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Modeling Uncertainty for the Double 
standard Model Using a Fuzzy 
inference system
Noelia Torres, Leonardo Trujillo* and Yazmin Maldonado*

Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Tijuana, Tijuana, Mexico

This paper studies the issue of uncertainty in the ambulance location problem to cover 
the maximum number of demand points in a city. The work is based on the double stan-
dard model (DSM), a popular coverage model where two radii are considered to cover 
a percentage of the demand points twice. Uncertainty is introduced in the expected 
travel time between an ambulance and a demand point, before computing the optimal 
placement of ambulances in potential bases by solving the linear program posed by 
the DSM. The following three approaches are considered: (1) solving the DSM without 
uncertainty; (2) uncertainty in the travel time is based on triangular fuzzy set; and (3) a 
fuzzy inference system (FIS) with a rule base derived from the problem properties, which 
is the main contribution of this work. Results show that considering uncertainty can have 
a significant effect on the solutions for the DSM, with the solutions produced with the FIS 
approach achieving a higher total coverage of the demand. In conclusion, the proposed 
strategy could provide a reliable and effective tool to support decision making in the 
ambulance location problem by considering uncertainty in the ambulance travel times.

Keywords: ambulances, emergency medical services, bases, double standard model, triangular fuzzy set, fuzzy 
inference system

inTrODUcTiOn

In recent years, the development of computational support systems for emergency medical services 
(EMS) has attracted a growing amount of attention from researchers. In EMSs, a crucial factor that 
must be considered is response time. For example, let us consider cardiac arrest, the American 
Heart Association concluded that in the first 4–6 min after a person suffers a cardiac arrest she 
(he) can begin to suffer from permanent brain damage or even brain death. However, normal 
heart rhythm can be restored if advanced life support (ALS) is provided early. Studies have shown 
that the probability of a patient surviving is reduced by 7–10% with each passing minute in which 
defibrillation and ALS are not provided, and resuscitation is mostly unsuccessful after 10  min 
(EMSWorld.com, 2014).

Another example is traffic accident, where the number of deaths was estimated to be 1.25 million 
in 2013. Half of all fatalities caused by traffic accidents are pedestrians, cyclists, and motorcyclists. 
Death rates from such accidents are considerably higher in developing countries (OMG, 2015). 
Therefore, appropriate and timely response times to such incidents are indispensable in highly urban 
areas.

In 2013, the Red Cross of Tijuana (RCT) covered about 98% of the EMS requests (Cruz Roja 
de Tijuana, 2012), providing medical attention to 37,000 emergency calls. It does this with 13 
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FigUre 1 | Different methods used to estimate the ambulance travel times for the double standard model (DSM).
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ambulances that are distributed in 8 bases that cover a popula-
tion of approximately 1.6 million people in an area of 1,243 km2 
(INEGI, 2010). This means that, on average, each ambulance 
serves about 123,000 people and each base must cover an average 
of 155 km2. This contrasts, for instance, with the US, where by 
the 1990s there was about 1 ambulance per 51,000 inhabitants 
(Braun et al., 1990).

This work is motivated by the lack of resources and their 
sub-optimal use, which is evident when we consider that the 
average response time of RCT ambulances was approximately 
14 min with an SD of 7 min. Such performance is unsatisfactory, 
and there is a pressing need to optimize the use of all available 
resources.

In this work, the main objective is to study the ambulance 
location problem that seeks to determine where to place the 
available ambulances within a city. To do so, we use a well-known 
coverage model and solve it with linear programming. However, 
our contribution is to consider uncertainty in the estimated travel 
time between an ambulance and a possible demand point. In 
particular, we explore the use of fuzzy sets and a fuzzy inference 
system (FIS), which provide a natural way to describe uncertainty 
in a human readable form. The results show that the coverage 
provided by the solutions found can be substantially different, 
when uncertainty is explicitly considered.

This paper is organized as follows. Section “Background” 
presents a review of the state of the art. Section “Double Standard 
Model” describes the double standard model (DSM), which is 
the coverage model used in this work. Section “Travel Time 
Estimation for Ambulances” presents how uncertainty in the 
travel time is modeled in our work, with our main contribution 
being the use of an FIS. Section “Experiments and Results” 
presents the description of the experiments and obtained results. 
Finally, Section “Conclusion and Future Work” outlines the 
conclusion and describes future work.

