing information maintained paired object-handler.

Equations 5 and 6 are transformed as below, corresponding to
Figure 7B

rk(Obi, n + 1, t) = rk(Obi, n, t)

+
∑
actj

btij(AObi , LObi , actj) yactj(n, t) ,

yactj(n + 1, t) = yactj(n, t)

+
∑
k(Obi)

btij(AObi , LObi , actj) rk(Obi, n, t) .

where rk(Obi, n, t) indicates activation of DLN k which work as
node of Obi. AObi and LObi are supplied by the object-handler

according to the object processed at that time. Although wired
connection is fixed, the circuit in Figure 7B is able to process
various objects dynamically.

However, implementing the circuits according Figure 7B is not
easy. As the circuits have to wire four set of attributes and location
signals to nodes, the circuit becomes very complicated. To avoid
this problem, we introduced a time division method, controlled
by a sub-clock, which sends four sets of attributes and position
information using one set of wire. The configuration is depicted
in Figure 8.

Postprocessing Phase
In the postprocessing phase, the system first reconfigures major
information scattered in the system and performs necessary learn-
ing for adaptation of itself. Then, to respond quickly to new stimu-
lus in the next cycle in line to the basic condition (ii), transmitting
and processing of the major information are executed.

Reconfiguration of Information and Learning
The operation of the autonomous adaptation system can be
described largely as two operations: (a) operations for external
environment as an action of the system and (b) learning
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FIGURE 8 | Action decision network using dynamic link node with time division control.

operations for the system itself to change its configuration for
adaptation. For (a), the system issued an action instruction at the
end of the decision phase so as to perform the action instruction
at the fastest and highest priority in line to the basic condition
(ii). However, for (b), it is necessary to evaluate the result of the
action based on the current system at the relevant time and to
instruct the related units in the system to make changes based
on the evaluation. It should be noted here that a large number
of function units operating in parallel in the system may cause
incompatible or inconsistent states among the units.

To deal with these problems, in the postprocessing phase, first,
the main states in the system are reconfigured and coordinated.
The system updates the information of each object-handler to
the latest one, and integrates the same object-handler as the
same object when the positions overlap even if they are different
object-handler. Through these processes, each object-handler has
the latest information of the allocated object. Then information
expressing the object’s figure with shape and color are reconfig-
ured on the real-image-screen using the object’s attributes and
location. These attributes and location maintaining by the object-
handler were recognized results in the preprocessing phase and
were effective for action decision. We call reconfigured informa-
tion corresponding to a real object existing in environment at
that time as a “real-image.” The “real-image-screen” is a kind of
short-term memory, which maintains the real-images resembling

real figures of objects. The reconfiguration of the real-image is
performed by reverse processing of the recognition unit using the
attribute maintained by the object-handler.

Almost at the same time, processing for two kinds of learning
is performed. One is a learning of the recognition unit per-
formed locally, and the other is a learning in relation to action
decisions performed as a whole system. The former learning of
the recognition unit is performed as the same process when the
recognition units execute the reconfiguration of a real image.
During reconfiguration, the autoencoder in the recognition unit
in Figure 5 compares decoder’s outputs with external stimuli of
the object using the comparator and executes self-learning to
reduce the difference. Although the real-image-screen is drawn
with the output signals of autoencoder, as each signal is checked
with each real external stimulus, a highly accurate figure with
shape and color can be drawn. Since the recognition units keep
learning and correction in each cycle, even if the figure of the
object changes slowly over time, it can be recognized as the same
object. We presume that the contents of the real-image-screen
correspond to what we are aware of when we are looking at things
outside in daily life (Meyer and Damasio, 2009).

On the other hand, the latter, learning of action decision is
executed as reinforcement learning executed in cooperation with
the episodic memory. In the postprocessing phase, the system
only writes information for learning into the episodic memory.
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This information is read later in the sleeping mode and used for
learning of action decision module. In the sleeping mode, the
robot is powered on, but it does not respond to external stimuli.
Details are shown in the next section.

Transmission of System-Level-Shared-Information
and Writing of Learning Information to the Episode
Memory
In the latter part of the postprocessing phase, the system makes
the state in the system consistent and compatible by widely trans-
mitting and processing themajor information for the efficient and
speedy next cycle operation. At the same time, information for the
system to learn in sleeping mode is written to episodic memory.
We focus on the followings as themajor information in the system
and call this information “system-level-shared-information.”

a. The real-image, reconfigured information of the object on the
real-image-screen.

b. The information of the evaluated value by the evaluation unit
(pleasant/unpleasant).

The system widely transmits this information into the system
and processes as follows:

(i) The information of the evaluated value and the object on the
real-image-screen is sent into the system via the bus.

