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Humanoid robots are resourceful platforms and can be used in diverse application 
scenarios. However, their high number of degrees of freedom (i.e., moving arms, head and 
eyes) deteriorates the precision of eye-hand coordination. A good kinematic calibration 
is often difficult to achieve, due to several factors, e.g., unmodeled deformations of the 
structure or backlash in the actuators. This is particularly challenging for very complex 
robots such as the iCub humanoid robot, which has 12 degrees of freedom and cable-
driven actuation in the serial chain from the eyes to the hand. The exploitation of real-time 
robot sensing is of paramount importance to increase the accuracy of the coordination, 
for example, to realize precise grasping and manipulation tasks. In this code paper, 
we propose an online and markerless solution to the eye-hand kinematic calibration of 
the iCub humanoid robot. We have implemented a sequential Monte Carlo algorithm 
estimating kinematic calibration parameters (joint offsets) which improve the eye-hand 
coordination based on the proprioception and vision sensing of the robot. We have shown 
the usefulness of the developed code and its accuracy on simulation and real-world 
scenarios. The code is written in C++ and CUDA, where we exploit the GPU to increase 
the speed of the method. The code is made available online along with a Dataset for 
testing purposes.

Keywords: code:C++, humanoid robot, markerless, hand pose estimation, sequential monte carlo parameter 
estimation, kinematic calibration

1. IntRoduCtIon and Related WoRK

An intelligent and autonomous robot must be robust to errors on its perceptual and motor systems to 
reach and grasp an object with great accuracy. The classical solution adopted by industrial robots rely 
on a precise calibration of the mechanics and sensing systems in controlled environments, where sub-
millimeter accuracy can be achieved. However, a new emerging market is targeting consumer robots 
for collaboration with humans in more general scenarios. These robots cannot achieve high degrees of 
mechanical accuracy, due to (1) the use of lighter and flexible materials, compliant controllers for safe 
human-robot interaction, and (2) lower sensing precision due to varying environmental conditions. 
Indeed, humanoid robots, with complex kinematic chains, are among the most difficult platforms to 
calibrate and model properly with the precision required to reach and/or grasp objects. A small error in 
the beginning of the kinematic chain can generate a huge mismatch between the target location (usually 
coming from vision sensing) and the actual 6D end-effector pose.
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Eye-hand calibration is a common problem in robotic systems that 
several authors tried to solve exploiting vision sensing [e.g., Gratal 
et  al. (2011); Fanello et  al. (2014); Garcia Cifuentes et  al. (2017); 
Fantacci et al. (2017)]1.

2. PRoPosed solutIon

In this code paper, we propose a markerless hand pose estimation 
software for the iCub humanoid robot [Metta et al. (2010)] along 
with an eye-hand kinematic calibration. We exploit the 3D CAD 
model of the robot embedded in a game engine, which works as 
the robot’s internal model. This tool is used to generate multiple 
hypotheses of the hand pose and compare them with the real 
visual perception. By using the information extracted from the 
robot motor encoders, we generate hypotheses of the hand pose 
and its appearance in the cameras, that are combined with the 
actual appearance of the hand in the real images, using particle 
filtering, a sequential Monte Carlo method. The best hypothesis 
of the 6D hand pose is used to estimate the corrective terms 
(joint offsets) to update the robot kinematic model. The visual 
based estimation of the hand pose is used as an input, together 
with the proprioception, to continuously calibrate (i.e., update) 
the robot internal model. At the same time, the internal model 
is used to provide better hypotheses for the hand position in 
the camera images, therefore enhancing the robot perception. 
The two processes help each other, and the final outcome is that 
we can keep the internal model calibrated and obtain a good 
estimation of the hand pose, without using specialized visual 
markers on the hand.

The original research work [Vicente et al. (2016a) and Vicente 
et  al. (2016b)] contains: (1) a complete motivation from the 
developmental psychology point of view and theoretical 
details of the estimation process, and (2) technical details 
on the interoperability between the several libraries and the 
GPGPU approach for an increased boost on the method speed, 
respectively.

The present manuscript is a companion and complementary 
code paper of the method presented in Vicente et al. (2016a). We 
will not describe with full details the theoretical perspective of 
our work, instead we will focus on the resulting software system 
connecting the code with the solution proposed in Vicente et al., 
2016b. Moreover, the objective of this publication is to give a 
hands-on perspective on the implemented software which could 
be used and extended by the research community.

The source code is available at the official GitHub code repository:

https:// github. com/ vicentepedro/ 
Online- Body- Schema- Adaptation 

and the documentation on the Online Documentation page:

1 For a more detailed review of the state of the art, please check the article Vicente 
et al. (2016a)

http:// vicentepedro. github. com/ 
Online- Body- Schema- Adaptation

We use a Sequential Monte Carlo parameter estimation method 
to estimate the calibration error β in the 7D robot’s joint space 
corresponding to the kinematic chain going from each eye to the 
end-effector. Let us consider:

 θ = θr + β   (1) 

where θr are the real angles; θ are the measured angles; β are joint 
offsets representing calibration errors. Given an estimate of the 
joint offsets ( ̂β ), a better end-effector’s pose can be retrieved using 
the forward kinematics.

