
CODE
published: 09 April 2018

doi: 10.3389/frobt.2018.00040

Frontiers in Robotics and AI | www.frontiersin.org 1 April 2018 | Volume 5 | Article 40

Edited by:

Maxime Petit,

Imperial College London,

United Kingdom

Reviewed by:

Hyung Jin Chang,

Imperial College London,

United Kingdom

Nuno Ferreira Duarte,

Instituto Superior Técnico,

Universidade de Lisboa, Portugal

*Correspondence:

Alberto Cardellino

alberto.cardellino@iit.it

Specialty section:

This article was submitted to

Humanoid Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2017

Accepted: 22 March 2018

Published: 09 April 2018

Citation:

Cardellino A, Ruzzenenti A and

Natale L (2018) Design and

Implementation of a YARP Device

Driver Interface: The Depth-Sensor

Case. Front. Robot. AI 5:40.

doi: 10.3389/frobt.2018.00040

Design and Implementation of a
YARP Device Driver Interface: The
Depth-Sensor Case
Alberto Cardellino*, A. Ruzzenenti and L. Natale

iCub Facility, Istituto Italiano di Tecnologia, Genoa, Italy

This work illustrates the design phases leading to the development of a new YARP

device interface along with its client/server implementation. In order to obtain a smoother

integration and a more reliable software usability, while avoiding common errors during

the design phases, a new interface is created in the YARP network when a new family of

devices is introduced.

Keywords: hardware abstraction, client server architecture, software design, depth sensor, YARP

1. INTRODUCTION

Depth sensors, such as the kinect (Zhang, 2012; Han et al., 2013), are very popular in the field of
navigation for mobile robots. OpenNI2 framework (Aksoy et al., 2011; RehemNeto et al., 2013), an
open source SDK used for the development of 3D sensing middleware libraries and applications, is
arising as a tentative standard for this type of devices, yet producers do not always comply with the
specifications. In a typical application, data are acquired by a robot but processed and visualized
on a remote machine. The device driver is in charge of acquiring data from the sensor while client
and server handles the transfer, optimizing both portability and performance. In general terms, we
believe that an effective solution to standardize data flow in a software framework is to provide the
device interface together with its client/server implementation.

1.1. YARP Device Interface
YARP (Metta et al., 2006) is a middleware specifically designed for robotics with a strong focus
on modularity, code re-usage, flexibility, and hw/sw abstraction. In order to achieve those goals,
the use of interfaces is fundamental because they allow to abstract from a specific producer. YARP
device driver interfaces are the ones devoted to generalize the capabilities and configurations of a
specific set of similar devices.

An interface is a class composed only by pure virtual function, data type definitions, and it is
the place where relevant measurement unit must be declared. The implementation of a new YARP
device interface is realized in the development of three C++ objects: (i) the device driver which
handles the real hardware, (ii) the network server which publish the data, and (iii) the network
client used by the application to remotely access the device. The objects are shown in the Figure 1A.

Note that by mean of an interface, the user application can connect directly to the device driver
bypassing the client/server architecture, as illustrated in Figure 1B. This is useful when higher
efficiency and low latency are required.

1.2. RGBD Device Family
An RGBD sensor is a device equipped with a standard RGB color camera and a depth image source.
The latter is producing a special image in which each pixel is providing the distance of closest object
in view.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00040&domain=pdf&date_stamp=2018-04-09
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alberto.cardellino@iit.it
https://doi.org/10.3389/frobt.2018.00040
https://www.frontiersin.org/articles/10.3389/frobt.2018.00040/full
http://loop.frontiersin.org/people/413427/overview

Cardellino et al. Design of a YARP Interface

FIGURE 1 | How the application connects to an hardware device. (A) Via client/server. (B) Directly.

RGBD is the source data required to build a point cloud,
but they have distinct characteristics. The depth sensor produces
two separated image frames where the first one contains color
component and the second one distance information. A point
cloud instead is a specific data type where the point contains color
and depth components altogether and optionally other related
informationlikesurfacenormals,curvatures,histogram,andsoon.