(ii) The recognition unit that receives the object informa-
tion from the real-image-screen executes forward recogni-
tion processing for the object information. The recognized
results, composed of attribute of the object, are transmitted
into the system via the bus. (For example, if the red circle
is on the real-image-screen as an object, “red” and “circle”
attribute nodes are output by recognition unit and these
attributes are transmitted via the bus.)

(iii) The content of object-handler is concurrently updated based
on the information from the recognition unit.

In these operations, the reference node corresponding to the
meaning of each signal is also excited. As a result, based on
the transmission and processing using the system-level-shared-
information, the state of each unit connected to the buses and
the reference nodes, which are provided parallel in the system, are
set in a consistent and compatible state. On these consistent and
compatible states, next cycle operation of the parallel units can be
executed efficiently and speedy related to basic condition (ii).

The episode memory is connected to the main buses, such as
buses related to attributes, action, etc., as shown in Figure 3B,
and forms a record by collecting information of these buses. The
record mainly consists of information reorganized on the bus
based on the system-level-shared-information and action instruc-
tions.Writing to the episodicmemory is executed at the end of the
postprocessing phase.

LEARNING PROCESS FOR ACTION
DECISION IN BASIC-SYSTEM

This section describes the learning process in the basic-system of
the robot.

Execution of Reinforcement Learning
The basic behavior of the robot consists of repeated processes of
object search and reward acquisition. The robot walks randomly
when there is no object in sight. When one or more objects are
captured, the robot selects one preferred object and acts for it
as mentioned previously. We call the object selected as desirable
object–action pair in action decision phase hereinafter as “target.”
The target corresponds to the object selected by the robot as
an action target or objective. As shown in Figure 9, learning
for action decision of the robot is performed as a reinforcement
learning based on an actor–critic method. The action decision
module selects an action as the actor, and the evaluation unit
evaluates the action as the critic.

A chain of actions starting from selecting a target object to
receiving a reward is taken as one learning episode to which
reinforcement learning is performed. This chain of actions is
hereinafter referred to as an “event.” The term “event” corresponds
to the term “episode” commonly used in reinforcement learning,
but to avoid confusion with the episodic memory, this article
will use the term “event.” The robot can handle multiple objects
simultaneously, but for simplicity the robot can select up to one
target at a time.

When the object is selected as a target, the evaluation unit
calculates the value Et(A∗t

Obi , L
∗t
Obi) based on the attribute, position

of the object by using a value function composed of a neural
network. As both the targeted object and not targeted objects are
affect the action decisions, even after an object is selected as the
target, the robot is not necessarily bound by the targeted object
until the reward is received. Ifmore attractive or dangerous objects
appear, the robot may change the target to deal with the new
object. When the target is switched, the robot starts learning as
a different event.

When the robot selects an action for the targeted object, rein-
forcement learning is performed based on the valueEt(A∗t

Obi , L
∗t
Obi)

as follows:

ΔE(t) = Et−1(A∗t
Obi , L

∗t
Obi

)
+ Rreal(t)−Et−1

(
A∗t−1

Obi , L∗t−1
Obi

)
, (7)

Et
(
A∗t−1

Obi , L∗t−1
Obi

)
= αΔE(t) + Et−1

(
A∗t−1

Obi , L∗t−1
Obi

)
. (8)

Here,A∗t
Obi and L

∗t
Obi indicate the attribute and the position of the

selected object, and Et(A∗t
Obi , L

∗t
Obi) indicates the evaluate value of

the selected object at t. Rreal(t) indicates the real reward at t. ΔE(t)
in Eq. 7 shows the prediction error in temporal difference learning
at t. Based on this prediction error, the critic function performs

FIGURE 9 | Actor–critic method in the basic-system.
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learning as a neural network in the postprocessing phase using
learning coefficient α, as shown in Eq. 8. If the prediction error
ΔE(t) is positive, it corresponds to pleasant state or satisfaction
with a reward above expectation, and in the negative case, unpleas-
ant state or disappointment with less than expected reward. The
above is a case where the robot does not change targets. However,
if an object other than the target is selected, it is regarded that the
event has been interrupted and the processes in Eqs 7 and 8 are not
performed. When the target is switched, the robot starts learning
as a different event.

Learning in Cooperation with the Episodic
Memory
Learning of the actor composed of a recurrent neural network is
not as simple as the critic. The learning is executed in the following
two stages using episodicmemory, in awake-mode and in sleeping
mode. (In the awake-mode, the robot is powered on and can react
to external stimuli.)

Writing to the Episodic Memory in Awake-Mode
During awake-mode, the system writes a set of information
(referred to as records) related to learning to the episodic memory
during each postprocessing phase. The content of the record is
composed of the position, attribute, action, output of the value
function, and prediction error of the selected object. A sequential
chain of records is recorded as a single “event” in the episodic
memory. Later, reading the records is done sequentially.