One of the proposed solutions for using Sequential Monte Carlo 
methods for parameter estimation2 (i.e., the parameters β in our 
problem), is to introduce an artificial dynamics, changing from a 
static transition model 

(
βt = βt−1

)
  to a slowly time-varying one:

 βt = βt−1 + wt    (2) 

where wt is an artificial dynamic noise that decreases when t 
increases.

3. softWaRe desIgn and 
aRCHIteCtuRe PRInCIPles

The software design and architecture for implementing the eye-hand 
kinematic calibration solution has the following requirements: (1) 
the software should be able to run in real-time since the objective 
is to calibrate the robot during a normal operating behaviour, and 
(2) it should be possible to run the algorithm in a distributed way, 
i.e., run parts of the algorithm in several computers in order to 
increase computation power.

The authors decided to implement the code in C++ in order 
to cope with the real-time constraint, and to exploit the YARP 
middleware [Metta et al. (2006)] to distribute the components of 
the algorithm in more than one machine.

The source code for these modules are available at the official 
GitHub code repository (check section 2).

The code is divided into three logical components: (1) the 
hand pose estimation (section 4.1), (2) the Robot’s Internal 
Model generator (section 4.2), and (3) the likelihood assessment 
(section 4.3), which are implemented, respectively, at the following 
repository locations:

•  modules/handPoseEstimation
•  include/handPoseEstimationModule.h
•  src/ hand Pose Esti mati onMain. cpp
•  src/ hand Pose Esti mati onModule. cpp

•  modules/internalmodel

2 See Kantas et al. (2009) for other solutions
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•   icub- internalmodel- rightA- cam- Lisbon. exe
•   icub- internalmodel- leftA- cam- Lisbon. exe

•  modules/likelihodAssessment
•  src/ Cuda_ Gl. cu
•  src/ likelihood. cpp

 
The software architecture implementing the proposed eye-hand 
calibration solution can be seen in Figure 1. The first component 
- Hand Pose Estimation - is responsible for proposing multiple 
hypotheses according to the posterior distribution. We use a 
Sequential Monte Carlo parameter estimation method in our work 
[check Vicente et  al. (2016a) Section 3.3 for further theoretical 
details]. The definitions of the functions presented in the architecture 
(Figure  1) can be found in the .cpp and .h files and will be 
explained in detail in Section 4.1. The Hand Pose Estimation is OS 
independent and can run in any computer with the YARP library 
installed.

The second component - Robot’s Internal Model - generates 
hypotheses of the hand pose based on the 3D CAD model of the 
robot and was build using the game engine Unity®. There are two 
versions of the internal model on the repository. One for the right-
hand (rightA) and another one for the left-hand (leftA). Our 
approach was to divide the two internal models since we have separated 
calibration parameters for the head-left-arm and for the head-right-
hand kinematic chains. The Unity platform was chosen to develop the 
internal model of the robot since it is able to generate a high number 
of frames per second on the GPU even for complex graphics models. 
The scripting component of the Unity game engine was programmed 
in C#. The bindings of YARP for C# were used in order to facilitate the 
internal model generator to communicate with the other components 
of the system. This component is OS-dependent and only runs on 
Windows and the build version available on the repository does not 
require a paid license of Unity Pro.

Finally, the likelihood assessment is called inside the Robot’s 
Internal Model as a Dynamic Link Library and exploits GPGPU 
programming to compare the real perception with the multiple 
generated hypotheses. The GPGPU programming, using the CUDA 
library [Nickolls et al. (2008)], allows the algorithm to run in quasi-
real-time. The .cpp file contains the likelihood computation method, 
and the .cu the GPGPU program.

Our eye-hand calibration solution exploits vision sensing 
to reduce the error between the perception and the simulated 
hypotheses, the OpenCV library [Bradski (2000)] with CUDA 
enabled capabilities [Nickolls et al. (2008)] was chosen to exploit 
computer vision algorithms and run them in real-time.

The interoperability between the OpenCV, CUDA and OpenGL 
libraries was studied in Vicente et al. (2016b). In the particular 
case of the iCub humanoid robot [Metta et al. (2010)], and to suit 
within the YARP and iCub architectures, we encapsulated part of 
the code in an RFModule3 class structure and use YARP buffered 
ports4 and RPC services5 for communications and user interface 

3 http://www.yarp.it/classyarp_1_1os_1_1RFModule.html
4 http://www.yarp.it/classyarp_1_1os_1_1BufferedPort.html
5 http://www.yarp.it/classyarp_1_1os_1_1RpcServer.html

(Check section 5.2.3). The hand pose estimation module allows 
the user to send requests to the algorithm which follows an event-
driven architecture: where for each new incoming information 
from the robot (cameras and encoders) a new iteration of the 
Sequential Monte Carlo parameter estimation is performed.