BacKgrOUnD

Traditionally, the ambulance location problem deals with two 
types of decisions: (a) which sites in a city should be used as 
bases, and (b) determining how many ambulances should be 
placed in each base. What follows will deal mostly with models 
for this problem, while solution methods will not be covered in 
depth. Suffice it to say that many solution methods have been 

applied, including linear programming (MatLab, 2015) (which is 
also used in this work), Tabu search (Gendrau et al., 1997; Luke, 
2014), evolutionary algorithms (Jones, 2002; Eiben and Smith, 
2015), and Fuzzy logic (Zadeh, 2015).

Models for this problem can be divided into three main 
groups (Li et al., 2011): (1) covering models that focus on locating 
ambulances such that the demand can be covered within a certain 
amount of time; (2) p-median models that focus on minimizing 
the total (or average) distance between ambulance and demand 
points; and (3) p-center models that minimize the maximum dis-
tance between ambulances and demand points. Among the three 
groups, the coverage models are the most frequent and therefore 
reviewed next. These models are concerned with maximizing 
demand coverage, considering that a demand point is covered 
if it can be reached within a predefined time or distance by an 
ambulance, referred to as a coverage radius.

According to the literature, the first coverage model was the 
location set coverage problem (Toregas et  al., 1971). It consid-
ers mandatory coverage, the goal is to determine the minimum 
amount of resources required so that all demand points are covered. 
Another well-known model is the maximum coverage location 
problem (Church and ReVelle, 1974), where given a limited number 
of resources the goal is to maximize the demand covered. Both of 
these models produce solutions where a demand point can be left 
uncovered once an ambulance response to a service. In the literature, 
there are two general proposals to overcome this drawback. The first 
is to provide multiple coverage, such as the DSM (Gendrau et al., 
1997), the goal of which is to achieve full coverage within a large 
radius and maximize double coverage within a shorter radius. A 
second approach is to model the problem probabilistically, as in 
the maximum expected cover location problem and the maximum 
availability location problem.

The DSM considers a static number of ambulances, while a 
dynamic version has also been developed (Laporte et al., 2009). 
The multi-capacities ambulance location model was proposed in 
Shiah et al. (2009), which concurrently considers three different 
types of capacities: travel distance, populations, and the location 
EMS calls.

In the study by Schmid (2012), it was shown that solving the 
static location problem using fixed travel times may not suffice, 
due to the speed variations of the ambulances and because 
coverage areas change throughout the day. The problem was 
solved by the authors using a variable neighborhood search. 
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FigUre 2 | Travel time membership function.

FigUre 3 | Fuzzy inference system.
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Fuzzy logic as a solution method was used by Davari et  al. 
(2011), who proposed the fuzzy maximum coverage location 
problem, which is solved by simulated annealing. Another 
fuzzy covering model is studied in the study by Rezaei and 
Zarandi (2011). The reduction of ambulance response time is 
studied using a hybrid approach in the study by Zarkeshzadeh 
et al. (2016). The method considers the rate of incoming emer-
gency calls, available resources, the probability of hospitaliza-
tion of patients, as well as the distances and locations of the 
emergency units.

As previous work on this topic, in 2017 we have reported 
on modeling the demand for EMS in Tijuana, Baja California, 
Mexico, followed by the optimization of the location of 
ambulances for the RCT. We used data from more than 10,000 
emergency calls from 2013 to model and classify the demand for 
EMS in different scenarios that provide different perspectives of 
the demand throughout the city, considering factors such as the 
time of day or whether the incident occurred in a work day or an 
off-day (Dibene et al., 2017). In that work, the DSM was extended 
to generate robust solutions that could generalize to different 
scenarios. A total of 1,000 possible bases are considered and the 
solution was generated with integer linear programming. Results 
showed how the solutions found could improve coverage relative 
to the approach taken by the RCT at the time without requiring 
additional resources.

DOUBle sTanDarD MODel

In the DSM, the objective function computes the demand covered 
twice within small radius (r1) time units. Below, we describe DSM 
problem and parameters, defined as follows.

Maximize:
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where i ∈ I: demand point; j ∈ J: potential ambulance location; 
r1: small radius; r2: large radius; p: total the available ambulances; 
tij: the distance between the point of demand and the base, this 
variable is the travel time and is calculated using three mod-
els, described in the following section; α: percentage of total 
demand which must be covered by an ambulance located within 
r1 radius; di: total demand at patient location i; pj: the largest 
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FigUre 5 | Membership functions of speed.

FigUre 4 | Membership functions of distance.
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number of ambulances at the ambulance location; wj: the capac-
ity of each ambulance when it is placed in ambulance location j; 

δi j
ijt r
o w, .