Learning of Recurrent Neural Network in Sleeping
Mode
In the sleeping mode, the system reads records from the episodic
memory, and learning of the recurrent neural network as the actor
is executed using the contents of the records as follows:

(i) The system preferentially selects an event including records
with a relatively large prediction error and sequentially reads
the records in the event.

(ii) The system changes the coefficient btij(AObi , LObi , actj) of
the pattern detector for each record based on the following
formula calculated by the information on the record

btij
(
A∗t−1

Obi , L∗t−1
Obi , act∗t−1

j

)
= βΔE(t)

+ bt−1
ij

(
A∗t−1

Obi , L∗t−1
Obi , act∗t−1

j

)
,

(9)

where β is a learning coefficient. Here, only the part of the
recurrent neural network related to the above equation is
activated, and the coefficient btij(AObi , LObi , actj) is changed
in the direction along ΔE.

The reasons that the learning of the actor using episodic mem-
ory is performed during sleeping mode are as follows:

a. To execute the learning shown in Eq. 9, it is necessary to
activate only the part of the recurrent neural network related
to learning. Other parts of network cannot operate at the same

time. If the recurrent neural network learns during awake-
mode, the network must temporarily stop responding to exter-
nal stimulus during the learning process. The robot operation
will have to stop intermittently during learning. Assuming the
robot was an animal, it will not be able to react to dangerous
conditions quickly if it tried learning while it was awake.

b. Utilizing learning information after recording in episodic
memory has some advantages. One is that the system can
learn efficiently by utilizing experiences, based on selection, or
repeating large impact events by looking back on past experi-
ences. The other is the system enables relatively stable adapta-
tion with less risk of over-training by not learning immediately
when an event occurs.

In the case of an animal, execution of the learning in sleeping
mode causes the animal to be in relative risk against predators
during sleep, but overall there is merit for the animal to learn
during sleep.

CONSCIOUSNESS IN THE BASIC-SYSTEM

Basic Hypothesis on Consciousness on the
Basic-System
Consider the system-level-shared-information shown in the
basic-system from the viewpoint of animals. We presume that
an animal’s brain is composed of (a) functions that respond
automatically or semi-automatically according to stimuli and (b)
functions for system-level processing such as action decisions. The
automatic or semi-automatic functions operate in parallel under
loose coordination.

When an animal acts as one individual or one system, such as
when going toward a prey or escaping from a predator, it is neces-
sary for these functional units in the brain to have tightly related
cooperation based on system-level decisions. For this purpose,
it is an effective way to share consistent and clear information
of objects and directions of action, such as approach or avoid-
ance among functional units which should be tightly related for
cooperation at the time. Based on this shared information, each
functional unit performs consistent simultaneous operation so
that the animal’s ability can be demonstrated as much as possi-
ble. In particular, “pleasant/unpleasant” is basic information that
indicates either the necessity of action as individuals, approach or
avoidance, and needs to be notified as quickly as possible. By using
this pleasant/unpleasant information and object information in
combination, to move more closely to prey or avoid predator
becomes possible for the brain.

A unicellular paramecium backs away when it hits an obstacle
ahead and swims at a speed that is more than twice the usual
against a stimulus from behind. At that time, Paramecium sends
information concurrently to thousands of cilia of Paramecium,
organs of for move, by changing in membrane potential or ion
concentration, in accordance to the stimulus received by the
sensor. With this information, a large number of cilia perform
a consistent operation along the direction of movement of the
paramecium, as one individual (Kutomi and Hori, 2014). This
indicates that even if the organism is extremely simple, if it is
composed ofmany functional units and prompt action is required,
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to send system-level-shared-information to related organs all at
once is necessary.

Although the contents of our “awareness” at each moment
are diverse and contain various subtle elements, one of the main
contents of awareness is the perceived world around us composed
of objects, and the feeling of our “self ” in this perceived world.
Based on the above, we hypothesize that the main part of what we
recognize as phenomenal consciousness corresponds to system-
level-shared-information in the basic-system. We assume that
even primitive animals have “awareness,” to adapt autonomously
as a single system, and execute information transmission and
processing corresponding to system-level-shared-information.

In addition, since an animal mainly acts using automatic
or semi-automatic functions, system-level-shared-information is
issued only when an action decision as a whole system is
needed. If functions that are automatically or semi-automatically
operated in parallel can respond appropriately to stimuli,
system-level-shared-information is not issued. When we ride a
bicycle for the first time, we are initially aware of the operations
required to ride a bicycle, including pedaling, steering, and bal-
ancing. But when we get used to riding a bicycle, we are not
aware anymore of the individual operations. Initially, the bicycle
riding operations become the objective of the system-level action

decision. As the semi-automatic processing function begins to
work, the necessity to operate a bicycle disappears at the system-
level. At this time, the system-level-shared-information for riding
a bicycle is not required and is not generated anymore.

