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In this paper we study space debris removal from a game-theoretic perspective. In 
particular we focus on the question whether and how self-interested agents can cooperate 
in this dilemma, which resembles a tragedy of the commons scenario. We compare 
centralised and decentralised solutions and the corresponding price of anarchy, which 
measures the extent to which competition approximates cooperation. In addition we 
investigate whether agents can learn optimal strategies by reinforcement learning. To this 
end, we improve on an existing high fidelity orbital simulator, and use this simulator to 
obtain a computationally efficient surrogate model that can be used for our subsequent 
game-theoretic analysis. We study both single- and multi-agent approaches using 
stochastic (Markov) games and reinforcement learning. The main finding is that the cost 
of a decentralised, competitive solution can be significant, which should be taken into 
consideration when forming debris removal strategies.

Keywords: space debris, active debris removal, tragedy of the commons, price of anarchy, markov decision 
process

1. intrODuctiOn

The Earth’s orbits are becoming increasingly cluttered with so-called space debris, made up by inactive 
or defunct satellites, rocket bodies, or other parts of spacecraft that have been left behind.1 This is 
particularly true for the Low Earth Orbit (LEO, defined as the region of space around Earth within 
an altitude of 160 to 2,000 km) environment, in which a large number of active satellites operate. This 
causes a substantial operational risk, ranging from the need to perform evasive manoeuvres to defects 
or even obliteration of spacecraft due to collisions with pieces of debris, which at orbital speeds of 
approximately 7.5 km/s can cause considerable damage.

To counter this risk, mitigation strategies are now implemented in newly launched satellites such 
as end-of-life de-orbiting or graveyard orbits (Inter-Agency Space Debris Coordination Committee 
and others, 2002; Klinkrad et al., 2004). However, researchers doubt that these measures, even if 
applied to all newly launched spacecraft, are sufficient to prevent a potential exponential build-up of 
debris (Liou and Johnson, 2006; Lewis et al., 2012). Active space debris removal, though very costly, 
may offer a solution (Klinkrad and Johnson, 2009; Izzo et al., 2015).

An active debris removal mission, if successful, has a positive effect (risk reduction) for all 
satellites in the same orbital band. This may lead to a dilemma: each stakeholder has an incentive 
to delay its actions and wait for others to respond. This makes the space debris removal setting 

1 NORAD tracks and catalogues objects in orbit, currently listing around 15,000 objects of 10 cm and larger, see  
https://celestrak.com/NORAD/elements/. It is believed that the true number of objects is several orders of magnitude larger, 
with estimates of over 100,000 pieces of un-tracked debris of sizes 1-10 cm (Carrico et al., 2008). 
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an interesting strategic dilemma. As all actors share the same 
environment, actions by one have a potential immediate and 
future impact on all others. This gives rise to a social dilemma 
in which the benefits of individual investment are shared by all 
while the costs are not. This encourages free-riders, who reap the 
benefits without paying the costs. However, if all involved parties 
reason this way, the resulting inaction may prove to be far worse 
for all involved. This is known in the game theory literature as 
the tragedy of the commons. This dilemma is often studied as a 
one-shot interaction in which players (the actors) choose their 
strategy simultaneously and without communication. Most real 
scenarios however do not follow this abstract set-up, but are rather 
played out over multiple rounds of interactions, in which previous 
outcomes may influence future strategy choices. In this paper we 
analyse this more realistic scenario by modelling the space debris 
removal dilemma as a stochastic game, in which players decide 
on their strategy at multiple time points, and the combination of 
their choices influences the future development of the space debris 
environment.

The objective of this work is to model this strategic dilemma, 
understand its consequences and analyse various centralised 
and decentralised solution methods (including reinforcement 
learning). This requires us to provide a way to estimate the effect 
of certain actions on the space environment and assets held by the 
actors. To this end, we build on and extend a previously developed 
full scale simulator (Klima et al., 2016a) to include smaller debris 
and more realistic future launch scenarios and debris mitigation 
strategies. Using data collected from the full scale simulator we 
then build and validate an approximate surrogate model that can 
subsequently be used to efficiently test the effects of various debris 
removal strategies without requiring the computing power needed 
to run the full scale simulator. Additionally, the surrogate model 
can be used as a basis for further game theoretic analysis through 
the definition of a stochastic game. We provide illustrative test cases 
that demonstrate the potential use of our surrogate model for space 
actors and policy makers.

The contributions of this paper to the state of the art in the field 
are thus three-fold. (1) We improve the space environment simulator 
of previous work by implementing several potential future launch 
scenarios as well as debris mitigation strategies for newly launched 
satellites. (2) We provide a computationally efficient framework for 
exploring multi-actor policies for active debris removal. The core 
of the framework is a deterministic surrogate model of the orbital 
dynamics, which we have built using statistics collected from the 
improved, but still computationally expensive, full scale simulator. 
We validate this model and show it to be sufficiently accurate, 
thus allowing us to easily explore many different dynamic removal 
policies. (3) Using this framework, we compare the centralised 
solution with the decentralised one in terms of price of anarchy and 
evaluate the cost of several entities selfishly deciding on removal 
strategies. Furthermore, we investigate how the size of the space 
actors influences the strategy forming and its impact on social 
welfare.

This paper is structured as follows. Firstly, we position our study 
in the context of related work. Next, we present our space debris 
simulator which includes a collision model, a break-up model, 
an orbital propagator, and future launch scenarios. We then 

introduce and validate our surrogate model, vastly reducing the 
computational effort for predicting the impact of actions on the 
future space environment. Using this surrogate model we analyse 
the potential impact of several removal strategies on the orbital 
environment, and present a game theoretic analysis. Finally, we 
outline steps for further study, and conclude.

2. relateD WOrK

This study significantly extends our previous work (Klima et al., 
2016a), which was the first to study the space debris problem from 
strategic, game-theoretic point of view. Our extension is threefold; 
(i) we improve the space debris simulator by adding more realistic 
future launch scenarios and mitigation strategies, (ii) we develop a 
surrogate model allowing us to use dynamic strategies (compared 
to one-shot strategies in the previous work) and (iii) we use the 
price of anarchy to describe inefficiencies of various solution types.

Our work can be placed in the context of two different areas 
of related work. Firstly, from a simulation modelling perspective, 
various attempts have been made to accurately predict the 
evolution of space debris and the resulting risk of collisions for 
active spacecraft. Secondly, from a game-theoretic perspective, 
researchers have utilised similar methods to study related problems 
of environmental pollution, and the shared exploitation of scarce 
resources (Tahvonen, 1994).

One of the earliest analyses of the projected evolution of space 
debris was done by Donald J. Kessler in 1978 (Kessler and Cour-
Palais, 1978; Kessler et al., 2010). This study led to the definition 
of the “Kessler Syndrome”, a particular scenario where the density 
of objects in LEO becomes high enough to cause a cascade of 
collisions, each producing new debris and eventually saturating the 
environment, rendering future space missions virtually impossible. 
In 2002, the Inter-Agency Space Debris Coordination Committee 
(IADC) outlined mitigation measures that should be implemented 
in newly launched spacecraft to limit the future growth of the debris 
population (Inter-Agency Space Debris Coordination Committee 
and others, 2002). While effective (Anselmo et al., 2001), it is now 
widely believed that mitigation alone is not enough to prevent 
a further build-up of the debris population in LEO (Liou and 
Johnson, 2008; Lewis et al., 2012, 2013).

As a result, active debris removal (ADR) methods, in which 
spacecraft are deployed to capture and de-orbit larger pieces of 
debris and out-of-service satellites, are now considered by many as 
a necessary step to ensure sustainability of LEO (Liou et al., 2010; 
Klinkrad, 2010). Several studies have been published recently in 
which the authors consider in detail the effect of active removal 
strategies to mitigate the space debris problem (Liou and Johnson, 
2009; Liou et  al., 2010, 2011). For example, Liou and Johnson 
(Liou and Johnson, 2009) present a sensitivity analysis on several 
fixed object removal strategies. They propose removing 5, 10, or 
20 objects per year, and compare these mitigation strategies with 
baselines “business as usual” or “no new launches” and show the 
effectiveness of object removals. The objects to be removed are 
chosen according to their mass and collision probability. We base 
our study on Liou and Johnson’s approach but, in contrast, consider 
a more adaptive scenario in which an optimal strategy for removal 
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can be learned based on estimated collision risks and removal costs. 
In our model we implement more sophisticated object removal 
criteria based not only on the potential risk of collision but also 
on the expected number of new debris that would result from 
such a collision.

The space debris removal dilemma is in many ways similar 
to other environmental clean-up efforts that have been studied 
using game-theoretic tools in the past. For example, Tahvonen 
models carbon dioxide abatement as a differential game, taking 
into account both abatement costs and environmental damage 
(Tahvonen, 1994). More complex models have been studied as 
well, including for example the ability to negotiate emission 
contracts (Harstad, 2012). Another related model is the Great 
Fish War of Levhari and Mirman (1980). Although not the same 
as environmental clean-up, this scenario deals with shared use of 
a scarce common resource, which potentially leads to the same 
dilemma in game theoretic terms, known as the tragedy of the 
commons (Hardin, 1968). While the problem of space debris can 
be seen as a tragedy of the commons in the sense, it’s potential 
solution by joint effort of different space actors can be modelled 
as a public goods game, in which players jointly need to reach a 
threshold contribution level in order to produce a public good 
(clean space, in our setting). A special case of the public goods 
game, in which contribution of a single player is sufficient, is 
given by the volunteer’s dilemma (Diekmann, 1985). Here, theory 
dictates that an increase in the number of players decreases the 
chance of any one player contributing due to the temptation of 
free-riding, known in psychology literature as the diffusion of 
responsibility. The space debris removal dilemma presented here 
is more complex than both game theoretic models, as we allow 
for different contribution levels as well as different stakes between 
the players.

Each of the aforementioned studies has focused solely on a 
(simplified) mathematical model of the underlying system. In 
contrast, we use a complex simulator to obtain an approximate 
model which can then be used to study the outcome of various 
fixed strategies, as well as learn new dynamic strategies that may 
outperform the fixed ones. In addition, while most previous work 
treats the dilemma as a one-shot (or repeated) game, we here 
propose a more realistic scenario in which different strategy choices 
can be made at different points in time, which we model within 
the framework of stochastic games. We investigate the application 
of reinforcement learning methods to obtain efficient strategies in 
such games.

Recently, there has been work using the learning approach in 
tragedy of the commons problems, analysing the dynamics of 
cooperative solutions (Leibo et al., 2017) or (Perolat et al., 2017). 
These works assumed partially observable domains with potentially 
unknown underlying model whereas in this work we assume fully 
observable surrogate model known to all the players. Another 
related work studying cooperation in public goods games uses a 
version of reinforcement learning called directional learning to 
(mis)learn and achieve more cooperative outcomes deviating from 
Nash Equilibria (Nax and Perc, 2015). This method is studied in an 
evolutionary setting based on one-shot interactions, whereas we 
study a more complex stochastic game in which dynamics depend 
on sequences of actions taken by the players.

We also mention the related (interdisciplinary) body of work 
focusing on the evolution of cooperation in populations of self-
interested agents, often modelled using methods from evolutionary 
biology or statistical physics (Perc et  al., 2017). While those 
approaches help to better understand why cooperation happens 
in (human) society on a macro scale, here we focus on the adaptive 
learning process on the micro-level of individual players. Although 
parallels can be drawn [see e.g., Bloembergen et al. (2015)], this 
type of analysis fall outside the scope of our current study.

