
1 May  2018 | Volume 5 | Article 55Frontiers in Robotics and AI | www. frontiersin. org

Original research
published: 17 May 2018

doi: 10.3389/frobt.2018.00055

Multi-Functional sensing for swarm 
robots Using Time sequence 
classification: hoverBot, an example
Markus P. Nemitz 1,2*, Ryan J. Marcotte 2, Mohammed E. Sayed 1, Gonzalo Ferrer 2, 
Alfred O. Hero 2, Edwin Olson 2 and Adam A. Stokes 1*

1 School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, Edinburgh, 
United Kingdom, 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 
United States

Scaling up robot swarms to collectives of hundreds or even thousands without sacrificing 
sensing, processing, and locomotion capabilities is a challenging problem. Low-cost robots 
are potentially scalable, but the majority of existing systems have limited capabilities, and 
these limitations substantially constrain the type of experiments that could be performed 
by robotics researchers. Instead of adding functionality by adding more components 
and therefore increasing the cost, we demonstrate how low-cost hardware can be used 
beyond its standard functionality. We systematically review 15 swarm robotic systems 
and analyse their sensing capabilities by applying a general sensor model from the 
sensing and measurement community. This work is based on the HoverBot system. A 
HoverBot is a levitating circuit board that manoeuvres by pulling itself towards magnetic 
anchors that are embedded into the robot arena. We show that HoverBot’s magnetic 
field readouts from its Hall-effect sensor can be associated to successful movement, 
robot rotation and collision measurands. We build a time series classifier based on these 
magnetic field readouts. We modify and apply signal processing techniques to enable 
the online classification of the time-variant magnetic field measurements on HoverBot’s 
low-cost microcontroller. We enabled HoverBot with successful movement, rotation, 
and collision sensing capabilities by utilising its single Hall-effect sensor. We discuss 
how our classification method could be applied to other sensors to increase a robot’s 
functionality while retaining its cost.

Keywords: hoverBot, swarm robotics, multi-functional sensing, dynamic time warping, DTW, barycentre 
averaging, DBa

1. inTrODUcTiOn

1.1. swarm robotics
Swarm robotics is the study of developing and controlling large groups of simple robots. One goal of 
swarm robotics research is to substitute a few sophisticated robots with many simple robots to gain 
robustness, flexibility and to circumvent single-robot-failures from resulting in mission abortions 
(Brambilla et al., 2013). Applications range from space-exploration to finding survivors after large-scale 
disasters. Much inspiration in this area has been drawn from nature (Bonabeau et al., 1999). Flocks 
of birds fly in formation and take turns in positioning to maximise the total travelled distance as a 
collective. Schools of fish cluster together to increase the chances of survival against a visually orientated 
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predator. Colonies of termites collaborate to build termite mounds 
with integrated ventilation mechanisms to protect the colony from 
critical temperatures. All these systems accomplish complex tasks 
through simple local interactions amongst themselves, collectives 
of autonomous agents, and are commonly referred to as examples 
of swarm intelligence. Swarm robotics can be seen as a research area 
that emerged from the field of swarm intelligence, whereas swarm 
intelligence depicts a subfield of artificial intelligence. The first 
swarm robotic system was the Khepera robot in 1994 (Mondada 
et al., 1994). Since then, many other swarm robotic systems have 
been built, most of them are listed in Table  1. However, much 
of swarm intelligence research has been conducted via computer 
simulations. Brambilla et al. analysed more than 60 publications 
that dealt with swarm robotic collective behaviours. They found 
that more than half of these publications presented results which 
were obtained through simulations or models (Brambilla et al., 
2013). Although simulators are a valuable tool for exploring, 
systematically, the algorithmic-behaviour of natural swarms, 
they frequently involve simplifications and reductionist axioms 
to enable computational tractability. Such simulated systems can 
fail to faithfully reproduce the intricate physical interactions and 
variability that exist in real systems, and their fidelity to the real 
world is difficult to verify or improve without feedback from 
physical experiments (Rubenstein et al., 2014).

Over the past two decades, many swarm robotic systems have 
been developed. They all differ in certain aspects such as power 
consumption, locomotion strategy, or sensing capability. The 
sensing capabilities of a robot influence the type of experiments 
one can perform. While a camera adds more functionality to a 
robot than an ambient light sensor, each sensor comes at a different 
cost. We systematically analysed previous swarm robotic systems 
and found that some systems possess sensors that have been, or 
could be, used for the detection of multiple signals. For example, 
an IR transceiver could be used for communication and proximity 
sensing amongst others. Developing robots that are low-cost and 
functional is a challenging task, therefore, utilising sensors for the 
detection of multiple measurands is desirable. We believe that this 
concept is very important and deserves further evaluation.

In the following section, we introduce an instrument model, 
a well-established model borrowed from the sensors community 
to generally describe a measuring device, to establish a clear 
understanding of sensors and how they can become multi-
functional. Then we will give a comprehensive review on the sensing 
capabilities of previous swarm robotic systems and categorize 
them based on their multi-functionality. Finally, we show an 
implementation in which a HoverBot (Nemitz et al., 2017) extracts 
multi-functionality from a single Hall-effect sensor. We show that 
we can associate time-based magnetic field measurements to robot 
rotation, collision, and successful movement; and we show how 
to build a corresponding time-based classifier that can be trained 
offline before it is transferred to HoverBot for online classification. 
We apply our method to the HoverBot platform and discuss its 
applications to time-series data.

