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Modern robotic applications create high demands on adaptation of actions with respect 
to variance in a given task. Reinforcement learning is able to optimize for these changing 
conditions, but relearning from scratch is hardly feasible due to the high number of 
required rollouts. We propose a parameterized skill that generalizes to new actions for 
changing task parameters, which is encoded as a meta-learner that provides parameters 
for task-specific dynamic motion primitives. Our work shows that utilizing parameterized 
skills for initialization of the optimization process leads to a more effective incremental 
task learning. In addition, we introduce a hybrid optimization method that combines a 
fast coarse optimization on a manifold of policy parameters with a fine grained parameter 
search in the unrestricted space of actions. The proposed algorithm reduces the number 
of required rollouts for adaptation to new task conditions. Application in illustrative toy 
scenarios, for a 10-DOF planar arm, and a humanoid robot point reaching task validate 
the approach.

Keywords: reinforcement learning, policy optimization, memory, learning, hybrid optimization, dimensionality 
reduction, parameterized skills

1. inTrOducTiOn

Advanced robotic systems face non-static environmental conditions which require context-dependent 
adaptation of motor skills. Approaches that optimize motions for a given task by reinforcement 
learning, like object manipulation (Günter, 2009) or walking gait exploration (Cai and Jiang, 2013), 
deal only with a single instance of a potentially parameterized set of tasks. In many cases, a low-
dimensional parameterization that covers the variance of a task exists. For example, consider reaching 
and grasping under various obstacle positions and object postures (Ude et al., 2007; Stulp et al., 
2013), throwing of objects at parameterized target positions (Silva et al., 2014) or playing table tennis 
using motion primitives that are parameterized with respect to the current ball trajectory (Kober 
et al., 2012). A full optimization for each new task parameterization from a reasonable initialization, 
which was acquired by e.g., kinesthetic teaching, means that many computations and trials need to 
be performed before the task can be executed. This impedes immediate task execution and is highly 
inefficient for executing repetitive tasks under some structured variation.

Recent work addresses this issue by introducing parameterized motor skills that estimate a mapping 
between the parameterization of a task and corresponding solutions in policy parameter space (Ude 
et  al., 2007; Mülling et  al., 2010; Matsubara et  al., 2011; Kober et  al., 2012; Baranes et  al., 2013; 
Stulp et al., 2013; Silva et al., 2014; Reinhart and Steil, 2015). Generation of training data for the 
update of such parameterized skills requires the collection of optimized policies for a number of task 

Edited by: 
Alexandre Bernardino,

Universidade de Lisboa, Portugal

Reviewed by: 
Erol Sahin,

Middle East Technical University, 
Turkey

 John Nassour,
Technische Universität Chemnitz, 

Germany

*Correspondence:
Jeffrey F. Queißer

 jqueisse@ cor- lab. uni- bielefeld. de

Specialty section:
This article was submitted to 

Humanoid Robotics,
a section of the journal 

Frontiers in Robotics and AI

Received: 13 June 2017
Accepted: 11 April 2018

Published: 08 June 2018

Citation:
Queißer JF and Steil JJ

 (2018) Bootstrapping of 
Parameterized Skills Through Hybrid 

Optimization in Task and Policy 
Spaces.

Front. Robot. AI 5:49.
doi: 10.3389/frobt.2018.00049

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00049&domain=pdf&date_stamp=2018-06-08
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00049
http://www.frontiersin.org/articles/10.3389/frobt.2018.00049/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00049/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00049/full
http://loop.frontiersin.org/people/449189/overview
http://loop.frontiersin.org/people/7339/overview
https://creativecommons.org/licenses/by/4.0
mailto:jqueisse@cor-lab.uni-bielefeld.de
https://doi.org/10.3389/frobt.2018.00049


2 June  2018 | Volume 5 | Article 49Frontiers in Robotics and AI | www. frontiersin. org

Queißer and Steil Bootstrapping of Parameterized Skills

parameterizations. In previous work, each training sample is based 
on a full optimization for a new task parameterization starting 
from a fixed initialization (Silva et al., 2012, 2014), or gathered 
in demonstrations e.g., by kinesthetic teaching (Ude et al., 2007; 
Matsubara et al., 2011; Stulp et al., 2013; Reinhart and Steil, 2015). 
On the one hand, requesting demonstrations from a human teacher 
for many task parameterizations is not only time-consuming, 
but also includes the risk of collecting very different solutions to 
similar tasks due to the redundancy of the problem. Solutions on 
a smooth manifold are a prerequisite to allow for generalization 
for unknown tasks by machine learning algorithms. On the other 
hand, full optimization from a single initial condition requires 
many rollouts and ignores the already acquired knowledge about 
the motor skill.

In this work, we follow the idea of (Silva et  al., 2012, 2014; 
Baranes et al., 2013) to apply dedicated policy optimization for new 
task parameterizations instead of gathering demonstrations from 
a tutor. In a similar way as (Baranes et al., 2013), we generalize for 
new task parameterizations to transfer optimization results. We 
investigate an incremental algorithm to establish parameterized 
skills that reuse previous experience to successively improve the 
initialization of the optimization process (Queißer et al., 2016). 
Thereby we are able to incorporate state-of-the-art optimization of 
the policy, i.e., by CMA-ES, instead of optimizing meta-parameters 
of policies (Kober et al., 2012) and do not rely on library based 
approaches (Mülling et al., 2010). In contrast to (Silva et al., 2012, 
2014), the optimizer is initialized with the current estimate of the 
iteratively updated parameterized skill. The parameterized skill is 
a meta learner for generalization of DMP parameterizations for 
given task parameterizations. This leads to a significant reduction 
of the number of required rollouts during skill acquisition. We refer 
to the process of incremental skill acquisition as bootstrapping. We 
systematically show that the optimization process benefits from the 
initial condition proposed by the not yet fully trained parameterized 
skill and how this benefit depends on the model complexity of the 
learning algorithm. To cope with redundancy and to support the 
exploration of smooth manifolds in the policy parameter space, 
we introduce an additional cost term for optimization that we 

refer to as regularization of policy parameterization. In addition, 
we apply ridge regression with regularization for estimation of 
a smooth parameterized skill representation. The proposed 
algorithm for bootstrapping of parameterized skills results in a 
significant speed-up of the optimization processes for novel task 
parameterizations.

Based on previous experiments (Queißer et  al., 2016), we 
argue for a utilization of the parameterized skill as a projection 
of the low dimensional manifold of task-space to the high 
dimensional search space of policy parameters. By performing a 
policy optimization in this low dimensional manifold, a further 
speed-up, in terms of number of rollouts, during the optimization 
process can be observed. But to cope with the very likely case 
that no sufficient solution for the required task can be found in 
the manifold of the parameterized skill, we propose to perform 
a hybrid search in both spaces. Therefore we introduce an hybrid 
optimization algorithm that samples rollouts in both spaces and 
performs an estimation for a combined parameter update, as 
outlined in Figure 1.

This work extends our previous method (Queißer et al., 2016) 
and its contribution aims at the experimental verification of the 
following hypotheses:

(H1) Initialization of the optimizer with the current estimate 
of the parameterized skill leads to a faster optimization and 
convergence of the skill learning. (Sec. 3)

(H2) Searching in the manifold of previous solutions leads to a 
reduction of search space and thereby to a more efficient acquisition 
of the parameterized skill. (Sec. 4)

We evaluate the bootstrapping and the hybrid search of the 
proposed algorithm on a via point task with a planar 10-DOF 
robot arm (see Figure 2). Additionally we investigate the properties 
of the proposed optimization in hybrid spaces on toy examples. 
The scalability of the approach is demonstrated by bootstrapping 
a parameterized skill for a reaching task incorporating the upper 
body kinematics of the humanoid robot COMAN (see Figure 3) 
in end-effector as well as joint space control.