In this work we study the inefficiency of decentralised solution 
in the active debris removal. The main tool for such analysis is 
the price of anarchy (PoA), first introduced by Koutsoupias and 
Papadimitriou (1999), however the study of inefficiency of Nash 
equilibria is older (Dubey, 1986). For general introduction to 
inefficiency in non-cooperative games we refer the reader to work 
of Roughgarden and Tardos (2007). PoA has been used in many 
domains, to name a few we state selfish traffic routing in a congested 
network (Roughgarden, 2005) or auctions (Roughgarden et  al., 
2017). In our work we focus on a more restricted scenario with 
PoA evaluation, similar works measure PoA (Knight et al., 2017) 
or analyse division fairness (Aleksandrov et al., 2015).

3. the simulatOr

In this section, we describe the details of a full scale simulator we 
developed2 to predict the impact of certain actions, such as active 
removal of a space debris object, on the future space environment and 
in particular the assets of each actor. The definition of this simulator 
essentially defines the rules of the game we will analyze later on.

As up to date no active debris removal strategies have been 
attempted yet, there is only very limited existing data on their 
cost and effect. Any impact of such action can only be simulated. 
Furthermore, the space environment, similarly to the climate on 
Earth, only changes over relatively large time scales of many decades. 
To measure any effect of current actions, it is necessary to simulate 
at least one century into the future. This of course introduces large 
uncertainties to the outcome as it requires modelling of human 
behavior, i.e., future launch activity, over the next century. Instead 
of attempting to predict one model for future human space activity, 
we extended our existing simulator (Klima et al., 2016a) to allow 
the flexible definition of several possible future launch scenarios 
as described in the following.

The simulator is built on top of the Python scientific library 
PyKEP (Izzo, 2012). PyKEP provides basic tools for astrodynamics 
research, including utilities to interface with online databases 
such as the SATCAT3 and TLE (two-line element set)4 databases, 
which provide orbital information on all active (not decayed) 
objects in the low earth orbit (LEO) regime we are studying. 
These databases provide the input to our simulator. PyKEP also 
provides an implementation of the SGP4 satellite orbit propagator 
(via libsgp45), which we use extensively in this work.

2 https://github.com/richardklima/Space_debris_removal_dynamic
3 https://celestrak.com
4 https://www.space-track.org/
5 https://github.com/dnwrnr/sgp4
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In previous work we extended PyKEP with a collision and break-up 
model (Klima et al., 2016a, b), which for completeness are discussed 
again in Sections 3.1 and 3.2. In addition, we now include more flexible 
future launch schedule allowing multiple scenarios based on different 
potential trends, as well as mitigation guidelines for active assets as 
provided by the Inter-Agency Space Debris Coordination Committee 
(IADC) (Inter-Agency Space Debris Coordination Committee and 
others, 2002).

The simulation is stepped at a fixed time step (e.g., 5 days). We 
use the SGP4 propagator in PyKEP to update the position of all 
orbital elements in our catalogue. At the end of each time step, the 
following procedures are executed:

1. Decay (see Section 3.1)
2. Collisions (see Section 3.2)
3. Launches (see Section 3.3)

We develop several scenarios that govern the projected future 
launch schedule, these are further detailed in Section 3.4.

3.1. Decay
If the propagator determines that an object’s orbit has decayed below 
a threshold (i.e., semi-major axis a ≤ 100 km) it is automatically 
considered to have re-entered the atmosphere. In addition, each newly 
launched object has a decay time assigned to it. This is the time after 
which the object is assumed to have decayed and it is removed from 
the simulation. This is to simulate modern satellites with active end-
of-life mitigation techniques such as de-orbiting devices or graveyard 
orbit parking. While we do not simulate those de-orbiting actions 
explicitly, we do want to ensure that after the given lifetime objects 
do disappear from the catalogue.

3.2. collision and Breakup model
To evaluate the probability of collision between objects we 
follow the Cube approach (Liou et al., 2003). The Cube approach 
samples uniformly in time rather than space and is thus 
compatible with any orbital evolution simulation as it does not 
impose assumptions on the orbital geometry. This is particularly 
important in LEO, where orbital progression is significant in the 
considered time frame. We use the SGP4 (Vallado et al., 2006) 
orbital propagator to calculate the evolution of the ephemeridis 
(i.e., position and velocity) of an orbiting object given its TLE 
description. Ephemerides of all objects are calculated at regular 
time intervals. Space is then partitioned by a regular 3D-lattice 
and for any pair i, j of objects that fall into the same volume, the 
collision probability is evaluated as follows:

 Pi,j = sisjVrelσU,  

where si = sj are the spatial densities of object i an j in the cube, σ= 
π(ri +rj)

2 is the cross-sectional collision area, Vrel is the collision 
(relative) velocity of the two objects, and U is the volume of the 
cube. For each pair, a pseudo-random number x is generated from 
a uniform distribution over the interval [0, 1]; if Pi,j > x, a collision 
event is triggered.

We use the NASA standard breakup model (Johnson et  al., 
2001) to generate the population of fragments resulting from 

a collision event. The NASA/JSC breakup model is a widely 
accepted stochastic model of the fragmentation process of in-orbit 
collisions and explosions based on multiple ground-tests and radar 
observations of past events.

The model provides distributions for size, mass and ejection 
velocity of the fragment population parametrised by total mass and 
collision velocity of the parent objects. The number of fragments 
larger than a characteristic length-scale follows a power-law, the 
area-to-mass ratio follows a multivariate normal distribution, and 
the ejection velocity is sampled from a log-normal distribution. 
For details we refer to the original paper (Johnson et al., 2001) as 
well as the description of the model in (Klinkrad, 2010). For each 
sampled fragment, we create a new TLE entry using the fragment’s 
osculating elements, and add it to the population of objects being 
propagated. Although the breakup model also covers explosions as 
well as non-catastrophic collisions, we only consider catastrophic 
collisions (i.e., events leading to complete disintegration) in this 
work.

3.3. Future launch model
In order to simulate the future space environment, a crucial 
ingredient is the modelling of future launch activities into orbit. 
Previous work in the field, as well as our previous study (Klima 
et al., 2016a), employs a simple “business as usual” launch model 
that simply repeats the launch sequence of a past period (e.g., one 
decade). The only adjustment made to accommodate technological 
advances is a potential speed-up of the launch sequence by scaling it 
to a shorter period in the future. The problem with this modelling is 
that it does not allow for disruptive innovation in space technology 
and space economy.

Our launch model instead aims to provide finer control of the 
future scenarios. Clearly it is not possible to predict the future for 
the next century, and our launch model does not pretend to do 
that. Instead, our simulator is built to allow for a variety of possible 
future launch scenarios by adjusting various parameters. While this 
does not say anything about the probability of each scenario, it does 
allow to analyse their potential impact on the space environment 
if they were to happen.

The simulator is based on discrete time steps. To model future 
launches, the key metric we use is the mass launched into LEO per 
year. This mass is continuously injected into the orbital environment 
by spreading it over four different classes of spacecraft, the relative 
distribution of which changes with time to model technological 
progress made.

3.3.1. Mass Per Year
We choose to model the total mass launched per year into LEO 
using a quadratic function

 Mtot
(
t
)
= M2000 ·

(
1 + α

(
t− 2000

)2)
   (1) 

with t in years AD and M2000 = 200,000 kg the total mass launched 
in the year 2000 used as a baseline.

This function is purely heuristic and is meant to combine two 
effects: the increased launch capabilities becoming available, which 
increases the total mass launched per year, and miniaturisation of 
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satellite technology, which reduces the need to launch large mass 
into LEO. As neither effect can be modelled with any certainty we 
opted for a simple function that has only one parameter α.

The value of α allows to adjust the growth rate. Reasonable values 
would probably be around α = 10–4, leading to a doubling of the 
annual mass to orbit over the next 100 years, while α = 10–3 leads to 
a twenty-fold increase (see Figure 1). Negative values correspond 
to a decrease in launched mass over time, which could happen 
either due to technological advances making large launch mass 
unnecessary or a marked downturn in space activity.

3.3.2. Spacecraft Classes
The following four classes of spacecraft are considered in our model:

•  Large satellites, representative of the big communication and 
science satellites being actively launched and in common use today.

•  Medium satellites, representative of newer science and technology 
demonstrators being developed and launched today and in the 
near future, e.g., for upcoming mega constellations.

•  Small satellites, a group representative of cubesat type satellites 
which are being developed and tested today and may become 
increasingly attractive over the next decades.

•  Ultrasmall satellites, a class of highly experimental nano-satellites, 
such as chipsats, envisioned to potentially become feasible in the 
future.

These classes are defined in terms of their attributes, including a 
typical mass and cost range for the satellite. More specifically, each 
class has the following attributes:

1. Time dependent market share,
2. Cost range,
3. Mass range,
4. Operational life time,
5. Decay time.

With the exception of the market share function, all other 
attributes are represented as a range of values sampled uniformly 
each time a new spacecraft is launched. These attributes then 
remain assigned to the newly instantiated spacecraft for the 
remainder of its lifetime. They represent the total cost of the 
spacecraft including launch, the total mass of the spacecraft 
(ignoring any differences between dry and wet mass), the date 
of the end of operational life and the date when this spacecraft 
is scheduled to decay and burn up in the atmosphere following 
a controlled deorbiting manoeuvre.

The market share is the share of the total number of newly 
launched satellites at a given time that belongs to this particular 
class. It is the only attribute that is an explicit function of time. The 
idea behind it is that right now there are still many large traditional 
satellites being launched, but that number will decrease as cubesat 
technology will mature and smaller satellites can perform the same 
functions as their larger predecessors.

To derive a market share function, we opted for a non-
normalized Gaussian for each class:

 
g
(
t;µ,σ

)
= exp−

(
t− µ

)2
2σ2

.
  

where t is measured in years since the year 2000.
The two variables μ, indicating the center, and α, indicating 

the width of the distribution, are chosen for each class and form a 
crucial part of the scenario definition. They are heuristically chosen 
such that the final market share function exhibits the desired trend 
for a given scenario. Intuitively the centre μ can be thought of as 
the point in time at which the production of that class of satellites 
peaks, while the width σ determines the slope and length of the 
build-up and decline of that class.

At each moment in time t, the probability p of a newly launched 
satellite belonging to class x∈ X, i.e., the market share function for 
class x, is then given by the expression:

 
px

(
t
)
=

gx
(
t
)

∑
i∈X gi

(
t
)

   
(2)

 

where gi(t) =g(t; μi, σi) is the Gaussian with the parameters for 
class i.

This definition of the market share function keeps the number of 
parameters defining the scenario sufficiently low, while providing 
enough flexibility to model different developments in the future. 
Examples for different scenarios and corresponding market share 
functions are given in Section 3.4.

3.3.3. Orbits
The remaining attributes that need to be decided when launching 
new spacecrafts are the actual orbits to inject the spacecrafts into. 
SGP4 uses averaged Keplerian orbital elements (Vallado et al., 2006) 
for its orbit representation. In that representation, and restricting 
ourselves to the LEO regime, we arrive at the following bounds for 
newly launched satellites:

Figure 1 | Mass to orbit defining the total mass launched per year into Low 
Earth Orbit in relation to baseline mass launched in year 2,000 (M2000) for 
different values of α. For example the green curve represents a doubling of 
the annual mass to orbit over the next 100 years.
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•  Semi-major axis: a ∈ [300, 1200] +RE km (distribution from 
current data)

•  Eccentricity: e ∈ [0.0, 0.5] (distribution from current data)
•  Inclination: i ∈ [0, 2 π] (distribution from current data)
•  RAAN: Ω ∈ [0, 2 π] (uniform distribution)
•  Periapsis: ω ∈ [0, 2 π] (uniform distribution)
•  Mean anomaly: M ∈ [0, 2 π] (uniform distribution)

The orbital elements semi-major axis (a), eccentricity (e), and 
inclination (i) are randomly chosen from the distribution of 
previously launched spacecraft. The rational for just replicating 
the current distribution is that those orbital parameters represent 
orbits that are chosen for astrodynamical reasons such as sun-
synchronous orbits or polar orbits. As these features are based 
on the underlying physics, they will not change in the future and 
the same orbits can reasonably be expected to remain relevant 
depending on the objective of the satellite. The right ascension 
of the ascending node (Ω), argument of periapsis (ω) and mean 
anomaly (M), instead, just represent orbital orientation and 
position of the spacecraft within the orbit, and are less relevant 
for the astrodynamic properties of the orbit. They are therefore 
chosen from a flat distribution.