1.2. instrument Model
The instrument model shown in Figure 1 is a scientifically accepted 
model from the sensor community (Webster, 1999) to generally 
describe a measuring device. An instrument is a device that 
transforms a physical variable of interest, the measurand, into a 
form that is suitable for recording, the measurement, as conceptually 
shown in Figure 1A. An example of a basic instrument is a ruler. 
In this case the measurand is the length of some object and the 
measurement is the number of units (meters, inches, etc.) that 
represent the length.

Any measurand (distance, collision, temperature, etc.) is linked 
to an observable physical measurement variable X. The observable 
physical measurement variable X does not necessarily have to be the 
measurand, X can only be related to the measurand. For instance, the 
mass of an object is often measured by the process of weighing, where 
the measurand is the mass but the physical measurement variable 
is the downward force the mass exerts in the Earth’s gravitational 
field. Collision detection is another example. A robot can detect the 
measurand collision by measuring force or by relating the measurand 
to another physical measurement variable such as acceleration. In this 
case you can either purchase a single accelerometer or a set of force 
sensors (e.g., four force sensors – one sensor on each robot side). 
Both implementations allow the detection of collisions, however, 
the single accelerometer is likely going to be cheaper than the force 
sensors. There are many more of such examples, but there are also 
variants in which a single physical measurement variable contains 
information about several measurands. An excellent example is 
IR light. IR light can be used for the measurement of distance, to 
determine bearing and to communicate with other robots as shown by 
(Farrow et al., 2014). We call this capability multi-functional sensing. 
Communication is usually handled by a transceiver; you transmit 
and receive or transceive data by means of a physical channel e.g., by 
utilising electromagnetic waves in the IR spectrum. The receiving of 
signals requires sensors, such as photodiodes that transduce IR light 
into electric signals, hence communication itself can be considered 
as a sensing task.

1.3. sensing capabilities of swarm 
robotic systems
We reviewed the sensing capabilities of 15 swarm robotic systems 
found in the literature and we summarize our findings in Table 

TaBle 1 |  Comparison of 13 swarm robotic systems’ sensing capabilities.

robot system / number of 
Measurands

2 3 4

Khepera (Mondada et al., 1994) IR
Alice (Caprari and Siegwart, 2003) IR
SBot (Mondada et al., 2003) L
Jasmine (Kornienko et al., 2005b) IR
e-puck (Mondada et al., 2009) IR, L ac
MarXbot (Bonani et al., 2010) IR, L
Kilobot (Rubenstein et al., 2012) IR
R-One (McLurkin et al., 2013) IR
Droplet (Farrow et al., 2014) ir
GRITSBot (Pickem et al., 2015) IR
Pheeno (Wilson et al., 2016) AC
hoverBot (Nemitz et al., 2017) MF

IR: Infrared Light, AC: Acceleration, L: Visible Light, F: Force, EMF: Electromagnetic 
Field, MF: Magnetic Field. Other systems that were considered but ended up using 
“single-measurand sensors”: Swarm Bot (McLurkin et al., 2006), Kobot (Turgut et al., 
2007), and Thymio-II (Riedo et al., 2013).
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S1 of the supplemental material. Table 1 is a subset of Table S1 
containing robot systems capable of multi-functional sensing with 
≥2 measurands. The content of Table 1 is based on the cited work 
shown in the first column of each row. Table 2 takes an even closer 
look at the few robot systems capable of multi-functional sensing 
with ≥3 measurands.

The majority of swarm robotic systems (12/15) are capable of 
multi-functional sensing with ≥2 measurands. In the ≥2 measurand 
category, the most commonly used physical measurement variables 
are IR light, followed by ambient light. IR light has been mainly 
utilised for distance/proximity sensing and local communication, 
whereas ambient light has been often utilised for object detection 
and long-range distance measurements through a camera.

To the best of our knowledge, there are only two swarm robotic 
systems that are capable of, or make use of, multi-functional 
sensing with ≥3 measurands. The e-puck is capable of measuring 
four measurands with a single sensor (Mondada et al., 2009). It uses 

a single accelerometer to measure inclination, collision, free-fall and 
movement acceleration. The Droplet is capable of measuring three 
measurands with a set of IR sensors (Farrow et al., 2014). It uses 
six symmetrically placed IR sensors to measure distance, bearing 
and local communication. Therefore, once a robot possesses an 
accelerometer and a group of IR sensors, it is capable of measuring 
seven measurands by only using two different types of sensors.

Our work, which we present here, adds another system to 
the ≥3 measurand category. Figure  1B indicates HoverBot’s 
instrument model. The measurands successful movement, 
collision and rotation can be related to the physical measurement 
variable magnetic flux density. HoverBot uses a Hall-effect sensor 
to convert the magnetic flux densities into voltages which are 
subsequently converted via an analogue digital converter to digital 
measurements. The microcontroller processes the samples and 
checks them against a previously trained classifier. Our classifier 
combines dynamic time warping and barycenter averaging to 
build time-variant representations of the measurands. Figure 2 
gives an overview of all swarm robotic systems and their sensing 
capabilities.

The instrument model comes with its limitations: the measurand 
component can be interpreted from different angles. For example, 
successful movement and rotation can be generally considered as 
being part of a robot’s odometry capability. However, the to-be-
measured value, the measurand, is not odometry but successful 
movement and rotation. Since the instrument model is to some 
extent subjective, it is of paramount importance to apply this model 
consistently. Figure 2 is a collection of carefully categorised sensing 
capabilities of swarm robotic systems. A key understanding that 
we have derived from studying the instrument model is that, in 
swarm robotic systems, often the sensors could be further utilised, 
and therefore the systems should be reanalysed.

