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Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape 
and flow field coherency, and a time varying concentration profile. Due to the lack of 
experimental quantification of these characteristics for marine plumes, existing work 
often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly 
modeled by filament based Lagrangian models. Our previous field experiments with 
Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine 
plumes show similar characteristics to aerial plumes qualitatively, but quantitatively 
they are disparate. Based on the field data collected, this paper presents a calibrated 
Eulerian plume model that exhibits the qualitative and quantitative characteristics 
exhibited by experimentally generated marine plumes. We propose a modified model 
with an intermittent source, and implement it in a Robot Operating System (ROS) 
based simulator. Concentration time series of stationary sampling points and dynamic 
sampling points across cross-sections and plume fronts are collected and analyzed for 
statistical parameters of the simulated plume. These parameters are then compared with 
statistical parameters from experimentally generated plumes. The comparison validates 
that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics 
similar to experimental plumes. The ROS plume simulator facilitates future evaluations 
of environmental monitoring strategies by marine robots, and is made available for 
community use.

Keywords: environmental monitoring, pollution plume models, autonomous robotics, plume characteristics, 
robot Operating system (rOs) simulator.

1. intrOductiOn

The spatial and temporal evolution of a plume is affected by several factors of which advection, 
diffusion and weathering are dominant. Plume models have been developed to capture these influences 
in marine environments, such as models for algae blooms (Wong et al., 2007), subglacial melt water 
plumes (Carroll et al., 2015), and oil plumes. The oil plume modeling community alone has developed 
over fifty models, a handful of which are widely used (Yapa, 1996). These pollutant dispersion models 
can be broadly characterized into two main categories on the basis of the modeling method used, 
namely Eulerian dispersion models and particle-based Lagrangian models (Zannetti, 1990). The 
Eulerian models are based on the conservation of mass of a single pollutant species (Zannetti, 1990). 
Lagrangian environmental models consider plumes to be composed of particles or alternatively, 
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filaments. Another classification of plume models can be based on 
the scale - in space and time - for which the model is capable of 
producing reliable predictions. This classification is discussed next.

1.1. Pollution Plume Models
A classification of the environmental models can be made on 
the basis of the spatial and temporal scales a given model is able 
to capture. In this section we group the Eulerian models and 
Lagrangian models into large-scale and fine-scale model categories 
for the purpose of this study. The goal of this exercise is to highlight 
the scarcity of existing models suitable for robotics domain. It is 
important to emphasize here that these are not new modeling 
techniques, rather a classification of existing models based on 
spatiotemporal scales they capture. This distinction is pivotal 
since robots typically operate at sub-meter spatial scales and sub-
second time scales. Only models that capture plume structure at 
this scale are relevant for robotics studies. Majority of the recent 
research effort has focused on models which are not suitable for 
environmental monitoring studies using robots as highlighted by 
the existing literature in the sections below.

1.1.1. Large-Scale Models
Large-scale models are time averaged, long term exposure capturing 
models. These models simulate plume spatiotemporal development 
at grid spacing of the order of 10–100 s of meters and at temporal 
steps of the order of minutes. These models are referred to, for the 
purpose of this work as large-scale models. Large-scale models are 
long term exposure capturing models, and are thus mainly “fate 
and transport” models that capture aggregate plume behavior, 
intended for activities such as assessing environmental damage as a 
result of oil spills. Both Eulerian and Lagrangian models have been 
used to model plume development in this domain. These models 
have been the subject of many studies by the oil spill modeling 
community (Yapa, 1996; Reed et al., 2000; Klemas, 2010; Cheng 
et al., 2011). French McCay proposed a time averaged Lagrangian 
environmental model simulator named SIMAP (McCay and 
French-McCay, 2003; French-McCay, 2004). This simulator was 
calibrated using results of field experiments (French-McCay et al., 
2008). The National Oceanographic and Atmospheric Agency 
(NOAA) also developed a time averaged plume simulator called 
General NOAA Oil Modeling Environment (GNOME) (Beegle-
Krause et al., 2001). It is also based on a Lagrangian model and 
was developed to aid planners and first responders for damage 
assessment in the event of an offshore oil spill. MEDSLICK-II is 
another time averaged Lagrangian model which is coupled with 
Eulerian circulation models (De Dominicis et  al., 2013), and 
explores the reconstruction of concentration field from advection, 
diffusion and transformation processes. COZOIL (Howlett and 
Jayko, 1998) is another example of simulators in this category.

1.1.2. Fine-Scale Models
In contrast to fate and transport models, another classification of 
plume models is fine-scale models. These are capable of predicting 
the instantaneous concentration field at fine spatial scales. These 
models capture plume development at sub-meter grid spacing, 
and sub-second time resolutions. We characterize these models 

as fine-scale models. Fine-scale models are designed for studies 
examining autonomous environmental monitoring problems 
(Jones, 1983). There are some existing models in this category 
that target robotics studies, mainly in the aerial plume modeling 
domain. Cabrita et. al. present PlumeSIM, a Stage/Player based 
plume simulator, and VirtualPlume, its Robot Operating System 
(ROS) implementation, for aerial plumes (Cabrita et  al., 2010). 
Pashami et. al. present another filament based gas dispersion model 
integrated with OpenFOAM, which is a flow simulation software 
for the generation of realistic compressible and incompressible 
flow fields (Pashami et al., 2010). Vergassola et al. use turbulent 
transport of particles to model the plume as particles propogating 
with diffusivity (combining turbulent and molecular diffusion) 
and advected by a mean current or wind (Vergassola et al., 2007). 
This plume model is adopted by Ristic et al. in their work (Ristic 
et  al., 2016). Jones provides empirical characterization of the 
instantaneous concentration profiles of aerial plumes (Jones, 
1983). He observes that aerial plumes consist of short bursts of high 
concentration, interspersed with generally rather longer intervals 
of zero or near zero concentration, and refers to this phenomenon 
as intermittency. These bursts were also found to be sub-second in 
duration. Due to the short duration of these bursts, aerial plumes 
can most effectively be modeled using filament based Lagrangian 
models. Farrell et. al. have presented a fine-scale filament based 
Lagrangian environmental model for marine plumes (Farrell et al., 
2002) using these observations for characteristic comparison. Most 
existing studies that capture the instantaneous concentration 
profiles of plumes are focused on aerial plumes and use the filament 
based Lagrangian model. In the next section, we provide an 
overview of research being conducted in the autonomous robotic 
environmental monitoring, highlighting the utility of a model that 
captures plume fine-scales.