While both RGB and depth frames shared the rectangular
width per height structure, a point cloud is an unordered list of
points of any size and shape. When dealing with this type of
sensors, a number of information is required in order to correctly
extract valuable data. Besides the image dimensions in terms of
pixels and the frames themselves, other useful parameters are,
the lens distortion model of RGB cameras and the measurement
range and its accuracy for the depth sensor. The designing of
the interface should thus include and provide all the previously
mentioned data.

In this work, the concept of RGBD device is extended to
include more cases than the physical sensor. All cases are shown
in the Figure 2.

1.3. Common Design Patterns
The quickest approach for designing an Hardware Abstraction
Layer (HAL) is proceeding bottom-up, starting from the
hardware capabilities and generalizing them. This approach tends
to fail when the device generates non-standard data or when the
underlying hardware varies significantly from sample to sample.

On one hand, bottom-up generated interfaces are
comprehensive of all device features whilst, on the other
hand those interfaces tends to be too tailored on the first
device they were built upon and difficult to be reused when the
underlying assumptions change.

The other most followed lead is the top-down approach
which is capable of providing a better abstraction, but usually
it fails being comprehensive. In this case, low level details or
configurations may be missing and users do not have access to
all the required data.

2. DESIGN PROCESS

An example of well-structured software design is illustrated in the
NEPOMUK project paper (Groza et al., 2007), described as an
iterative process starting from the user’s need, to design new code
in order to seamlessly fit into an existing software environment.
In order to overcome the before mentioned limitations, the
design process has been widened to a bigger-picture, real use
cases have been analyzed and generalized to extract relevant
functionalities. The latter information has been employed to
analyze the data flow and to design the resulting interface.

2.1. Identifying Data Flow and Device
Capabilities
Typically, an RGBD device is capable of producing a color image
and a depth image along with their respective parameters. The
interfaces are thus required to describe and provide equivalent
streams and parameters. YARP is often referred to as the robot
information piping system, because one of its main functions is
exchanging data between applications. Identifying the data to be
shared and their properties helps designing better interfaces and
client/server objects.

There are two main ways to exchange data in YARP, called
streaming and RPC. All the information the device streams are
sent to the client, whereas all the get/set requests originated by the
client are RPCs. Data are sent trough the network via an object
called port. A port is an abstraction of the operative system socket
and it is able to send any type of data, different protocols can be
used andmultiple consumer can read from a single producer. We
can identify the following desired data:

• Streaming

⇒ The RGB image
⇒ The depth image

• RPCs

⇔ Info about streaming: e.g., how big is the image being
published

Frontiers in Robotics and AI | www.frontiersin.org 2 April 2018 | Volume 5 | Article 40

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

⇔ Controls: e.g., increase the saturation/brightness and other
camera parameters.

⇔ Info Visual: e.g., get the field of view of RGB/depth camera
⇔ Info about HW: e.g., this is a USB device

Each piece of information is required for both RGB and depth
separately because they may differ in availability and values. Note
that interfaces and data flow do not need to match. For example,
a single interface may include both streaming and RPC data
while a single RPC connection can handle requests frommultiple
interfaces.

2.2. Identifying Use Case Scenarios
The analysis result in four scenarios being comprehensive for all
foreseen real world uses of a RGBD sensor, shown in Figure 2.

Note: Each sensor can be a real or simulated one, they will be
handled in the same way.

Among existing applications, yarpview and camCalib are the
most important ones the new device has to be compatible with.
The first one is a GUI used to display images while the latter is
used to compensate lens distortion.

2.3. Additional Constraints and
Requirements
It is useful to explicit a few other characteristics the new
interface and its implementation shall have in order to cope

with the needs of an highly dynamic and innovative field like
robotics.