Logical Organization of Consciousness
and Self
Figure 10 shows the perceived space logically composed of the
system-level-shared-information. In this space, the state of the
evaluation unit and objects are the main elements. An evaluation
unit located at the origin of the space evaluates the object. The
relationship between the object and the robot including the system
is the basis of the operation of the autonomous adaptation. Each
object had been treated as a bundle of attributes etc. as we have
mentioned. However, since the robot itself is composed of a large
number of entities, the relationship between the robot and the
object cannot be briefly expressed unless the robot is bundled too,
or represented by something.

Since the robot operates on a complex interaction of various
motor and functional units, bundling of some specific entities is
not appropriate. Between the robot, and the object, “what kind
of action the robot is going to do with respect to the object” is

FIGURE 10 | Logical relations between objects and self on the basis of the physical configuration.
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important, and “what is the bundled unit as the entity of the robot”
is not necessarily required. From this point of view, the state of
the evaluation unit briefly and basically shows the direction of
action decision as a robot to the object, and implicitly represents
the robot including the system itself.

Based on this view, we regard the state of the evaluation unit as
a kind of “self ” as in the bundle theory of self byHume (Pike, 1967;
Smith, 2017). The “self ” existing at the origin forms the relation-
ship between “self ” and the objects. The “self ” sees and copes with
the objects. We speculate that this relationship contributes to the
awareness of the first-person perspective as if the homunculus in
our brain sees the outside world (the orange robot in Figure 10).

The Binding Problem and the Delay Time of
Libet’s Experiment
Based on the above hypothesis, the Binding problem and the delay
time of Libet’s experiment can be accounted for as follows. An
outline is shown in Figure 11.

Binding Problem
As Figure 11 shows, the brain is known to process shapes and
colors with different functional units. In the case of a red circle and
a blue triangle, shape and color are processed as separate signals by
separate functional units. In relation to this, there is an unsolved
problem, known as the Binding problem, in the brain (Kahneman
and Treisman, 1992; Pylyshyn, 2001; Meyer and Damasio, 2009;
Xu andChun, 2009; Bays et al., 2011; Feldman, 2013). The binding
problem is roughly expressed as the following two problems.

Problem a. How do we process a red circle and a blue triangle
as a red circle and a blue triangle, and not process them as a blue
circle and a red triangle?

Problem b. How are we aware of a red circle as a “red circle”
using separated information “red” and “circle”?

Based on the hypothesis that the main contents of aware-
ness correspond to system-level-shared-information, the system
provides the answer to the problems as follows.

In the system, each circle and triangle is allocated to different
object-handlers as different objects and managed. The object-
handler instructs the related functional units to recognize (pattern
recognition, color recognition, etc.) the allocated object andmain-
tains the resultant signal as a set of parallel signals composed of
shape and color. Information on the shape and color of the red
circles keeps held by the object-handler until the object disap-
pears. Information of each object is input to the action decision
module as a set of parallel signals under the control of the allocated
object-handler. In the action decision module, there are many
action nodes corresponding to the type of various actions. And
each action node has a lot of detectors that detect matched parallel
signal pattern from the thousands of parallel signals. Using this
function, each action node detects only the signal pattern that the
corresponding action is deemed necessary from the thousands of
parallel signals, and reacts to the signal pattern. This means that,
in the case of animals that eat, for example, red apples but not
blue prunes, the node for eat has a detector that detects “red” and
“apple.” That is, although information of the shape and color of
an object are processed separately, the object-handler manages it

FIGURE 11 | The binding problem and basic cause of the delay time of Libet’s experiment.
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as a parallel signal belonging to the same object. Furthermore, a
large number of parallel signals are directly checked for action
decisionwhile being parallelized using themechanism inspired by
pyramidal cells in the cerebrum. This makes it possible to explain
the Problem a.

Furthermore, after deciding the action, the recognition system
operates in the reverse direction to reconfigure the “red circle” on
the real-image-screen, using the information, “red” and “circle”
in the allocated object-handler. Then, we are aware of the “red
circle” on the real-image-screen as a part of system-level-shared-
information. In this way, the Problem b can be explained.

When combining and processing parallelized signals, the tim-
ing adjustment between signals is required.Without timing adjust-
ment, it is not possible to perform processing based on the mutual
relationship between signals appropriately. In general, when the
number of stages of timing adjustment increases, the response
time of the system becomes long because it is necessary to wait the
signal arriving at the latest and to spend time to process signals at
each processing stage. From this point of view and basic condition
(ii), we speculate that the system uses a method in which the
number of stages of timing adjustment relating to slow response is
minimized.