1.2. autonomous robotic environmental 
Monitoring
The use of robots for environmental monitoring is receiving 
increased research attention recently. A detailed review of work 
in this direction has been provided by Dunbabin and Marques 
(Dunbabin and Marques, 2012). They reviewed the research efforts 
being carried out in marine, aerial and terrestrial domains. Ishida 
et. al. provide a review focusing on the use of robots to monitor 
chemicals introduced in a fluid media (Ishida et al., 2012). The 
current research effort has mainly focused on source seeking, 
which involves the study of techniques and algorithms, designed 
to move a robot or group of robots to the source of a chemical 
plume. Odor tracking in aerial domain has been the focus of a 
few researcher efforts (Ishida et al., 1994;  1995; Hayes et al., 2002; 
Marques et al., 2006). A few of these studies have relied on small 
scale laboratory experiments for the verification of algorithms. 
Ishida has highlighted that these laboratory experiments create 
“significantly simplified environments” for algorithm verification, 
compared to real world conditions (Ishida, 2007).

Most of existing work in environmental monitoring using 
robots has focused on source seeking using either mapping based 
(Farrell et al., 2003a; Lilienthal and Duckett, 2004; Pang and Farrell, 
2006; Ferri et al., 2011), behavior based (Bruemmer et al., 2002; 
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Lilienthal and Duckett, 2003; Wei Li et al., 2006) or control based 
approaches (Clark and Fierro, 2005; Zhang et al., 2007; Hsieh et al., 
2012). Farrell et. al. developed a hidden Markov model based 
approach for marine plumes (Farrell et al., 2003a) and evaluated 
the performance using an environmental model tuned to reproduce 
the characteristics of aerial plumes (Farrell et al., 2002). Li et. al. 
also used the models proposed by Farrell for the validation of their 
algorithm (Li and Sutton, 2007; Li et al., 2008). Pang and Farrell 
present a Bayesian inference model to generate a source-likelihood 
map based on real-time AUV observations (Pang and Farrell, 2006). 
They use the data from two of the four field campaigns described in 
(Farrell et al., 2003b; Farrell et al., 2005) for the verification of their 
proposed algorithm. Tian et. al. follow a strategy similar to Farrell, 
making use of an extension of the filament-based model proposed 
by Farrell, adding buoyancy terms in (Tian and Zhang, 2010; Tian 
et  al., 2013; Tian et  al., 2014). They include studies with tracer 
dye experimental evaluation of the biologically inspired behavior-
based plume source localization techniques in (Tian et al., 2014). 
Vergassola et. al. present a macroscopic search strategy “Infotaxis” 
that maximizes the local rate of information gain (Vergassola et al., 
2007). Following a “zigzagging” and “casting” path, the algorithm 
can be used for searching with sparse information in general and 
by olfactory robots in particular. A comparative study of cognitive 
search strategies to locate an emitting source using sparse non-
zero sensor measurements is presented in (Ristic et  al., 2016), 
where the sequential Monte Carlo method is used to estimate 
source parameters and the reward function for motion control. 
As highlighted by these studies, the autonomous monitoring 
of marine plumes is an important research topic. The methods 
used to verify autonomous plume monitoring algorithms have 
been based on models that relied on experimental data for aerial 
plumes. Pre-recorded experimental data has been used in certain 
studies (Pang and Farrell, 2006; Cabrita et al., 2010), which does 
not provide the diversity that would be required to reliably verify 
control algorithms. Repeated experimental verification can be both 
expensive and time consuming. This highlights the need for the 
development of a simulation model that captures the characteristics 
of marine plumes and at the same time, provides with sufficient 
varying conditions to reliably verify autonomous plume monitoring 
algorithms.

1.3. contributions
The lack of experimental characterization of fine-scale 
characteristics of marine plumes motivated us to perform field 
experiments to quantify these characteristics (Fahad et al., 2017a; 
Fahad et  al., 2017b). These experimental studies showed that 
while marine plumes exhibit characteristics qualitatively similar 
to aerial plumes, quantitatively they are disparate. The bursts of 
high concentration for instance, last much longer in the case of 
marine plumes. Overall observations suggested that the fine-scale 
ocean plume dynamics evolve over much longer time scales than 
the aerial plume structure previously studied and used. The more 
slowly varying characteristics can be attributed to slower advection 
velocities for marine environments and decreased diffusivity due to 
increased density in marine plumes as compared to aerial plumes. 
Thus existing instantaneous aerial plume models are insufficient to 

be realistically tuned to capture fine-scale characteristics of marine 
plumes.