,=
≤






1
0

2
 if the distance between the point of demand 

and the base is less or equal to r2, all demands are covered within 

the large radius; γi j
ijt r
o w, .

,=
≤






1
0

2
 if the distance between the 

demand point and the base is less than or equal to r1, all demands 
are covered within the small radius; Variables: yj = the number 
of ambulance located at the vehicle location j. xi1 = 1, if the place 
i is covered by one ambulance through the small radius. xi2 = 11, 

if the place i is covered by two or more ambulance through the 
small radius. zij = current demand at the patient location i which 
is covered by one ambulance at the ambulance location j.

The goal of the objective function (1) is to maximize the 
demand covered by at least two ambulances within the small 
radius. Constraint (2) ensures that one ambulance covers each 
demand point within the larger radius r2. Constraint (3) states 
that a fraction 𝛼 of the total demand must be covered within 
the small radius. The left-hand side of constraint (4) has the 
number of ambulances covering demand point i within r2, and 
the right-hand side is equal to 1 if the demand point i is covered 
exactly once within the small radius and equal to 2 if it is covered 
at least twice. Constraint (5) states that a demand point i can-
not be covered twice if it is not covered once. Constraints (4) 
and (5) state that if two ambulances are within r1, the demand 
point is said to be covered twice. Constraint (6) states that all 
ambulances must be assigned to a base. Constraint (7) verifies 
the maximum number of ambulances at each base j. Constraint 
(8) ensures that the demand covered by base j depends on the 
ambulance locations. Constraint (9) states that the total demand 
in demand point i must be covered within the large radius r2. 
Constraints (10) and (11) express that some variables cannot 
be negative and constraint (12) states that the coverage index is 
a binary variable. Constraint (13) shows that the total available 
ambulances is an integer. Finally, constraint (14) states that zij 
must be an integer.

TraVel TiMe esTiMaTiOn FOr 
aMBUlances

The EMS providers prefer to assign the closest, in terms of travel 
time, available ambulance to respond to a new emergency. Thus, 
it is vital to have accurate estimates of the travel time of each 
ambulance to the emergency location. Therefore, travel times play 
a central role in positioning the ambulance bases (Laporte et al., 
2009). The intuition behind this work is that if the variability in 
travel times is accounted for explicitly then EMS management 
and planning can be significantly improved. To show this, we use 
three different methods to calculate the ambulance travel time: 
(1) using fixed travel times (Laporte et al., 2009); (2) introducing 

FigUre 6 | Membership functions of travel time.
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TaBle 1 | Matrix of inference rules used with the proposed fuzzy inference 
system.

input speed

slow regular Maximum

Input distance Short Good Excellent Excellent
Mean Good Good Excellent
Regular Regular Good Good
Maximum Critical Regular Good
Review Critical Critical Critical

uncertainty in the travel time using a triangular fuzzy set (TFS) 
as proposed by Lahijanian et al. (2016); and the main proposal in 
this work, (3) using an FIS to account for uncertainty in the travel 
time between an ambulance and a demand point. A simulation 
is setup to consider travel times in a road network, following the 
study by Lahijanian et al. (2016). Random data are generated in 
a hypothetical area of 900 km2, using 30 bases and 100 random 
demand points. Figure 1 shows the three versions of the DSM.

Basic DsM approach
To calculate the travel time between a demand point and an 
ambulance, we used the Euclidian distance divided by speed, 
using three different speeds (40, 60, and 80  km/h) for the 
ambulance.

DsM With TFs
The DSM with a TFS considers the uncertainty for the travel 
time between locations of the patients and the locations of the 
ambulances, based on the study by Lahijanian et al. (2016).

 1. The first step is to convert the time to a triangular fuzzy num-
ber, adding uncertainty in the trip.

 2. The TFS, shown in Figure 2, is defined as a function of x, where 
y depends on three scalar parameters a, b, and c, defined as:

 µ( )x

x a
b a

a x b

x c
b c

b x c=

−
−

≤ ≤

−
−

≤ ≤















if

if

Otherwise0

 (15)

 3. The defuzzification is done using the centroid method to 
obtain a crisp number, this is done by extracting the average 
from the triangular fuzzy number.

Notice that if the fuzzy set is symmetric, then the estimated 
travel time will be the same as the original value. This method is 
only useful if the Fuzzy set is asymmetric. If it is asymmetric to 
the right (c − b > b − a) then the estimated travel time is larger 
than the original time and vice versa. In our case, we set b equal 
to the input travel time, a = 0.95 × b and c = 1.15 × b. In this 
formulation, the estimated travel time is always an over estima-
tion of the original travel time given by time and distance. In what 
follows, we consider a more robust formulation of uncertainty 
using an FIS.