Figure 1 |  Hybrid optimization framework, the optimizer is initialized (h1) by the current estimate (gray) of the parameterized skill PS and performs a hybrid 
optimization (h2) in the low dimensional manifold of previous solutions (blue) and the high dimensional space of motion primitives (red).
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2. ParameTerized sKills

We consider policies πθ that are parameterized by θ∈ RF. We 
further assume that tasks are parameterized by τ∈ RE. Task 
instances defined by τ are distributed according to the probability 
density function P(τ). The task parameterization τ reflects the 
variability of the task, e.g., position of obstacles, target positions 
or load attached to an end-effector. With reference to (Silva et al., 
2014), we introduce the notion of a parameterized skill, which 
is given by a function PS : RE → RF that maps task parameters τ 
to policy parameters θ. The goal is to find a parameterized skill 
PS(τ) that maximizes 

 
∫
P
(
τ
)
J
(
πPS

(
τ
)
,τ
)
dτ

 
 where J(π, τ) = E 

{R(πθ, τ)|π, τ} is the expected reward for using policy πθ to solve 
a task τ. The reward function R(πθ, τ) assesses each action of the 
robot defined by the policy πθ with respect to the current task 
parameterization τ. In Figure 4 we visualize the relation between 
task space and the policy parameterization. We expect that multiple 
manifolds for a given task parameterization exist. We therefore have 
to select one of the candidated manifolds for approximation by the 

parameterized skill. We support the incremental exploration of a 
continuous mapping between τ and θ by imposing a respective 
preference for solutions that are close to the current estimate of 
the parameterized skill.

3. BOOTsTraPPing OF ParameTerized 
sKills

We propose an algorithm to bootstrap a parameterized skill PS(τ) 
by consolidating optimized θ for given τ. We assume that some 
sort of policy representation, e.g., a motion primitive model, and 
policy search algorithm, e.g., REINFORCE (Williams, 1992) or 
CMA-ES (Hansen, 2006), are available. The idea is to incrementally 
train the parameterized skill PS(τ) with task-policy parameter 
pairs (τ, θ*), where θ* are optimized policy parameters obtained 
by executing the policy search algorithm for task τ. The key step is 
that the current estimate PS(τ) of policy parameters is used as initial 
condition for policy optimization of new tasks τ. With reference 

Figure 2 |  Bootstrapping loop of parameterized skills as proposed in (Queißer et al., 2016). (a) System overview including simulation of a 10-DOF planar arm, 
parameterized reaching target at  

T
2 , parameterized skill and optimization module. (B) Result of the bootstrapping experiment, as more samples have been presented 

to the parameterized skill, the higher the initial reward and the lower the number of rollouts to fulfil unseen tasks. In (c)-(e), three exemplary test cases for τ are 
shown. The representation of the parameterized skill in relation to the number (gray scale) of consolidated samples is visualized. © 2016 IEEE, reproduced with 
permission from (Queißer et al., 2016).
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to hypothesis H1 of Sec. 1, the central outcome of this procedure 
is that policy search becomes very efficient due to incrementally 
better initial conditions of the policy search. Ultimately, PS(τ) 
directly provides optimal policy parameters and no further policy 
optimization needs to be conducted.

The algorithm for the parameterized skill acquisition is outlined 
in Figure 5. For each new task τ, the parameterized skill provides 
an initial policy parameterization θstart  =  startPS(τ) (line 8). 
After collecting a sufficient number of pairs (τ, θ*), the proposed 

parameterization θstart can achieve satisfactory rewards such that 
no further policy optimization (PO) by reinforcement learning is 
necessary. The optimization from initial condition PS(τ) is initiated 
if the estimated policy parameters can not yet solve the given task or 
further training is desired (line 10). To ensure that only successful 
optimization results are used for training of the parameterized 
skill, an evaluation of the optimization process (e.g., reward ropt 
exceeds a threshold rth) is performed (line 11). If the optimization 
was successful, the pair (τ, θ*) with optimized policy parameters 

Figure 3 |  Constrained reaching scenario with a humanoid upper body 
and a grid-shaped obstacle. Generalized end-effector trajectories for different 
reaching targets retrieved from the iteratively trained parameterized skill are 
shown by black lines. © 2016 IEEE, reproduced with permission from 
(Queißer et al., 2016).

Figure 4 |  We expect that multiple manifolds exist that are suitable to describe a given task. Therefore the estimation of policy parameterizations that lie close to 
only one of the manifold candidates allows to estimate a smooth mapping between task and policy parameterization. Policy parameterizations that originate from 
different manifold candidates can result in ambiguous training data and decrease generalization capabilities of the parameterized skill. Coloring indicates mapping 
from input space to position on manifold.

Figure 5 |  Dataflow and pseudocode of the proposed bootstrapping 
algorithm. The parameterized skill (PS) estimates a policy parameterization 
θstart. In case of training, successive policy optimization (PO) by reinforcement 
learning results in an update of the parameterized skill. The shading of the 
background highlights nested processing loops of the system (from outer to 
inner): (1) Iteration over all tasks; (2) Optimization of θ by the PO algorithm; (3) 
Execution and estimation of the reward by iterating over all T timesteps of the 
trajectory  p

∗
t  . © 2016 IEEE, reproduced with permission from (Queißer et al., 

2016).
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θ* is used for supervised learning of PS(τ) (line 12). Finally, lines 
14–18 serve evaluation purposes during incremental training. The 
evaluation was performed on a predefined set of evaluation tasks 
in τev∈ Tev that are disjunct from the training samples.

3.1. selection of Policy representation
The proposed method does not rely on a specific type of policy 
representation. Many methods for compact policy presentation 
have been proposed, e.g., based on Gaussian Mixture Models 
(GMM) (Günter et al., 2007) or Neural Imprinted Vector Fields 
(Lemme et  al., 2014). We employ Dynamic Motion Primitives 
[DMP, (Schaal, 2006; Ijspeert et al., 2013)], because they are widely 
used in the field of motion generation. DMPs for point-to-point 
motions are based on a dynamical point attractor system

 ÿ = kS
(
g− y

)
− kDÿ + f

(
x,θ

)
   (1) 

that defines the output trajectory as well as velocity and acceleration 
profiles. The canonical system is typically defined as

 ̇x = −αx  or in our case as a linear decay  ̇x = −α  as in (Kulvicius 
et al., 2012). The shape of the primitive is defined by

 
f
(
x,θ

)
=
∑K

k=1 exp
(
−Vk

(
x− Ck

))
θk∑K

k=1 exp
(
−Vk

(
x− Ck

)) ,
   

(2)
 

where a mixture of K Gaussians is used. Ck are the Gaussian 
centers and Vk define the variance of the Gaussians. The DMP 
is parameterized by the mixing coefficients θk. We assume fixed 
variances Vk and a regular spacing of centers Ck as in (Ijspeert et al., 
2013; Reinhart and Steil, 2015).

3.2. selection of Policy Optimization 
algorithm
We apply the Covariance Matrix Adaptation Evolutionary 
Strategy [CMA-ES, (Hansen, 2006)] for optimization of DMP 
parameters θ, given a task τ. Stulp et al. (Stulp and Sigaud, 2013) 
have shown that the black-box optimization by CMA-ES is very 
efficient and reliable in combination with DMPs. In comparison 
to other reinforcement learning methods like PI2 (Theodorou 
et al., 2010) or REINFORCE (Williams, 1992), which evaluate the 
reward at each time step, CMA-ES is a black-box-optimization 
algorithm and operates only on the total reward of an action 
sequence. Stochastic optimization by CMA-ES evaluates Nλ 
rollouts of policy parameters per generation, which are drawn 
from a Gaussian distribution centered at the current policy 
parameter estimate. For each generation the current estimate is 
updated by a weighted mean of all Nλ rollouts. The final number 
of rollouts R required for optimization is given by the number 
of generations times the number Nλ of rollouts per generation.