In this paper, we present an Eulerian advection-diffusion model 
with time-varying flow field and intermittent source to capture 
the qualitative and quantitative fine-scale characteristics exhibited 
by experimental marine plumes. The model provides its user 
with sufficient parameters to vary different characteristics of the 
plumes to reflect the environmental conditions of interest. This 
work first summarize experimentally derived characteristics that 
were obtained from our field experiments (Fahad et  al., 2017a; 
Fahad et  al., 2017b). We then present the pollutant dispersion 
model with an intermittent source, together with an approximate 
solution method with affordable computational cost. The proposed 
model and solution method have been implemented in the ROS 
environment. A calibrated set of parameters is then presented 
that produces fine-scale characteristics that are qualitatively and 
quantitatively similar to those of experimentally generated marine 
plumes reported. Results of the comparison between the model 
and field experiment shows that the model exhibits fine-scale 
plume characteristics similar to those derived from experimentally 
generated marine plumes. We provide the conclusions drawn 
on the ability of this proposed model to capture realistic plume 
characteristics and the future work.

The model, implemented as a ROS simulator, has been made 
available for community use1. The simulator facilitates advanced 
robotic control algorithm testing with realistic ocean plume 
environments, reducing the need for expensive field testing during 
the development of new techniques for robotic plume monitoring. 
Comparing to our earlier work in (Fahad et al., 2015), that tests 
robot plume tracking controller in a robotic simulator, the scope 
and method are different in that: (1) a Lagrangian environmental 
model was used, while this paper uses an Eulerian partial differential 
equation (PDE) based advection dispersion model that is better 
suited for marine plumes; and (2) Field Robotics Vehicle Software 
(FVS) (Bingham et  al., 2011) was used in (Fahad et  al., 2015), 
while the current paper uses ROS thus benefits a much larger user 
community. The model gives its user the option to vary different 
parameters to vary characteristics of the plume. This would help 
in verifying any autonomous monitoring algorithm in a variety of 
varying conditions.

2. Fine-scale characteristics OF 
exPeriMental PluMes

In this section, we summarize the qualitative and quantitative 
characteristics of experimentally generated plumes, obtained 
during a series of experiments conducted by our group (Fahad 
et al., 2017a; Fahad et al., 2017b). As mentioned in Section 1, the 
lack of experimental data for marine plumes prompted us to study 
these fine-scale characteristics for marine plumes. We conducted a 
series of field experiments by generating Rhodamine dye plumes in 
a near shore marine environment at Makai Research Pier in Oahu, 
Hawaii. A 20% Rhodamine solution mixed with seawater to achieve 

1 https://www.github.com/mfahadrobotics/marineplumesim
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approximate neutral buoyancy, was introduced into the seawater 
using a metering pump at a flow rate of 5 ml/min. This pump was 
mounted on a floating platform moored at a fixed location. The 
solution was introduced through a small diameter hose mounted 
0.1 m below the waterline. At this low flow rate the solution had 
negligible momentum when released into seawater. The resultant 
plumes were allowed to grow till their size was significant enough. 
These plumes were surveyed using unmanned surface vessels 
(USVs) equipped with fluorometer sensors. The sensors were 
installed 0.1 m below the waterline. Average winds of 5–15 mph 
were observed in the northeasterly direction consistent with the 
trade winds. The resulting plumes were observed to spread in the 
longitudinal direction at speeds between 0.03–0.1 m/s. Vertical 
spreading of the plumes was not measured. Three different types of 
surveys were performed to study the structure of the plumes. Time 
series of fluorometer sensors onboard the USVs were recorded 
during these surveys.

•  Static surveys were conducted by anchoring the USVs at fixed 
locations along the plume growth axis.

•  Cross section surveys were performed by manually driving the 
USVs along the plume’s longitudinal and transverse axis of growth. 
The recorded USV trajectories in one of the cross section survey 
experiments are shown in Figure 1A and B for the longitudinal 
and transverse directions, respectively, where the top panels show 
camera snapshots and the bottom panels show ROS rviz 
visualization of the recorded trajectories.

•  Plume front surveys were conducted by manually driving the USVs 
along the plume front. Plume front is defined to be the visual extent 
of the plume, i.e., the visual boundary where the plume is no longer 
visible to the human eye. The recorded trajectory of the USV 

during one of the plume front survey experiments is visualized in 
Figure 1C.

The static surveys were conducted during May 2015, and the 
results are presented in (Fahad et  al., 2017a), while the cross 
section and plume front surveys were conducted during August 
2015, and the results are presented in (Fahad et al., 2017b). Based 
on these experiments, the qualitative characteristics and the 
statistical parameters to quantify these qualitative characteristics 
are summarized below.

2.1. Qualitative characteristics
Qualitatively, experimentally generated plumes exhibit 
intermittency, sinuous structure, coherence to flow field history 
and a distinct near source concentration profile which are explained 
in this section.

1. Intermittency: Intermittency is described as the cycles of high and 
low concentration, observed in a plume at a fixed location. This 
behavior is highlighted in the concentration time series plot shown 
in Figure 2, obtained during static plume surveys (Fahad et al., 
2017a). The figure shows bursts of high concentration, of duration 
tpr and near zero concentrations of duration tgr. Here subscript p 
represents pulse time, and subscript g represents return time. It is 
important to highlight that pulse and return durations are not 
constant but random (Fahad et al., 2017a), which can be attributed 
to the complex intermixing of the pollutant and the fluid, and 
varying fluid flow.

2. Sinuous structure: Experiments showed that marine plumes follow 
a sinuous path. As shown in Figure 3, it can be seen that the plume 
follows a meandering path rather than a straight line which can 

Figure 1 |  Field experimental snapshots (top panel) and recorded trajectories (bottom panel) visualized using ROS rviz: (a) Cross section survey in the 
longitudinal direction; (B) Cross section survey in the transverse direction; (c) Plume front survey.
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be attributed to the time varying flow field experienced by the 
plume.

3. Shape and flow field coherency: Another important characteristic 
of an experimental plume is coherence of the plume shape and 
the temporal history of the flow field. The direction of advection 
of different sections of the plume should conform to the direction 
of the fluid flow during the initial growth of that section. In other 
words, the direction of growth of the different meandering sections 
of the plume is correlated to the direction of the fluid flow at the 
time of propogation of that section.