4. Code desCRIPtIon

4.1. Hand Pose estimation Module
4.1.1. Initializing the Sequential Monte Carlo parameter 
estimation - initSMC Function
In the function initSMC we initialize the variables of the 
Sequential Monte Carlo parameter estimation, i.e., the initial 
distribution p(β0) [Eq. (10) in Vicente et al. (2016a)], and the 
initial artificial dynamic noise. The Listings 1 contains the 
initSMC function where some of the variables (in red) are 
parametrized at initialization time (check sub-section 5.2.1 for 
more details on the initialization parameters). We use a random 
seed generated according with the current time and initialize 
each angular offset with a Gaussian distribution: N(initialMean; 
initialStdDev).

4.1.2 Read Image, Read Encoders, ProcessImages 
and SendData
The left and right images along with the head and arm encoders 
are read at the same time to ensure consistency between the several 
sensors.

The reading and processing procedure of the images are defined 
inside the function:

handPoseEstimationModule::updateModule() 

that can be found on the file: 

src/ hand Pose Esti mati onModule. cpp.

The function process Images (see Listings 2) applies a Canny 
edge detector and a distance transform to both images separately. 
Moreover, the left and the right processed images are merged, i.e., 
concatenated horizontally, in order to be compared to the generated 
hypotheses inside the Robot’s internal model.

The Hand pose estimation module sends: (1) the pre-processed 
images, (2) the head encoders and (3) the arm encoders (θ) along 
with the offsets (β) to the Robot’s internal model6. This procedure 
is defined inside the function: 

handPoseEstimationModule::runSMCIteration()

4.1.3. Update Likelihood
The Hand Pose Estimation module receives the likelihood vector 
from the Robot’s internal model and updates the likelihood value 
for each particle on the for-loop at line:

 hand Pose Esti mati onModule. cpp# L225

6 See Eq. 1 and handPoseEstimationModule.cpp#L214
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fIguRe 1 |  Architecture of the software. The hand pose estimation component (handPoseEstimation) initiates the Sequential Monte Carlo parameter estimation 
method (initSMC) and waits for a start command from the user. The perception and proprioception (cameras and encoders) of the robot are received and the 
parameter estimation starts. The real image and the particles are sent (sendData) to the Robot’s internal Model (icub-internalmodel-rightA-cam-Lisbon.exe or 
icub-internalmodel-leftA-cam-Lisbon.exe) in order to generate the hypotheses. The likelihood assessment of each hypothesis is calculated using a Dynamic Link 
Library (DLL) file inside the Robot’s internal model. The likelihood of each particle is saved and a Kernel Density estimation is performed to calculate the best 
calibration parameters. The Resampling step is performed and a new set of particles are saved for the next iteration of the Sequential Monte Carlo parameters 
estimation.
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4.1.4. Kernel Density Estimation
Although the state is represented at each time step as a 
distribution approximated by the weighted particles, our best 
guess for the angular offsets can be computed using a Kernel 
Density Estimation (KDE) to smooth the weight of the particles 
according to the information of neighbor particles, and choose 
the particle with the highest smoothed weight (ωʹ[i]) as our state 
estimate [Section 3.5 of Vicente et al. (2016a)].

The implementation of the KDE with a Gaussian kernel can 
be seen in Listings 3. The double for-loop implements the KDE 
accessing each particle (iParticle) and computing the influence 
of each neighbor (mParticle) according to the relative distance 
in the 7D-space between the two particles and the likelihood of 
the neighbor [cvmGet (particles, 7,mParticle)]. The parameters 
that can be fine-tuned are highlighted in red.

4.1.5. Best Hypothesis
The best hypothesis, computed using the KDE, is sent through 
a YARP buffered port from the module after N iterations. The 
port has the following name:

/hpe/bestOffsets:o

The parameter N (the number of elapsed iterations before 
sending the estimated angular offsets) can be changed by the user 
at initialization using the minIteration parameter (check 
Section 5.2.1 for more details) and the objective is to ensure the 
filter convergence before using the estimate (e.g., to control the 

robot). This is an important parameter since in the initial stages 
the estimation can jump a lot from an iteration to the next one 
(before converging to a more stable solution).

4.1.6. Update Artificial Noise, Resampling and New 
Particles
The artificial noise is updated according to the maximum likelihood 
criteria. See the pseudo-code on Listings 4, which corresponds to 
line 230 to 254 in the file:

src/ hand Pose Esti mati onModule. cpp

We update the artificial noise according to the maximum 
likelihood, i.e., if the maximum likelihood is below a certain 
threshold (minimumLikelihood), we do not perform the resampling 
step and we increase the artificial noise. On the other hand, if the 
maximum likelihood is greater than the threshold we apply the 
resampling and decrease the artificial noise. The objective is to 
prevent the particles to become trapped in a “local maximum” 
since the current best solution is not worthy of resampling the 
particles. Indeed, this approach will force them to explore the  
state space.