In our simulation, we obtain the distributions for semi-major 
axis, eccentricity, and inclination from the current space catalogue 
filtered for objects in the past 20 years and within the given bounds, 
as shown in Figure 2.

The last input required for the SGP4 propagator is the so-called 
drag coefficient B* nominally defined as

 B∗ = ρ0CDA
2m   

where ρ0 = 2.461 · 10–5 kg/m3 is the reference atmospheric density, 
CD is the drag coefficient, and A/m is the area-to-mass ratio. As 
these values are typically not known exactly, in practice B* is 
used to represent a range of non-conservative forces acting on 
the spacecraft. For real observations this parameter is typically 
fitted to provide the best agreement between SGP4 propagation 
and observation data. It is therefore possible to even find negative 
drag values in the satellite catalogue.

As B* is tightly related to the area to mass ratio A/m, and hence 
to spacecraft geometry, it is not possible to simply sample from 
previous distributions. As this parameter is used as a heuristic 
“catch-all” parameter in the SGP4 model, we simply set it to 0 
for newly launched spacecraft. The justification for this is that 
for its active life a satellite will be maintained by its operator. 
This includes in particular orbit raising manoeuvres carried out 
regularly to maintain the operational orbit of a satellite. Similarly, 
as described above, our model assumes active end-of-life disposal 
of newly launched satellites by their respective operators. This 
eliminates the need for a drag term also during disposal.

For debris fragments generated during in-orbit collisions, on 
the other hand, B* does play a role in gradually decaying collision 
fragments. As the breakup model provides values for A/m, we simply 
assume a constant value of CD = 2.2, typically used for spacecraft 
where no other value has been determined experimentally, and 
compute B* from that.

3.3.4. Launches
Instead of simulating individual launches, we regularly inject mass 
via averaged launches directly into the LEO environment. The 
justification for this is that while launches happen discretely, our 
simulation already ignores the rocket launcher itself, as well as initial 
commissioning and deployment phases of the satellites after being 
released by the launcher. Thus trying to predict individual launches 
does not add anything to the accuracy of the simulation.

A random set of new satellites is injected into orbit once per 
month, in our case the first time the simulation steps into a new 
month. The number of newly launched satellites is determined by the 
mass to orbit function evaluated at the current epoch. It provides the 
necessary information of how much mass to deliver to LEO each year, 
so dividing by 12 yields the newly launched mass to inject this month.

The spacecraft class of newly launched spacecraft is sampled from 
the probability distribution given by the market share functions 
following Eq. 2. The properties of each spacecraft are selected 
randomly within the parameter ranges defined for each class of 
spacecraft (Section 3.4). The orbits of the new spacecraft are chosen 
at random within the bounds specified by the global parameters of the 

Figure 2 |  Distributions of semi-major axis, inclination, and eccentricity of objects filtered from current space catalogue from last 20 years. For launching we 
sample new objects’ orbital elements from these distributions. The remaining orbital elements are sampled uniformly at random from a given range.
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simulation as detailed above. The spacecraft mass is then subtracted 
from the available launch mass. Note that even if the remaining 
launch mass is not sufficient, the spacecraft is still launched to avoid 
penalizing large spacecraft when dividing annual launch mass into 
monthly slices. As long as there is mass left, the process is repeated 
until all available launch mass has been used.

3.4. Future launch scenarios
To illustrate the launch model described above, we propose three 
scenarios that model the future nature of newly launched satellites. 
We chose these scenarios to illustrate three conceptually different 
developments in future launches with a time horizon of about 
100 years. As mentioned before, we make no claim about how 
realistic these scenarios are, they are merely presented as possible 
developments in the future.

The three scenarios we propose are:

•  Conservative: this scenario assumes little growth in space activity 
and is mostly “business as usual”. The total launched mass stays 
constant, and also technical progress is slow. Relatively few and 
large spacecraft are being launched during most of the century.

•  Moderate: this scenario assumes moderate growth in space 
activity. Total mass launched increases moderately, doubling over 
the next 100 years. Some technical progress is being made, but the 
market share of large and mid-size satellites remains significant 
also at the end of the century.

•  Aggressive: this scenario assumes aggressive growth both in space 
activity and technological development. Note that the mass to 
orbit in this scenario is actually decreasing slightly by about 10% 
as spacecraft miniaturization technology is developing fast enough 
to keep up with increased demand. By the end of the century, the 
vast majority of newly launched spacecraft are cubesats and clouds 
of futuristic chipsats.

Table  1 lists the parameters corresponding to these scenarios. 
Figure 3 shows plots of the market share and total mass function 
for each scenario for illustration.

4. surrOgate mODel

The full scale simulator described above accurately models the 
space environment evolution given a launch model, but it is 
also computationally demanding. In order to facilitate efficient 
experimentation with different debris removal strategies we design an 
approximate surrogate model that effectively captures the dynamics of 
the system but is computationally fast. In this section we first describe 
the intuition and implementation of this surrogate model, after which 
we validate the approximation by comparing its projected dynamics 
with those given by the full scale simulator.

4.1. implementation
Firstly, we run Monte Carlo simulations for different settings of 
the threshold for removal of risky objects. We prevent all collisions 
that produce an expected number of debris larger than the given 
threshold for removal from happening by removing the risky 
objects causing the collisions. Figure 4 shows the evolution of 
the total number of objects in orbit for different thresholds for 
removal and the cumulative number of lost active assets for the 
same scenarios.

The outcome for every threshold setting in every time step can 
be evaluated by the gradient of the curve in that time step, which 
is based on the (expected) number of collisions (defining the 
number of objects injected into the environment, see Figure 4) 
and the (expected) number of lost active assets in every time step 
of the Monte Carlo simulations. We can use these two metrics 
to define the set of actions and the reward function.

We can view every point on every curve (system evolution for 
given threshold) as a potential system state. We restrict states to 
discrete time steps (decision points for policy change, e.g., 2 years) 
and assume that the system can transfer between the states by 
taking removal actions (joint action in the case of multiple actors) 
defined by given threshold for removal. Due to computational 
intractability we cannot run simulations for all combinations 
of (joint) actions and state transitions and hence we propose 

taBle 1 |  Parameters for 4 different spacecraft classes (ultra-small, small, medium and large) and 3 launch scenarios (conservative, moderate and aggressive).

ultra-small small medium large

Cost range [2k€, 1M€] [1M€, 15M€] [15M€, 40M€] [40M€, 700M€]
Mass range [0.1 kg, 10 kg] [10 kg, 100 kg] [100 kg, 500 kg] [500 kg, 5,000 kg]
Operational time [0.5 year, 1 year] [0.5 year, 2 year] [1 year, 5 year] [10 year, 20 year]
Decay time [0.5 year, 2 year] [1 year, 7 year] [7 year, 20 year] [10 year, 25 year]

conservative 
μ 2200 2150 2060 2020
σ 50 50 40 60
α 0

moderate 
μ 2150 2090 2060 1970
σ 35 30 50 60
α 10–4

aggressive 
μ 2150 2100 2040 1975
σ 50 40 30 60
α –10–5

Parameters μ, σ are defining the Gaussian launch function and parameter α the yearly mass launched to orbit.
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an approximate surrogate model for evaluating the effect of the 
removal action on the environment.

This model is based on transitions between the different curves 
depending on the actions taken. Note that the gradient of each 
curve is dependent on the total number of objects in the system and 
the year (which determines the number of active assets). Therefore, 
we propose shifting between curves either (i) horizontally – 
keeping the same level of total number of objects or (ii) vertically 
– keeping the same year and therefore the same number of active 

assets (remember that the number of active assets and their size 
distribution is only dependent on the launch scenario).

This shifting between the curves represents transitions 
between different states of the system. Note that the steeper the 
curve gets (larger gradient), the higher the risk for collisions 
will be. If players increase their effort, this means shifting to a 
lower curve, they move either down or right. A decrease in effort 
means moving up or left. Intuitively, increasing (decreasing) the 
effort should decrease (increase) the gradient.

Figure 3 |  Market share and mass to orbit function for the conservative, moderate and aggressive launch scenarios as specified in table 1. The conservative 
scenario assumes “business as usual” with constant launch mass and slower technical progress, however the aggressive scenario assumes a fast technological 
development with emphasis on miniaturisation of spacecrafts.
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Shifting down when increasing effort (or left when decreasing) 
gives us a lower bound on gradient of the curve, as we get an 
optimistic estimate of the further development of the system 
by underestimating the total number of objects (or the number 
of active assets when moving left) in the system. Following 
the same logic we get an upper bound on the gradient when 
moving right when increasing effort (or up when decreasing), 
which can be thought of as a pessimistic estimate where we 
overestimate the number of active assets (or the number of  
total objects).

We run 100 Monte Carlo simulations for each scenario to base 
our surrogate model on. The MC simulations give us for each 
time step and each threshold for removal the expected number 

of collisions (and their size in terms of the expected debris 
resulting from that collision). Basically, the players’ actions 
consist of removing (or deciding not to remove) the difference 
in expected number of collisions between two curves, and thus 
moving from the one to the other curve. As discussed, the way 
in which the system moves between curves can be defined to be 
either optimistic or pessimistic, to give a lower or upper bound 
on the expected number of collisions.

In the end, this results in a piece-wise combination of the 
different curves based on the removal actions taken. In Figure 4 
never removing simply means sticking to the uppermost curve, 
always removing everything that would produce more than 
1,000 debris pieces means sticking to the lowest curve, and any 

Figure 5 |  Validation for sequence of thresholds for removal - 2,000, 
3,000, 1,000 and 2,000 changed after 20, 40 and 60 years. Comparing 
simulation with approximation.

Figure 6 |  Validation for sequence of thresholds for removal - 8,000, 
4,000, 6,000 and 3,000 changed after 20, 40 and 60 years. Comparing 
simulation with approximation.

Figure 4 |  Projected evolution of the total number of objects (a) and cumulative lost assets (B) in the next 100 years for different removal strategies, e.g., above 
8,000 - removing all the objects causing in expectation a collision producing more than 8,000 debris pieces.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org


10 June  2018 | Volume 5 | Article 54Frontiers in Robotics and AI | www. frontiersin. org

Klima et al. Space Debris Removal: Learning to Cooperate

other combination leads to a mixture in between those two  
extremes.

4.2. Validation
In order to validate our approximate surrogate model we compare 
outcomes of different settings of thresholds obtained from 
our surrogate model with the same settings obtained from the 
simulations of the full scale space debris model. In the following 
figures (Figures 5–8) the blue solid curves represent the simulations 
and the red dashed and green dash-dot curves represent the 
surrogate model (pessimistic and optimistic shifting respectively). 
In the Figure 9 the solid curves represent the simulations and the 
dashed curves represent the surrogate model. All the simulation 
curves have 95% CI plotted with respective colour shading. We 

investigate several combinations of threshold for removals with the 
focus on switching between the thresholds during the time horizon. 
Comparing switching between different thresholds demonstrates 
the robustness of our surrogate model. The black horizontal lines 
show the points of changing the strategy (threshold). Note that each 
simulation curve is run for 100 Monte Carlo runs and averaged 
over. We only show several settings to validate our surrogate model 
because of the high computational demands, where every Monte 
Carlo run takes on average 6 h6 i.e., each simulation curve taking 
approximately 600 h if run on a single thread.