The Time Delay in Libet’s Experiment
Famous experiment of Libet shows that our intentional move-
ments are initiated before we become conscious to act, and have
been calling a lot of debate so far (Libet, 2004). As we have repeat-
edlymentioned, in the system, since high priority is given to quick
responses, action instructions are issued immediately after the
decision phase and “awareness” occurs late in the postprocessing
phase. The time difference shown in Figure 11 does not accurately
correspond to the delay time indicated by the experiment of Libet,
but we consider that it shows a basic cause of the delay time. From
this viewpoint, we consider that our hypothesis for phenomenal
consciousness is consistent with the Libet’s experiment.

PROPOSAL OF THE EXTENDED-SYSTEM

We have proposed the basic-system as an autonomous adaptive
system that performs habitual behavior. In relation to conscious-
ness, we have shown that awareness is an important operation for
executing parallel processing. However, the basic-system cannot
perform “goal-directed behavior,” consisting of setting a goal and
conducting actions to achieve that goal through various attempts.
Also functions that manipulate recollected objects, which are an
important element of our conscious experience, are not incor-
porated. To realize these functions, we propose the “extended-
system” as an extension of the basic-system.

Outline of Goal-Directed Behavior in the
Extended-System
Action Suspending
In the basic-system, an action instruction selected for the object is
immediately executed in the decision phase, and the evaluation
process for the action is executed in the postprocessing phase.
In the extended-system, if necessary, the action on the object
is suspended and no action is taken. For example, in cycle t,

without taking action, the system predicts the reward of action
for the object. Then, in cycle t+ 1, the system can decide an
action considering the predicted reward. This example shows that
if the system temporarily suspends an action instruction, adaptive
action considering multiple cycles becomes possible. We presume
that this suspension of an action is related to “the ability to delay
immediate gratification for the sake of future consequences” of
children in the marshmallow test in psychology (Mischel, 2014).

Fast Decision and Slow Decision
In the extended-system, an action decision aiming for quick
response (fast decision) and an action decision aiming at a higher
level of adaptation with slow response speed (slow decision) are
used depending on the situation. In the fast decision, the basic
function corresponding to the basic-system operates with quick
response, based on reinforcement learning. On the other hand, in
the slow decision, the extended-system takes the risk of putting
real actions on hold, allowing the system to aim for a higher level
of reward.

When operating in slow decision, more processing time and
resources in the system are used than in fast decision. We sur-
mise that in the slow decision, the system needs some kind of
“motivation” to take risks, use higher resources, and to try to
achieve higher rewards. In the extended-system, in addition to
the pleasant/unpleasant state of the basic-system, a value corre-
sponding to motivation is maintained and managed as an indi-
cator (degree of motivation), and execution of slow decision is
controlled according to this value.

Assumed Primitive Behaviors
The goal-directed behavior consists of a chain of slow decisions
aimed at achieving the goal. A primitive example of a series
of decisions from detection of objects to acquisition of reward
through various actions is shown in Figure 12.

Configuration and Functions of the
Extended-System
To configure the extended-system as simple as possible, the fol-
lowing policies were adopted:

a. The extended-system is constructed using the functions of the
basic-system as much as possible. Additional functions are
minimized.

b. The function to be configured as a new circuit is limited to
functions commonly used, or functions requiring high speed.

c. Information for high-level or detailed behavior is stored in
long-term memory as much as possible and read out as nec-
essary.

Based on these policies, when a goal-directed behavior is per-
formed, although the number of times of reference to long-term
memory and response time increases, it is possible to achieve a
sophisticated adaptation at low cost. In addition, the time required
for learning can be shortened as compared with the case of using
a dedicated neural network circuit. This is because it is possible
to record to long-term memory in a short time as compared with
learning time of the dedicated neural network circuit.
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FIGURE 12 | Outline of behavior in the extended-system. Coordination between cycle 2 and cycle 3 utilizing action suspending, episodic memory recollection or
virtual-image-screen depiction (A), and an example of goal-directed behavior (B).

Under the above policies, the following dedicated functions
were provided. Outline of functional extensions in the extended-
system is shown in Figure 13. The bus configuration of the
extended-system is shown in Figure 14. The orange box in the
Figure 14 shows the main unit added to the basic-system.

Extension of Basic Functions in the Basic-System
The following functions are expanded in the extended-system.

Extension of Object Handling Function
In the extended-system, the goal is expressed by three elements,
(1) what is targeted, (2) what actions to be taken on that object,
and (3) what can be earned as reward. A single object-handler can
hold this set of object, action, and evaluation value to express a
goal. It is not necessary that all three elements of object, action,
evaluation value is available.