3.3. selection of learning algorithm
For learning of parameterized skills PS(τ), we apply an 
incremental variant of the Extreme Learning Machine [ELM, 
(Huang et al., 2006)]. ELMs are feedforward neural networks 
with a single hidden layer:

 
θi
(
τ
)
=

H∑
j=1

Wout
ij σ

(
E∑
k=1

Winp
jk τk + bj

)
∀i = 1, . . . ,N

   
(3)

 

with input dimensionality E, hidden layer size H and output 
dimensionality F. Hidden Layer size was set to H = 50 for 
generalization in joint space and H = 20 in case of Cartesian 
end-effector space. Regression is based on a random projection 
of the input Winp ∈ RH×E, a non-linear transformation σ(x) = 
(1 + e–x)–1 and a linear output transformation W out∈ RF×H 
that can be updated by incremental least squares algorithms. 
The incremental update scheme of the ELM was introduced 
as Online Sequential Extreme Learning Machine (OSELM) 
(Liang et al., 2006) that incorporates the ability to perform an 
additional regularization on the weights (Huynh and Won, 2009) 
or exponential forgetting of previous samples (Zhao et al., 2012). 
Since we expect to deal with a small number of training samples, 
regularization of the network can help to prevent over-fitting 
and foster reasonable extrapolation.

3.4. experiments
The experimental setup for evaluation of our proposed 
bootstrapping architecture is shown in Figure  2A. The 
optimization algorithm is initialized by an initial guess of the 
parameterized skill. During optimization the optimizer performs 
rollouts in simulation and observes rewards resulting of the 
requested actions. In case an appropriate action that fulfils the 
task could be found, an update of the parameterized skill is 
conducted as explained previously in detail in Sec. 3

3.4.1. 10-DOF Planar Arm via-Point Task
The goal is to optimize the parameters of a DMP policy to generate 
joint angle trajectories such that the end-effector of a 10-DOF 
planar arm passes through a via-point in task space at time step  

T
2   

of the movement with duration T. We considered the kinematics 
of a 10-DOF planar arm. Motions start at initial configuration 
qstart = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and stop at configuration qend 
= (π/2, 0, 0, 0, 0, 0, 0, 0, 0, 0)T. The task parameterization τ is 
given by the 2D via-point position τ= (vx, vy) of the end-effector 
at timestep  

T
2  .

. The task parameterization τ is given by the 2D via-point 
position τ= (vx, vy) of the end-effector at timestep  

T
2  .

Since there exists no unique mapping between task and 
policy parameter space in this example, infinite action 
parameterizations can be found that sufficiently solve a given 
task (e.g., exceed a reward threshold). To reduce ambiguities in 
the training data for parameterized skill learning, we add a policy 
regularization term to the reward function. This regularization 
punishes the deviation of the policy parameters PS(τ) from the 
initial parameters θinit and additionally rewards small jerk of the 
end-effector trajectory. The initial and final arm configurations 
are shown in Figure 2. We utilize a minimum jerk trajectory 
(Flash and Hogan, 1985) in joint angle space to generate the 
initial policy parameters θinit.

The overall reward R(θ, v) is given by:
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R
(
θ, v

)
= −α1

T∑
t=2

(
∂3pxt
∂t3

)2
+

(
∂3pyt
∂t3

)2

� �� �
Jerk (a)

− α2∥pT/2 − vp∥2� �� �
Via Point (b)

− α3∥θinit − θ∥� �� �
Regularization (c)   

(4)

The reward depends on the DMP parameters θ that result in a 
10 dimensional joint trajectory transformed by the kinematics 
of the robot arm to the end-effector trajectory pt. The jerk is 
based on the third derivative of the end-effector trajectory pt 
(Hogan, 1984; Flash and Hogan, 1985) and is represented as 
one objective in the reward function Equation 4(a). Additional 
terms of the reward function refer to the distance to the desired 
via-point v of the end-effector trajectory Equation 4(b) and the 
regularization Equation 4(c).

Coefficients αi are fixed for all experiments to α = (102, 15, 
10–3)T, resulting in a magnitude of the regularization of ca. 10% 
of the overall reward of an optimized task. For the training phase, 
we selected Ntrain = 15 random tasks τ, i.e., via-point positions 
drawn from the green target plane in Figure 2. Generalization 
performance is evaluated on a fixed test set τev of Ntest = 16 via-
points arranged in a grid on the target plane. For each of the 10 
joints of the robot, we selected a DMP with K = 6 basis functions, 
resulting in a F = 60 dimensional policy parameterization θ. On 
the top of Figure 2B, the mean initial reward for all tasks τev in 
the test set is shown. The initial reward is based on the reward for 
estimated policy parameters PS(τ) as function of the number of 
incorporated training samples. The lower part of Figure 2B shows 
that policy optimization benefits from the improved initial policy 
parameters PS(τ) by reducing the number of required rollouts to 
solve novel tasks (exceed a certain reward threshold). The results 
show a significant reduction of the required number of rollouts 
compared to the initialization with the first training sample θ*, 
that is regarded as the baseline. Figure 2C-E shows solutions for 
three exemplary tasks τ from the test set. The gray scale of the 
end-effector trajectories refers to the number of consolidated 
training samples and shows that the parameterized skill improves 
as more optimized samples have been used for training. Further 
evaluation of the properties of the parameterized skill can be 
found in preliminary work (Queißer et al., 2016), this includes 
a comparison of different learner and exponential forgetting of 
old training data.

3.4.2. Reaching Through a Grid
The scenario shows the scalability of the proposed approach to more 
complex tasks. The goal is to reach for variable positions behind 
a grid-shaped obstacle while avoiding collisions of the arm with 
the grid as well as self-collisions. The experiments are performed 
in simulation of the humanoid robot COMAN (Tsagarakis et al., 
2011) as shown in Figure 3. We control 7 DOF of the upper body 
including waist, chest and right arm joints. For the first part of the 
experiment, motions are represented in Cartesian space utilizing 3 
DMPs with K = 5 basis functions (as in Equation 2), resulting in a F 
= 15 dimensional optimization problem. The respective DMPs are 
executed yielding Cartesian end-effector trajectories  p∗t  . As before, 
we utilize minimum jerk trajectories to generate the initial policy 

parameters θinit. The subset of valid and executable end-effector 
trajectories pr,t in Cartesian space is given by the kinematics as  
well as the reachability (e.g., joint limits) of the robot joints.

For each time step t of the desired end-effector trajectory  p∗t  , an 
inverse Jacobian controller estimates a configuration of the robot 
that executes  p∗t   and maximizes the distance to all obstacles in the 
null-space of the manipulator Jacobian (Liegeois, 1977):

 q̇ = J†
(
p∗t − pr,t

)
+ α

(
I− J†J

)
Z   (5)

 
Z =

L∑
l=1

−JTp,l · dmin,l
   

(6)
 

where  p∗t − pr,t   is the distance between the desired end-effector 
trajectory  p∗t   and the trajectory pr,t reached by the robot. The term Z 
maximizes the distances  ∥dmin,l∥  of all L links to the grid obstacle in 
the null-space I – J†J. The maximization by following the direction 
–dmin,l in joint space is implemented by the point Jacobian  J

T
p,l  of 

the closest point to the obstacle. The reward function for policy 
optimization is given by:

 

R(θ, vp) = −α1

T∑
t=2

∥p∗t − p∗t−1∥

� �� �
Length of Trajecory (a)

− α2

T∑
t=1

∥p∗t − pr,t∥

� �� �
Task Tracking (b)

+ α3

T∑
t=1

rd,t
� �� �

Dist. to Obstacles (c)

− α4∥θinit − θ∥

� �� �
Regularization (d)  

(7)

where T is the duration of the trajectory. The reward in Equation 
7 is a weighted sum of four objectives with weighting factors αi: 
(a) The length of the desired end-effector trajectory pd,t that is 
defined by policy parameter θ [Equation 7(a)]; (b) In addition to 
the punishment of long trajectories, the reward takes the accuracy 
of the trajectory tracking into account. Therefore, Equation 7(b) 
punishes deviations of the reached end-effector position pr,t in 
relation to the desired end-effector position  p∗t  ; (c) The distance 
maximization of all links to the grid obstacle rd,t is considered 
in Equation 7(c). The optimization criterion representing the 
maximization of the distance to the grid-obstacle rd,t is given by:

 
rd,t = −

L∑
l=1

min
(
0, ∥dmin,l∥ − dB

)2
  

(8)

a quadratic relationship to the minimum distances dmin,l over all L 
links to all obstacles in the scene in case the distance falls below a 
given threshold dB, as in (Toussaint et al., 2007) introduced in the 
context of null-space constraints for humanoid robot movement 
generation; (d) An additional normalization for small policy 
parameterizations as given by Equation 7(d).