FigUre 1 |  Instrument Model (Webster, 1999). (a) The measurand is the to-be-measured value of interest, whereas the physical measurement variable is 
associated, either directly or indirectly, to the measurand. The sensor converts the physical measurement variable in a signal variable (often an electric signal), and 
feeds it into a processing unit or computer. The value that we actually display is the measurement. (B) Analog to A. We detect collision, rotation and movement 
measurands by measuring magnetic flux density. The Hall-effect sensor converts the magnetic field into a voltage which is converted through the microcontroller’s 
ADC to a digital signal. We finally apply the measurements to a classifier which associates the measurements to one of the three measurands.

TaBle 2 |  Further comparison of swarm robotic systems with 3 or more 
measurands per sensor.

Measurand / Physical 
Measurement Variable

ir ac MF

Droplet e-puck hoverBot

Local Communication X
Proximity/Distance X
Bearing X
Inclinometer X
Collision X X
Free-fall X
Movement acceleration X
Odometry X
Rotation X

IR: Infrared Light, AC: Acceleration, MF: Magnetic Field
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1.4. applying Multifunctional sensing
Our work empirically shows how HoverBot’s single Hall-effect 
sensor can be augmented for the detection of collision, rotation, 
and successful movement. Although we specify in the discussion 
under which circumstances our techniques might be applied to 
other sensors, we would like to give a brief insight into the research 
opportunities that potentially arise from (i) HoverBot’s new sensing 
capabilities and (ii) our approach more generally.

1.4.1. Collision Dependent Behaviours
Rotation and successful movement detection are proprioceptive 
sensing capabilities, hence give insight into the internal state of a 
robot. Counting successful movements is useful for the robot to 
keep track of its position (odometry), and detecting rotations to 
derive knowledge about its orientation. Detecting collisions is an 
exteroceptive sensing skill. It provides the robot with information 
about its surroundings. We give a brief overview over the few 
swarm robotic studies that deal with collisions and indicate how 
they were utilised. Kernbach et al. and Schmickl et al. worked on the 
re-embodiment of biological aggregation behaviours of honeybees. 
They show how to take advantage of collisions to develop scalable 
robot behaviours. In their work, swarm robots converge to light 
sources without requiring inter-robot communication. Concretely, 
they minimize sensing and computation by evaluating robot data 
only once per collision; more frequent collisions lead to more data 
evaluations (Kernbach et al., 2009; Schmickl et al., 2009). Mayaa 
et al. harnessed collisions to help localise a robot within an arena. 
The arena was divided into differently sized segments, whereas each 
segment was inhabited by differently sized robot groups. Robots 
used collision detection as information source to determine their 
locations (Mayya et al., 2017).

Overall, collision is a promising candidate for research on and 
the design of scalable robot behaviours since collisions incidences 
usually increase with increasing group sizes. Scalable refers to the 
ability of a swarm to perform well with different group sizes; the 
introduction or removal of individuals does not result in drastic 

change in the performance of a swarm (Brambilla et al., 2013). 
Collisions have only been sparely studied in the swarm robotics 
context. Kernbach, Schmickl and Mayaa et al.’s work depict excellent 
starting points for future work on collisions; the HoverBot system 
depicts a suitable research platform since it embraces collisions and 
is capable of detecting them.

1.4.2. Collective Perception
Other interesting work that might profit from our approach is 
research on collective perception. Collective perception broadly 
refers to collectives that explore an environment and evaluate 
its features (Valentini et al., 2016). The work presented here has 
the potential to enhance a robot’s sensing capabilities without 
modifying its hardware, hence, could add to the list of observable 
features for collective perception. Notable literature on collective 
perception includes Khaluf ’s work on detecting and marking 
features e.g., of pollution areas (Khaluf, 2017), Kornienko et al.’s 
work on investigating which sensing and processing steps should 
be done individually or collectively for collective perception with 
robot swarms  (Kornienko et  al., 2005a),  Schmickl et al.’s work 
on hop-count and Trophallaxis-inspired strategies to collectively 
perceive targets (Schmickl et al., 2007), Mermoud et al.’s work on 
aggregation-based strategies to collectively perceive and destroy 
specific targets (Mermoud et al., 2010), and Tarapore et al.’s work 
on collective perception strategies inspired by the adaptive immune 
response to discriminate between dangerous and friendly cells 
(Tarapore et al., 2013).

2. The hOVerBOT sysTeM

2.1. review
We reported in (Nemitz et al., 2017) on the HoverBot system. The 
HoverBot system is a swarm robotic system and the first of its 
kind that uses active low-friction locomotion. Active low-friction 
locomotion supplies robots with a constant air flow beneath their 
surfaces. The airflow causes a reduction of friction between robot 
and arena surface allowing relatively weak forces to be used for 
locomotion. In addition, we embedded permanent magnets into 
the arena as indicated in Figure 3A. The HoverBot is a levitating 
circuit board that possesses planar coils that interact with the arena 
magnets, resulting in two-dimensional locomotion. Such forces 
would be insufficient if friction had not been reduced. From the 
outset, the HoverBot system was designed for manufacturability: 
HoverBots only require electronics components that are surface 
mountable, only require connecting a battery to a robot as an 
assembly step, use low-cost actuators and associated circuitry, do 
not require actuator calibration and move precisely on a discrete 
grid. For more details, please refer to our publication (Nemitz et al., 
2017).