2.3.1. Need of a Standard
Different devices may provide the same data using incompatible
formats, for example the distance measure can be measured
in meters, millimeter, or other units while the binary
implementation can be an integer or a floating point number.
Furthermore, a lens distortion model can be described using
different set of parameters. In order for an high level application
to run on different robots, it must be able to get all information
at runtime and use them properly.

Relevant settings that are not available fromOpenNI API have
to be acquired from another source, for example distortionmodel
can rarely be retrieved from the OpenNI API.

2.3.2. Unique Traits of RGBD Device
This work has to deal with the intrinsic complexity of a device
composed by two different sensors with similar characteristics
whichmay be unclear. A large amount of parameters are required
to correctly identify the device properties.

2.3.3. Compliance With the YARP Ecosystem
This software is part of the YARP middleware, hence the new
interface has to fit into existing code and to be as much intuitive
as possible for both experienced and novice users. The RGB

FIGURE 2 | Use case scenarios. (A) Proper RGBD sensor: MicroSoft Kinect, Asus XTION, or similar. (B) Two local yet separated sensors. (C) Stereo vision: two RGB

sensor and a computed depth image. (D) Two separated sensors physically connected to two different machines.

Frontiers in Robotics and AI | www.frontiersin.org 3 April 2018 | Volume 5 | Article 40

http://www.yarp.it/yarpview.html
http://wiki.icub.org/brain/group__icub__camCalib.html#details
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

sensor is by all means a standard camera and, as such, it provides
options to configure color properties like saturation, brightness,
exposure etc... The ability to change the camera parameters at
runtime is widely used, so it must be accessible via the interface.
The optimal solution is to allow any software currently working
with standard camera to work also with RGB part of this device
without any changes.

2.3.4. Modularity
YARP heavily leverages on modularity and code re-use, therefore
the implementation of the depth sensor interface has tomaximize
these best practices. Furthermore, the client can read data
from multiple sources while the server can broadcast them
independently, as in use cases (Figures 2B,D).

2.3.5. Re-usability
Re-usability check has to be performed in two ways: first looking
for compatible code to re-use into this project and second
creating code that may be useful outside the scope of RGBD
device for future use.

3. ADOPTED SOLUTIONS

The design process resulted in a series of design considerations
and technical solutions adopted to best attain all the
requirements. Those solutions can be divided into “abstract”
design criteria and their relative “concrete” implementation.

All the requirements and solutions are summarized in the
Table 1.

The resulting structure is general enough to cover all the use
cases and flexible to allow both incremental implementation and
update of existing software. The current state is already able
to handle use case scenarios (Figures 2A,C) and can be easily
extended to handle also cases (Figures 2B,D).

3.1. Design Criteria
3.1.1. Definition of a YARP Standard
YARP uses international measurement system for all units
(except for angular degrees), therefore this convention has been
enforced also in this interface where the unit for the depth
measurement is set to be meters. The binary representations is
the float to allow fraction of meters.

TABLE 1 | Requirements and proposed solutions for new YARP interface.

Requirement Design criteria Implementation solutions

Need of a standard Definition of a YARP

standard

API compensation

Compatibility with the

YARP ecosystem

Re-use, not inherit Separated data flow

Modularity Isolation of capabilities Separated data flows

Re-usability Isolation of capabilities Three levels decoupling

Unique traits of this

device type

Isolation of capabilities Capabilities composition

3.1.2. Re-use, Not Inherit
The interface IFrameGrabberControls2 is an already
existing YARP interface describing how to set RGB color
sensor properties as saturation, brightness, exposure etc...
A possible way to include these functionalities in the new
interface would be to inherit from it, but this has some
implications. The new interface will be tightly coupled to
previous code and the maintenance will be more difficult.
Any change to IFrameGrabberControls2 will be
propagated to the new interface and all devices using
it. On the other hand, adding the same methods also
in the new interface will generate duplicated code and
confusion.

The best approach is to keep separated the two functionalities
and have the device implementation to use them where
required.