4. Near source concentration profile: The concentration profile near 
the source of the plume was studied by measuring the dye 
concentration 0.2 m downstream of the source. The plot of the 
measured time series is shown in Figure 4, which shows a time 
varying concentration profile, even when the flow rate from the 
source is constant. This varying concentration can be attributed 
to several factors, such as the vortex shedding generated due to 
the two mixing flows, large-scale and small scale eddies, and 
turbulence in the flow field.

2.2. statistical Parameters
The fine-scale characteristics can be quantified using the set of 
statistical parameters detailed in this section. The time series 
obtained in field experiments were analyzed to calculate the 
metrics detailed here. These metrics provide a quantitative basis 
of comparison of fine-scale characteristics of simulated plumes 
and experimentally generated plumes presented in Section 5 of 
the paper.

1. Mean concentration ̄c  of a recorded time series at fixed and moving 
points in the plume.

2. Coefficient of variation (CV) is the ratio of the SD σc of the time 
series and its mean value ̄c .

3. Peak to mean ratio (PMR) is the ratio of the maximum value of 
the time series and its mean value.

4. Intermittency is quantified as the probability of the measured 
concentration being lower than a certain threshold τ. The 
intermittency is calculated as

Figure 2 |  Time series of plume concentration measurement at a fixed 
spatial location showing bursts of high and low concentration.

Figure 3 |  Snapshot of pollutant plume growth in one experiment showing sinuous and patchy behavior.

Figure 4 |  The concentration time series obtained by sampling the 
concentration near the plume source showing time varying concentration 
profile despite constant source release rate.
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γ =

card
(
c < τ

)

card
(
c
)

  

where card() denotes the cardinality/size of the set.
5. Burst length tp, is the duration for which the measured 

concentration continuously stays above the threshold τ.
6. Burst return tg, is the duration for which the measured 

concentration continuously stays below the threshold τ.

Next, we present our model used to capture these characteristics 
exhibited by experimentally generated marine plumes.

3. MOdels and sOlutiOn algOrithMs

We present in this section the plume dispersion model, flow 
field generation model, and plume source model for simulating 
marine plumes. The qualitative and quantitative characteristics 
of these simulated plumes are compared, and shown to be 
similar to experimentally generated plumes in Section 5. While 
explicit mathematical modeling of all the physical and chemical 
phenomena governing the development of a real world marine 
plume is overly complex (Moin and Kim, 1997; Shraiman and 
Siggia, 2000), our goal is to produce a more realistic, yet tractable 
simulation model for use by the robotics community in their control 
algorithm design studies. In this section, we provide the models 
and solution methods that produce an overall marine plume whose 
characteristics are similar to those exhibited by experimentally 
generated marine plumes.

3.1. Plume dispersion Model
The spreading of a contaminant released into a fluid is affected by 
two dominant factors, namely, advection and turbulent diffusion 
(Socolofsky and Jirka, 2005). The PDE capturing these two effects 
and governing the spreading of the contaminant is given by 
(Socolofsky and Jirka, 2005)

 
∂c

(
x, t

)
∂t

+ vx ∂
∂x c

(
x, t

)
+ vy ∂

∂y c
(
x, t

)
= kx ∂2

∂x2 c
(
x, t

)
+ ky ∂2

∂y2 c
(
x, t

)
,  (1)

where c (x, t) is the pollutant concentration at position x = (x, y) 
and time t,

v = [vx, vy] is the flow field vector,
k = [kx, ky] is the turbulent diffusion coefficient vector.
In the limit k →(0,0), Eq. (1) is a purely advection model, and 

in the limit v →(0,0), it is a purely dispersive model.
There are several methods to solve Eq. (1) analytically for general 

initial and boundary conditions, when diffusion coefficients are 
constant and geometries are simple (Zoppou and Knight, 1997). 
In this work, the finite difference method (FDM) has been used 
to solve this equation. To solve Eq. (1) using FDM, the solution 
domain is discretized using a uniform rectangular grid of step size 
Δx and Δy in both directions. Here lx and ly are the total lengths 
of the environment along both axes, and nx and ny are the total 
number of grid point along x-axis and y-axis respectively. Grid 
points occur at the intersection of grid lines and are numbered as 
i = 1, 2, …, nx along x-axis and as j = 1, 2, …, ny along y-axis. The 

concentration value at the n-th time step at any (i, j)-th grid point 

is labeled as c
n
i,j . The simulation time Ts is divided into N = Ts/Δt 

steps, where Δt is duration of each time step represented by n = 1, 
2, …, N. The concentration value at this point at (n + 1)-th time 
step is denoted by  c

n+1
i,j   and approximated by

 cn+1i,j = cni,j + f1
(
x
)
+ f2

(
y
)
+ f3

(
x
)
+ f4

(
y
)
  (2)

where

 f1
(
x
)
=

(
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(
i, j
)
∆t

)

∆x

[(
vx

(
i, j
)
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) (
cni+1,j − cni,j

)
+
(
vx

(
i, j
)
< 0

) (
cni,j − cni−1,j

)]
  

 
f2
(
y
)
=

(
vy

(
i, j
)
∆t

)

∆y

[(
vy

(
i, j
)
> 0

) (
cni,j+1 − cni,j

)
+
(
vy

(
i, j
)
< 0

) (
cni,j − cni,j−1

)]
  

 f3
(
x
)
=

kx∆t
∆x2

(
cni+1,j + cni−1,j − 2cni,j

)
  

 
f4
(
y
)
=
ky∆t
∆y2

(
cni,j+1 + cni,j−1 − 2cni,j

)
  

Stability of the solution obtained by Eq. (2) is ensured by limiting 
the Courant number Cr to

 Cr = |vx∆t
∆x | + | vy∆t

∆y | ≤ 1.  (3)

3.2. Flow Field Model
The Navier Stokes equation is used to model the flow field in the 
environment and is given by

 
δv
δt +

(
v · ∇

)
v = − 1

ρ∇p + ν∇2v  (4)

where ρ is density of the fluid, p is the pressure field, and ν is 
the viscosity of the fluid for which the equations are solved. The 
incompressibility condition for a liquid medium is satisfied by

 ∇ · v = 0.  