The trade-off between exploration and exploitation is 
measured according to the maximum likelihood in each 
time step of the algorithm. The idea is to exploit the low 
number of particles in a clever way. Moreover, the upper and 
lower bound ensure, respectively, that: (1) the noise will not 

listing 3  | Kernel density estimation with Multivariate normal distribu-
tion Kernel: modules/handPoseestimation/src/handPoseestimationMo-
dule.cpp

1. void handPoseEstimationModule :: kernelDensityEstimation ( )
2.{
3. // Particle i 
4. double maxWeight = 0.0; 
5. for (int iParticle = 0; iParticle <n Particles; iParticle ++) 
6. {
7.  double sum1 = 0.0;
8.  // Particle m 
9.   for (int mParticle = 0; mParticle <nParticles; mParticle++)
10.  {
11.   double sum2 = 0.0; 
12.   if ( (float) cvmGet (particles, 7, mParticle) > 0 )
13.   {
14.    // Beta 0.. to..6
15.    for (int joint = 0; joint <7; joint ++)
16.    {
17.     // || pi–pj ||^2 / KDEStdDev ^2
18.     sum2 += pow( ((float) cvmGet (particles, joint, mParticle)–
(float)  cvmGet (particles, joint, iParticle )) , 2) / pow(KDEStdDev, 2); 
//  Multivariate normal distribution
19.    }
20.    sum1 += s t d :: exp(–sum2/( 2) ) *cvmGet (particles, 7 ,  mParticle);
21.   }
22.  }
23.  sum1 = sum1 / ( nParticles*sqrt (pow(2*M_PI, 1) *pow(KDEStdDev,  7) ) ); 
24.  double weight = alphaKDE*sum1 + cvmGet (particles, 7 ,  iParticle); 
25.  if (weight>maxWeight)
26.  { 
27.   maxWeightIndex= iParticle; // save the best particle index
28.  }
29. }
30.}

listing 1  | HandPoseestimationModule::initsMC function. defined in 
handPoseestimationModule.cpp

1. bool handPoseEstimationModule :: initSMC ( )
2. {
4.  // Generate random particles
5.  srand((unsigned int)time(0)); // make sure random numbers are really 
random.
6.  rngState = cvRNG(rand());
7.  // initialize Beta1
8.  cvRandArr(&rngState, particles 1, CV_RAND_NORMAL, 
cvScalar(initialMean), cvScalar(initialStdDev));
9.  … … // similar for particles2 to particles6
10.  cvRandArr (&rngState, particles7, CV_RAND_NORMAL, 
cvScalar(initialMean) , cvScalar(initialStdDev));
11.  // Artificial Noise Initialization 
12.  artifNoiseStdDev = initialArtificialNoiseStdDev;
13. }

listing 2  | HandPoseestimationModule::processImages. defined in 
handPoseestimationModule.cpp

1. Mat handPoseEstimationModule :: processImages (Mat inputImage)
2. {
3.  Mat edges , dt Image; 
4.  cvtColor(inputImage, edges, CV_RGB2GRAY);
5.  // Blur Image 
6.  blur(edges, edges, Size (3, 3));
7.  Canny(edges, edges, 65, 3*65,3); 
8.  threshold(edges, edges, 100,255,THRESH_BINARY_INV); // binary Image 
9.  distanceTransform(edges, dt Image, CV_DIST_L2, CV_DIST_MASK_5); 
10.  return dtImage;
11. }
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increase asymptotically and the samples will be spread over 
the 7D state-space and (2) the particles will not end-up all 
at the same value, which can happen when the random noise  
is Zero.

On the resampling stage, we use the systematic resampling 
strategy [check Hol et al. (2006)], which ensures that a particle 
with a weight greater than 1/M is always resampled, where M is 
the number of particles.

4.2. Robot’s Internal Model generator
The Listings 5 shows the general architecture of the Robot’s Internal 
Model Generator using pseudo-code.

4.2.1. Initialization of the Render Textures
The render textures, which will be used to render the two camera 
images, are initialized for each particle for both left and right views 
of the scene.

4.2.2. Generate Hypotheses
The hypotheses are generated on a frame-based approach, i.e., we 
generate one hypothesis for each frame of the “game”. After we receive 
the vector with the 200 hypotheses to generate, we virtually move 
the robot to each of the configurations to be tested and record both 
images (left and right) in a renderTexture.

After the 200 generations, we call the likelihood assessment DLL 
function to perform the comparison between the real images and 
the generated hypotheses.

The available version of the Robot’s internal model generator is an 
executable compiled and self-contained which works on Windows-
based computers with the installed dependencies7. Moreover, this 

7 The list of dependencies can be seen on Section 5.1.2

does not require neither the Unity® Editor to be installed in the 
computer nor the Unity Pro license.

More details on the creation of the Unity® iCub Simulator for this 
project can be found in Vicente et al. (2016b) Sec. 5.2 - “The Unity® 
iCub Simulator”.

4.3. likelihood assessment Module
The likelihood assessment is based on the observation model 
defined in Vicente et al. (2016a) Section 3.4.2.