Extension of Action Decision-Related Functions
The output of the action decision module was only an action
instruction in the basic-system, but in the extended-system,

instructions for suspending action, setting as a goal, recalling of
long-term memory, and handling images as an object are added.

Addition of Image Manipulation Function
Functions related to the manipulating image, information gener-
ated inside the system, are added as common functions.

Buffer Memory for Expressing Patterns of Images
(Virtual-Image-Screen)
To manipulate information generated within the system, such as
recollected objects, in the same way as information of real objects
existing actually at that time, a temporary buffer memory for
expressing patterns of images, which we named “virtual-image-
screen,” is provided. We call reconfigured information not corre-
sponding to a real object existing in the environment at that time
as a “virtual-image.” The “virtual-image-screen” is a kind of short-
term memory, which maintains the virtual-images. Recollected
contents from the long-term memory are depicted in the virtual-
image-screen when in the awake-mode. Object-handlers can cap-
ture objects in the virtual-image-screen similarly to capturing
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FIGURE 13 | Outline of functional extensions in the extended-system.

FIGURE 14 | Bus configuration of the extended-system.

objects in the real-image-screen, so objects captured from the
virtual-image-screen can influence action decisions same as real
objects in the basic-system. Based on this method, the extended-
system can decide actions using past experiences or knowledge in
the awake-mode.

The virtual-image-screen corresponds to our mental imagery
as shown below. We use “mental imagery” as defined by Kosslyn
(1994).

a. In the postprocessing phase, objects on the virtual-image-
screen are reconfigured using the attribute of objects same
as with the objects on the real-image-screen. The contents of
the virtual-image-screen are subject to object detection like
the real-image-screen. In addition, the contents of the virtual-
image-screen are transmitted to a wide range of the system as
a component of system-level-shared-information.

b. The signals for expressing the virtual-image-screen which are
output from the recognition units (green lines in Figure 14),
are not compared with the real stimulus by the autoencoder.
In the case of the real-image-screen, comparison with real
stimulus is executed by the autoencoder, so the system can
express images on the real-image-screen clearly. In the case of
the virtual-image-screen, the reconfigured images are blurred
because there is no comparison with real stimulus. The
extended-system uses a bus in which meaning is managed by
the reference node in common with external stimuli. Thus,
internally generated contents can have the same meaning cor-
responding to external stimuli.

By this configuration, the extended-system can treat the clear
contents corresponding to real things in the real-image-screen,
and the blurred contents generated inside the system in the
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virtual-image-screen concurrently. These contents correspond to
how the human brain is aware, using a clear image of the real world
and a blurred mental imagery.

Action Control by Action Patterns
Recollecting and execution of action in the extended-system is
realized as a function to connect action instruction signals with
visual action patterns. Visual action patterns are represented as a
kind of image in the virtual-image-screen and manipulated as an
object. When the system outputs an action pattern on the virtual-
image-screen, the connected action signal is excited, and the
action decision unit selects the corresponding action with highest
priority. This means that the extended-system can be directed
to perform that action by outputting a certain action pattern on
the virtual-image-screen. In addition, the system can deliver the
visual action pattern to the next cycle as part of the system-level-
shared-information. In this manner, actions are treated as objects
represented by a kind of visual action patterns. This function was
adopted on the basis of findings of the mirror neuron (Rizzolatti
et al., 2014).

The State of Evaluation Unit for Manipulating Reward
For the extended-system to handle reward as a goal, it is necessary
to manipulate the state, such as pleasant or unpleasant, as a kind
of object or signal independent of the system’s own evaluation
unit state. The evaluation unit of the extended-system can have
the following two states at the same time.

Effective-Excitation (EE) State. Reference nodes corresponding
to the state are activated, and the activation is transmitted to the
whole system. System-level learning is executed based on this
state.

Non-Effective-Excitation (non-EE) State. Reference nodes cor-
responding to the state are activated, but the activation is not
transmitted to the whole system and effective only as signals
representing information of the state. The system-level learning is
not executed based on the state. Signals of non-EE state are used
for handling reward such as goals.

Object–Reward and Reward–Action Associating
Function
Dedicated circuits, episodic memory write buffer, object–reward-
associator, and reward–action-associator are provided to execute
reward prediction from the target object and desirable action
recollection from reward. The episodic memory write buffer
maintains recent results of the action decision module for a 100
cycles before storing the episodic memory. The object–reward-
associator, consisting of a bidirectional pair of neural networks,
associates a target object and a reward value. Likewise, the
reward–action-associator, consisting of a bidirectional pair of
neural networks, associates a reward and an action.

The learning of object–reward-associator is performed by
simultaneously exciting a target object and reward information
on episodic memory write buffer in pairs, and supplying pairs
of inputs and outputs to the unit through the bus. The neural
network modifies the weight so that the supplied signal pair

is associated with each other. In the reward–action-associator,
learning is executed in the same way. These learning operations
are executed under time shared control within the postprocessing
phase.