The work presented here focuses on HoverBot’s sensing 
capabilities. The HoverBot is equipped with IR and Hall-effect 
sensors as shown in Figure  3A. The IR sensor points upwards 
and therefore only allows communication to an overhead IR 
handheld that is connected to a PC rather than to other robots. 
The Hall-effect sensor is positioned in the centre of the HoverBot 

FigUre 2 |  Overview of the sensing capabilities of previous swarm robotic 
systems. Swarm robots are sequentially listed according to their publication 
date. The x-axis indicates how many measurands can be measured per 
single sensor. Although most swarm robotic systems utilise their sensors to 
detect up to two measurands, there are only three robot systems including 
the HoverBot that utilise their sensors to measure 3 or more measurands.
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agent and measures the ambient magnetic flux density. Simplified, 
a Hall-effect sensor is a transducer that converts a magnetic field 
into a voltage difference, whereas magnetic fields, also called 
magnetic flux densities, are measured in Tesla [N/m2] or Gauss 
[1T = 10,000G].

2.2. The Magnetic Field
HoverBots energize their coils to pull themselves towards magnets. 
We simulated and subsequently took measurements from the 
magnetic field. Figure  4B depicts the simulated magnetic field 
acquired with FEMM, a simulator for solving low frequency 
electromagnetic problems on two-dimensional planar and 
axisymmetric domains (Meeker, 2010). The grey rectangles in 
Figure 4B indicate magnets and the dashed lines serve as reference 
to the measurements in Figure 4C.

We obtained the magnetic field in Figure 4C with a HoverBot. 
The simulated and measured magnetic fields broadly correlate with 
one another. The first amplitude in Figure 4C is slightly shifted 
due to fabrication tolerances. The pocket holes of the permanent 
magnets are slightly larger in diameter than the magnets themselves 
leading to imperfect magnet alignments. For more details on the 
manufacture of the HoverBot system please see our previous paper 
(Nemitz et al., 2017).

2.3. Magnetic Field Profiles
During operation, a HoverBot agent measures magnetic field 
values in the range of approximately −20 to +60 mT as shown 
Figure 4C. However, the actual measurements during movement 
look somewhat different since they are not only position-dependent 
as in Figure  4C but also time-dependent. Figure  5 shows a set 
of time-dependent magnetic field measurements. Figure  5A 

indicates the magnetic field measurements of a HoverBot during 
a successful movement from one permanent magnet to another. 
When a HoverBot agent collides with an object, its magnetic field 
measurements look distinctly different compared to its successful 
movement measurements as shown in Figure 5B. We reported in 
(Nemitz et al., 2017) that HoverBot could potentially lose their 

FigUre 3 |  The HoverBot system. (a) The HoverBot is displayed in detail in the top left corner. It consists of a low-cost microcontroller, an IR transceiver and a 
Hall-effect sensor. Permanent magnets are embedded into the platform and air holes are drilled through the surface as exemplary indicated through red circles. We 
placed AprilTags on a HoverBot as well as in three of the four corners of the magnet-levitation table. This setup allows us to keep track of HoverBot’s position during 
experiments. (B) The bottom side of the HoverBot is displayed in the top right corner. A HoverBot possesses five planar coils that it uses to manoeuvre two-
dimensionally on the magnet-levitation table. We installed four fans, one on each side of the levitation-magnet table. The fans force air into the magnet-levitation 
table creating a pressure differential between the inside and outside of the table. Air streams through the porous surface of the magnet-levitation table creating 
air-cushions beneath HoverBots which makes the robots levitate.

FigUre 4 |  The Magnetic Field. (a) HoverBot moves on its magnet-
levitation table. (B) We simulated HoverBot’s magnetic field measurements via 
finite element method. The permanent magnets are embedded into the 
magnet-levitation table and are manufactured to be ~1–2 mm beneath the 
surface. (c) We took magnetic field measurements from a HoverBot during 
movement.
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orientation, rotate 45 degrees, and lock into position. Figure 5C 
indicates the magnetic field measurements that occur in this 
incident.

The magnetic field profiles for successful movement and 
collision in Figure 5A,B possess distinct magnetic field changes 
over time. The magnetic field profile for rotation in Figure  5C 
differs from the other profiles since the magnetic field does not 
change anymore once the robot rotated and locked into position. 
Therefore, detecting rotation is a simple case of measuring a 
constant negative magnetic field over time. Since detecting rotation 
is trivial and does not add value to this work, we explicitly decided 
to focus on the remaining more challenging profiles. The remaining 
work focuses on the classification of time series data for successful 
movements and collisions.

2.4. Data acquisition
One of HoverBot’s advantages is its precise locomotion in Manhattan 
Geometry (Nemitz et al., 2017). Missteps or rotations are rare events. 
During data acquisition, we only observed successful movements 
and collisions. The robot randomly moved within the arena and 
occasionally collided with arena boarders. Our dataset consists of 
259 samples, whereas 203 samples are from successful movements 
and 56 samples are from collisions. Each sample is a collection of 
timestamps, magnetic field measurements, x-position, y-position 
and orientation of the HoverBot. We acquired our data with the 
experimental setup in (Nemitz et al., 2017). We placed an artificial 
fiducial, an AprilTag (Olson, 2011), onto the HoverBot. AprilTags 
are simplified 2D barcodes that are robust to occlusions and lens 
distortion allowing high detection rates with camera systems - 
20 Hz in our setup. To measure the trajectory of a HoverBot, we 
tracked the centroid and the orientation of the robot’s AprilTag. 
We used a Chameleon 1.3 MP Color (Sony IXC445) camera and a 
Tamron 13FM28IR 2.8 mm f/1.2 day/night lens. We also installed 
an IR transceiver above the arena and connected it to a centralised 
PC to record HoverBot’s magnetic field measurements; HoverBot 

transmitted during runtime its magnetic field measurements 
online to the overhead IR transceiver. The camera system and 
the IR transceiver were embedded into LCM (Huang et al., 2010) 
providing us with a robust data acquisition platform for our 
experiments.