The second part of the experiment refers to DMPs in joint 
space to represent the complete motion of the robot. Therefore 
the policy parameterization has to represent the maximization of 
the distance to the grid shaped obstacle as well since no additional 
inverse Jacobian controller is used. For this experiment we utilize 7 
DMPs with K = 15 basis functions (as in Equation 2) that generate 
joint space trajectories, resulting in a 105 dimensional optimization 
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problem. For policy optimization, the reward function is similar 
to that for the for end-effector trajectories Equation 7. The policy 
parameters are transformed by DMPs to desired joint space 
trajectories  p∗t  . As previously introduced, Equation 7(b) reflects 
physical constraints of the robot like joint limits. We initialize θinit 
with joint angle trajectories that allow the end-effector to follow a 
straight line from start to goal position.

3.5. results
We evaluated the bootstrapping of the parameterized skill as 
outlined in Figure  5. We selected Ntrain = 20 random target 
positions on the target plane in front of the robot for training. For 
evaluation, we created a fixed regular grid for point sampling of Ntest 
= 39 positions on the target plane. Figure 6 reveals that the reward 
of the initial guess θstart = PS(τ) of the parameterized skill increases 
with the number of presented training samples. In comparison to 
the previous experiment in Sec. 3.4.1, the optimization algorithm 
does not always succeed to find a solution for all tasks of the test 
set. Figure 6B shows an increasing success rate in relation to the 
number of consolidated samples and thereby the reward of the 
initial parameters θstart of the policy search. This indicates that 
increasingly better initial conditions PS(τ) for policy optimization 
reduce the risk to get stuck in local minima during optimization. 
In terms of number of rollouts that are required to fulfil a new 
task, we observe similar results as in the 10-DOF arm experiment: 
The number of required rollouts necessary for task fulfilment 
decreases the more successfully solved task instances have been 
presented to the parameterized skill as training data. This results 
in a bootstrapping and acceleration of the parameterized skill 

learning. Although the experiments in end-effector space utilize 
a joint controller that maximizes the distances automatically, the 
system is able to achieve similar performance in joint space except 
of a slightly lower success rate.

4. OPTimizaTiOn in hyBrid sPaces

Sec. 3 showed that the utilization of a parameterized skill for policy 
optimization by CMA-ES can significantly reduce the number 
of rollouts required to solve unseen tasks. A further option to 
speed up policy search is given by policy optimization in a lower 
dimensional search space, as stated by hypothesis H2 of Sec. 1. 
Previous work of (Koutnik et al., 2010; Fabisch et al., 2013) has 
already demonstrated that a compression of the parameter space 
by use of multi layer perceptrons (MLPs) leads to an acceleration 
of optimization for reinforcement tasks. Reduction of the search 
spaces by manifolds for value function approximation (Glaubius 
and Smart, 2005) and abstraction of the whole state-space into sub 
areas for terrain navigation (Glaubius et al., 2005) can be beneficial 
in case of reinforcement learning. Constrained optimization 
problems have been tackled by reducing state-space evaluations 
and focus on the feasible space of parameters (Barkat et  al., 
2008). It was demonstrated that the reduction of the number of 
available bio-mechanical DOF helps stabilize the interplay between 
environmental and neural dynamics (Lungarella and Berthouze, 
2002) for robotic tasks. Dimensionality reduction by freezing or 
synchronization of joints allows for faster skill acquisition, as shown 
by (Kawai et al., 2012). Further related work has elaborated the 
intrinsic dimensionality of human movements and demonstrated 

Figure 6 |  Mean reward of the initial guess θstart = PS(τ) of the parameterized skill in relation to the number of presented training samples (a/c) and the mean 
number of rollouts that are necessary to solve selected test tasks (reward exceeds a threshold) (B/d). Figures (a/B) show results of the experiments in end-effector 
space whereas (c/d) show results of the experiments in joint space. The dashed line in (B/d) shows the mean rate of solvable task in the test set. Results and 
confidence intervals are based on ten repeated experiments. Figure (a/B) © 2016 IEEE, reproduced with permission from (Queißer et al., 2016).
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that dimension reduction is beneficial for reinforcement learning 
on humanoid robot platforms (Colome et al., 2014).

We assume that previously optimized solutions (τ, θ*) 
represent the variability in the task domain and are consolidated 
in the parameterized skill. We therefore propose to reconsider the 
parameterized skill as an embedding femb of a non-linear manifold 
of task relevant actions within the full policy space fPS : RE → RF, 
θemb �→  PS(θemb). Further, we expect that solutions for unseen tasks 
are located close to the manifold of the parameterized skill, since we 
can observe the relation between a higher number of consolidated 
samples and a higher initial reward, as shown in Figures 2, 6. It is 
thus reasonable to perform policy optimization in the input space 
of fPS, due to the lower dimensionality of our task parameterization 
compared to the policy parameterization.

We expect that for points on fPS and their local neighborhood a 
differentiable map, i.e., a chart of the manifold in the policy space, 
exists. But on a global scale, it can be expected that the mapping 
between the task space and the policy space is not invertible since 
different task parameterizations τ may require the same policy 
parameterization θ and is not differentiable due to e.g., joint limits. 
Previous work related to our proposed method for dimensionality 
reduction for policy optimization includes primitive based 
motion generation by PCA compression (Park and Jo, 2004), 
lower dimensional primitives that encode differences between 
trajectories (Stulp et al., 2009) and further library based approaches 
like (Moro et al., 2012).

But clearly, a search in the task space depends heavily on 
the number and quality of previously seen samples. We can not 
expect to be able to find sufficient solutions for all unseen tasks 
configurations on a low dimensional manifold. More specifically, 
an exploration on the approximated manifold allows for a coarse 
search that quickly moves the estimation for θ* into the direction 
of higher rewards. If we are not able to fulfill the given task or we 
are less efficient to find a better solutions in the task space, we are 
forced to switch to a slower refinement search in the policy space. 
But also a temporary switch back from a search in the policy space 
to the task space would be possible.

Since optimization in policy space is not bound to the manifold 
of fPS, the joint update between of both spaces requires an inverse 
estimate of the parameterized skill. We define the local inverse of 
PS as:

 
�PS−1 (

θ
)
= min

τ
∥PS

(
τ
)
− θ∥,   (9) 

which allows to estimate a point on fPS that gives the closest 
response for a desired output θ.

Our approach allows to combine rollouts performed in both 
spaces for an update of the optimization algorithm. We propose 
to refer to the success rate of the policies sampled in the respective 
spaces as defined in Sec. 4.1 for the estimation of the importance 
of each space during optimization. In general, our combination of 
optimizers is not bound for a specific optimization algorithm, for 
this work we refer to a hybrid CMA-ES approach as introduced 
in Sec. 4.1.

From a policy optimization considering both spaces, we 
expect the following advantages: First, we expect the algorithm 

to utilize a low dimensional manifold based on previous samples 
to perform a fast optimization followed by an optional successive 
full optimization. Second, by exploration of the manifold based 
on the parameterized skill, we assume to find solutions that fit 
to the current estimate of fPS. Therefore, we expect to enhance 
the consistency of the training data of the parameterized skill for 
complex reward functions that allow for multiple solutions in 
policy space. Sections Sec. 5-6 will validate these assumptions. We 
will visualize and discuss on the ideas on toy data sets and perform 
algorithm comparisons to CMA-ES in one space.