We start with the setting of thresholds [2k, 3k, 1k, 2k] and 
changes [20y, 40y, 60y] in Figure 5. This setting represents a 
model where we use for the first 20 years threshold 2,000, then 
we change to threshold 3,000 for 20 years, then to threshold 
1,000 for 20 years and then threshold 2,000 for the rest of 
the time horizon i.e., for another 40 years. We can see that 
the pessimistic approximation is most of the time within the 
simulation curve confidence bounds. In Figure  6 one can 
see the simulation and approximation for setting [8k, 4k, 6k, 
3k] with the same intervals between switching. Again, the 
pessimistic approximation is within the confidence bounds 
of the simulation.

In Figures 7,8 we set the switching times to 40 years and then 70 
years. We can see that in the first figure the pessimistic approximation 
is most of the time within the confidence bounds. In the second figure 
we can see that at the end even the pessimistic approximation leaves 
the CI, this is caused by abrupt switch from no-removal strategy to 
threshold 1,000 strategy (two extreme strategies in our model). We 
will later restrict our model to non-abrupt switching between the 
threshold strategies due to this behaviour.

Finally, in Figure 9 we compare several settings of thresholds with 
only one switch after 50 years. All the curves start with no-removal 
strategy and after 50 years they switch to one of the thresholds 1,000, 
3,000, 5,000, 8,000 and no-removal i.e., continuing the no-removal 

6 run on i7-2600 CPU @ 3.40GHz, 16GB of RAM

Figure 7 |  Validation for sequence of thresholds for removal - no-removal, 
1,000 and 5,000 changed after 40 and 70 years. Comparing simulation with 
approximation.

Figure 8 |  Validation for sequence of thresholds for removal - 5,000, 
no-removal and 1,000 changed after 40 and 70 years. Comparing simulation 
with approximation.

Figure 9 |  Validation for sequence of thresholds for removal - no-removal 
and [1,000, 3,000, 5,000, 8,000] changed after 50 years. Comparing 
simulation with approximation.
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strategy. One can observe that the abrupter the switch is the more the 
approximation curve deviates from the simulation curve. For example 
switching from no-removal to threshold 1,000 yields a significant 
deviation. On the other hand the approximation of switching from 
no-removal to threshold 8,000 stays within the confidence bounds 
of the respective simulation curve.

These experiments show that our approximate surrogate 
model – in the pessimistic setting – produces environment 
dynamics that fall within the 95% CI of the real Monte Carlo 
simulations most of the times (except for abrupt switching). 
This successfully validates our methodology, and means that we 
can use the surrogate model to efficiently compute environment 
evolution and resulting costs for various debris removal strategies. 
This will be discussed next.

5. Deterministic game mODel

We base the game model on our surrogate model as described 
above. We assume the model to be deterministic and think 
of it as a special case of a stochastic game with deterministic 
transitions.7 The game models situations in which multiple 
players interact. Each player selects an available action given the 
current state, and the game transitions to a next state based on 
the combination of actions taken. This makes stochastic games 
an intuitive framework within which to study strategic decision 
making between multiple parties, or multiple learning agents 
(Littman, 1994).

We start by modelling the environment as a deterministic 
Markov Decision Process (MDP), then move to a normal-
form game formulation, and finally we define the combination 
of the two: a stochastic game model. The MDP model can 
be thought of as a single player approach. Building on that, 
assuming multiple players we arrive at the stochastic game 
model. Terminology typically differs between MDP, normal-
form games, and stochastic games; in this paper we will use 
the terms player/agent, game/environment, and payoff/reward  
interchangeably.

5.1. mDP
In our case, the underlying environment dynamics are 
independent of the different players, and governed fully by the 
sum of actions taken (the chosen threshold for removal). As 
such, the stochastic game reduces to the special case of a Markov 
decision process (MDP). In order to transform the validated 
surrogate model into an MDP, we need to define the state space, 
the players, their actions space, the (immediate) reward function, 
and the state transition function. Formally, an MDP is defined 
by a tuple (S, A, T, R, γ), where S is state space, A action space, 
T(s, a, sʹ) transition function assigning a probability to transiting 
from state s ∈ S taking action a ∈ A to a new state sʹ ∈ S, R(s, a) a 

7 In this paper we use the term Stochastic game due to the common usage in the 
literature. However we assume deterministic transitions and Deterministic game 
would be more accurate.

reward function for state s and action a and γ a reward discount 
factor. Each of these will be described in detail below.

The general intuition behind the MDP model is the following. 
At each time step (e.g., per year) players decide how much effort 
to invest next. This decision can be based on e.g., past actions, 
the current state of the environment, and budget limitations. 
The joint effort of all players determines the state evolution of 
the environment, i.e., the growth rate of the debris population 
for the coming time step (see model description above). An 
important question from a design perspective is whether 
effort will be treated as a discrete or continuous variable. The 
underlying model (as described above) is inherently discrete, 
based on a set of thresholds. The reward function can (naturally) 
be based on the expected number of lost assets between two time 
steps (states), plus the removal effort. If effort is expressed as an 
expected number of removals, this means we can get a monetary 
value by multiplying effort with the cost of removal.

5.1.1. State Space
In principle the state space is infinite (continuous) along the 
dimensions of time and current number of objects in the 
environment (the two axis Figure  4). We discretise the state 
space along both dimensions: (1) by fixing the time steps to e.g., 
once every two years, and (2) by fixing the number of allowable 
states at each time step, e.g., uniformly between the top and 
bottom curves in Figure  4. This will fix the total number of 
states of the MDP.

5.1.2. Action Space
As our surrogate model is based on a notion of threshold, i.e., 
by deciding not how many object to remove exactly but based 
only on the impact of the potential collision, it seems natural 
to base the action space on these thresholds as well. Thus, the 
action space is defined by the discrete thresholds, where for each 
such a threshold in any given time step we have the expected 
number of removed objects E(nrem) and the expected number 
of lost assets E(nlost) during the next time step. This data come 
from the Monte Carlo simulations.

The definition of the action space partially defines how the 
cost associated with each action will be defined. In this case, 
the cost in terms of future losses is directly given by the effort 
(threshold) curves in Figure 4; however the cost of removals 
will vary (“everything above a threshold” can be any number of 
removals, and this will vary over time).

5.1.3. Reward Function
The (joint) reward function is naturally given by the cost of lost 
assets plus the cost of removal efforts. Minimizing these costs 
means maximizing reward.8 The reward of the underlying MDP 
can be also thought of as the environment welfare, which we use 
in our experimental analysis.

8 In this paper we will use the term reward even for negative values, which can be 
thought of as a cost.
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We define the reward function R(s, a) for state s and action a 
as a sum of the cost of losing assets and the cost of object removal 
efforts in the next time interval:

 R
(
s, a

)
= E

(
nlost

)
+ λ · E

(
nrem

)
   (3) 

where  λ = CR
CL   is a ratio between cost of removal CR and cost of 

losing an asset CL. In this paper we do the analysis for different 
levels of λ as we are only interested in the relation between 
cost of removal and cost of losing an assets and not in their 
actual values, which can be difficult to determine. E(nlost) is the 
expected number of lost assets in the next time interval and 
E(nrem) is the expected number of removed objects in the next 
time interval defined by the action a in environment state s (given 
by the threshold curves in the surrogate model).

Of importance is the fact that the system has an infinite horizon, 
whereas our simulation results use a finite horizon. Therefore 
it might be necessary to derive a (heuristic) evaluation of the 
final simulation state that captures somehow the expected future 
rewards. For example, we can assume that the last immediate 
reward (or an average over the past x rewards) provides an 
estimate for the future, and hence take as evaluation of the final 
state an infinite discounted sum over that (average) reward.

5.1.4. Transition Function
The transition function of our MDP is defined by the underlying 
surrogate model. Given the action a and current environment 
state s, the transition function T(s, a) deterministically returns 
the successor state sʹ. The function follows the curve shifting 
method explained above.

5.2. normal-Form game
One of the key models in game theory is the normal-form game, 
which is also known as the matrix or strategic form (Leyton-
Brown and Shoham, 2008). A finite n-person game is defined 
as a tuple (n, A, R), where n is a finite number of players, A1, 
…, An is a finite set of actions for each player and R1, …, Rn is a 
reward function for each player. The standard way to represent 
such a game is by an n-dimensional matrix, where for every 
combination of players’ actions a reward for each player is given. 
A crucial concept in game theory is the Nash equilibrium (Nash, 
1951), which we also use in our analysis. In a Nash equilibrium 
every player chooses the best response to the actions of the other 
players involved in the game. In other words Nash equilibrium is 
a situation where no player can do better by unilaterally changing 
his strategy.

5.3. stochastic game
Stochastic game (SG) (Shapley, 1953) generalises Markov 
decision processes (MDP) and repeated games. SG is a game 
model with multiple agents moving in environment defined 
by states, actions, rewards and (stochastic or deterministic) 
transition function, defined as a tuple (n, S, A1, …, An, R1, …, 
Rn, T) where n is number of agents in the system, S is a finite 
set of system states, Ak is the action set of agent k, Rk : S × A1 
× … × An × S → R  is the reward function of agent k and T : S ×  

A1 × … × An × S → [0, 1] is the transition function. We will define 
the components of Stochastic game based on the underlying 
MDP as described above.

5.3.1. Players
Players are defined solely by their size, expressed in terms of their 
number (share) of active assets. This number in turn determines 
their risk given the current state of the environment. Since we 
do not discriminate between objects of different players in our 
model, we assume that the risk scales linearly with the number of 
assets owned by the players. Each player i has a share ξ(i) of assets 
representing the size of the player. The value of ξ(i) is in range  
(0, 1) and represents the proportion of player assets to all assets 
in the environment, thus ∑ n ξ(i) = 1.

5.3.2. State Space
State space is identical to that of the MDP model. Note that due 
to multiple players the Markov property is broken. Nevertheless 
we still apply learning methods to derive players strategies. We 
assume the players can fully observe the underlying state i.e., 
the time period and the total number of objects in the system.

5.3.3. Action Space
Defining the joint effect of several individual actions in the multi-
player game is not straightforward. We define a joint action a 
as a sum of removal efforts of the players, which is a sum of the 
expected number of removals for each player’s chosen threshold. 
Then we map this sum to a joint threshold. For this joint threshold 
we obtain a total expected number of removed objects and total 
expected number of lost assets from the underlying MDP. We 
then proportionally divide the expected number of removed 
objects to each player according to their expressed effort. Such 
method will enable to define individual rewards.

5.3.4. Reward Function
We define the reward function based on the MDP reward 
function definition in Section 5.1. The reward function R(s, a) 
for state s and joint action a is defined as a sum of the cost of 
losing assets and the cost of object removal efforts in the next 
time interval, which is equal to sum of all players’ rewards:

 

R
(
s, a

)
= E

(
nlost

)
+ λ · E

(
nrem

)

=
∑
i
R
(
s, ai

)
=
∑
i

(
E
(
nilost

)
+ λ ·

(
nirem

))
  

(4)

E(ni
lost)  is the expected number of lost assets in the next time 

interval for player i and E(ni
rem) is the expected number of 

removed objects in the next time interval for player i.
Individual reward for player i is defined as 

 
R
(
s, ai

)
= ξ

(
i
)
· E

(
nlost

)
+ λ · E

(
nirem

)
,
 
 where ξ (i) is the share 

of important assets of player i.