3.1.3. Isolation of Capabilities
Instead of defining an single interface covering all the device
functionalities or data types, the best solution is to define an
interface for each capability and then combine them into a bigger
one where appropriate. This way each interface is smaller and
cleaner, but most importantly each single interface can be re-
used more easily in different contexts. New interfaces created for
this device are the ones required to fill the gap between what’s
existing and what is required. They have been created separately
for RGB and depth part of the device. A snippet of code is shown
below.

class yarp::dev::IRgbVisualParams

{

int getRgbHeight();

int getRgbWidth();

bool getRgbConfigurations(Vector<Config> &c);

bool getRgbResolution(int &width, int &height);

bool setRgbResolution(int width, int height);

bool getRgbFOV(double &hFov, double &vFov);

bool setRgbFOV(double hFov, double vFov);

bool getRgbIntrinsicParam(Property ¶m);

bool getRgbMirroring(bool &mirror);

bool setRgbMirroring(bool mirror);

}

class yarp::dev::IDepthVisualParams

{

int getDepthHeight();

int getDepthWidth();

bool setDepthResolution(int width,int height);

bool getDepthFOV(double& hFov, double& vFov);

bool setDepthFOV(double hFov, double vFov);

bool getDepthIntrinsicParam(Property& param);

double getDepthAccuracy();

bool setDepthAccuracy(double accuracy);

bool getDepthClipPlanes(double &near, &far);

bool setDepthClipPlanes(double near, far);

bool getDepthMirroring(bool& mirror);

bool setDepthMirroring(bool mirror);

}

Interface snapshot 1. Example of interface methods.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_1IRgbVisualParams.html
http://www.yarp.it/classyarp_1_1dev_1_1IDepthVisualParams.html
Git repository: https://github.com/robotology/yarp/tree/master/src/libYARP_dev/include/yarp/dev

Frontiers in Robotics and AI | www.frontiersin.org 4 April 2018 | Volume 5 | Article 40

http://www.yarp.it/classyarp_1_1dev_1_1IRgbVisualParams.html
http://www.yarp.it/classyarp_1_1dev_1_1IDepthVisualParams.html
https://github.com/robotology/yarp/tree/master/src/libYARP_dev/include/yarp/dev
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

The two interfaces created are similar because the sensors have
similar features, but each method has the RGB/Depth prefix to
clearly state which sensor it is working with. This helps novice
users to understand what the function is supposed to do and
name clash between two sensors is avoided. There are some
differences however due to the sensors nature, for example in the
depth interface there are getter and setter methods for Accuracy
and clip planes which has no meaning for a standard RGB
camera.

3.2. Implementation Solutions
3.2.1. API Compensation
The information requested to be available are more then what’s
usually covered by the OpenNI2 API, hence another source of
information is needed. This has been achieved by mean of a
configuration file, subdivided in three main sections:

• General parameters: describe which device the YARP factory
shall create and how to manage it.

• Settings: these parameters describe the user’s desired initial
configuration of the device. These values will be set at startup
and if anyone fails, the device must be closed providing an
error. All the settings are also available for remote control
with getter/setter methods, therefore the configuration can be
verified and changed remotely by the user’s application at any
time.

• Hardware description: the listed parameters are read only .
Everything not available through device API can be listed here.
These values will be available to remote applications via getter
methods, but they cannot be set. This is also useful in case the
device returns wrong values; the data from configuration file
will be returned to the user instead.

3.2.2. Separated Data Flow
Defining how many sockets to create, the protocol to use etc...
is a trade-off between optimization of resources and granularity
of information. The more complex/custom the data is, the less
application will be compatible with. On the other hand, creating
many sockets to send small pieces of information is a waste of
resources.

The choice implemented is to create two separated streams
for RGB and depth images, to be back compatible with existing
application using color images only. All the RPC requests instead
can be handled by a single YARP port. There is no need in fact
for the client to know all the server’s capabilities. A client can
implement only the subset of RPC it requires, therefore a existing
client can freely work with a newer server using an extended set
of messages.