We exploit an edge-based extraction approach along with 
a distance transform algorithm computing the likelihood  
using the Chamfer matching distance [Borgefors and Bradski 
(1986)].

In our code, these quantities are computed in the GPU using the 
OpenCV and CUDA libraries, and the interoperability between 
these libraries and the OpenGL library. The solution adopted 
was to add the likelihood assessment as a cpp plugin called 
inside the internal model generator module. The  likelihood. cpp 
file, particularly the function CudaEdgeLikelihood, is where the 
likelihood of each sample is computed. Part of the code of the 
likelihood function is shown and analysed in Listings 6. Up 
to the line 21 of the Listings 6, we exploit the interoperability 
between the libraries used (OpenGL, CUDA, OpenCV) and after 
line 21 we apply our likelihood metric using the functionality of 
the OpenCV library, where GgpuMat is the generated Image of 
the ith sample and GgpuMat_R is the real Distance Transform 
image. In line 35, the lambdaEdge is a parameter to tune the 
distance metric sensitivity, which is initialized at the value 25 
in line 1 (corresponding to line 148 of the C++ file)8. When 
the generated image does not have edges (i.e., the hand is not 
visible by the cameras), we force the likelihood of this particle 
to be almost zero (line 37 and 39, respectively). The maximum 
likelihood (i.e., the value 1.0) is achieved when each entry of 

8 Check Vicente et al. (2016a) Eq (21) for more details on the lambdaEdge 
parameter

listing 4  | Pseudo Code updating artificial noise corresponding to part 
of the function runsMCIteration() within file: src/handPoseestimationMo-
dule.cpp

1. IN handPoseEstimationModule :: runSMCIteration ( )
2.{
3. …
4. // Resampling or not Resampling. That’s the Question 
5. if (maxLikelihood >minimumLikelihood) { 
6.  systematic_resampling ( ); // Check Section Resampling and New Particles
7.  reduceArtificialNoise ( );
8. } 
9. else { // do not apply resampling stage 
10.  increaseArtificialNoise ( );
11. } 
12. if (artifNoiseStdDev > upperBoundNoise) { // upperbound of artificial noise
13.  artifNoiseStdDev = upperBoundNoise;
14. }
15. if (artifNoiseStdDev < lowerBoundNoise) { // lowerbound of artificial noise 
16.  artifNoiseStdDev = lowerBoundNoise;
17. } 
18. addNoiseToEachSample ()
19.}

listing 5  | Pseudo-Code Robot's internal model.

1. InitRenderTextures ( ) // Initialization of the strutures to receive 
2.
3.for (each iteration) // for each iteration of the SMC
4.{ 
5. waitForInput ( ); // wait for input vector with particles to be generated 
6.
7. for (each particle) { 
8.  moveTheInternalModel ( ) // Change the robot’s configuration
9.  RenderAllucinatedImages ( ); // render left and right image on a render 
texture 
10.  nextFrame ( );
11. }
12. // After 200 frames call DLL function
13. ComputeLikelihood (AllucinatedImages (200), RealImage) // Call the DLL 
function (CudaEdgeLikelihood) to compare the hypotheses with the real image.
14.}
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the result image is zero. This happen when every edge on the 
generated image match a zero distance on the distance transform 
image. The multiplication by 1,000 and the int cast in line 42 is 
used to send the likelihood as a int value (the inverse process 
is made in the internal model when it receives the likelihood 
vector) and it is one of the limitations of the current approach 

due to software limitations the authors could not send directly 
a double value between 0 and 1.

5. aPPlICatIon and utIlIty

The Markerless kinematic calibration can run during normal 
operations of the iCub robot. It will update the joint offsets 
according to the new incoming observations. Moreover, one 
can also stop the calibration and use the estimated offsets so 
far, however, to achieve a better accuracy in different poses 
of the end-effector the method should be kept running 
in an online fashion to perform a better adaptation of  
the parameters.

The details of the dependencies, installation and how to run 
the modules can be found at Online Documentation page (check 
Section 2).

5.1. Installation and dependencies
The dependencies of the proposed solution can be divided 
in two sets of libraries: (1) the libraries needed to run the 
handPoseEstimation module, and (2) the libraries needed 
to run the Robot’s internal model and the likelihood  
Assessment.

5.1.1. Hand Pose Estimation Module
The handPoseEstimation depends on YARP library, which 
can be installed following the installation procedure of the 
official repository9. Moreover, it depends on the OpenCV  
library10.

We tested this module with the last release of YARP (i.e., 
June 15, 2017), version 2.3.70, with the OpenCV library V2.4.10 
and V3.3 and the code works with both versions. The authors 
recommend the reader to follow the official installation guides 
for these libraries.

To install theses modules, one can just run CMake using the  
CMakeLists. txt on the folder:

/modules/handPoseEstimation/

5.1.2 Robot’s Internal Model Generator and Likelihood 
Assessment
The Robot’s internal model and the likelihood assessment 
depend on YARP library for communication and on the OpenCV 
library with CUDA enabled computation (i.e., installing the 
CUDA toolkit) for image processing and GPGPU accelerated 
algorithms. A Windows machine should be used to install this 
module.