DsM With Fis
This is the main contribution of this paper, where a Mamdani 
FIS is used to determine the travel time between the demand 
point and the ambulance. The basic FIS system (Zadeh, 2015; 
Grande et al., 2017; Paramo-Carranza et al., 2017; Rubio, 2017) is 
composed as shown in Figure 3.

Two inputs are considered for the FIS. First is the distance 
between the demand point and the ambulance, and the sec-
ond is given by the speed of the ambulance. The output of 
the FIS is the travel time. The linguistic values are shown in 
Figures 4–6.

In the fuzzification stage, the data are transformed into linguis-
tic terms (fuzzy sets). The inference system simulates the human 
reasoning process by making fuzzy inference on the inputs with 
IF-THEN rules, and the defuzzification transforms the fuzzy set 
into a crisp value.

Fifteen fuzzy rules are proposed, and the centroid defuzzifica-
tion method is used to obtain the estimated travel time. Table 1 
shows the fuzzy rules used. We have four consequents and their 
interpretation is:

• Excellent: when the demand point is covered in a radius of 
4 min.

• Good: when the demand point is covered in a radius of 
7 min.

• Regular: when the demand point is covered in a radius of 
15 min.

• Critical: when the demand point is out of coverage.

eXPeriMenTs anD resUlTs

For this work, randomly generated demand points and ambulance 
locations are used. We use as reference the study by Lahijanian 
et al. (2016), a square province is assumed with a dimension of 
30 km × 30 km.

TaBle 2 | Comparison results for the coverage of the three methods, showing the mean (μ) and SD.

number of 
ambulances

coverage (μ ± sD) (40 km/h) coverage (μ ± sD) (60 km/h) coverage (μ ± sD) (80 km/h)

DsM DsM
TFs

DsM
Fis

DsM DsM
TFs

DsM
Fis

DsM DsM
TFs

DsM
Fis

10 25.45 ± 6.54 19.94 ± 7.28 28.52 ± 6.74 77.05 ± 3.92 74.14 ± 4.04 99.30 ± 1.03 97.16 ± 1.70 95.68 ± 2.09 100 ± 0.00
15 56.33 ± 5.39 52.24 ± 6.07 57.94 ± 4.93 91.93 ± 2.48 89.56 ± 2.73 99.96 ± 0.24 99.93 ± 0.33 99.90 ± 0.41 100 ± 0.00
20 69.74 ± 4.95 66.82 ± 5.22 70.74 ± 4.83 97.95 ± 1.80 96.82 ± 2.18 99.96 ± 0.24 99.94 ± 0.31 99.91 ± 0.40 100 ± 0.00
25 76.38 ± 5.15 73.79 ± 5.46 77.16 ± 5.06 98.19 ± 1.79 97.63 ± 2.16 99.96 ± 0.24 99.94 ± 0. 31 99.91 ± 0.40 100 ± 0.00
30 80.18 ± 5.62 77.82 ± 5.96 80.87 ± 5.60 98.19 ± 1.79 97.63 ± 2.16 99.96 ± 0.24 99.94 ± 0.31 99.91 ± 0.40 100 ± 0.00

Bold values are the best values of the experiment.
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FigUre 7 | Mean and SD of the coverage using double standard model.

FigUre 10 | Comparison of coverage (mean and SD) with a speed of 
60 km/h.

FigUre 9 | Mean and SD of the coverage using double standard model with 
fuzzy inference system.

FigUre 8 | Mean and SD of the coverage using double standard model with 
triangular fuzzy set.

A total of n = 100 demand points are randomly placed using 
a continuous uniform distribution within the considered area. 
Then, m = 30 points, which represents that the possible bases are 
placed in the following manner. The square is divided into a 3 × 3 
grid, and it is assumed that more possible ambulance based will 
be found in the middle of the province (downtown), generating 
2m/10 potentials bases in this zone, and m/10 potential bases are 

generated in each of the eight remaining locations in the grid. 
Experiments and results are divided into three subsections, which 
are described below.

experiment 1: comparison of the Three 
Methods Used to estimate ambulance 
Travel Times
The first group of experiments will try to provide a broad 
overview of the effect that each method has on the solutions 
found in the DSM linear program. We will try to get a general 
characterization by considering different numbers of available 
ambulances and different top speeds. The following parameters 
for the DSM are considered:

• r1: 7 min (small radius).
• r2: 15 min (large radius).
• p: [10,15,20, 25, and 30], total available ambulances.
• α: 0.65; percentage of total demand which must be covered 

by an ambulance located within radius r1, this parameter is 
based on the tests carried out in the study by Lahijanian et al. 
(2016).