Only the 4th use case scenario will require the client to have
two separated RPC ports, as it requires to connect to two different
servers to collect all the required informations.

3.2.3. Three Levels Decoupling
Network messages, client/server implementation and hardware
device are separated between each-others. Usually when building
a client/server pair in YARP there are two levels of decoupling:
the first one is the YARP message which decouples the server
from the remote client. The second one is the interface itself

which decouples the server from the device driver and the user
application from the network client.

The implementation of an interface in the server/client
requires to write code devote to generate the YARP message
and parse it in order to provide the service and generate proper
response. Historically this job was always been implemented
by the client/server classes themselves, but this may lead to
duplicated code when more servers or clients uses the same
interface. Therefore a new decoupling level has been introduced
by implementing all the YARP message parsing into a specific
class for each interface, the client/server will then use these classes
to handle network communication.

This way, should a new server implement this interface,
adding the message parsing will require only three lines of code:

1) Add interface inheritance

Server : public NewInterface

2) Instantiate a parser class

yarp::dev::Implement_Interface_Parser rgbParser;

3) Configure the parser by giving access to the class

rgbParser.configure(NewInterfacePointer);

Interface snapshot 2. Example of usage, server side.

3.2.4. Capabilities Composition
Leveraging on the previously shown ideas “Isolation of
Capabilities” and “Three Levels Decoupling,” it follows that a
device can incrementally add capabilities by inheriting from
required interfaces and parsers. The whole RGBD interface will
be the sum of RgbVisualParams andDepthVisualParams, plus the
specific information which havemeaning only when both sensors
are available together.

class yarp::dev::IRGBDSensor : public

IRgbVisualParams

public IDepthVisualParams

{

bool getExtrinsicParam(Matrix &extrinsic) ;

string getLastErrorMsg(Stamp *timeStamp);

bool getRgbImage(FlexImage &rgbImage, Stamp

*timeStamp);

bool getDepthImage(ImageOf<PixelFloat>

&depthImage, Stamp *timeStamp);

bool getImages(FlexImage &colorFrame, ImageOf

<PixelFloat> &depthFrame, Stamp *colorStamp,

Stamp *depthStamp);

RGBDSensor_status getSensorStatus();

}

Interface snapshot 3. Extending capabilities by merging two
interfaces into a bigger one.
Documentation: http://www.yarp.it/classyarp_1_1dev_1_
1IRGBDSensor.html
Git repository: https://github.com/robotology/yarp/blob/
master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h

Each interface contains methods to get the sensor intrinsic
parameters, and since the RGBD interface includes the two
sensors together, amethod to get extrinsic parameters is included.
The client/server for this device will create its own message

Frontiers in Robotics and AI | www.frontiersin.org 5 April 2018 | Volume 5 | Article 40

http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
http://www.yarp.it/classyarp_1_1dev_1_1IRGBDSensor.html
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://github.com/robotology/yarp/blob/master/src/libYARP_dev/include/yarp/dev/IRGBDSensor.h
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Cardellino et al. Design of a YARP Interface

sender/parser by extending the ones implemented for each single
interface as explained in “Three Levels Decoupling” section.
Furthermore, previous RGB-only image server has been easily
extended to implement also the RgbVisualParams interface by
adding the parser.

4. CONCLUSION AND FUTURE WORK

The design process successfully generated a set of interfaces both
flexible and comprehensive to handle all use cases identified
and satisfy all additional requirements. The interface and C++
objects shown in this work have been used with three models
of depth sensors from two different producers and with the
simulated device available within Gazebo. The new server is well-
integrated in the YARP framework, compatibility with existing
applications has been achieved and former device drivers specific
for RGB-only cameras have been extended to implement new
functionality, hence user application can benefit from additional
information.