The tested version of the OpenCV library was V.2.4.10 with 
the CUDA toolkit 6.5. The C# bindings for the YARP middleware 
on a windows machine should be compiled. The details regarding 
the installations procedures can be found at the following URL: 

9 https://github.com/robotology/yarp
10 It is not mandatory the CUDA-enabled capabilities

listing 6  | likelihood assessment: modules/likelihoodassessment/src/
likelihood.cpp

 1. int lambdaEdge = 25;
 2. // For each particle i – line 149 modules / likelihoodAssessment / src / 
likelihood.cpp
 3. // Interopelability between the several libraries (OpenGL , CUDA, OpenCV) 
 4. gltex =(GLuint) (size_t) (ID[i]); // ID is a vector with pointers to the render 
textures 
 5. glBindTexture(GL_TEXTURE_2D, gltex);
 6. GLint width, height, internalFormat; 
 7. glGetTexLevelParameteriv(GLTEXTURE_2D, 0, GL_TEXTURE_
COMPONENTS, &internalFormat); // get internal format type of GL texture 
 8. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, 
&width); // get width of GL texture 
 9. glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, 
&height); // get height of GL texture 
 10.
 11. checkCudaErrors( cudaGraphicsGLRegisterImage ( &cuda_tex_screen_
resource , gltex , GL_TEXTURE_2D, cudaGraphicsMapFlagsReadOnly ) );
 12. // Copy color buffer 
 13. checkCudaErrors( cudaGraphicsMapResources ( 1, &cuda_tex_screen_
resource , 0 ) ); 
 14. checkCudaErrors( cudaGraphicsSubResourceGe tMappedArray ( &cuArr , 
cuda_tex_screen_resource, 0, 0 ) );
 15. BindToTexture( cuArr); // BindToTexture Functions defined in Cuda_Gl.cu
 16.
 17. DeviceArrayCopyFromTexture( ( float3*) gpuMat.data, gpuMat.step, 
gpuMat.cols, gpuMat.rows );//DeviceArrayCopyFromTexture function defined on 
Cuda_Gl.cu 
 18.
 19. checkCudaErrors( cudaGraphicsUnmapResources ( 1, &cuda_tex_screen_
resource, 0 ) ); 
 20. checkCudaErrors( cudaGraphicsUnregisterResource (cuda_tex_screen_
resource) ); 
 21. cv::gpu::cvtColor(gpuMat, GgpuMat,CV_RGB2GRAY);
 22.
 23. // Apply the likelihood Assessment
 24. // GgpuMat – generated Image
 25. // GgpuMat_R – Real Distance Transform image 
 26. cv :: gpu :: multiply (GgpuMat, GgpuMat_R, GpuMatMul); 
 27. cv :: Scalar sumS = cv :: gpu :: sum(GpuMatMul);
 28.
 29. /* 
 30. Check the article:
 31. Online Body Schema Adaptation Based on Internal Mental Simulation and 
Multisensory Feedback, Vicente et al.
 32. In particular, Equation (21) 
 34. */ 
 35. sum = sumS [0]*lambdaEdge; // lambdaEdge is a tuning parameter for 
distance sensitivity 
 36. nonZero = (float) cv::gpu::countNonZero (GgpuMat); // generated image 
 37. if (nonZero ==0) { 
 38.  likelihood [i] = 0.000000001; // Almost Zero
 39. }
 40. else {
 41.  result = sum/nonZero; 
 42.  likelihood[i] = (int) ((cv::exp(– result)) *1000);
43. }
44.}

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
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http://www. yarp. it/ yarp_ swig. html# yarp_ 
swig_ windows.

The C# bindings will allow the internal model generator to 
communicate with the other modules.

The C# bindings will generate a DLL file that, along with 
the DLL generated from the likelihood assessment module, 
should be copied to the Plugins folder of the internal model 
generator. In the official compiled version of the repository 
this folder has the following path: internalmodel/icub-
internalmodel-rightA-cam-Lisbon_Data/
Plugins/

The complete and step-by-step installation procedure can 
be seen in the Online Documentation page on the Installation 
section.

5.2. Running the Modules
The proposed method can run on a cluster of computers connected 
with the YARP middleware. The internal model generator should 
run on a computer with Windows Operating System and with 
CUDA capabilities. The step-by-step running procedure guide 
can be found on the Online Documentation page. The rest of the 
section is organized with a high level perspective of running the 
algorithm. The YARP connections required between the several 
components can be connected through the XML file under the 
app/scripts folder.