3. TiMe seqUence classiFicaTiOn

A major challenge in discriminating between successful 
movement and collision profiles is their variations in the time 
and measurement domain. For example, a HoverBot’s speed may 
vary between actuations, resulting in measurement signals that 
are stretched or compressed. Additionally, environmental factors 
can cause measurement values to vary over time, such as when 
HoverBot’s elevation above the table (and hence, its position in 
the magnetic field) varies due to air pressure fluctuations in the 
magnet-levitation table. To classify the measurement profiles 
depicted in Figure  5A,B, we must account for these variations 
while operating within the computational constraints of HoverBot’s 
microcontroller.

We describe in the following sections a classification method 
that learns offline representations of each measurement profile and 
stores these representations on the robot. When the HoverBot agent 
obtains a new series of measurements online, the measurements 
are compared to the stored class representations to determine the 
maximum likelihood classification. Our classification procedure 
builds on several component techniques from the field of signal 
processing. We introduce each of these components in turn in 
Section 3.1 and then incorporate them into our method in Sections 
3.2 and 3.3. Throughout Section 3.1 we refer to Figures 6 and 7 
for specific examples.

3.1. classification Preliminaries
3.1.1. Dynamic Time Warping (DTW)
Dynamic Time Warping (DTW) (Chiba and Sakoe, 1978) is 
used to align two time sequences of potentially different length 
and measure the amount of similarity between them. DTW 
finds correspondences between points from the two sequences 
by warping them in the time domain. Given a distance measure, 
DTW computes the set of point correspondences that minimizes 
the cumulative distance between the sequences. Figure 6 shows 
an example of DTW for two arbitrary signals.

Consider two input signals  x =
[
x1, · · · , xM

]
  and  

 y =
[
y1, · · · , yN

]
 . Let  d

(
xi, yj

)
   be a measure of the 

distance between   xi  and  yj , such as the squared Euclidean 
distance  d

(
xi, yj

)
=
(
xi − yj

)2
 . First, DTW computes the distance 

matrix d (Figure 6A) and subsequently the accumulated distance 
matrix D (Figure 6B). DTW initialises the first row and column 
of D  as follows:

 D1,1 = d
(
x1, y1

)
  

 Di,1 = Di−1,1 + d
(
xi, y1

)
, i = 2, · · · ,M  

 D1,j = D1,j−1 + d
(
x1, yj

)
, j = 2, · · · ,N  

FigUre 5 |  Magnetic Field Profiles. This figure shows examples of 
magnetic field measurements over time that a HoverBot measures during (a) 
a successful movement (B) a collision and (c) a 45-degree rotation. Each 
time series is distinctly different from the other.
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FigUre 6 |  Dynamic Time Warping (DTW). This figure exemplarily explains DTW. (a) We compute a matrix in which each entry is the Euclidean distance between 
datapoints from signals 1 and 2. The colour code for the various distances is shown below. (B) We use the distance matrix from (a) to develop the accumulated 
distance matrix D. The two red lines indicate the warping window. The warping path illustrated as blue line has to fit within the borders of the warping window. (c) 
The warping path explicitly states which datapoints of signal 1 align with what datapoints of signal 2. The warping path is always at least as long as the longest 
signal that is warped. In this example, the warping path exceeds both signals’ length, the warping path is 9 datapoints long.

FigUre 7 |  DTW Barycentre Averaging (DBA). (a) Similar to Figure 6B. This time the signals are initial average signal u(k) and new signal x(i), whereas x(i) will be 
aligned and averaged with u(k). (B) DBA performs DTW to align both signals. The warping path indicates which datapoints from x(i) are aligned with what datapoints 
from u(k). There is a container for each k; we copy the datapoints that are warped to a specific k (see Figure 7a) into the corresponding container. (c) We compute 
from the datapoints of each container the average signal and SD. To build the average signal and SD of a group of signals, warp all signals with the initial average 
signal. This process fills the various containers with many more datapoints, however, the technique remains the same.
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The rest of D  is then computed as:

 

Di,j = d
(
xi, yj

)
+ min





Di−1,j
Di,j−1
Di−1,j−1

, i = 2, · · · ,M
j = 2, · · · ,N

  

The DTW algorithm uses dynamic programming to build D , where 
each element

 Di,j  gives the minimum cumulative distance between 
subsequences  

[
x1, · · · , xi

]
  and   

[
y1, · · · , yj

]
 . The final element 

of  D ,  Dm,n , represents the minimum cumulative distance 
between the signals under any warping configuration, thus 
serving as a measure of similarity between the signals. Such an 
optimal warping configuration is given by the warping path 

 
ϕx,y =

[(
ϕx1,ϕ

y
1

)
, · · · ,

(
ϕxK,ϕ

y
K

)]
 
 through matrix D  (Figure 6C). 