This model is then solved for each grid point of the simulation 
environment for given boundary conditions, giving the fluid 
velocity vector v at each point in the simulation environment. To 
simulate a time varying flow field, the boundary conditions are 
varied periodically and the flow field is updated accordingly.

3.3. Plume source Model
Explicit modeling of a time varying source that captures all the 
effects that result in the near source concentration profile detailed 
in Secion 2.1 is computationally intractable (Moin and Kim, 
1997; Shraiman and Siggia, 2000). In order to generate a plume 
that exhibits characteristics similar to experimental plumes, the 
plume source in this work has been modeled as intermittent. It 
cycles between a zero and non-zero concentration. The source 
concentration is given as

 
c1(t) =

{
cs, 0 ≤ t ≤ Tp
0, Tp < t < Tp + Tg   

(5,6)
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where cs is the adjustable source concentration parameter, Tp and 
Tg are pulse time and gap time, respectively. The function c1 is 
repeated after t = Tp +Tg for m times. The selection criterion of 
these parameters are given in Section 4.2. Next, we present the 
implementation of these models in the ROS simulator.

4. rOs siMulatOr

We present the implementation details of the models explained in 
Section 3 and also present the method of parameter selection to 
vary plume characteristics.

4.1. rOs implementation
The block diagram for the ROS implementation showing the major 
components is shown in Figure 5. Implementation details of each 
component are described below.

4.1.1. Properties XML File
The properties extensible markup language (XML) file is an editable 
file and contains parameters that may be modified by the user to set 
up the simulation. The user can select the simulation environment 
size lx, ly, the grid step size Δx and Δy and total simulation time Ts. 
The user can simulate multiple sources and can set each source’s 
location xs, ys, concentration cs, mean pulse time Tp and mean gap 
time Tg. The turbulent diffusion coefficients k can also be set here. 
The parameter tf is used to control the update rate of the flow field, 
and maximum flow velocities vxm, vym can also be set.

4.1.2. Flow Field Generator
The flow field generator implements the flow model detailed in 
Section 3.2. The flow field is updated by varying the boundary 
flow velocity values every tf seconds. The object reads the required 
parameters from the properties file and vx, vy and p are initialized. To 
obtain a time varying flow field, in our simulator implementation, 
the boundary conditions are modeled as uniformly distributed 
random variables over the range ±vxm and ±vym and are varied 
every tf secs. The values for vx and vy are iteratively updated using 
Eq. (4), till a stable solution is achieved and this solution is saved. 
This process is repeated for a total of Ts/tf iterations.

The flow field can be run real time or saved offline. Saving values 
of vx and vy offline for later use has three main advantages. First, 
the simulation is comparatively faster than if the flow field was 
calculated online during the simulation. Second, by using saved 
data, performance of different control algorithms can be evaluated 
using the same time varying flow field at each step. Third, the flow 

field can be generated and saved by a more complex modeling 
software such as OpenFOAM and then used with this simulator.

4.1.3. Plume Node
The plume node contains the implementation of the environmental 
model presented in Section 3.1. The node executes using both the 
central processing unit (CPU) and the graphics processing unit 
(GPU) to speed up the solution of the model. The node sets up 
the simulation according to the parameters set by the user in the 
properties file. The time step Δt is calculated using Eq. (3), based 
on the maximum flow velocity vxm, vym. Four ROS topics, con_cld, 
con_pub, flow_cld and src_loc are published by the node. The user 
can subscribe to these topics in their simulation to display the 
plume and concentration values, concentration heatmap, the flow 
field and source locations.

4.1.4. Rviz Visualization
The plume generated by the plume node is displayed using the ROS 
visualization utility rviz. A snapshot from one of the generated 
plumes is shown in Figure 6. The concentration field is published as 
a point cloud of flat squares on the ROS topic con_cld. The flow field 
direction and magnitude is published as a marker array on topic 
flow_cld. The location of each simulated source is published as a 
marker array on the topic src_loc. These topics can be subscribed to 
in any other simulation to visualize the plume, the flow field and the 
source location. The plume concentration is visualized as a regular 
jet colormap, where red represents the highest concentration and 
blue represents the lowest concentration. Figure 6 also shows a 
USV model integrated with this simulator, which is part of FVS and 
serves two purposes. First, it was used to ensure that this simulator 
can be integrated with other ROS and non-ROS simulators. The 
second purpose was to perform plume front and cross section 
sampling detailed in Section 5.

4.2. Parameter selection
In this section, we present the effect of parameters of the plume 
simulator on the fine-scale characteristics of the simulated plume, 
namely the turbulent diffusion coefficient and source gap time and 
the nominal ranges for adjustable parameters.

Figure 5 |  ROS Implementation block diagram.

Figure 6 |  Rviz visualization of a plume generated by the plume simulator. 
A USV model is also shown integrated with the ROS plume simulator.
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4.2.1. Turbulent Diffusion Coefficient
We present the effect of different turbulent diffusion coefficients 
on the growth of the plume. Figure 7A shows the plume growth 
for k = [kx, ky] = (10–6 m2/s,10–6 m2/s), while Figure 7B shows 
the plume growth with k = (0.01 m2/s,0.01 m2/s), at the same time 
instance. All other parameters and the flow field were kept the 
same between the two cases. Figure 7B shows more spread of the 
plume due to higher turbulent diffusion coefficient when compared 
to Figure 7A. It is also important to highlight the comparatively 
faster reduction in the visible intermittency for the higher k case, 
due to the improved intermixing.