Extended-System Operation
Table 1 shows an example of robot operations with the extended-
system for a goal-directed action, including the changes of state
in system-level-shared-information corresponding to the robot
awareness. This example was modeled with reference to the
goal-directed behavior experiment using monkeys by Matsumoto
et al. (2003) and the Experimental Cognitive Robot by Haikonen
(2012).

The robot determines actions based on the conscious infor-
mation in the previous cycle and summarizes the result to the
next conscious information. This process is repeated. Defining
that the perceived world for the robot is the world of what the
robot is aware or conscious of, from the viewpoint of the robot, the
robot decides and acts on the world using summarized conscious
information.We think that this flowof state changes in the system-
level-information corresponds to the flow of consciousness for us
humans.

In Table 1, it was assumed that the motivation level of the
robot is sufficiently high for performing the slow decision. If
the robot is exhausted and the motivation is lowered, the robot
ignores the detected objects.When the robot receives rewards, the
system evaluates the reward as pleasant/unpleasant according to
the difference between the expected value and the obtained value.
Primitive learning is performed by reflecting this value (pleas-
ant/unpleasant) in the learning of the object–reward-associator
and the reward–action-associator. However, learning methods
throughout the entire robot including motivation adjustment are
still under consideration.

ON CONSCIOUSNESS

Consciousness as Awareness
We assumed that the brain basically works like the basic-system
in principle because the brain should perform at its full potential
as a parallel-processing system. In this case, the brain selects
and decides the fastest and most efficient action, and responds
immediately. After the action decision, postprocessing is done
throughout the brain and prepared for the next stimulus.

In this postprocessing, scattered information is organized/
integrated, learning based on reward is executed, and these results
are notified through the brain. The phenomenon of awareness
corresponds to the most important notified information that is
“system-level-shared-information,” composed of states of evalu-
ation unit and objects. This information forms a space where the
state of evaluation unit is located at the origin and various objects
exist together. This space corresponds to the “subjective space”
that we are aware of on a daily basis, and the evaluation state
corresponds to “self.”

One of the characteristics of phenomenal consciousness is
“integration of information.” Tononi (2012) explained in the
integrated information theory using Φ, but we consider that Φ
is unnecessary for explanation of consciousness. Through the
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TABLE 1 | An example of robot operations as a minimal level goal-directed action.

Operations of the robot Operations in the system Awareness of the robot system-level-shared information

Real-image-screen Evaluated value
(real-IS), Effective excitation (EE),

virtual-image-screen non-effective
(virtual-IS) excitation (non-EE)

Real-IS Virtual-IS EE Non-EE

1. Searching objects a. Walking randomly for searching
objects is installed as a basic
function

The robot detects nothing in the
environment, then walks randomly
to detect objects

2. Detection of objects a. Two object-handlers maintain
information of the red box and
blue box, respectively, and these
are recognized

Red box
Blue boxThe robot detects a red box and a

blue box as object, then stops
walking

b. Reconfigured information of
these boxes is depicted on the
real-image screen

3. Target selection and reward
recollection

a. The action decision module
selects the blue box as a target,
then object–reward-associator
outputs reward recollection related
to the blue box

Red box
Blue box

Pleasant

The robot selects the blue box as a
target and recollects reward related
to the target

b. State of the evaluation unit
becomes Pleasant in non-EE
c. No actual action instruction

4. Setting the target with reward
as the goal

a. The object-handler allocated to
the blue box maintains information
of reward as a goal

Blue box Pleasant

The robot sets the blue box
including reward as the goal b. No actual action instruction

5. Recollection of action to earn
the reward

a. The behavior of the action, output
of the reward–action-associator, are
depicted in the virtual-image-screen

Blue box Touching action Pleasant

b. No actual action instruction

6. Execution of action plan a. The robot is charged by touching
the blue box

Blue box Pleasant
The robot touches the blue box

b. The evaluation unit becomes
Pleasant in EE

7. Acquisition of reward
The robot is Pleasant by charge
really

Blue box Pleasant

8. Execution of learning through
these experiences

a. Learning is executed in the
sleeping mode

– – – –

Significant states and objects are depicted in color or bold (for highlighting purposes).

processing of the decision phase and postprocessing phase shown
so far, “integration of information” as a phenomenon can be gen-
erated. Based on our model, we can explain the binding problem
and show the basic causes of delay in Libet’s experiment, which
indicates that Φ is unnecessary. Consciousness is a necessary
function for the brain to perform at the full potential as a central
control system of an animal.