4.1. cma-es in hybrid spaces
We refer to CMA-ES (Hansen, 2006) for the implementation of the 
proposed hybrid optimization method. The original algorithm of 
CMA-ES relies on four main steps, detailed information can be 
found in Appendix A. Optimization is performed in generations, 
which means that an action has to be performed under several 
perturbations and based on the observation of rewards an updated 
mean is estimated. CMA-ES has an internal representation of the 
current mean and of the covariance matrix that allows for sampling 
of new actions normally distributed around the current mean. In 
addition, CMA-ES estimates an evolution path for the mean and 
the covariance matrix update. Those evolution paths allow for more 
stability to outliers and noise. The first step performs the sampling 
from a multivariate normal distribution centered at the current 
estimate (Equation A.1). Followed by the update of the estimated 
solution for the next generation with respect to the rewards of 
the sampled rollouts  (Equation A.2). The third step targets the 
update of the covariance matrix and its evolution path (Equation 
A.3) and  (Equation A.4). And the final step performs an update of 
the exploration width and its assigned evolution path  (Equations 
A.5, A.6).

To be able to perform CMA-ES in hybrid spaces, we apply 
the CMA-ES algorithm in two parameter spaces simultaneously. 
We add indices F and E to indicate the affiliation of variables for 
optimization in policy space (F) and task space (E). Two distinct 

means  m
(
g+1

)
E   and  m

(
g+1

)
F   represent the current optimum to 

minimize the objective function, i.e., negative reward. Covariance 

matrices  C
(
g+1

)
E   and  C

(
g+1

)
F   as well as their evolution paths  p

(
g+1

)
c,E   

and  p
(
g+1

)
c,F   allow for random normal distributed perturbation of the 

respective mean. The variances  σ
(
g+1

)
E   and  σ

(
g+1

)
F   in addition to their 

evolution paths  p
(
g+1

)
σ,E   and  p

(
g+1

)
σ,F   define the exploration size in each 

space. In comparison to two independent CMA-ES optimizations 
in each space, we introduce a probability pE respectively pF = 1 – pE, 
that indicates in which space we sample the parameterization for 
rollouts. pE and pF can be interpreted as mixing coefficients that 
allow for interpolation between a CMA-ES optimization in the 
task space (pE = 1) and a CMA-ES optimization in policy space 

(pE = 0). For each update step we estimate  k = 1, . . . , λ

(
g+1

)
H   

samples in generation (g + 1) for a combined update and annotation 

 s
(
g+1

)
k = 0  if rollout k was sampled in the task space or  s

(
g+1

)
k = 1  

if sampled in the policy space. The initialization (Figure 7B) for a 
new task instance i of the parameterization in the embedded space 
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is  m
(
g=0

)
E = θi  and the initialization in full space is given by the 

generalization of the parameterized skill 
 
m

(
g+1

)
F = PS

(
m

(
g=0

)
E

)
.
 
 

The sampling of rollouts as shown in Figure  7C is defined in  
(Equation B.1), for each rollout the target space for sampling is 
based on probabilities pE and pF. The number of evaluated rollouts 
per generation is defined as a linear interpolation between λE and 
λF of both spaces as shown in  Equation B.2. In a next step, the 
parameterized skill performs a mapping of samples originated in 
task space to policy space and vise versa (see Figure 7C, line 6 and 
10). Therefore, a parameterized skill is required that allows for 
inverse evaluation notated as  ̂PS−1

 . This mapping process is given 

by  Equation B.3. A representation of all rollouts in  x
(
g+1

)
k,F   allows 

for execution of the policy and evaluation of the reward function. 
The rollouts are ordered based on the magnitude of the respective 
reward as proposed by the original CMA-ES approach (Hansen, 
2006), as shown in Figure 7D. At this point an update of the means  

 m
(
g+1

)
E   and  m

(
g+1

)
F   with respect to  x

(
g+1

)
k,E   and  x

(
g+1

)
k,F   by applying  

Equation A.2 is possible. This allows for an update of the estimated 
means in both spaces based on all rollouts that have been evaluated 

in the current generation. Note, that the means  x
(
g+1

)
k   do not 

develop independently. Rather they are linked by the mapping of 
the parametrized skill. For an adaptation of the ratio of rollouts 

performed in the policy and task space (pF and pE), we utilize 
the success rate of both spaces. The success rate is defined as the 
ratio of successful rollouts (rollouts that exceed the current reward 

maximum), encoded by the weights  w
(
g+1

)
k   as well as space that 

was used for sampling  s
(
g+1

)
k   of the performed rollouts, as shown 

in  Equation B.4.
We evaluate two approaches for an update of the covariance 

and exploration width: The first version utilizes only samples that 
originate in the same space for an update of the covariance C and 
exploration width σ. The second version utilizes the mapping of PS 
and  ̂PS−1

  to estimate an additional update of the covariance and the 
exploration width with respect to all samples. We refer to the first 
version as Hybrid Covariance Matrix Adaptation - Evolutionary 
Strategy - Version 1 (HCMA-ES-v1) and to the second version as 
HCMA-ES-v2 .

4.1.1. HCMA-ES-V1
The update of the covariance, exploration radius and their evolution 
paths is performed as in the original CMA-ES algorithm, depicted 
in  Equations A.3–A.6. The update step for each space, encoded 

in  s
(
g+1

)
k  , considers only rollouts sampled in the same space. The 

normalization of  
∑

w
(
g+1

)
k = 1  for all  s

(
g+a

)
k = 0  in case of the task 

�

Figure 7 |  Proposed optimization loop for bootstrapping of parameterized skills in hybrid spaces. After initialization (a), optimization for a new task instance is 
initiated (B). Optimization is performed (1) until stopping criterion is reached and no solution was found (2) or the optimized solution fulfils the task (3). Update of 
CMA-ES (I-III) is performed for the task and policy space simultaneously.
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space as well as  s
(
g+a

)
k = 1  in case of the policy space is necessary 

since not all samples are used in each space. Additionally, the 
estimation of μe f f,E and μe f f,F with respect to s has to be performed 
as well. The neglection of projected samples for the update of the 
covariance and its exploration width allows for simplification of 
the combination. But this simplification prevents that e.g., the 
covariance in the high dimensional policy space is able to shape 
into the direction of samples along the low dimensional manifold 
of the task parameterization.

4.1.2. HCMA-ES-V2
The parameterized skill can be regarded as a mapping between the 
high dimensional policy parameterization and a low dimensional 
embedding. The shape of the multivariate normal distribution 
that is used for samples that get mapped to other spaces does 
not include a normal distribution in the target space due to the 
nonlinear transformation of the parameterized skill. For the 
integration of projected samples in the update of the covariance, 
we perform a rescaling of projected samples to cancel out the effect 
of the exploration width σ. The update of the exploration width σ 
requires the estimation of the distribution of projected samples, 
but the estimation of a covariance requires a much larger number 
of samples which is not feasible for our scenarios (≈ 10 rollouts). 

We decided for an update of exploration width  σ
(
g+1

)
E   and  σ

(
g+1

)
F   

with respect to each other by the estimation of a scaling factor 
between the evaluated rollouts of the current generation which is 
applicable for low sample numbers.

To consider samples from other spaces for an update of the 
covariance and its evolution path, samples from other spaces 
have to be rescaled to keep the covariance C at a constant size 
i.e., det (CT C) = ∏λi =  const., the product of eigenvalues of C 
is constant. From the update of the exploration width given in  
Equation A.6 and  Equation A.5, we are able to infer the condition 

 
√

µe f fC
(
g
)− 1

2 yw = E∥N
(
0, I

)
∥  for constant covariance size. 

Therefore, we add an appropriate scaling factor to the calculation 
of the weighted sum, resulting in a modified estimation of ỹw,E 
with an additional scaling of samples that originate in the full 
space  Equation B.5. The estimation of ỹw,F is performed likewise, 
given by  Equation B.6. The update of pc and C can be achieved 
by  Equation A.3, A.4 with respect to ỹw,E and ỹw,F. The final step 

updates the exploration width  σ
(
g+1

)
E   and  σ

(
g+1

)
F  . We achieve this 

by performing a mixing of the updated sigma of the own space and 
the rescaled sigma of the other space based on the success rate of 
the spaces  (Equation B.7).