4.2.2. Gap Time
The plume’s intermittency can be changed by changing the 
gap time Tg. The growth of the plume for Tg = 0 s is shown in 
Figure  8A showing no intermittency, while Figure  8B shows 

plume growth for Tg = 20 s with visually observable intermittency. 
This highlights a proportional relationship of this parameter with 
intermittency.

4.2.3. Parameter Ranges
Explicit mathematical calculation of k, Tg for the wide range 
of real field conditions is very difficult or impossible. The 
numerical values presented above quantify the expected range 
of these parameter to produce plume characteristic similar 
to experimentally generated plumes. These two parameters 
are important to adjust intermittency of the simulated plume 
and the values maybe be chosen to a higher or lower value, 
depending on the requirements, to produce varying plume 
characteristics. The simulated plume exhibits similar qualitative 
characteristics as an experimental plume. This can be verified 
by analyzing Figure 9, showing snapshots of the first 180 secs of 

Figure 7 |  Plume growth with turbulent diffusion coefficient k = [kx, ky] = (10–6 m2/s,10–6 m2/s) shown in (a) and k = [kx, ky] = (0.01 m2/s, 0.01 m2/s) shown in 
(B).

Figure 8 |  Plume intermittency by setting Tg = 0 s in (a) and Tg = 20 s in (B).
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the simulation. Intermittency can be observed in the figures in 
the from of visible patches of high and low concentration. The 
plume follows a sinuous path, which is clearly indicated by the 
meandering shape of the plume seen in Figure 9A to Figure 9D. 
The different sections of this meandering path are consistent 
with the direction of the flow during the development of that 
section of the plume.

A list of important parameters with nominal ranges is provided in 
Table 1. The value of cs can be increased to increase the downstream 
concentration of the plume and vice versa. The values of Tg can 
be decreased to produce a less intermittent plume and vice versa. 
The value of Tp can be increased to produce a less intermittent 
plume and vice versa. The value of k = [kx, ky] can be increased to 
reduce the intermittency of the plume and vice versa. The values 
of vxm and vym can be increased to produce a more meandering 
plume and vice versa.

Next we present the comparison of this simulated plume with 
experimental marine plume.

5. cOMParisOn with exPeriMental 
characteristics

We perform a qualitative and quantitative analysis of the 
characteristics of plumes generated by this calibrated model 
with the characteristics of experimentally generated plumes. The 
simulation to collect the time series for comparison is carried out 
in an environment of size 60 × 20 m along the x-axis and y-axis 
respectively and grid resolution of 0.1 m. The total simulation time 
Ts is 6000 s. The plume source is located at xs=(1 m, 5 m), source 
concentration cs is set to 1300 ppb, and temporal parameters are 
set to Tp = 2 s and Tg = 10 s respectively. The diffusivity coefficient 
vector k is empirically set to (10–6 m2/s,10–6 m2/s).

The simulated plume exhibits the same qualitative 
characteristics as an experimental plume. This can be verified 
by analyzing Figure 9, showing snapshots of the first 180 secs 
of the simulation. Intermittency can be observed in the figures 
in the from of visible patches of high and low concentration. 
The plume follows a sinuous path, which is clearly indicated 
by the meandering shape of the plume seen in Figure  9A to 
Figure 9D. The different sections of this meandering path are 
consistent with the direction of the flow during the development 
of that section of the plume. We would like to emphasize that 
the intention of this comparison is not to recreate the same 
time series as an experimental plume. The experimental data 
was collected over various plumes with varying environmental 
conditions, and getting a set of all parameters from a single 
plume is very challenging or impossible (see Section 6.3 on 

Figure 9 |  Snapshots of the plume during its growth at different time steps, T = 0 s in (a), T = 60 s in (B), T = 120 s in (c) and T = 180 s in (d). Temporal 
parameters are set to Tp = 2 s and Tg = 10 s the diffusivity coefficient vector k = [kx, ky] is set to (10–6 m2/s,10–6 m2/s).

taBle 1 |  Key parameters used in the simulator and nominal ranges.

Parameter name unit range

cs Mean concentration of source ppb 0.00–10,000.00
Tp Pulse time sec 0.00–100.00
Tg Gap time sec 0.00–100.00
k Diffusion coefficient m2/s 0.10–2.00 × 10–6

vxm, vym Maximum flow in X and Y direction m/s 0.00–2.50
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experimental challenges). We intend to show a general similarity 
in characteristics between simulated and experimental plumes.

5.1. time series of stationary sampling 
Point
We present comparisons of the fine-scale characteristics of the 
simulated plumes with the experimental plumes when measured 
from stationary sampling points. Corresponding to the static surveys 
referenced in Section 2, four static sampling points downstream of 
the simulated source were selected to collect the concentration time 
series. The location of these points were (6 m, 5 m), (11 m, 5 m), 
(16 m, 5 m) and (46 m, 5 m), making them 5 m, 10 m, 15 m and 45 
m away from the source. The time series collected at these points 
are designated as S0-S3 and stored for calculating the statistical 
parameters. Only that part of the time series, when the plume has 
spatially grown enough to reach all sampling points was used.

5.1.1. Amplitude Statistics
Comparison of amplitude statistics is shown in Table 2, where S0-S3 
represent statistical data collected in our developed simulator, and 
P0-P3 represent field experimental data.