To compare the performance of the three methods, we gener-
ated 100 different configurations, considering:

• Random distribution of demand points.
• Random distribution of bases.
• Maximum number of ambulances in each base set randomly 

in the range [1–3].
• Different speeds (40, 60, and 80 km/h).

Table  2 shows the mean and SD of the coverage results 
for each of the three methods considering different speeds. 
Figures  7–9 show the same comparison showing the mean 
coverage and SD with error bars, by solving the 100 different 
problems considering different speeds. Analyzing the results, 
we can see, in all the cases with different speeds, DSM with 
FIS method is the best option, the solution is due to the FIS is 
robust with uncertainty information. These results show that 
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FigUre 11 | Comparison of number of ambulances located in each base with 15 available ambulances.

FigUre 12 | Distribution of ambulances found by the double standard 
model with fuzzy inference system.

the best results are obtained when using the FIS to estimate the 
travel times. Moreover, these results seem to be quite consist-
ent, independent of the number of available ambulances and 
the speed of the ambulances.

experiment 2: comparison in a Typical 
scenario
In this case, we are interested in analyzing a more typical scenario. 
We repeat the experiments described in Experiment 1, with the 
following two modifications. First, the maximum number of 
ambulances allowed in each base is set to pj = 2. Second, the speed 
of the ambulance is set to 60 km/h. These settings are consistent 
with those suggested by the RCT.

Figure 10 shows the average results of 100 randomly gener-
ated problems and the SD shown with error bars. Results are 
clear, the DSM with the FIS method achieves the best results. 
Notice that with 10 ambulances, the coverage is 99.75% for this 
approach, while for 15, 20, 25, and 30 ambulances the coverage 
is 100%.

To compare the differences between each method, we take 
a single case as an example. We consider a total of 15 available 
ambulances. Figure  11 shows how the number of ambulances 
(vertical axis) located in each base (horizontal axis). In this case, 
double coverage with the standard DSM is 93%, 91% for the DSM 
using a TFS, and 100% for the DSM using a FIS to account for 
uncertainty in travel time.

experiment 3: analysis of the DsM  
With Fis
Let us now provide a more detailed discussion of the result 
achieved for the DSM with the FIS. Figure  12 shows the 
problem used for the comparison in Figure  11, where the 
DSM with FIS achieved 100% coverage. The triangles represent 
the 30 bases and the circles indicate the 100 demand points. 
The distribution of ambulances, as also seen in Figure 11, is: 
Base 1, Base 6, Base 7, Base 16, Base 23, Base 25, and Base 29 
with 2 ambulances and Base 3 with 1 ambulance (a total of 15 
ambulances).

Considering the consequents of the fuzzy rules used by the 
FIS, Figure 13 shows the number of demand points that are 
covered by each base in a time that is considered to be excel-
lent, good, regular, or critical, as defined in the Section “DSM 
with FIS.”

Now, considering the small radius in the DSM, we can 
provide a more detailed analysis of the total coverage achieved. 
Figure 14 shows the number of demand points covered by each 
base within the small radius. Notice that all bases cover no less 
than 10 demand points, with some based covering as much as 
30 demand points. Conversely, Figure 15 shows the number of 
bases that provide coverage to each demand point within the 
small radius.
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FigUre 13 | Number of demand points covered by each base, considering different possible fuzzy consequents (excellent, good, regular, and critical).

FigUre 14 | Demand points that cover each base.

FigUre 15 | Number of bases covering demand points.
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cOnclUsiOn anD FUTUre WOrK

In this work, the uncertainty is introduced into in the estimated 
travel time between a demand point and a candidate base for the 
ambulance location problem solved with the DSM. Three meth-
ods are compared, using no uncertainty, modeling uncertainty 
with a TFS, and a more complete approach that used an FIS. The 
coverage obtained with the DSM improves when uncertainty 
is considered, particularly using the FIS which achieves 100% 
coverage in cases where the standard approach does not. These 
results clearly indicate the importance of considering uncertainty 
in this real-world domain.

In future work, we will focus on applying the proposed 
method on real data taken from the EMS of the RCT. The 
application of the model will improve the location of ambu-
lances and the response time to emergency services will be 

timely, a most important problem in a city where resources 
are scarce.
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