5.2.1. Running the Hand Pose Estimation and its 
parameters
The Hand Pose Estimation can be initialized using the 
yarpmanager or in a terminal running the command:  

handPoseEstimation [--<parameter_name> 
<value > …] 

where, <value> is the value for one of the parameters 
(<parameter_name>) defined in the itemize list below:

•  name: name of the module (default =“hpe”)
•  arm: arm which the module should connect to. (default = right’)
•  initialMean: mean for the initial distribution of the particles 

[in degrees]. (default = 0.0°)
•  initialStdDev: StdDev of the initial distribution of the 

particles degrees
•  artificialNoiseStdDev: initial  Artificial Noise (StdDev) to 

spread the particles after each iteration (default = 3.0°)
•  lowerBound: artificial noise lower bound (StdDev). Should be 

greater than Zero to prevent the particles to collapse in one single 
value (default = 0.04°)

•  upperBound: artificial noise upper bound (StdDev). The artificial 
noise should have a upper bound to prevent the particles to diverge 
after each resampling stage (default = 3.5°)

•  minimumLikelihood: minimumLikelihood [0,1] in order to 
resample the particles (default = 0.55)

•  increaseMultiplier: increase the artificial noise of a certain value 
(currentValue*increaseMultiplier) if the maximum likelihood is 
lower than the minimumLikelihood (default = 1.15)

•  decreaseMultiplier: decrease the artificial noise of a certain 
value (currentValue*decreaseMultiplier) if the maximum 
likelihood is greater than the minimumLikelihood (default = 
0.85)

•  KDEStdDev: StdDev of each kernel in the Kernel Density 
Estimation algorithm (default = 1.0°)

•  minIteration: minimum number of iterations before sending 
the estimated offsets. The objective is to give time to the algorithm 
to converge, without this feature one can receive completely 
different offsets from iteration t to t + 1 during the filter 
convergence (default = 35)

fIguRe 2 |  Projection of the fingertips on the left camera on simulated robot experiments. The blue dot represents the end-effector projection (i.e., base of the 
middle finger), the red represents the index fingertip, the green the thumb fingertip, the dark yellow the middle fingertip and the soft yellow the ring and little 
fingertips. On the left image (a) is the canonical projection (i.e., with  ̂β = 0 ) and on the right image (B) the estimated offsets ( ̂β ).

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
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5.2.2. Running the Robot’s Internal Model
The internal model generator should run on a terminal using 
the following command:

 icub- internalmodel- rightA- cam- Lisbon. exe 
-force-opengl

The -force-opengl argument will force the robot’s 
internal model to use the OpenGL library for rendering purposes, 
which is fundamental for the libraries interoperability.

5.2.3. User interface
The user can send commands to the Hand Pose estimation 
algorithm through the RPC port hpe/rpc:i. The RPC port acts 
like a service to the user where the algorithm can be started, 
stoped or paused/resumed. It is also possible to request the last 
joint offsets estimated by the algorithm. The thrift file (modules/
handPoseEstimation/ handPoseEstimation. thrift) contains the 
input and output of each RPC service function (i.e., start, stop, 
pause, resume, lastOffsets and quit). More details about these 
commands can be seen in the use procedure on the documentation. 
Moreover, after connecting to the RPC port (yarp rpc hpe/rpc:i), 
the user can type help to get the available commands. The 
module also replies the input and output parameters of a given 
command if the user type help FunctionName (e.g., help start).

6. exPeRIMents and exaMPles of 
use

The experiments performed with the proposed method on the 
iCub simulator, with ground truth data, have shown a good 
accuracy on the hand pose estimation, where artificial offsets 
were introduced in the seven joints of the arm. The results on the 
real robot have shown a significant reduction of the calibration 
error [Check Vicente et al. (2016a) Section 5 for more results in 
simulation (Section 5.1) and with the real iCub (Section 5.2)].

For the reader to be able to test the algorithm, the authors 
collected a simulated dataset (encoders of the head and arms, and 
the left and right images) which can be used to test the algorithm. 

The simulation results of the present article were obtained 
running the above-stated code with the default parameters on 
the collected dataset.

The dataset11 was collected using a visual simulator based on 
the CAD model of the iCub humanoid robot adding artificial 
offsets in the arm joints. The artificial angular offsets β were the 
following:

β = { – 10.0, – 10.0, 6.0, – 7.0, – 1.0, – 20.0, 7.0}°.

The robot performed a babbling movement which consists in a 
random walk in each joint. The minimum and maximum values of 
the uniform distribution used to generate the babbling movement 
starts at [–5, 5]°, and is reduced during the movement to [– 0.5, 
0.5]°, respectively. Despite a great amount of errors in the robot’s 
kinematic chain, the algorithm was able to converge to the 
solution in Figure 2. Moreover, the cluttered environment on the 
background did not influence the filter convergence. The reader 
can see the projection of the fingertips on the left camera image: 
(1) according to the canonical representation on Figure 2A (where 
it is assumed an error-free kinematic structure, i.e., with  ̂β = 0  
and (2) the corrected kinematic structure using the algorithm 
implemented and documented in this code paper on Figure 2B.