1. Mean Concentration c̄  of S0-S3 shows a decreasing trend as the 
distance of the sampling points from the source increases. This is 
consistent with intuition and general established models. However, 
P0-P3 seem to imply an increasing mean concentration as distance 
from the source increases. This discrepancy can be attributed to 
several reasons such as varying surface advection from one 
experiment to the next, since each time series is obtained during 
separate experiments. The ocean waves move the USV around, 
resulting in the USV transitioning in and out of the plume. The 
narrow spatial profile of the plume closer to the source might also 
result in a lower mean value closer to the source, due to the USV 
moving in and out of the plume.

2. Coefficient of Variation (CV) σc /̄c  shows a decreasing trend for 
P0-P3 as distance from the source increases and the value lies in 
the range 0.28 to 1.3. Results for S0-S3 also exhibit a general 
decreasing trend as distance from the source increases and the 
numerical values are also within the same range as experimental 
results. In this comparison, the metric CV has been used rather 
than the SD. CV is more useful in this case since the results 
compared are from different surveys and different sections of 
plumes with greatly varying mean values, and CV is a more 

appropriate metric for comparing variability in the time series in 
this situation (Stuart and Ord, 1994).

3. Peak to Mean Ratio (PMR) for P0-P3 shows a decreasing trend 
as the distance from the source increases. The same trend was 
observed in S0-S3. The average value for the experimental data 
calculated to be 3.7 is quantitatively similar to 3.84 for simulated 
plume data.

4. Intermittency for P0-P3 and S0-S3 show a general decreasing 
trend as a function of increasing distance from the source. The 
threshold τ for calculating intermittency was selected to be 1 ppb. 
The experimental values however decrease more rapidly compared 
to the simulator values.

5.1.2. Temporal Statistics
This section presents the comparison of the temporal characteristics 
of S0-S3 and P0-P3. The temporal statistics of particular interest are 
the burst length, tp and burst return, tg. These parameters quantify 
the typical time scales at which the concentration is expected to 
vary. Analysis of P0-P3 shows that the pulse and gap times are in 
the order of 10 s of seconds to 100 s of seconds. Similar time scales 
are exhibited by S0-S3. The burst times for P0-P3 and S0-S3 are 
summarized in Table 3. Here we would like to emphasize that the 
times don’t have a one-to-one correspondence, rather we show 
similarity in the intermittency time scales.

5.2. dynamic analysis
This section presents a comparison of the statistical parameters 
of the simulator generated plume when sampled from a dynamic 
platform. This was performed by integrating the FVS simulator’s 
USV model equipped with four sampling points with this plume 
simulator. The simulated plumes were then sampled by manually 
driving the USV model across the plume cross section and along 
its plume front. Statistical parameters of the logged time series are 
compared with experimental results. A snapshot of the simulator 
integrated with the USV model is shown in Figure 6.

5.2.1. Cross Section Analysis
The cross sectional surveys were performed by driving the 
simulated USV along the longitudinal direction of the plume 
growth and along its transverse axis. The surveys SC1 and SC2 were 
conducted along the longitudinal direction of the experimental 
plume growth, one of which is visualized in Figure 10A. Similarly, 

taBle 2 |  Amplitude statistics at stationary sampling point.

Parameters experiments simulator

P0 P1 P2 P3 s0 s1 s2 s3

Distance to source (m) 6.70 22.50 34.90 51.30 5.00 10.00 15.00 45.00
Duration (min) 6.70 15.30 24.90 13.70 100.00 100.00 100.00 100.00
Mean: c̄  (ppb) 3.11 11.24 9.40 14.85 28.80 18.44 14.42 9.38

Mean norm: c̄/c0 1.00 3.61 3.02 4.77 1.00 0.64 0.50 0.32

Std: σc 3.30 6.40 6.50 4.10 25.47 13.68 10.47 6.12

CV: σc /̄c 1.30 0.59 0.69 0.28 0.88 0.74 0.72 0.65

PMR 7.20 2.90 3.10 1.60 6.74 3.10 2.99 2.52
Intermittency 0.48 0.07 0.12 0.01 0.15 0.12 0.09 0.07
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surveys SC3-SC5 were conducted along the transverse axis of the 
plume growth. The representative trajectory for these surveys is 
shown in Figure 10B. The characteristics of the simulated plume 
along its cross section are compared here with the experimental 
plumes. The time series of experimental cross section surveys are 
labeled as C1-C6, while those obtained during the simulations 
are labeled as SC1-SC5. The statistical parameters for both are 
calculated and listed in Table 4. Comparison of the parameters 
show that the experimentally generated plumes and the simulated 
plumes exhibit quantitatively similar statistical parameters.

5.2.2. Plume Front Analysis
The plume front surveys were performed by driving the simulated 
USV along the visible boundary of the plume. The trajectory for 
one of the plume front surveys is shown in Figure 10C. Statistical 
parameters of the time series along the plume front are compared 
with the experimental plume front surveys in this section. The time 
series obtained from experiments are labeled as F1 and F2 and those 
obtained from simulator are labeled as SF1-SF4. Results of analysis 
of fine-scale parameters from both are detailed in Table 5. The table 
shows the qualitative similarity of the concentration time series of 
simulated plumes and experimental plumes. The main difference 
here being lower mean concentration values for the simulated case 
reflected in statistical parameters in Table 5, which are otherwise 
similar.

6. discussiOns

6.1. result comparison
The results presented in Section 5 demonstrate that the 
proposed simulation model can capture key characteristics of 

marine plumes, and exhibit fine-scale qualitative characteristics 
similar to experimental plumes. Due to the complexity of the 
plume propagation process in the presence of uncontrollable 
environmental conditions such as temperature, winds etc., we 
do not directly calibrate model parameters using experimental 
data. Our approach is to provide a general purpose ROS 
simulator, the parameters of which can be adjusted to vary 
the characteristics of the plume. A general guidance on how 
to adjust the simulator parameters is also provided. Our 
purpose is not to design the model for a specific experimental 
environment or scenario, but to enable the user to rapidly test 
their robot control algorithms in a wide range of conditions 
by adjusting parameters to different values following the 
guidelines in Section 4.2.