The dataset acquisition pipeline shown in Pasquale et al.
(2016) and used in Maiettini et al. (2017) was developed for the
iCub robot using images acquired from stereo vision system and
then, using the interfaces resulting from the work presented, the
pipeline was easily integrated on the R1 robot, that mounts a
RGBD sensor.

The implementation will be extended to cover also use
scenarios (Figures 2B,D), also a synchronization mechanism for
the two image streaming will be integrated in the client. The
code can be verified using YARP test utilities or using simple
example code. Instruction how to run tests are in the in the
following github repository https://github.com/robotology/yarp/
tree/master/example/dev/RGBD/README.md.

AUTHOR CONTRIBUTIONS

AC: main contributor, designed the interfaces, and client/server
implementation; AR: contributed refining the interfaces, device
driver implementation, testing; LN: supervisor.

REFERENCES

Aksoy, E. E., Abramov, A., Dörr, J., Ning, K., Dellen, B., and Würgötter, F. (2011).

Learning the semantics of object-action relations by observation. Int. J. Robot.

Res. 30, 1229–1249. doi: 10.1177/0278364911410459

Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L., Minack, E.,

et al. (2007). “The nepomuk project–on the way to the social semantic desktop,”

in Proceedings of I-Semantics’ 07, eds T. Pellegrini and S. Schaffert (Graz),

201–211.

Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision

with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43, 1318–1334.

doi: 10.1109/TCYB.2013.2265378

Maiettini, E., Pasquale, G., Rosasco, L., and Natale, L. (2017). “Interactive data

collection for deep learning object detectors on humanoid robots,” in 17th

IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017

(Birmingham), 862–868.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.

Int. J. Adv. Robot. Syst. 3:8. doi: 10.5772/5761

Pasquale, G., Mar, T., Ciliberto, C., Rosasco, L., and Natale, L. (2016). Enabling

depth-driven visual attention on the iCub humanoid robot: instructions for use

and new perspectives. Front. Robot. AI 3:35. doi: 10.3389/frobt.2016.00035

Rehem Neto, A. N., Saibel Santos, C. A., and de Carvalho, L.

A. A. (2013). “Touch the air: an event-driven framework for

interactive environments,” in Proceedings of the 19th Brazilian

Symposium on Multimedia and the Web (New York, NY: ACM),

73–80.

Zhang, Z. (2012). Microsoft kinect sensor and its effect. IEEEMultiMedia 19, 4–10.

doi: 10.1109/MMUL.2012.24

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer HC, and handling Editor declared their shared affiliation.

Copyright © 2018 Cardellino, Ruzzenenti and Natale. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 6 April 2018 | Volume 5 | Article 40

https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://github.com/robotology/yarp/tree/master/example/dev/RGBD/README.md
https://doi.org/10.1177/0278364911410459
https://doi.org/10.1109/TCYB.2013.2265378
https://doi.org/10.5772/5761
https://doi.org/10.3389/frobt.2016.00035
https://doi.org/10.1109/MMUL.2012.24
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Design and Implementation of a YARP Device Driver Interface: The Depth-Sensor Case
	1. Introduction
	1.1. YARP Device Interface
	1.2. RGBD Device Family
	1.3. Common Design Patterns

	2. Design Process
	2.1. Identifying Data Flow and Device Capabilities
	2.2. Identifying Use Case Scenarios
	2.3. Additional Constraints and Requirements
	2.3.1. Need of a Standard
	2.3.2. Unique Traits of RGBD Device
	2.3.3. Compliance With the YARP Ecosystem
	2.3.4. Modularity
	2.3.5. Re-usability

	3. Adopted Solutions
	3.1. Design Criteria
	3.1.1. Definition of a YARP Standard
	3.1.2. Re-use, Not Inherit
	3.1.3. Isolation of Capabilities

	3.2. Implementation Solutions
	3.2.1. API Compensation
	3.2.2. Separated Data Flow
	3.2.3. Three Levels Decoupling
	3.2.4. Capabilities Composition

	4. Conclusion and Future Work
	Author Contributions
	References