Each element 
 
ϕ
x,y
k =

(
ϕxk,ϕ

y
k

)
 
 contains an index  ϕ

x
k  of signal  x  that 

has been matched to index  ϕ
y
k  of signal  y . The warping path can 

be computed as:

 ϕ
x,y
K =

(
M,N

)
  

 

ϕ
x,y
k = argmin

i,j
Di,j i, j =




ϕxk+1 − 1,ϕyk+1
ϕxk+1,ϕ

y
k+1 − 1

ϕxk+1 − 1,ϕyk+1 − 1

, k = K− 1, · · · , 2

  

 ϕ
x,y
1 =

(
1, 1

)
  

The length K   of warping path  ϕx,y  varies depending on the 
extent to which the signals are warped, but it will satisfy the 
inequality  max

(
M,N

)
≤ K ≤ M + N− 1 .

3.1.2. Constrained Dynamic Time Warping (CDTW)
The DTW formulation of the previous section is unconstrained 
i.e. the algorithm considers any possible warping configuration 
in matrix D. This can lead to pathological warping configurations 
wherein a single point from one signal is matched with many 
points from the other signal. Unconstrained DTW is thus 
sensitive to spurious alignments between signals. For example, 
unconstrained DTW might warp the collision time series 
in Figure  5B onto the successful movement time series in 
Figure  5A even though the signals correspond to disparate 
events. Given these limitations of unconstrained DTW, it is 
common to limit the extent to which signals can be warped 
in the time domain. In Constrained Dynamic Time Warping 
(CDTW), we allow correspondences between points only if 
those points occur within a fixed time period of one another. 
The length of the warping window W   is application-dependent 
and defined as  

∣n−m∣ ≤ W  . W   determines how many elements 
of matrices d (distance matrix) and D (accumulated distance 
matrix) are calculated. We show an example of a warping window 
in Figure 6b. CDTW can offer benefits in terms of time- and 
space-complexity, both are important for embedded platforms 
like the HoverBot. Because the warping path is constrained, only 
a portion of the matrix D  must be computed and stored (Chiba 
and Sakoe, 1978). As a result, the time- and space-complexity are 

both reduced from  O
(
N ·M

)
  to  O

(
N ·W

)
 , where the length of the 

warping window W   is much less than M , the length of signal  y  .

3.1.3. DTW Barycenter Averaging (DBA)
For a classification task, it is often useful to compute a summary 
representation of a class of data. This averaging process is 
non-trivial when performed on variable-length signals. Naïve 
approaches based on pairwise alignment and averaging are 
sensitive to ordering effects and produce prohibitively long 
alignment sequences (Petitjean et  al., 2011). We instead utilize 
DTW Barycenter Averaging (DBA) to compute the average signal 
 µ  and the standard deviation σ  of a group of signals (Morel et al., 
2018). Figure 7 shows an example of DBA for two arbitrary signals.

Consider a group of signals X   to be input to the DBA 
algorithm. DBA initializes σ   to be zero and randomly selects a 

signal 
 
x
(
0
)
=
[
x
(
0
)

1 , · · · , x
(
0
)

K

]

 
 to serve as the initial average signal  

 µ  (Figure 7A) as

 µk = x
(
0
)

k , k = 1, · · · ,K  

DBA also initializes sets  ψk = ∅, k = 1, · · · ,K  that are used in the 
average computation. Each set  ψk  contains  z ∈ ψk  elements for each 
specific  k ∈ K  , whereas z  is a placeholder for aligned datapoints 
(Figure 7B). Each signal  x ∈ X\x

(
0
)
   is aligned with the average 

signal using CDTW. Each set  ψk  is updated as

 ψk = ψk ∪
{
xϕxi : ϕ

µ
i = k

}
  

Please note that our example in Figure 7 only shows DBA for two 
signals. In Figure 7B, set  ψ1  consists of three aligned datapoints 
and sets  ψ2−8  of two aligned datapoints. Once this process has 
been repeated for all signals, the value of each element of the 
average signal is updated as the barycenter of all points that 
map to the corresponding element of the existing average signal 
 µ  (Figure 7C); that is,

 
µk =

∑
z∈ψk

z��ψk
��   

Likewise, the elements of the standard deviation σ  (Figure 7C) 
are updated as

 
σk =

����
∑

z∈ψk

(
z− µk

)2
��ψk

��
  

The resulting updated average signal retains its original length while 
incorporating information from the entire group of signals. The 
process of aligning the group of signals with the average signal and 
computing an updated average and SD can be repeated multiple 
times for better convergence.
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3.1.4. Downsampling
Our method can be implemented in several variants. 
Unconstrained with a complexity of  O

(
N ·M

)
 , constrained with 

a complexity of   O
(
N ·W

)
  using a warping window, or even further 

constrained with a complexity of  O
(
K ·W

)
  through a combination 

of warping window and downsampling. Consider an input signal 
 x =

[
x1, . . . , xN

]
   with length  N . We reduce the signal’s length 

from N  to K  by dividing the signal  x  into K  parts, each of which 
contains  L = N

K   measurements. The value of each element  x
′
k  of 

the downsampled signal  x
′
  is given by

 
x
′
k =

1
L

Lk∑
i=L

(
k−1

) xi , k = 1, . . . ,K
  

Downsampling has an impact on the classifier’s detection rate. 
The intuition is, the more you downsample the input signals, the 
worse the detection rate becomes. Downsampling potentially 
averages out important signal features that otherwise helped the 
classifier to discriminate between signals. From an engineering 
perspective, the more you downsample the input signals, the less 
memory is required to store values of the cumulative distance 
matrix. Memory reductions are very useful since it lowers the 
requirements for our low-cost microcontroller. Hence, there 
is a tradeoff between classification performance and memory 
utilization. We are able to achieve high classification performance 
with acceptable memory usage as shown in the Result section.