We will evaluate the properties of both algorithm versions and 
compare the results in successive experiments sections Sec. 5 and 
Sec. 6.

4.2. implementation of the Parameterized 
skill
The proposed optimization method does not rely on a specific 
learning method. But in comparison to the bootstrapping of the 
parameterized skills as proposed in Sec. 3, the policy search in 

hybrid spaces requires an inverse estimate of the parameterized 
skill. Therefore the learner must be continuous and locally 
differentiable. Candidates for this task are associative memories 
due to their intrinsic capabilities to be able to estimate an input for 
a given output of the mapping. For the evaluations presented in this 
paper we refer to a different approach, we utilize the Jacobian of 
the parameterized skill as proposed in Sec. 3 to iteratively estimate 
a proper input τ for a required output θ. We refer to the Inverse 
Function Theorem by (Spivak, 1971) that states that we are able 
to estimate a local inverse of a function if the determinant of the 
Jacobian is not zero. The estimation of the change in the policy 
parameter space is caused by a change in the task space is given by:

 ∆θ∗ ≈ JPS
(
τ∗

)
∆τ∗  (10)

Since the parameterized skill is not a bijective mapping, multiple 
solutions can exist. We assume to sample in the local neighbourhood 
of our current estimate, therefore we initialize the gradient descent 
with PS(τ). Gradient descent is implemented by the Levenberg-
Marquardt method (Liu and Han, 2003), also referred to as 
Damped Least-Squares method as depicted e.g., in (Buss, 2004), 
due to numerical stability in comparison to pseudoinverse and 
Jacobian transposed based methods. The incremental update of 
the estimated task space τ* is based on the Jaocbian JPS(τ*) of PS 
with respect to the input τ*:

 

∆τ∗ = JPS(τ∗)T
(
JPS(τ∗)JPS(τ∗)T + λ2I

)−1
e

with e =
(
θ∗−PS(τ∗)

)
  

(11)

5. evaluaTiOn On TOy scenariOs

To gain insight into the proposed hybrid search method, we 
investigate two test cases. For simplicity and visualization purposes, 
the policy is defined as the Identity and the reward function operates 
directly on  θ ∈ R2 , the 2D space of the policy parameterization. 
The reward function is parameterized by  τ ∈ R1    defining the 
position of maximum reward in the 2D space. This allows us to plot 
the reward function in relation to a fixed value of τ. A visualization 
of both reward functions for several fixed parameterizations τ are 
shown in Figure 8. The color intensity encodes the reward for a 
given task parameterization θ. The first scenario describes a circular 
manifold with a maximum at mτ, reward is given by:

 

Ra
(
θ, τ

)
=

1√
2πσ2a

exp − |atan2
(
mτ×θ,

)
mτ ·θ|

2σ2
a

Rr
(
θ
)
= 1√

2πσ2
r
exp −

(
1−∥θ∥

)2
2σ2

r
, withmτ =

[
sin

(
τ
)

cos
(
τ
)

]

  

(12)

The reward function includes the angular deviation Ra(θ) as 
well as the deviation in the radius Rr(θ), which are weighted by 
Gaussian functions. The overall reward is given by Rcircular(θ, τ) 
=Ra(θ, τ) · Rr(θ).

The second reward function is based on a branch manifold. For 
parameterizations τ ≤ 1 the maximum reward is located at [τ; 0]. 
For τ > 1 two maxima can be found at [τ; 0] and [τ; 1 + τ]. It is based 
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on a combination of the distances to the parametrized maxima of 
the function Rm(θ, τ) and the distance to the branch manifold Rb:

 

Rm(θ, τ ) =
1√
2πσ2

d

exp−
dmin
2σ2

d
, with

dmin =




||θ −

[
τ ; 0

]
||, if τ ≤ 1

min(||θ −
[
τ ; 0

]
||, ||θ −

[
τ ; τ − 1

]
||), else

and Rb(θ) =
1√
2πσ2r

exp−
Distbranch(θ)

2σ2r   

(13)

With Distbranch(θ), the minimum distance of θ to the line segments 
[0; 0] – [2; 0] and [1; 0 – 2; 1]. The combination of both reward 
terms results in the final reward function Rbranch(θ, τ) =  Rm 
(θ, τ) · Rb(θ). We designed the scenario to reflect expected real 
world problems: The space of all possible actions includes a subset 
of appropriate actions on a manifold that have have higher rewards. 
Within this subset we expect a maximum of the reward function 
at parameterizations that solve the task in an appropriate way. We 
evaluated three cases as shown in Figure 9 to Figure 10. Each plot 

Figure 8 |  Visualization of designed reward functions. Circular reward unction Rcircular (top) and branch reward Rbranch (bottom) for three different task 
parameterizations are shown. Crossing points of horizontal and vertical black lines indicate maxima of reward functions. For τ > 1 multiple maxima of the reward 
function exist (bottom-right). Colour intensity indicates magnitude of reward for depicted parameterization θ

Figure 9 |  Comparison of optimization algorithms on 2D reward function: Overshoot of PS, hybrid optimization is able to utilize manifold of the parameterized 
skill (gray line) to perform optimization in 1D space. (a) Estimated means of algorithms during optimization, marker size indicates generation. Black arrow points to 
initial guess on manifold (gray line) of parameterized skill. (B) Comparison of reward and mixing factor during optimization is shown.
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shows the comparison between a search in the policy space by 
CMA-ES as well as the behavior of our proposed hybrid algorithms. 
The green color intensity encodes the reward for a depicted policy 
parameterization θ. Previous training data (obtained by estimation 
of one maximum of the reward function) of the parameterized 
skill is indicated by a black dot ( ). Based on the training data, 
the mapping fPS on the manifold in the policy space, i.e., PS(τ), 
is constructed and shown as a gray line. The symbols ,  and 

 represent the current estimates of the means  m
g
F   in the policy 

space, whereas the size  ,    and    show the history of 
previous mean estimates  m

g−n
F , ∀n ∈

{
1, . . . , g

}
  up to the first 

generation with decreasing size of the symbol. The real maximum 
of the reward function is marked by black crossing lines and the 
location of the initial estimate θstart = PS(τi) on fPS is highlighted 
by a black arrow ( ).

In the following we will describe all three scenarios and the 
optimization process in detail.

5.1. Overshoot
The scenario in Figure 9 shows a situation in which an overshoot 
of the estimation of the parameterized skill occurs. We utilize the 
circular reward Rcircular and perform an exponential distortion 
f(τ) =exp(τ) * π / exp(π) of the parameterization to enforce a 
generalization error of the memory resulting in R(θ, τ) =Rcircular[θ, 
f(τ)]. For training of the parametrized skill we estimate optimal 
parameterizations θi for three different tasks τi.

For the depicted task parameterization, the parameterized skill 
proposes a solution that is located in a region with a little gradient 
information. By following the low dimensional embedding of the 
parameterized skill the hybrid approach is able to guide the optimizer 
into a region with stronger gradient and that is closer to a desired 
maximum of the reward function. In case of the original CMA-ES 
approach, it takes longer to reach a region with more informative 
gradient information and requires therefore more rollouts in 
comparison to the hybrid optimization in both spaces. But the 
evaluation of this scenario not always leads to a faster convergence 
of HCMA-ES-v1 and HCMA-ES-v2 in comparison to CMA-ES. In 

cases, where the estimate of the parameterized skill is of very low 
quality, optimization in the low dimensional space of fPS can lead to 
a fast convergence to a region with higher rewards (as in Figure 9). 
But the algorithm could end up in an area that is far away from the 
final solution, so that an optimization by CMA-ES can reach a high 
reward with less number of executed rollouts. This results in a fast 
rising reward at the beginning of the hybrid optimization process 
followed by a period with a slowly rising reward as the estimate moves 
along the manifold towards the optimum of the reward function.