The convergence of the algorithm along with a side-by-side 
comparison with the canonical solution can be seen in the 
following video: https:// youtu. be/ 0tzLFqZLbxc

On the real robot, we already performed several experiments 
in previous works, with different initial and final poses using 
the 320 × 240 cameras. In Figure 3 one can see one example of 
the hand estimation. While the image on the left (Figure 3A) 
shows the canonical estimation of the hand projected on the 
left camera image according to the non-calibrated kinematic 
chain, the image on the right (Figure 3B) shows the corrected 
kinematic chain which originates a better estimation of the 
hand pose. The rendering of the estimated hand pose was done 
taking into account the joint offsets on the kinematic chain before 
computing the hand pose in the image reference frame.

11 https://github.com/vicentepedro/eyeHandCalibrationDataset-Sim

fIguRe 3 |  Projection of the fingertips on left camera in real robot experiments. On the left image (a) the canonical projection (i.e., with  β̂ = 0 ) is shown, and on 
the right (B) the projection according with the corrected kinematic chain using the estimated offsets ( ̂β ).
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7. KnoWn Issues

There are some known issues or limitations in this algorithm and 
its software. The Windows dependency of the internal model 
generator module can be a problem for non-windows users. 
Moreover, the number of particles in the Sequential Monte Carlo 
is fixed (200 particles), which we found to be a good trade-off 
between accuracy and speed [check Vicente et al. (2016a) for more 
details on this matter].

The camera size is also fixed to the 320 × 240 resolution, 
which is sufficient to most of the experiments performed on the 
iCub. Indeed, to the authors’ knowledge, this is the most popular 
resolution in the iCub community. The camera resolution can 
be modified by changing the input resolution on the hand pose 
estimation module and on the internal structures of the internal 
model and the likelihood assessment. However, this demands for 
a recompilation of the internal model generator which could not 
be done without a Pro license of Unity®.

The limitation on the integration of the likelihood assessment 
and the int cast discussed in Section 4.3 should be investigated 
since we are truncating the likelihood and in the end we have, at 
most, three significant figures of the likelihood value.

Hand occlusions can also be problematic at this stage of the 
work since we are not dealing explicitly with them. If the hand is 
occluded for a long period, the filter can start to diverge since it 
does not find a good match of the hand model in its perception.

8. ConClusIon and futuRe WoRK

In this paper, we have shown how to calibrate the eye-hand 
kinematic chain of a humanoid robot – the iCub robot. We 

have provided a tutorial on how to execute the module and how 
it works, its inputs and outputs. Our proposed work could be 
beneficial for research works with the iCub humanoid robot, 
from manipulation related fields to human-robot interaction, for 
instance. The results have shown a good accuracy in simulation 
and in a real-world environment. For future work, we are planning 
to extend the architecture. A useful feature is to be able to predict 
if the hand is present or not in the image or if it is occluded in 
order to perform a better match between the perception and 
the generated hypotheses. We will investigate the possibility of 
running the internal model simulator on different platforms (i.e., 
Linux, macOS), which seems to be a new feature of the Unity game 
engine editor environment.

autHoR ContRIButIons

In this work, all the authors contributed to the conception of the 
markerless eye-hand kinematic calibration solution and to the 
analysis and interpretation of the data acquired.

fundIng

This work was partially supported by Fundação para a Ciência 
e a Tecnologia [UID/EEA/50009/2013] and PhD grant [PD/
BD/135115/2017] and by EPSRC UK (project NCNR, National 
Centre for Nuclear Robotics, EP/R02572X/1). We acknowledge the 
support of NVIDIA Corporation with the donation of the GPU 
used for this research.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1016/S0734-189X(86)80047-0
http://dx.doi.org/10.1109/LRA.2016.2645124
http://dx.doi.org/10.3182/20090706-3-FR-2004.00129
http://dx.doi.org/10.5772/5761
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1016/j.neunet.2010.08.010
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.3389/frobt.2016.00007
http://dx.doi.org/10.1007/s10846-016-0376-6
http://creativecommons.org/licenses/by/4.0/

	﻿Markerless Eye-Hand Kinematic Calibration on the iCub Humanoid Robot﻿
	1. Introduction and Related Work
	2. Proposed Solution
	3. Software Design and Architecture Principles
	4. Code Description
	4.1. Hand Pose Estimation Module
	4.1.1. Initializing the Sequential Monte Carlo parameter estimation - initSMC Function
	4.1.2 Read Image, Read Encoders, ProcessImages and SendData
	4.1.3. Update Likelihood
	4.1.4. Kernel Density Estimation
	4.1.5. Best Hypothesis
	4.1.6. Update Artificial Noise, Resampling and New Particles

	4.2. Robot’s Internal Model Generator
	4.2.1. Initialization of the Render Textures
	4.2.2. Generate Hypotheses

	4.3. Likelihood Assessment Module

	5. Application and Utility
	5.1. Installation and Dependencies
	5.1.1. Hand Pose Estimation Module
	5.1.2 Robot’s Internal Model Generator and Likelihood Assessment

	5.2. Running the Modules
	5.2.1. Running the Hand Pose Estimation and its parameters
	5.2.2. Running the Robot’s Internal Model
	5.2.3. User interface


	6. Experiments and Examples of Use
	7. Known Issues
	8. Conclusion and Future Work
	Author Contributions
	Funding
	References