3.2. Offline learning of class 
representations
Figure  8A gives an overview of the components that are 
involved in the offline learning of class representations. First, 
we conduct a random-walk HoverBot experiment and record 
the measurements (x-, y-position, orientation, magnetic field 
measurement, timestamp). We separate the data into approximately 
two second intervals, HoverBot’s coil actuation scheme, to obtain 
a dataset consisting of many training examples. We manually 

label these examples based on HoverBot’s movement over time. 
We also downsample ( K = 20 ) each example to accord with the 
computational limitations of HoverBot’s microcontroller.

Given this set of labelled training examples, we perform k-fold 
cross-validation ( KV = 10 ). In each iteration, we divide (partition) 
the training data into labelled classes and perform DBA to obtain 
a representation of each class. In the validation step, we compute 
the Mahalanobis distance between each held-out example and the 
representations of each class:

 
d
(
µk,σk, xk

)
=

√
K∑
k=1

(
xk − µk

)2
σk   

The Mahalanobis distance measures the distance between a point 
and a distribution (De Maesschalck et al., 2000). In other words, 
how many standard deviations σ  is a point  x  away from the mean 
value   µ . We classify each example according to the minimum-
distance class, which corresponds to the maximum-likelihood 
classification.

3.3. Online classification of hall-effect 
Measurements
Figure  8B indicates the components that are involved in the 
online classification. The components in Figure 8B are a subset 
of Figure 8A. HoverBot tries to move into a direction and records 
magnetic field measurements. Depending on the downsampling 
frequency, the HoverBot stores a number of average values into 
its memory (K = 20). The new dataset is used to calculate the 
Mahalanobis distance for each class representation (successful 
movement and collision). The Mahalanobis distances are 
compared with one another. If the distances do not reach 
a minimum value, the event will be labelled as unknown. 
Otherwise the event will be classified according to the lower 
Mahalanobis distance. The parameters of the class representations  
( µk,σk ) were trained offline, do not change during runtime and 
therefore are stored on the microcontroller’s read-only-memory 
(ROM). The amount of ROM memory involved is dependent on 
the downsampling frequency.

4. resUlTs

Figure  9 shows the trained class representations for successful 
movement and collision. For each datapoint our classification 
method produces a mean value and a SD. These values are constant 
and are stored in the microcontroller’s flash memory.

Figure  10 indicates the detection rates of our successful 
movement and collision classifier. For each number of datapoints 
(K) we compute a confusion matrix through k-fold cross-validation 
as described in the Offline Learning of Class Representations Section. 
The detection rate for a successful movement is calculated by the 
True-Positive-Rate and the detection rate for a collision by the 
False-Positive-Rate of the confusion matrix. We give a confusion 
matrix example for K = 20 in Figure 10. While the detection rate 
increases with the number of datapoints, it starts stagnating once 
it exceeds 20 datapoints per sample. Therefore, we chose K = 20 in 

FigUre 8 |  Overview of signal processing components for (a) offline 
training of the classifier and (B) online classification of new data samples.
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our setup achieving collision and successful movement detection 
rates of greater 85%. This setup is a fair trade-off between detection 
rate and computational effort. Our microcontroller has to store 
20·20·2 Bytes, assuming a 16-bit unsigned integer for each magnetic 
field measurement and not applying a warping window which 
otherwise decreased the memory requirement to 20·W·2 Bytes. 
HoverBot’s microcontroller (Atmel SAMD21E16) comes with 8 
kB SRAM which comfortably meets the memory requirements of 
our classification method.

5. DiscUssiOn

This work combines two rather unrelated research fields, the fields of 
signal processing and swarm robotics. The signal processing techniques 
were specifically adapted to operate on low-cost hardware. We introduced 
a warping window and a downsampling method to reduce the classifier’s 
time- and space-complexity. We discuss the impact of downsampling on 
time varying signals in Section 5.1. We hope that our work encourages 
other swarm roboticists to reanalyse the sensing capabilities of their 
robots. The requirements and limitations of our approach are discussed 
in Sections 5.2 and 5.3. There might be an advantage of adding dedicated 
general purpose integrated circuits (IC) or Field Programmable Gate 
Arrays (FPGAs) to robot designs to process sensor data on the side to 
augment a robot’s sensing capabilities. The advantages and disadvantages 
of specialized sensory is discussed in Section 5.4.

5.1. Downsampling
Our downsampling method decreases a signal’s length to a number 
of averaged datapoints. HoverBot’s magnetic field profiles for 
successful movement and collision are simple. The profiles do not 
contain high frequency features, hence downsampling only had a 
limited impact on our classifier’s detection rate. Classifiers built 
upon more complicated time-variant data are expected to be more 
heavily influenced by our downsampling method.

5.2. applicability to Other systems
This study has demonstrated how time sequence classification can be 
used to measure several measurands with a single sensor. Our method’s 
applicability is dependent on signatures, unique measurement profiles 
that can be associated to specific measurands. Although we have not 
applied time sequence classification to other sensors or robots, we 
argue that it is generally applicable if the signature (i) contains time 
varying measurements (ii) is systematically reoccurring and (iii) is 
distinctly different to other signatures.