Algorithm HCMA-ES-v1 and HCMA-ES-v2 show comparable 
performance and a similar behavior during optimization. 
Investigations of the shape of the covariance reveal the extended update 
policy of HCMA-ES-v2 . Since the shape and size of the covariance of 
the policy space integrates rollouts sampled in the task space as well, 
the covariance grows and shapes aggressively into the direction of the 
real maximum and the shape of the manifold of the parameterized 
skill. Close to the maximum, i.e., the covariance shrinks but keeps the 
shape influenced by the previous fast approaching phase in the low 
dimensional manifold. Figure 9B shows the probability of performing 
a rollout in the policy parameter space, starting at equal probabilities 
for both spaces, the algorithm first shifts its focus to the task space 
and switches to a fine-tuning at the end of the optimization phase.

5.2. multiple minima
This scenario explores tasks with multiple solutions for a certain range 
of tasks parameterizations. This time we utilize the circular reward 
Rbranch in combination with the exponential distortion f(τ) =exp(τ) * π 
/ exp(π) used in the overshoot scenario. Therefore the reward function 
is given by R(θ, τ) =Rbranch[θ, f(τ)]. The presented training samples for 
the parameterized skill as well as the experimental setup can be seen 
in Figure 10. As discussed in Sec. 2, multiple maxima of the reward 
function bear the risk of generating inconsistent training data for 
the parameterized skill and impede generalization capabilities. It is 
beneficial to prefer solutions for tasks that are close to the manifold of 
the parameterized skill, in this case solutions on the upper branch of the 
reward function in Figure 10A. A hybrid optimization that performs 
a search along the manifold of the parameterized skill enhances the 

Figure 10 |  Comparison of optimization algorithms on 2D reward function: Multiple maxima of reward function. (a) Estimated means of algorithms during 
optimization, marker size indicates generation. Black arrow points to initial guess on manifold (gray line) of parameterized skill. (B) Comparison of reward and mixing 
factor during optimization is shown.
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probability to find an optimum close to the manifold of the already 
established parameterized skill. As shown in Figure 10A,B, starting 
from the initial guess, the standard CMA-ES approach follows the 
gradient towards the manifold of the reward function. The covariance, 
responsible for perturbation of sampling, starts to shape into that 
direction and causes the optimizer to follow the gradient toward 
the lower branch of the reward function. The estimated solution is 
far off the manifold of the parameterized skill and would result in 
inconsistent training data since previous training data was selected 
from the upper branch. The standard CMA-ES optimization is able 
to find a solution for the given task without requiring a significant 
different number of rollouts than the hybrid optimization methods.

Although the hybrid search can not speed up the optimization 
process, the optimizer first prefers the manifold of the parameterized 
skill to move towards the gradient of the reward function, as shown 
in Figure 10B. For the final phase, the optimizer prefers the policy 
parameter space for optimization and is able to find a maximum of the 
reward function that is consistent with previous training data since it 
is located in the upper branch of the manifold of the reward function.

5.3. results
As shown in Figure 9 to Figure 10, we were able to identify two 
situations in which our proposed hybrid CMA-ES algorithm is able 
to speed up optimization significantly. The mean rewards obtained 
for a given number of rollouts indicate a slightly faster convergence 
of HCMA-ES-v2 , but we can not observe a strong significant 
difference between HCMA-ES-v1 and HCMA-ES-v2 for those simple 
optimization tasks. We show that in case of a faulty estimate of the 
parameterized skill in a region with low gradient information the 
hybrid optimization scheme allows a faster convergence. The later 
experiment identifies a situation in which the consistency of the 
parameterized skill can be enhanced by a preference of solutions 
close to the previously established manifold.

6. evaluaTiOn On rOBOTic scenariOs

The evaluation of the hybrid optimization scheme as proposed 
in Sec. 4 refers to the previously performed experiments as 
described in Sec. 3. We compare the original CMA-ES search 

in policy space to our hybrid search algorithms. To be able to 
compare the algorithms without the effect of different states of 
the memory we stored the memory states during performing the 
experiments in section Sec. 3.4. In the following experiments, 
we replicate the same conditions and replace the optimization 
algorithm by our proposed hybrid spaces optimization methods. 
Figure 11 shows the results of the 10-DOF planar arm scenario. 
HCMA-ES-v2 requires slightly more rollouts for task completion 
than HCMA-ES-v2 and plain CMA-ES in case the memory has 
been trained with less than 4 samples. This is caused by updating 
the covariance matrix of the policy space based on rollouts in task 
space. To reduce the overhead of the hybrid search algorithms, 
the initialization of pE and pF plays a crucial role. It can be 
expected that a search in the policy space is more beneficial as 
long as the number of training samples for the parameterized 
skill is low. No substantial difference between the CMA-ES and 
the hybrid search can be seen in the case the parameterized 
skills consolidated more than 4 samples, The update policies 
of HCMA-ES-v1 and HCMA-ES-v2 do not lead to significantly 
different results.

The results for the second scenario, Sec. 3.4.2, show that the 
proposed hybrid search is able to reduce the number of required 
rollouts for solving unseen tasks as expected. The parameterized 
skill of the joint space experiments requires more training 
samples due to the lack of the inverse Jacobian controller that 
copes with distance maximization. The results are shown in 
Figure 12, (A–E) show results for experiments in end-effector 
space in the same way as (F–J) show results for joint space. Both 
hybrid optimization methods show a tendency to exceed the 
rate of solvable tasks of the standard CMA-ES method for the 
experiments in the end-effector space Figure 12. The results of 
the joint space experiments the are not that clear Figure 12. The 
different update policies of HCMA-ES-v1 and HCMA-ES-v2 can 
be seen by a comparison of the development of the mixing factors 
pF in Figure 12(C–E; H-J) for 1, 5 and 20 presented samples to 
the parameterized skill. In case the parameterized skill has a good 
representation, HCMA-ES-v1 switches to an optimization in the 
policy space at a later stage Figure 12(E+J), whereas HCMA-
ES-v2 clearly prefers the policy space for optimization. Both 
algorithms are switching to a search in the policy space in case 
of a low number of training samples and in case the memory 
has seen a certain amount of training samples, HCMA-ES-v2 
supports a faster switching from task to policy space search. The 
visualization of the variance in the low dimensional parameter 
space is shown in Figure 13. We compare three different states 
of the parameterized skill by plotting estimated solutions for 
variations of the input around the current task parameter. We 
can observe different strategies of the robot like approaching the 
target point from top or from bottom.

7. discussiOn and cOnclusiOn

We were able to identify two situations in which we expect our 
algorithm to exceed the performance of an optimization in policy 
space, as discussed in Sec. 5. We created three test scenarios, 
in which we were able to show the benefits of the proposed 

Figure 11 |  Results of the comparison of HCMA-ES to optimization in the 
policy parameter space for the point reaching scenario. It can be seen, that 
the number of required rollouts for task fulfilment is not significantly reduced 
by one of the optimization techniques.
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algorithm as well as one case in which our algorithm underlays 
a plain policy space search. We could see a clear advantage of 
the proposed hybrid optimization although the reduction ratio 
of the task space to the policy parameterization is only 2:1 for 
these idealized test cases. The scalability of our proposed method 
was evaluated in complex robot scenarios. We were not able 
to show significant performance improvements of the hybrid 
search for the optimization of a 10-DOF robot scenario, while 

an optimization of a point reaching task of a humanoid robot 
showed the expected advantages of our approach. We believe 
that the design of the 10-DOF reaching task, e.g., no obstacles, 
results in a simple reward function in the high dimensional 
policy space. The optimizer in the full policy space is able to 
follow the gradient efficiently after initial estimation of the 
covariance, e.g., direction, and a reduction of the search space 
is not necessary. In such a situation, our algorithm is not able 