Our proposed system is close to Haikonen’s robot and
Franklin’s system (Haikonen, 2012; Franklin et al., 2014), and to
proceed in the future, it is necessary to incorporate the various
functions proposed in these systems. However, our proposed

system is different from theirmethods in the core design regarding
action decision and consciousness. In GWT, dedicated processors
compete for the right in the limited storage area called Global
Work Space, and the action plan of the processor that got this
right is broadcasted and conscious. In HCA, dedicated processors
attempt to communicate with each other, and the main successful
communication becomes conscious. For the following reasons,
our proposal is more appropriate than GWT and HCA.

(i) In GWT and HCA, the information and actions to
be selected are determined by mutual relationship among
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individual dedicated processors. We think that reflections
of what is desirable as a system are not sufficient in this
selection. In our model, the system chooses the optimum
pair based on the desirability as a system from “object and
action pair.” The system further performs reinforcement
learning using episodic memory for individual combina-
tions. In addition, in our model, it is a choice of optimal
object and action pair, so multiple pairs cannot be allowed
to exist simultaneously. This explicitly explains the “unity”
which is the basic characteristic of consciousness (Brook and
Raymont, 2017).

(ii) In GWT, it is claimed that broadcasting is the main factor
of awareness or consciousness. We presume this broadcast
correspond to wide-area transmission in postprocessing in
our model. However, in postprocessing, various information
that we are not phenomenally conscious of is simultaneously
transmitted in a wide area.We assume that we are only aware
of system-level-shared-information, not simply the informa-
tion transmitted over a wide area. The system-level-shared-
information is composed of the state of the evaluation unit
and the state of the object.We speculate that activation of the
evaluation unit that represents “self ” is indispensable factor
of conscious experience.

(iii) Dehaene and Changeux (2011) assert the validity of GWT
based on brain observations such as fMRI, event-related
potentials. However, since our model shown in this article is
expected to be observed as a phenomenon similar to GWT,
it also supports the validity of our model. In our model, the
recurrent neural network optimization process in the deci-
sion phase roughly corresponds to the activation centered
on the frontal lobe, and the processing in the postprocessing
phase roughly corresponds to the activation of a wider area
including the occipital lobe.

Consciousness as an Important Function
for the Complex Brain
In the extended-system, we think that the chain of “conscious
information,” which directs actions toward a goal with inten-
tion, corresponds to our “proactive” conscious state. In addition,
it is important that the conscious information can be handled
as objects in the next cycle. Since the conscious information
expresses the state of the system in a summarized form, the
system can decide an action efficiently and easily by using this
summarized information. This shows that by manipulating the
conscious information, complex systems such as the extended-
system can be controlled efficiently and easily. We speculate that
it is through this function of consciousness that we can “think”
and make decisions without being aware of the complexity of the
human brain.

DISCUSSION

Duality Model
Duality models of human behavior, such as fast/slow thinking in
the behavioral economics field and impulsive/reflective system
in the social psychology field are well known (Deutsch and
Strack, 2004; Kahneman, 2011). We predict that this duality arises

from fast decision due to direct fast responses, and slow deci-
sion due to sophisticated adaptation at the expense of response
speed, depending on the circumstances in the extended-system.
An action mainly composed of fast decisions appears as a fast
or impulsive action, and an action mainly composed of slow
decisions appears as a slow or reflective action.

From another point of view, a fast decision shows passive and
reactive behavior against the stimulus, such as prompt decision as
to whether or not to eat when bait appears. On the other hand, in
a slow decision, such as when a stimulus that is not directly related
to bait has appeared, shows a proactive behavior that looks ahead
toward an intended goal.

Goal-Directed Behavior Incorporating a
General-Purpose Computer Like Function
Although there are various ways to perform goal-directed behav-
ior, the main aim of the proposed extended-system was “to realize
advanced adaptation at a relative low cost by sacrificing response
speed.” We assumed that it is important to realize goal-directed
behavior through a combination of common or general-purpose
circuits together with long-term memory as designed in the early
computer EDVAC (von Neumann, 1945). We predict that a con-
scious autonomously adaptive system that achieve goals set by
itself will become a powerful control system for the humanoid
robots by incorporating a kind of von Neumann type computer
as extended functions.

CONCLUSION

We proposed a basic architecture of an autonomous adaptive
system with conscious-like function for a humanoid robot. We
think resembling the human brain at the level of the basic log-
ical structure, architecture, is a meaningful way of designing a
control system for a truly useful humanoid robot. Interaction or
communication between humans and humanoid robots will be
much easier if both sides shared the same behavior characteristics
based on the same architecture, such as consciousness or duality.
However, the proposal in this article currently remains at the
architecture design level, and verification through simulation is
still only partial. We plan to further refine the system configura-
tion with reference to the results of previous research byHaikonen
and Franklin et al., as well as new findings. Evaluation of the
dynamic characteristics of the system through simulation is also
planned.
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