5.3.5 Transition Function
The transition function is defined according to the underlying 
deterministic MDP based on the surrogate model. Given the 
joint action  

→a   and current environment state s, the transition 
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function 
 
T
(
s,→a

)
 
 deterministically returns the successor state sʹ. 

The function follows the curve shifting method explained above.

6. DecisiOn maKing

We look at two types of decision making differing in complexity. 
Firstly, we focus on the one-shot scenario with static strategies, 
similar to the method used in (Klima et  al., 2016a), where the 
players fix their strategies at the beginning of the simulation and 
stick with those until the end. Secondly, we analyse dynamic 
strategies, where the players can dynamically decide on their action 
in every time step based on other players’ past actions and the 
development of the environment.

Furthermore we analyse and compare a single-agent and multi-
agent model. Thus, we can divide the analysis into four types of 
decision making: (i) single-agent static, (ii) multi-agent static, (iii) 
single-agent dynamic and (iv) multi-agent dynamic. We discuss 
these variants in turns.

6.1. single agent
Firstly, we assume only one agent (player) in the system. An entity 
of n cooperating players can be thought of as a single agent, where 
every action of the agent is a joint action of the players defined as 

 
→a = f

(
a1, . . . , an

)
 , where f is a function aggregating several actions 

into one joint action. Having only one agent in the system we can 
directly solve the underlying MDP to find an optimal strategy for 
the agent. The optimal strategy is given in the form of a sequence of 
actions across the time horizon T as π* = (a1, …, aT). Since the state 
transition function T is assumed to be deterministic in our surrogate 
model, applying strategy π* to the MDP will give us a fixed sequence 
of states and fixed sum of (discounted) rewards.

We differentiate two levels of complexity for the optimal strategy. 
Firstly, we consider a static strategy, where one fixed action is repeated 
for the complete duration until the time horizon, as in previous work 
(Klima et al., 2016a). Secondly, we consider a dynamic strategy, which 
can consist of different actions taken at different time points. In this 
case the agent can dynamically change action during the course of 
the MDP until reaching the final (goal) state.

The optimal strategy for the static case can be found by simply 
maximising the sum of rewards over the strategy space, which has 
the size of the discrete action space |A|. Moving from the static 
to the dynamic case, the problem of finding the optimal strategy 
becomes more complicated. Now, the strategy space consists of all 
possible sequences over all discrete actions, which is of size |A|T for 
time horizon T. To find the optimal strategy we have to solve the 
underlying MDP, which can be done by dynamic programming for a 
small strategy space, or by reinforcement learning for a large strategy 
space.

6.2. multiple agents
From a single agent scenario we move to a multi-agent scenario. 
We consider n agents (players), and analyse the interaction among 
the players over the underlying MDP by using the game model. 
We assume the players do not cooperate and are self-interested – 

in the case of cooperation we can model the problem as a single 
agent scenario as described above. Again we are interested in 
finding optimal strategies for the players; however optimality in a 
multi-agent scenario can be defined in various ways. One way to 
define optimality is by finding equilibria solutions, another way is 
by maximising the global welfare. In this paper we consider and 
compare both approaches.

As in the previous section we differentiate between two levels 
of complexity in the decision making process. Firstly, we look at 
static strategies, defined as sequences of a repeated fixed actions. 
In the multi-agent scenario this can be described by a normal-
form game and solved by finding Nash equilibria of this game. We 
are interested mainly in pure equilibria strategies, because mixed 
strategies are typically difficult to maintain in real-world settings.

Secondly, we analyse the case of dynamic strategies, where the 
players can take different actions in every time step. The solution 
is a sequence of actions for each of the players. The strategy space 
for n players is large even for a small action space and short time 
horizon, and grows exponentially with them. As a result, solving the 
resulting stochastic game explicitly quickly becomes intractable. Thus, 
the only feasible way how to find optimal or near-optimal solutions 
is to approximate them using e.g., reinforcement learning.

6.2.1. Learning an Optimal Strategy
In the space debris removal decision making process we face the 
problem of delayed reward, where the effect of immediate actions 
(object removal or passivity) will only fully come into effect 
only after many years, making reward-based decision making 
difficult. Temporal difference methods solve the delayed reward 
problem by bootstrapping, i.e., building iteratively more accurate 
models by incorporating expected future returns into the learnt 
reward function (Sutton and Barto, 1998). Typically a state value 
function V(s) or state-action value function Q(s, a) is learned which 
describes the expected optimal future return given a current state 
s (and action a).

For example, the Q-learning algorithm (Watkins and Dayan, 
1992) iteratively updates the function Q(s, a) as:

 
Q
(
s, a

)
=
(
1 − α

)
Q
(
s, a

)
+ α

(
R
(
s, a

)
+ γ · max

a′
Q
(
s′, a′

))

   (5) 

where sʹ and aʹ are the next state and action, respectively, and γ 
∈ [0, 1] discounts future rewards. In this case, the state s might 
include more than just the system state, depending on whether 
the player has knowledge of other players’ actions. If so, a history 
of recent play might augment the individual player’s state space 
representation, thereby making it exponentially larger.

6.3. evaluation metrics
In this paper we want to analyse and compare different 
decision making models. The decision making is based on the 
underlying MDP built on the surrogate model. Therefore, the 
main evaluation metrics are based on the concept of reward. The 
decision making process is prescribed by a given strategy, which 
can be evaluated in terms of (discounted) rewards both from an 
individual perspective as well as from a global (environment) 
perspective. In the analysis we use the concept of social welfare 
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ω, which is described as sum of all players’ rewards and can be 
thought of as the environment outcome.

We use the social welfare to compare the above stated 
approaches using the concept of Price of Anarchy (PoA) 
(Koutsoupias and Papadimitriou, 1999), which measures 
efficiency between two sets of solutions, S1 and S2, where the 
latter is assumed to be worse than the former and is defined as:

 
PoA =

maxs∈S1ω
(
s
)

mins∈S2ω
(
s
)

  
(6)

In our experiments the welfare ω is always negative, thus we 
redefine the PoA to get PoA ≥ 1 as:

 
PoA =

mins∈S2ω
(
s
)

maxs∈S1ω
(
s
)

  
(7)

For strategies from strategy spaces S1 and S2, ω is the environmental 
welfare or also the MDP reward for joint strategy of the players. 
We use this metric to compare outcomes from different model 
designs. In our experimental analysis we use two variants of Price 
of Anarchy to measure efficiency, (i) PoA between single-agent and 
multi-agent as a price for selfish behaviour of the agents and (ii) 
PoA between static and dynamic strategy as a price for not being 
able to flexibly react to changes in the environment. We notate 
the first as PoAm (single-agent vs. multi-agent) and the second as 
PoAd (static vs dynamic).

We define the concept of fairness in space debris removal game 
based on player i share ξ(i) as described in Section 5.1. Fairness is 
based on the assumption that a level of the removal effort should 
be proportional to the size of the player. We define fairness as 

 
ϕ
(
i
)
= ω·ξ

(
i
)

r
(
i
)

 
, where r(i) is a reward for player i. If ϕ(i) = 1 we say 

that player i behaves fairly, if ϕ(i) > 1 we say that player i behaves 
positively unfair, meaning he has higher reward than he deserves 
(removing less than what would be fair for his share of assets) and if 
ϕ(i) < 1 we say he behaves negatively unfair, meaning he has lower 
reward than he deserves (removing more than what would be fair 
for his share of assets). We also define total fairness as a sum of 
differences from fair case for each player i as ϕ = ∑ i |1 – ϕ(i)|. The 
total fairness describes the quality of a solution. If ϕ = 0 we have a 
fair solution, the greater the value of ϕ is the less fair solution we 
have. In Table 2 we state a list of notations to help the reader to 
better orientate in the following sections.

In Section 7 we experimentally compare different scenarios 
using these evaluation metrics. We perform a thorough analysis 
for different levels of the ratio λ and shares of assets ξ(i).

7. exPeriments anD results

We base all our experiments on the surrogate model, which is 
build on the data from Monte Carlo runs of the space debris 
simulation model. Thus, we have the expected number of lost 
assets E(nlost) and expected number of removed objects E(nrem) 
for every time step and every threshold for removal (see Figure 4). 
The threshold for removal is defining the discrete action space 
over a set {1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 8,000, 9,000, 
10,000, NR}, where NR is “no debris removal” as defined in Section 
5.1. The previously described surrogate model can be used to 
efficiently compare various (predefined) debris removal strategies, 
investigate the effect of various parameter choices, and to learn an 
optimal strategy automatically. Our surrogate model is based on 
curve shifting as described in Section 4, in order to approximate 
well we restrict the players from abruptly changing the removal 
thresholds, meaning they can only shift one up, one down or stay 
at the same threshold level in every time step. The initial choice of 
action (threshold) is arbitrary. In this section we describe several 
experiments that highlight each of these possibilities in turn. In all 
our experiments we assume 100 years time horizon and decision 
time step 10 years, so we have 10 decision making points. The time 
horizon is based on the ISO standard on space debris mitigation 
(International Organization for Standardization, 2011) agreed to by 
all space agencies. It sets the time frame for graveyard orbit stability 
simulations to 100 years. Given the generally quite long lead time 
for space missions, averaging about 7.5 years for governmental 
satellite operations (Davis and Filip, 2015), the 10 year decision 
time step seems a reasonable time for space actors to decide on 
strategy.

As described in previous section we analyse several scenarios. 
Our goal is to compare solution quality of static vs. dynamic scenario 
and single-agent vs. multi-agent scenario and combinations of 
these. We first need to describe how we can obtain these scenarios. 
We will see that some can be computed and some need to be learned 
due to complexity. We firstly demonstrate and describe the different 
scenarios on fixed settings of (i) λ = 0.1, which is the ratio between 
cost of removal CR and cost of losing an asset CL and (ii) in the 
multi-agent case the share of important assets ξ(A) = 0.6 of player A. 
Then, we perform a thorough analysis of the scenarios for different 
settings of parameters λ and ξ and describe the influence of these 
parameters on a quality of the solution.

Following is the list of the scenarios and corresponding methods 
how to find an optimal strategy:

•  Single-agent, static → iterate over solutions and find the one with 
maximal reward

•  Single-agent, dynamic → solve MDP directly by dynamic 
programming

•  Multi-agent, static → find optimum by computing Nash equilibrium
•  Multi-agent, dynamic → learn optimum by using reinforcement 

learning e.g., temporal difference algorithm

7.1. static strategies
We start with a static strategy, which is one action fixed for the 
entire time horizon i.e., 100 years. A static strategy can be written 
down in form of dynamic strategy using the MDP, where at every 

taBle 2 |  List of notations used in the game model.

PoAm Price of anarchy comparing single-agent and multi-agent 
scenario

PoAd Price of anarchy comparing static and dynamic scenario
λ Ratio between cost of removal CR and cost of losing an asset CL
ξ(i) Share of important assets of player i, i.e., size of player i
ω Welfare, i.e., sum of all players’ rewards
ϕ(i) Fairness for player i
ϕ Total fairness
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time step the player chooses the same action. The final reward will 
be obviously the same.

7.1.1. Single-Agent
Firstly, we look on a system with a single agent. Getting optimal 
strategy for a single-agent static scenario is straightforward due to 
discrete and small action space. We have |A| possible strategies for 
which we compute the rewards and choose the one with the highest 
reward. In Table 3 we show the optimal strategies for different 
levels of λ. They are optimal in sense of maximising the total reward 
(payoff) defined as R = –(nlostAssets + λ · nremoved).