Figure 12 |  Results of the comparison of HCMA-ES to optimization in the policy parameter space for the point reaching scenario. Experiments (a–e) show 
results in end-effector space and (F–J) in joint space It can be seen, that the number of required rollouts for task fulfilment is significantly reduced by the proposed 
hybrid optimization technique (a+F). The success rate of the optimization process (i.e., exceed a certain threshold on reward) shows stays the same compared to 
the optimization on the policy parameter space (B+g). In (c–e; h-J) the behaviour of the mixing factor between the search spaces is shown for 1(c+h), 5(d+i) and 
20(e+J) training samples.
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to exploit the benefits of the low dimensional embedding of the 
parameterized skill and has to cope with overhead produced 
by the combination of both spaces. The skill learning is faced 
with a much more complex optimization problem, in case of 
the humanoid robot reaching task, like joint limits and obstacle 
constraints. Even not all requested task instances are solvable by 
the kinematics of the robot and CMA-ES can not solve all tasks 
as it gets stuck in local minima. We are able to show the benefits 
of our proposed combined optimization scheme for this complex 
scenario. Although the evaluation was limited to reaching tasks, 
we demonstrated the applicability of the approach in different 
domains by an evaluation of control in joint and Cartesian 
space. An extension to rhythmic movements can be achieved by 
modification of the underlying DMP representation (Ijspeert et al., 
2002). Due to the modular design of the framework other policy 
representations, black-box-optimizer and learning algorithms 
can be integrated. One crucial benefit of the point-attractor 
representation of the DMP is the linearity of its parameterization 
in relation to the task parameterization (e.g., target position). In 
comparison to e.g., vector field representations, instabilities can 
be avoided and the dimensionality of the policy parameterization 
is reduced. The system is designed to rely on the results of the 
optimization process, therefore it has no implicit capabilities 
of dealing with multiple objectives, like in e.g. (Pirotta et  al., 
2015; Parisi et al., 2017). The pre-designed reward function has 
to reflect appropriate goals to fulfil the range of parameterized 
task instances. Policy estimation for multiple objectives can only 
be achieved by an encoding of the relevance of the objectives as 
task parameterization.

7.1. conclusion
We propose the exploration of a parameterized skill by an 
extension of the CMA-ES optimization to hybrid spaces. 
We evaluate scenarios in which we are able to observe a low 
dimensional parameterization for a new task instance. By 
consolidation of found solutions and their parameterizations of 

previous tasks we are able to incrementally learn a parameterized 
skill. The parameterized skill is able to generalize for new policy 
parameters from task parameterizations, resulting in better 
start configurations of the optimizer or in the optimal case in a 
sufficient solution without further optimization. A hybrid search 
is performed in the space of the policy parameters as well as in the 
low dimensional manifold that is generated by the parameterized 
skill in case further optimization is necessary. We have been 
able to identify and verify several scenarios in which this hybrid 
approach shows a faster convergence. Additionally we evaluate 
our approach on complex robotic scenarios targeting on end-
effector and joint space control. Our results show that for high 
task complexity, i.e., upper body reaching, our proposed hybrid 
optimization is able to significantly speed up policy optimization.
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Figure 13 |  COMAN robot during execution of a estimated end-effector trajectory (blue) of the parameterized skill PS(τi) for one fixed reaching target τi. Black 
trajectories visualize the variability in low dimensional search space ±50% of the input range PS(τi + δ±50%). From left to right, different states of the memory are 
shown (3,5 and 10 training samples).
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aPPendix a: deTails OF cma-es 
uPdaTe

Sampling from a multivariate normal distribution centered at the 
current estimate:

 

x(g+1)k = m(g) + σ(g)y(g+1)k with

yg+1k ∼ Nk(0, (C
(g)) for k = 1, ...,λ  

(A.1)

Update of mean m(g+1) given by:

 m(g+1) = m(g) + σ(g)y(g+1)w , with y(g+1)w =
∑µ

i=1 wiy
(g+1)
i:λ  

 (A.2)

Where  x
(g+1)
i:λ  denotes the i-th best individual and 

the index i : λ denotes the index of the i-th ranked 
individual   R(x

g+1
1:λ ) ≤ R(xg+12:λ ) ≤ · · · ≤ R(xg+1λ:λ) . With covariance 

C(g)∈ RFxF scaled by σ(g)∈ R+ for generation g. Update of the 
covariance matrix and its evolution path:

 p(g+1)c = (1− cc)p(g)c +
√
1− (1− cc)2√µeffyw  (A.3)

 

C(g+1) = (1− c1 − cµ)c(g) + c1p
(g+1)
c p(g+1)c

⊤

+ cµ
µ∑
i=1

wiy
(g+1)
i:λ y(g+1)i:λ

⊤

  

(A.4)

Update of the scaling sigma and its assigned evolution path:

 p(g+1)σ = (1− cσ)p(g)σ +
√

1− (1− cσ)2√µeffC(g)−1/2y(g+1)w  
 (A.5)

The operation performed by  results in a rescaling of the expected 
distance of samples to the center, as described in Hansen (2006), 
Eq. 23. The update of sigma is performed by:

 

 
σ(g+1) = σ(g) × exp

(
cσ
dσ

(
||p(g+1)σ ||

E||N
(
0,I

)
|| − 1

))

  (A.6)
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aPPendix B: deTails OF hyBrid cma-
es uPdaTe

Update of the optimization by CMA-ES in hybrid spaces as refered 
to in Sec. 4.1. Update of the estimated means:

 

x(g+1)k,E = m(g)
E + σ

(g)
E y(g+1)k,E for k = 1, ...,λH | s(g+1)k = 0

x(g+1)k,F = m(g)
F + σ

(g)
F y(g+1)k,F for k = 1, ...,λH | s(g+1)k = 1 

 (B.1)

Interpolated number of rollouts per generation given by:

 λH = pEλE + pFλF = 4 + pE⌊3 ln (E)⌋ + pF⌊3ln(F)⌋  (B.2)

Projection of samples by parameterized skill:

 

x(g+1)k,E = PS(g)
−1

(x(g+1)k,F ) for k = 1, .., .λH | s(g+1)k = 1

x(g+1)k,F = PS(g)
−1

(x(g+1)k,F ) for k = 1, .., .λH | s(g+1)k = 0 
 (B.3)

Update of probabilities to sample from embedded or full space:

 
δp(g+1)E =

∑µ
k=1,

s(g+1)k =0

W(g+1)
k

∑µ
k=1 W

(g+1)
k

− δp(g)E , δp(g+1)F = −δp(g+1)E
 

 (B.4)

Rescaling of samples for update of covariance:

 

ỹw,E =
µ∑
i=1

s(g+1)i:λ =0

wiy
(g+1)
i:λ,E + χE

βE

µ∑
i=1

s(g+1)i:λ =1

wiy
(g+1)
i:λ,E with

  

 

βE =√µeff

����������
C−1/2
E

µ∑
i=1

s(g+1)i:λ =1

wiy
(g+1)
i:λ,E
αF

����������
, αF =

µ∑
j=1

s(g+1)j:λ =1

wj

 
 (B.5)

With  χN
def
=

√
E(χ2N) = E ||N (0, IN)||   referring to the chi-

squared distribution  χ
2
N   with N degrees of freedom.

 

ỹw,F =
µ∑
i=1

s(g+1)i:λ =1

wiy
(g+1)
i:λ,F + χN

βF

µ∑
i=1

s(g+1)i:λ =0

wiy
(g+1)
i:λ,F with

βF =√µeff

����������
C−1/2
F

µ∑
i=1

s(g+1)i:λ =0

wiy
(g+1)
i:λ,F
αE

����������
, αE =

µ∑
j=1

s(g+1)j:λ =0

wj

 
 (B.6)

With  β
−1
E    responsible for a rescaling of samples from policy 

parameter space to task space and  β
−1
F   from task parameter space 

to policy space.
And the update of the exploration width:
 

 

 

σ
(g+1)
E = pEσ̃

(g+1)
E + pF

σ̃
(g+1)
F βE
χE

σ
(g+1)
F = pFσ̃

(g+1)
F + pE

σ̃
(g+1)
E βF
χF    (B.7) 
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