6.2. scalability
The comparison of statistical parameters in Section 5 has been 
made on a domain size similar to the experimental environment 
roughly 60 m long. Although our qualitative results apply to 
ocean plumes of relatively small size, similar characteristic trends 
were reported for large size plumes in other studies (Jones, 1983; 
Farrell et al., 2002). Intermittency in our plume model exhibits 
inverse proportionality to increasing distance from the source, 
which is also exhibited by experimental aerial plumes (Jones, 
1983). Meandering also becomes less discernible at increased 
distances for experimental plumes due to the increased cross 
sectional profile of the plume, which is consistent with larger 
size plumes. This evidence suggests that our proposed model 
and simulator may apply to ocean plumes of a larger size. It 
is worth mentioning that as robots operate at scales for which 
fine-scale characteristics are more appropriate than large-scale 

Figure 10 |  Simulated surveys with USV trajectories visualized in ROS rviz: (a) Cross section survey in the longitudinal direction; (B) Cross section survey in the 
transverse direction; (c) Plume front survey.

taBle 3 |  Burst length distribution statistics.

Parameters experiments simulator

P0 P1 P2 P3 s0 s1 s2 s3

Distance to source [m] 6.74 22.50 34.90 51.30 5.00 10.00 15.00 45.00
Burst length τ 2.00 2.00 2.00 8.00 2.00 2.00 2.00 2.00

Mean [s] 75.70 93.40 11.40 84.40 112.00 70.70 80.80 59.50
Max [s] 95.90 222.00 319.00 418.00 347.00 156.00 175.00 67.00

Burst return τ 2.00 2.00 2.00 8.00 2.00 2.00 2.00 2.00
Mean [s] 20.40 5.40 2.80 5.90 47.90 69.90 53.00 14.00
Max [s] 62.40 17.70 143.00 22.40 129.00 377.00 145.00 22.00
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characteristics, the focus of our current paper is to provide a 
fine-scale plume simulator.

6.3. experimental challenges and 
limitations
Conducting field experiments and collecting data in real marine 
environments is challenging. Characteristics of experimentally 
generated marine plumes depend on environmental conditions 
that cannot be controlled in a field setting. We observed that 
even for the duration of one survey mission, the direction 
of plume growth was not constant due to the combination 
of temperature changes and wind direction changes. It is 
very challenging to collect large volume of data quantifying 
plume characteristics in one testing due to the short time 
span of stable plumes. Also, the motion of the USV during 
the survey disturbs the plume and may change the structure 
of the plume. This also causes the experimental results to 
be not exactly the same as simulated plumes. Limitations in 
available resources for field experiments also contribute to 
limited amount of data collected. Thus, direct comparison of 
the simulated plume with a specific experimental plume is not 
possible. It is our intention to provide a general ROS simulator 
that produces fine-scale marine pollution plumes for robotics 
researchers to evaluate control algorithms without expensive  
field testings.

7. cOnclusiOns

In this paper, we have presented a plume dispersion model 
calibrated to capture the characteristics of experimentally 
generated plumes. The modified model has been used to 
implement a marine plume simulator in ROS. The simulator 
provides the user with different parameters to select for different 
quantitative and qualitative behaviors of the generated marine 
plume. Sample plumes were generated in the simulator, and the 
fine-scale statistical characteristics of these simulated plumes 
were compared with those obtained from the experimentation 
results. The simulated marine plumes show similar qualitative 
and quantitative characteristics when compared to the 
experimental results. This calibrated model and the implemented 
marine plume simulator enables researchers to validate their 
environmental monitoring strategies using marine robots in 
a variety of conditions, reducing the need for expensive field 
experiments, a capability that is desirable to robotic control 
system researchers. Future work includes updating the current 
simulator to include a more realistic flow field model, that can 
simulate a more realistic flow field model. The current flow 
field model is unable to capture the effect of winds and local 
eddy current generation. Another avenue for improvement 
is to update the current two dimensional model to a three 
dimensional model.
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taBle 4 |  Summary statistics of the concentration time series from plume cross section surveys.

Parameters experiments simulator

c1 c2 c3 c4 c5 c6 sc1 sc2 sc3 sc4 sc5

Mean (ppb) 16.83 16.93 7.23 11.30 6.44 14.68 11.70 5.80 6.75 5.66 7.16

Var (σ2) 75.02 26.73 30.37 42.45 16.19 34.39 112.82 28.95 41.2 29.28 37.14
STD (σ) 8.66 5.17 5.51 6.52 4.02 5.86 10.62 5.38 6.41 5.41 6.09
CV (σ/μ) 0.51 0.31 0.76 0.58 0.62 0.40 0.91 0.93 0.95 0.96 0.85
cmax (ppb) 30.21 22.91 17.14 22.56 11.49 22.39 30.80 16.36 18.62 14.98 16.82
PMR (cmax/μ) 1.80 1.35 2.37 2.00 1.78 1.53 2.63 2.82 2.76 2.65 2.35

taBle 5 |  Summary statistics of plume front surveys.

Parameters experiments simulator

F1 F2 sF1 sF2 sF3 sF4

Mean (ppb) 23.79 17.70 9.08 17.51 16.40 15.69

Var (σ2) 142.06 53.28 71.85 55.44 48.72 29.80
STD (σ) 11.92 7.29 8.48 7.44 6.98 5.46
CV (σ/μ) 0.50 0.41 0.93 0.42 0.42 0.35
cmax (ppb) 48.50 39.83 44.60 35.69 39.97 42.74
PMR (cmax/μ) 2.04 2.25 4.91 2.03 2.43 2.72
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