7.1.2. Multi-Agent
We now move to a multi-agent scenario with static strategies (see 
Section 6). This scenario can be written down as a normal-form 
game, the pure strategies are defined by the threshold for removals. 
For a normal-form game the solution concept is Nash equilibrium.

In our analysis we assume two-players A and B. The players 
differ only in size defined by share of important assets as 
described in Section 5.1. We assume that agent i has a share 
ξ(i) of total important assets from all important assets in the 
environment. The reward (payoff) for player A is defined 
as 

 
RA = ξ

(
A
)
· E

(
nlost

)
+ λ · E

(
nArem

)
 
 and for player B as 

 
RB =

(
1− ξ

(
A
))

· E
(
nlost

)
+ λ · E

(
nBrem

)
 
. Note that ξ(A) = 1 – 

ξ(B). The pure strategies are the thresholds for removal which give 
us the values of E(nlost) and E(nrem). We are now able to construct 
the payoff matrix for given constants of λ and ξ(A).

We demonstrate forming the payoff matrix for λ = 0.1 and ξ(A) = 
0.6. We describe the entries in the payoff matrix for player A choosing 
pure strategy “threshold for removal = 2,000” as expected number 
of removed objects 

 
E
(
nArem

)
 
 and player B choosing pure strategy 

“threshold for removal = 6,000” as 
 
E
(
nBrem

)
 
. We obtain the values 

of 
 
E
(
n2000rem

)
 
 and 

 
E
(
n6000rem

)
 
, which come from the simulation data. 

We compute the value of E(nlost) by finding a threshold curve for 
given joint action which is a sum of removal efforts as described in 
Section 5.3. Then, we compute the payoff matrix entries RA and RB 
for the chosen pure strategies as 

 
RA = 0.6 · E

(
nlost

)
+ 0.1 · E

(
nArem

)
 
 

and 
 
RB = 0.4 · E

(
nlost

)
+ 0.1 · E

(
nBrem

)
 
. In Table 4 we can see the 

corresponding Nash equilibria, the strategy is written in format 
[<player >: <action >, <probability >]. We show all the pure equilibria 
(1, 2, 3) and one mixed equilibrium (4), note there exists more 
mixed equilibria, however we show only one. In general we are 
interested only in pure strategies, because in space debris removal 
problem it is unfeasible to play mixed strategies. For each Nash 
equilibrium we show player A reward RA, player B reward RB, the 
welfare ω (the sum of rewards) and the fairness ϕ.

7.2. Dynamic strategies
We can now move to dynamic strategies as described in Section 6. 
The players can decide on action every time step. Thus, the strategy 
is defined as a sequence of actions over the time steps. Allowing 
the agents to dynamically shape their strategy is more realistic 
than fixing the strategy through the course of the time horizon. 
However, dynamic strategies are severely more complex, making 
the whole interaction with the system and potentially with other 
players much more complicated. As stated before we assume time 
horizon 100 years with decision time steps 10 years, thus having 
10 decision points, where the agent(s) have to choose an action. 
We describe and experiment with the single-agent and multi-agent 
case in turns.

7.2.1. Single-Agent
In the single-agent case the optimal strategy is obtained by solving 
the underlying MDP. This is a strong property of the proposed 
model; we can optimally plan the strategy given the surrogate 
model. For small state spaces we can iterate over the whole space 
and find optimal strategy, for larger state spaces we can use 
dynamic programming and for even larger state spaces we can use 
reinforcement learning methods. We show in Table 5 the optimal 
strategies for different levels of parameter λ. The strategies are 
shown as a sequence of actions, e.g., the optimal strategy for λ = 
0.1 is choosing the action “threshold for removal 3,000” in every 
time step. We compare Table 5 with Table 3 and can see that the 
dynamic strategies are better than (or at least as good as) the static 
strategies in terms of total reward, this results is intuitive because 
the player has more flexibility in the dynamic case.

taBle 3 |  Optimal single-agent static strategies for different parameter λ, 
where the strategy is fixed for the entire time horizon.

λ 0.1 0.2 0.3 0.4 0.5

Strategy 3000 5000 5000 9000 9000
Total reward −23.3867 −27.9443 −30.0443 −31.9917 −32.74

For increasing λ (i.e., object removal gets more costly) the optimal strategy is to remove 
fewer objects (i.e., greater threshold for removal).

taBle 4 |  Optimal multi-agent static strategies, where the solution concept is Nash equilibria.

NE 1 2 3 4

Strat a: 4k,1 B: NR,1 a: NR,1 B: 5k,1 a: 6k,1 B: 10k,1 a: 4k,0.36; NR,0.64 B: 4k,0.61; 9k,0.39
RA −16.19 −14.25 −15.80 −14.13
RB −8.64 −11.60 −10.09 −10.89
ω −24.83 −25.84 −25.90 −25.02
ϕ(A) 0.920 1.088 0.984 1.062
ϕ(B) 1.150 0.891 1.027 0.919
ϕ 0.230 0.197 0.043 0.143

We show player A’s and B’s rewards, welfare and fairness for parameter λ = 0.1 and share parameter ξ(A) = 0.6 (i.e., player A owns 60% of all assets). There are three pure Nash 
equilibria and several mixed ones (we show only one mixed NE in the last column).
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In multi-agent scenario or in the case of larger state space it 
might be unfeasible or computationally demanding to explicitly 
solve the MDP and compute the optimal strategy. Thus, we focus 
on learning the optimal strategy. We use a standard reinforcement 
learning method Q-learning as described in Section 6.2.1. In 
Table 6 we show the single-agent dynamic strategies which we 
learned using Q-learning and compare them with the optimal ones 
from Table 5 to validate the learning method. In bold we can see 
the differences to the optimal strategies and in the last column 
we state the difference in total reward between the learned and 
the optimal strategies. We can see that especially at the beginning 
the learned strategies might differ, this is caused by rather similar 
threshold curves behaviour at the beginning of the time horizon 
(see Figure  4). We can conclude that the learning method is 
successful and we will use it for further analysis in the multi-agent 
scenario.

7.2.2. Multi-Agent
In the space debris removal problem there can be several space 
actors interacting with each other and deciding on removal 
strategy. Therefore, from a single-agent we arrive to a multi-
agent dynamic scenario. We now face very difficult problem of 
finding the optimal strategies due to moving target problem and 
potentially very large state space. Thus, we focus on learning the 
optimal strategies. We firstly show learning a strategy against a fixed 
opponent (opponent playing a static strategy) and then learning 
a strategy against a learning strategy. In our analysis we assume 
two players, which we denote player A (primarily the learning 
agent) and player B (opponent). However the players differ only 
by their share of important assets ξ, which represents the space 
actor size. We make here a model design assumption of identical 
space program of different space actors differing only in size, i.e., 
homogeneous spacecraft types, spacecraft sizes, used orbits etc.

Against Fixed Opponent
We assume the opponent (player B) to have a fixed strategy, which 
is one of the possible thresholds; this is a static strategy as described 
above. We show in Table 7 learned strategies against different fixed 
strategies. In the first column we state the opponent (player B) fixed 
strategy, e.g., 3 k means the player B will choose in every time step 
the threshold 3,000. We compare two types of learned strategies for 
the player A: (i) altruistic strategy, which maximize the environment 
welfare and (ii) selfish strategy, which maximizes the player A reward. 
In the table we also state the players’ rewards R(i), welfare ω, price of 
anarchy PoA between altruistic and selfish behaviour of player A and 
fairness ϕ. We can see that the price of anarchy is similar for most 
of the fixed strategies. This means that once the opponent fixes his 
strategy the environment welfare can be improved by approximately 
5–6% whether we play selfishly or altruistically. Finally we show the 
fairness ϕ as described in Section 6. We can observe that the selfish 
behaviour is fairer compared to the altruistic, which is expected. We 
can also see that some of the fixed strategies give very bad environment 
welfare e.g., “fixed 1 k” gives more than double loss.

Learning Against Learning Strategy
We discussed before that the multi-agent scenario is too complex 
to compute the optimal strategy. Therefore, we now investigate 
the dynamics of two players learning each other’s strategy. We 
assume both players learning the strategy by using the standard 
Q-learning. We assume discount factor λ = 1 i.e., no discount, 
the learning rate α = 0.01, the exploration parameter ε = 0.1. We 
discretize the state space as described in Section 5.1 to debris levels 
with step size 1,000 and the time step of 10 years. We learned all 
the strategies over 1 million episodes. Both players can observe 
the state and the Q-values are independent on the other player 
action, thus this learning can be seen as independent Q-learning, 
which is a common method in multi-agent reinforcement learning 
(Bloembergen et al., 2015).

In Table 8 we show several learned strategies for a single setting 
of the parameters λ = 0.1 and ξ(A) = 0.6. We can see the strategies 
for player A and B, their rewards R, the welfare ω and the individual 
and overall fairness ϕ. One can note that these strategies have lower 
welfare ω than the worst pure Nash equilibrium welfare in static 
scenario (Table 4). We can compare these strategies in terms of 
fairness ϕ or welfare ω, where these two metrics are not necessarily 
dependent on each other. A better welfare does not mean fairer 
division of removal efforts.

So far we have shown the learning for fixed size of the players 
represented by parameter share ξ. We now investigate how different 
levels of ξ influence the solution and its quality. We show such an 
analysis in Table 9. We experiment with 9 different divisions of 
shares of important assets between the two players, in the first 
column we show the shares ξ for each of the players. We can see 
that the less a player owns the less he wants to remove and vice versa 
which is expected. One can see that for the cases when a player 
owns only a small proportion of the assets he prefers not to remove 
anything e.g., ξ(i) = 0.1. Very important outcome from this table is 
the evolution of the environment welfare, one can observe that for 
disproportional players we get higher welfare than for proportional 
players (compare welfare of ξ(A) = 0.1 to welfare of ξ(A) = ξ(B) = 

taBle 5 |  Optimal single-agent dynamic strategies for different parameter λ.

λ strategy Welfare

0.1 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −23.39
0.2 5k,5k,5k,5k,4k,4k,4k,4k,5k,4k −27.49
0.3 9k,8k,6k,5k,5k,5k,6k,5k,5k,5k −29.69
0.4 9k,9k,10k,NR,10k,9k,9k,9k,10k,9k −31.47
0.5 10k,NR,NR,NR,10k,10k,9k,9k,10k,9k −32.05

For increasing λ (i.e., object removal gets more costly) the optimal strategy is to remove 
fewer objects (i.e., greater thresholds for removal) and the welfare increases.

taBle 6 |  Learned single-agent dynamic strategies for different λ..

λ strategy R Δ

0.1 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −23.39 0%
0.2 4k,4k,5k,5k,4k,4k,4k,4k,5k,4k −27.64 0.5%
0.3 6k,8k,6k,5k,5k,5k,6k,5k,5k,5k −29.69 0%
0.4 10k,nr,nr,NR,10k,10k,9k,9k,10k,9k −31.52 0.2%
0.5 10k,NR,NR,NR,10k,10k,9k,9k,10k,9k −32.05 0%

Differences to the optimal strategies from Table 5 are shown in bold and differences in 
rewards are stated in the last column. We can successfully validate the learning process 
due to high similarity to the optimal strategies.
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0.5, –23.39 and −25.07 respectively). Another important outcome 
is how the size of the players influence the fairness. Looking at the 
Table 9 we can note that the more similarly sized the players are the 
fairer strategy they can learn. In the case of very disproportional 
players, they learn very unfair strategy e.g., ξ(i) = 0.1 or ξ(i) = 0.2. 
For equally sized players, the learned strategy is the most fair.

7.3 analysis and comparison
We have presented several scenarios using the surrogate model and 
have described methods how to find efficient strategies for them. 
We now compare the different solutions of those scenarios in terms 
of quality and efficiency. In Table 10 we show the different scenarios 
and their values of welfare ω and fairness ϕ. We state single-agent, 
multi-agent, static and dynamic scenarios and the methods to find 
respective effective strategies. For every scenario we state a code, 
which we use in further analysis. Note that the optimal strategies 
were obtained by exhaustive search (brute force) and the learned 
strategies by Q-learning. All the shown combinations of scenarios 
were discussed in turn in the previous sections. We compare here 
only the scenarios for parameters setting of λ = 0.1, ξ(A) = 0.6 and 
time step 10 years in 100 years horizon. For some of the scenarios 
we obtained several solutions, thus we state maximal and minimal 
values of welfare and fairness. We can see that playing against a 
fixed opponent can cause a high unfairness, which is expected due 
to the non-optimal fixation of removal effort.

We want to now compare these different scenarios; how 
efficient they are. For such comparison we use the concept of price 
of anarchy PoA as described in Section 6. We assume two types 
of PoA, the first type PoAm compares the single-agent scenario 
with the multi-agent one, i.e., the cost for having self interested 
(competing) players instead of centralised (single-agent) strategy 
and PoAd which compares the static scenario with the dynamic 
one. PoAd can be thought of as the advantage we get by playing 
dynamically i.e., being able to change the strategy in every time 
step. In Table 11 we compare all the scenarios (code names from 
Table 10) in terms of price of anarchy for fixed λ = 0.1 and ξ (A) 
= 0.6. Of interest are the values in bold and in italic, which show 
price of anarchy PoAd between the static and dynamic scenario 
and price of anarchy PoAm between the single- and multi-agent 
scenario, respectively. One can note that the cost of using a static 
strategy over a dynamic one (SO2 vs. DL2) is 4.7% for the multi-
agent case and 0% for the single-agent case (SO1 vs. DO1). The 
cost of multi-agent scenario to single-agent scenario is 5.8% for 
the dynamic case (DO1 vs. DO2) and 10.7% for the static case 
(SO1 vs. SO2), which is caused by the selfish behaviour of the 
players. Also note the high values of PoA of the multi-agent fixed 
scenarios (FO2), meaning that a fixed strategy can cause a highly 
inefficient outcome in the terms of the environmental welfare.

We have shown the methodology of comparison of different 
scenarios for fixed parameters of λ and ξ. In the next section we 
investigate the quality of the scenarios for varying levels of those 
parameters.

7.3.1. Varying Levels of ξ and λ
We investigate the different scenarios and corresponding optimal 
solutions for different settings of the two main parameters studied 
(i) ratio λ between the cost of removal CR and the cost of losing an 
important asset CL and (ii) share of important assets ξ. We do the 
analysis for λ ∈ [0.1, 0.2, 0.3, 0.4, 0.5] and ξ ∈ [0.1, 0.2, 0.3, 0.4, 
0.5]. As stated before the players differ only in the size expressed 
by the parameter ξ, thus the results for ξ(A) = 0.4 and ξ(B) = 0.6 
in two player case are interchangeable with ξ(A) = 0.6 and ξ(B) = 
0.4. Obviously, this holds for any setting of ξ.

taBle 7 |  Optimal multi-agent dynamic strategies against fixed opponent for parameter λ = 0.1 and share parameter ξ(A) = 0.6.

Fixed B type strategy R(A) R(B) ω Poa ϕ

1k altr 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR −3.70 −43.27 −46.97 - 7.19
1k self 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR −3.70 −43.27 −46.97 1 7.19
3k altr 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR −10.54 −12.85 −23.39 - 0.60
3k self 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR −10.54 - 12.85 −23.39 1 0.60
5k altr 3k,3k,4k,4k,3k,4k,3k,3k,3k,3k −14.64 −8.75 −23.39 - 0.111
5k self 10k,NR,10k,9k,8k,8k,8k,6k,6k,6k −14.07 −10.58 −24.65 1.054 0.115
6k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −15.14 −8.25 −23.39 - 0.207
6k self 5k,5k,5k,6k,5k,6k,6k,5k,6k,6k −14.65 −10.11 −24.76 1.059 0.034
8k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −15.52 −7.87 −23.39 - 0.285
8k self 5k,5k,6k,6k,5k,5k,5k,4k,5k,4k −15.07 −9.61 −24.68 1.055 0.045
10k altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −15.83 −7.56 −23.39 - 0.351
10k self 5k,5k,6k,5k,4k,4k,4k,4k,5k,4k −15.44 −9.24 −24.68 1.055 0.109
NR altr 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −16.36 −7.02 −23.39 - 0.475
NR self 5k,5k,5k,5k,4k,4k,4k,4k,5k,4k −15.93 −8.75 −24.68 1.055 0.199

We show optimal altruistic (altr) and selfish (self) strategies. In the first column we show the opponent (player B) fixed strategy. We state the rewards, welfare, fairness and price of 
anarchy between different solutions. We can see that fixed strategies can lead to very sub-optimal solutions.

taBle 8 |  Learned multi-agent dynamic strategies using Q-learning against 
Q-learning opponent with parameter λ = 0.1 and share parameter ξ(A) = 0.6.

Player strategy R(i) ω ϕ(i) ϕ

A 6k,6k,5k,6k,5k,4k,4k,4k,5k,4k −15.51 −24.75 0.957 0.113
B 9k,8k,6k,8k,8k,9k,10k,NR,NR,NR −9.25 1.070
A 6k,5k,4k,4k,4k,4k,4k,4k,4k,4k −16.00 −24.76 0.929 0.202
B 9k,10k,9k,10k,NR,NR,NR,NR,NR,NR −8.76 1.131
A 6k,8k,6k,5k,4k,4k,4k,4k,5k,4k −15.84 −24.83 0.941 0.164
B 10k,9k,9k,10k,NR,NR,NR,NR,NR,10k −8.99 1.105
A 6k,8k,8k,6k,5k,4k,4k,4k,5k,4k −15.62 −24.91 0.957 0.116
B 9k,10k,9k,9k,8k,9k,10k,NR,NR,NR −9.29 1.073

We show four different outcomes of the same setting. We can attain highly effective 
solutions using Q-learning for both players.
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We run the experiments for the 4 main scenarios; single-agent 
static, single-agent dynamic, multi-agent static and multi-agent 
dynamic. The methods to obtain optimal strategies for these 
scenarios are discussed in the previous sections. The comparison 
metric is the price of anarchy PoA. We distinguish between 
comparing single-agent with multi-agent scenarios using refined 
PoAm and static with dynamic scenario using PoAd.

Firstly, we compare single-agent scenarios, in Table  12 we 
show the welfare ω and PoAd for static and dynamic scenarios for 
different levels of λ. We can observe that by using the dynamic 
strategy we can improve the environment welfare by up to 2.2% 
(in the case of λ = 0.5).

Moving to the multi-agent case in Table 13 we firstly show the 
optimal solutions to static scenario obtained by computing the 
Nash equilibria. We mentioned before that we are only interested 
in the pure Nash equilibria, thus in the case of multiple pure 
equilibria for given parameters ξ(A) and λ we show only the 
minimal and maximal values of those in the Table 13. One can 
see that some of the values are repetitive, this is caused by limited 
flexibility of the static solutions and potentially by the available 
actions. For instance, the high values of parameter λ mean that 
it is very expensive to remove objects compare to losing assets, 
meaning that the players prefer to remove as few as possible 

e.g., no-removal strategy hence some of the constant welfares 
in the table. One can see that the values of welfare ω decrease 
with increasing values of λ and with more equally sized players 
expressed by the share parameter ξ. Although, this conclusion 
is achieved only experimentally, it does strongly suggest such 
trend. The similarly sized players cause inefficiency of the 
environment welfare due to being selfish. As discussed before 
obtaining the optimal strategies for the single-agent scenario 
is not computationally as demanding as for the multi-agent 
scenario, where we might not be able to compute the optimal 
strategy but need to learn it. In Table 13 we state the resulting 
welfares ω for multi-agent dynamic scenario and varying levels 
of the studied parameters. We can again see the same trend; with 
increasing λ and ξ the welfare worsens.

We now have the welfare ω values for all the scenarios and 
all the settings of the studied parameters. We are interested in 
comparing them in terms of price of anarchy PoA, which expresses 
the inefficiency between different scenarios. We start with PoAm 
comparing single-agent static (Table 12) with multi-agent static 
(Table 13) scenarios in Table 14. We can see that the inefficiency 
induced by having multiple players is ranging from 0% to 10.7%. 
One can observe that the inefficiency grows with more equally 
sized players, which is to be expected.

taBle 9 |  Learned multi-agent dynamic strategies using Q-learning against Q-learning opponent with parameter λ = 0.1 and different levels of assets share ξ(i).

ξ(i) Player strategy R(i) ω ϕ(i) ϕ

0.1 A 10k,10k,NR,NR,NR,NR,NR,NR,NR,NR −1.76 −23.39 1.329 0.356
0.9 B 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −21.63 0.973
0.2 A 10k,10k,NR,NR,NR,NR,NR,NR,NR,NR −3.57 −23.41 1.311 0.368
0.8 B 3k,3k,3k,4k,3k,3k,3k,3k,3k,3k −19.85 0.943
0.3 A 10k,NR,NR,NR,NR,NR,NR,NR,NR,NR −6.42 −24.47 1.143 0.194
0.7 B 5k,5k,4k,5k,4k,4k,4k,4k,4k,4k −18.05 0.949
0.4 A NR,NR,10k,NR,NR,NR,NR,NR,NR,NR −8.78 −24.68 1.124 0.193
0.6 B 5k,6k,5k,5k,4k,4k,4k,4k,5k,4k −15.90 0.931
0.5 A 6k,8k,8k,6k,6k,5k,6k,6k,8k,6k −12.46 −25.07 1.006 0.012
0.5 B 8k,8k,8k,6k,5k,6k,6k,5k,6k,5k −12.61 0.994
0.6 A 6k,8k,8k,6k,5k,4k,4k,4k,5k,4k −15.62 −24.91 0.957 0.116
0.4 B 9k,10k,9k,9k,8k,9k,10k,NR,NR,NR −9.29 1.073
0.7 A 5k,4k,4k,5k,4k,4k,4k,4k,4k,4k −18.12 −24.55 0.948 0.197
0.3 B NR,10k,NR,NR,NR,NR,NR,NR,NR,NR −6.43 1.145
0.8 A 3k,2k,3k,3k,3k,3k,3k,3k,3k,3k −20.08 −23.58 0.939 0.405
0.2 B NR,10k,NR,NR,NR,NR,NR,NR,NR,NR −3.51 1.344
0.9 A 3k,3k,3k,3k,3k,3k,3k,3k,3k,3k −21.63 −23.39 0.973 0.356
0.1 B NR,NR,NR,NR,NR,NR,NR,NR,NR,NR −1.76 1.329

Starting from highly disproportional players in the top row to equally sized players in the middle row. High disproportion in the players’ size attains high welfare but trades off for 
fairness, where the small sized player removes barely anything.

taBle 10 |  Comparison of different scenarios in terms of welfare ω and 
fairness ϕ for λ = 0.1 and share parameter ξ(A) = 0.6.

code agents type Obtained ωmax ωmin ϕ min ϕ max

SO1 1 static optimal −23.39 −23.39 - -
DO1 1 dynamic optimal −23.39 −23.39 - -
DL1 1 dynamic learned −23.39 −23.39 - -
SO2 2 static optimal (NE) −24.83 −25.90 0.043 0.230
FO2 2 dyn/fixed optimal −23.39 −46.97 0.034 7.19
DL2 2 dynamic learned −24.75 −24.91 0.113 0.202

We show combinations of single-agent, multi-agent, static and dynamic approaches 
which were obtained either by learning or by exact computation. In case there were 
multiple solutions for given scenario we present maximal and minimal values.

taBle 11 |  Comparison of different scenarios in terms of price of anarchy PoA 
for λ = 0.1 and share parameter ξ(A) = 0.6.

code sO1 DO1 Dl1 sO2 FO2 Dl2

SO1 1 1 1 1.107 2.008 1.058
DO1 1 1 1 1.107 2.008 1.058
DL1 1 1 1 1.107 2.008 1.058
SO2 1.107 1.107 1.107 1 1.814 1.047
FO2 2.008 2.008 2.008 1.814 1 1.898
DL2 1.058 1.058 1.058 1.047 1.898 1

The codes of the scenarios are stated in Table 10. In bold we show PoAd (static vs. 
dynamic) and in italic we show PoAm (single-agent vs. multi-agent). Note that for 
example PoA = 1.107 means 10.7% inefficiency.
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From static scenarios we move to comparing dynamic scenarios, 
in Table 14 we show the analysis of PoAm, comparing single-agent 
dynamic with multi-agent dynamic scenario. We obtain inefficiencies 
ranging from 0% to 8.9%. One can again see that PoAm grows with 
more equally sized players, where we get the highest values for the 
same sized players i.e., ξ(i) = 0.5. This is the cost pay for competing 
selfish agents compared to having centralised solution i.e., a single 
entity deciding on removal effort.

Finally, we look at PoAd between multi-agent static (NE) and 
multi-agent dynamic (Q-learned) in Table  15. As expected the 
dynamic solutions are better then the static ones, except for the 
setting λ = 0.1 and ξ(A) = 0.2, which is caused by learning only 
sub-optimal strategy. We can expect that with increased number of 
episodes 881 we would obtain better dynamic strategy than in the 
static case even for this setting of the parameters. We can observe 
that the solutions of static vs. dynamic scenarios differ from 0% to 
8.1%. Thus, the inefficiency in the multi-agent scenario induced by 
being limited to a static strategy compared to a dynamic strategy 
can be up to 8.1%.

8. cOnclusiOn

We have made several contributions in this paper to the state 
of the art in the field. The main contributions are three-fold. 
(1) A significant improvement of the space debris environment 
simulator from the previous work (Klima et  al., 2016a), (2) 
Developing an efficient surrogate model of the computationally 
expensive simulator enabling the study of multi-actor policies for 
active debris removal. We validated this model and showed it to 
be sufficiently accurate, thus allowing us to easily explore many 

different dynamic removal policies. (3) Extensive comparison 
of the centralised solution with the decentralised one in terms 
of price of anarchy and evaluation of the cost of several entities 
selfishly deciding on removal strategies. We summarise these 
contributions in turn in the following.

This paper greatly extends a previous version of our space 
debris simulator (Klima et  al., 2016a) built on the PyKEP 
scientific library, In addition to two existing datasets on currently 
known space objects, a flexible launch model predicting future 
launch activity has been integrated based on feedback received 
from the European Space Agency. This replaces the previous 
“business as usual” model of repeating previous launch activity 
into the future by a more flexible model of future launch activity. 
We furthermore significantly extended the game theoretical 
analysis of previous work (Klima et al., 2016a), which pioneered 
the strategic, game-theoretic approach to space debris removal 
problem. In particular, where the previous work (Klima et al., 
2016a) only considered a static one-shot interaction in the form 
of a normal-form game, we investigated dynamic strategies 
and multiple agents, and employed reinforcement learning 
techniques to study the resulting high dimensional complex 
strategic interaction. This is a novel contribution in the field of 
debris removal, where previous studies on the cost of removal 
consider either the effect of cooperatively removing individual 
objects or using simple, fixed strategies for each actor (Liou and 
Johnson, 2009; Liou et al., 2010, 2013).

Using statistics from extensive Monte Carlo roll-outs using the 
developed full simulator we proposed a computationally efficient 

taBle 12 |  Comparing static and dynamic single-agent scenarios in terms of 
welfare ω and price of anarchy PoAd for varying parameter λ.

λ 0.1 0.2 0.3 0.4 0.5

static −23.39 −27.94 −30.04 −31.99 −32.74
dynamic −23.39 −27.49 −29.69 −31.47 −32.05
PoAd 1 1.016 1.012 1.017 1.022

Note that for increasing λ (i.e., cost of removal becomes more expensive) the welfare 
decreases and the difference between a static anda dynamic scenario increases.

taBle 13 |  Comparison of static and dynamic multi-agent scenarios in terms of welfare ω for different levels of λ and share parameter ξ, The static scenario is 
obtained by computing Nash equilibria and the dynamic scenario is learned using Q-learning.

ξ(A)\λ  0.1  0.2  0.3  0.4  0.5

Nash Eq. static 0.1 −23.39 −27.94 −30.04 −31.99 −32.74
0.2 −23.39 −27.94 −30.04 −31.99 −33.56
0.3 -23.39/–25.90 −27.94 −31.24 −31.99 −33.56
0.4 -24.83/–25.90 −27.94 −31.24 −33.56 −33.56
0.5 -25.84/–25.90 -28.05/–30.50 −31.24 −33.56 −33.56

Q-learned dynamic 0.1 −23.39 −27.65 −29.72 −31.53 −32.07
0.2 −23.41 −27.71 −29.74 −31.54 −32.06
0.3 −24.91 −27.86 −30.99 −31.53 −32.86
0.4 −24.77 −27.86 −30.99 −31.65 −32.34
0.5 −25.47 −28.22 −31.17 −32.02 −32.86

In case of multiple solutions we state maximal and minimal values (multiple NE). Note that with increasing parameter λ (object removal becomes more expensive) and increasing ξ 
(the players become more equally sized) the welfare decreases. One can see the improvement in welfare of dynamic strategies compared to the static ones.

taBle 14 |  Comparison of single-agent and multi-agent static scenarios in 
terms of price of anarchy PoAm for varying levels of share parameter ξ and 
parameter λ.

ξ(A)\λ 0.1 0.2 0.3 0.4 0.5

0.1 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.025
0.3 1.107 1.000 1.040 1.000 1.025
0.4 1.107 1.000 1.040 1.049 1.025
0.5 1.107 1.092 1.040 1.049 1.025

We can observe the increasing inefficiency of solutions for increasing ξ (the players 
become more equally sized).
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surrogate model that accurately captures the dynamics of the space 
debris environment for various debris removal strategies. Unlike 
other surrogate models in the literature (Lewis et  al., 2009), we 
derive our surrogate model by curve-fitting the full simulation results 
including various launch models and accurately simulated orbital 
motion. This ensures that our surrogate model faithfully represents 
our full simulation, without the potential bias introduced by a specific 
choice of surrogate model parameters, such as a fixed insertion rate of  
debris.

We have shown various ways in which this surrogate model 
can be used to study the effect of different strategies. In addition, 
we have formulated a stochastic game based on the surrogate 
model, which we used to study multi-party decision making. As 
an example, we have shown how machine learning techniques 
(here, Q-learning) can be used to learn an optimal debris removal 
strategy that outperforms fixed strategies.

We have compared and evaluated both a single-agent and a 
multi-agent approach to the problem of space debris removal. By 
computing the Price of Anarchy we analysed the cost of decentralised 
(individually rational) decision making as compared to a centrally 
optimised strategy. Our results showed that such cost can be up to 
10.7% in the static case and up to 8.9% in the dynamic case depending 
on the parameters of ratio λ between cost of removal and cost of losing 
an important asset and share ξ of important assets defining the size 
of the players. We can see that the cost of decentralised solution is 
quite significant, considering the enormous level of resources needed 
for the space debris removal. Thus, the space actors should aim to 
minimize the number of competing agents in the environment by 
for example forming coalitions.

Furthermore, we investigated the difference between static 
strategies and dynamic strategies. Static strategies have the 
advantage of simplicity of the decision making, but are less 
effective than their dynamic counterparts. We compared both 
in terms of price of anarchy. In the single-agent case, the cost of 
using a static strategy is up to 2.2%, and for the multi-agent case 
the cost is up to 8.1% depending on the setting of parameter λ.

Comparing single-agent vs. multi-agent scenarios and static 
vs. dynamic scenarios we showed that the parameter ξ – the share 
of important assets, representing the size of the players – has a 
big impact on quality of the solution. The more similarly sized 
the players are the less efficient solutions we obtain, i.e., equally 

sized players produce the worst solutions. On the other hand, 
highly disproportional players arrive to more efficient solutions 
and the values of price of anarchy PoA for single-agent vs. multi-
agent and static vs. dynamic scenarios are equal or very close to 
1, meaning there is no or low inefficiency.

We were also interested in fairness of the players’ strategies 
depending on their size. The idea of fairness was driven by 
the assumption that the level of the removal effort should be 
proportional to the size of the player. In our analysis we defined 
the concept of fairness and described how the size of the players 
(given by their number of assets) influences the final outcome in 
terms of global welfare and fairness. We found out that the more 
equally sized the players are the fairer strategy can be learned at 
the cost of reduced global welfare. On the other hand, the more 
disproportional the players are the better global welfare they 
can attain, at the cost of a more unfair distribution of effort. 
This realisation is in line with the increasing price of anarchy 
for more selfishly acting players.

This result in particular might serve to inform policy and 
decision making processes. A coordinated, global approach 
towards space debris removal, effectively reducing to one single 
actor, may be more effective in maximizing the effect on the 
space environment than the current, distributed approach of 
various actors acting independently. Such a global entity for 
space debris removal could be set up through international 
agreements with proportional contributions by different 
actors, thus maintaining fairness while achieving a maximum 
of impact.

Finally, we propose several directions for future work that can 
be facilitated by the simulator and surrogate model developed 
in this study. The first direction involves investigating a broader 
range of scenarios (e.g., launch parameters). In this study we have 
constructed and analysed an surrogate model for the conservative 
scenario described in Section 3.4. However, as discussed in that 
section, several scenarios can be envisioned that each will lead to a 
different projected evolution of the space debris environment. Using 
the high fidelity simulator developed in this study, it is conceptually 
easy (but computationally demanding) to construct new surrogate 
models for these different scenarios. However, when computational 
power is available, the methodology we developed will make it easy 
to run the required Monte Carlo simulations to build a new model, 

taBle 15 |  Comparison of single-agent dynamic vs. multi-agent dynamic and multi-agent static vs. multi-agent dynamic scenarios in terms of price of anarchy (PoAm 
and PoAd) for varying levels of share parameter ξ and parameter λ.

ξ(A)\λ 0.1 0.2 0.3 0.4 0.5

PoAm Single-agent dynamic vs. multi-agent dynamic 
0.1 1.000 1.006 1.001 1.002 1.001
0.2 1.001 1.008 1.002 1.002 1.000
0.3 1.065 1.013 1.044 1.002 1.025
0.4 1.059 1.013 1.044 1.006 1.009
0.5 1.089 1.027 1.050 1.018 1.025

PoAd Multi-agent static vs. multi-agent dynamic 
0.1 1.000 1.010 1.011 1.015 1.021
0.2 0.999 1.008 1.010 1.014 1.047
0.3 1.040 1.003 1.008 1.015 1.021
0.4 1.046 1.003 1.008 1.060 1.038
0.5 1.017 1.081 1.002 1.048 1.021

Note that in the comparison of the single-agent dynamic vs. multi-agent dynamic scenarios for increasing parameter ξ (more equally sized players) the inefficiency increases.
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