Please find an analysis of suitable sensors, a generalised concept 
about signatures, and hypothetical examples of our approach in 
the Appendix.

5.3. limitations
HoverBot’s discrete movement helped the discovery that signatures 
can be used to measure several measurands with a single sensor. 
If HoverBot’s movement was continuous, we could still chop 
the measurements into the measurement profiles shown in 
Figure  5, since any continuous movement can be regarded as 
a finite number of discrete movements with an infinitely small 
time difference in between them. However, our signatures are 
constrained to HoverBot’s movement behaviour. HoverBot 
moves on a grid in Manhattan geometry which ensures that it 
measures a reoccurring magnetic field pattern. Other movement 
geometries such as continuous movements in arbitrary directions 
would impact our signatures and hence the time sequence  
classification.

5.4. Multifunctional sensing vs specialised 
sensory
Our signatures allow the binary detection of successful 
movements, collisions, and rotations. These measurands can 

FigUre 9 |  Classifier Parameters. Each datapoint has a mean value and 
SD associated to it. These constants are stored in the microcontroller’s ROM 
and used for online classification. The graphs indicate how much tolerance 
(SD) is permitted at each datapoint.

FigUre 10 |  Downsampling. This graph shows the effect of downsampling 
on the classifier’s detection rate. The detection rate exponentially increases 
until it starts stagnating once it exceeds 20 datapoints per sample. In the 
bottom right corner of this figure, we show an example of the confusion 
matrix for 20 datapoints. Confusion matrix legend: TP: True Positive, 
FN: False Negative, FP: False Positive, TN: True Negative, TPR: True Positive 
Ratio, FPR:False Positive Ratio.
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also be measured with specialised sensors. For example, you 
could detect collisions through tactile sensors that output 
continuous measurements. However, this is not a limitation 
of the time sequence classification but of our signatures. If 
you can find distinct signatures for each collision level, the 
time sequence classification will enable you to discriminate 
between them. The advantage of specialised sensory however 
is that it takes away the processing behind the time sequence 
classification and enables continuous monitoring. For example, 
our approach first obtains a new data set and subsequently 
analyses it for collisions; we can only detect collisions once every 
movement cycle, whereas tactile sensors could detect collisions 
at any given time. A movement cycle is defined as a discrete 
movement from one permanent magnet to another. This might 
have an impact on the reactivity of robots. The disadvantage of 
specialised sensory is its component cost and corresponding  
electronics.

6. cOnclUsiOn

In this study, we analysed 15 swarm robotic systems for their 
sensing capabilities using the instrument model from the 
sensing and measurement community. We exemplarily show 
how the measurements from HoverBot’s single Hall-effect 
sensor can be associated to successful movement, rotation and 
collision events. We constrain dynamic time warping (DTW) 
and DTW Barycenter Averaging (DBA) to perform time-
series classification on a low-cost microcontroller. These signal 
processing techniques are generally applicable to time-variant 
data, however, must be applied to time varying, distinct, and 
systematically reoccurring measurements to augment a robot’s 
sensing capabilities. We train a classifier offline, transfer its 

parameters to HoverBot for online classification, and achieve high 
detection rates. This work shines light on how swarm roboticists 
can augment sensors by applying computationally constrained 
signal processing techniques to gain multi-functional sensing  
capabilities.
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Multi-Functional Sensing for Swarm Robots

aPPenDix

sensing Modalities
We believe that some sensing modalities are more predestined 
for time series classification than others. In general, we can 
discriminate between proprioceptive and exteroceptive sensing 
capabilities. Both terms owe their origins to biology; the former 
one describes the sense of stimuli that are produced and perceived 
within an organism; the latter one describes the sense of stimuli that 
are external to an organism. For a better understanding, we created 
Table 3 containing all sensors that were used by swarm robotic 
systems listed in Table 1 and categorised them into proprio- and 
exteroceptive sensors.

artificial signatures
Since exteroceptive sensors provide information about the 
environment, we can modify the environment to influence 
measurements. We call signatures that are manually created rather 
than naturally occurring, artificial signatures. This work here 
presents artificial signatures; we embedded permanent magnets 
into the arena surface to create collision, successful movement, 
and rotation signatures. Rather than trying to think about the 
measurands that we wanted to sense with HoverBot’s Hall-effect 
sensor, we had to ask ourselves what its measurements look like 
over time at several occasions.

natural signatures
Proprioceptive sensors provide information about a robot’s internal 
state. Popular examples are actuator, orientation or movement 
feedback (e.g., wheel encoder, IMU, or accelerometer). Proprioceptive 
sensor readouts are mostly independent of environments 
and therefore platform independent. Since environmental 
modifications have little or no effect on proprioceptive sensor 
readings, we infer that we cannot influence their measurements 
either. We call signatures built from proprioceptive measurements 
natural signatures. Proprioceptive measurements are less easy to 
manipulate than exteroceptive measurements. Of course, there are 
exceptions such as detecting collisions with an accelerometer; there 
might be environmental modifications that could lead to different 
signatures e.g., by embedding springs into obstacles to influence 
their mechanical response during collision.

augmenting existing sensors
Artificial signatures, such that we built, are very specific to the 
robot system and not easily transferable, however, one can become 
creative and make their own environmental modifications and 
create signatures to exploit a robot’s existing sensing capabilities. 
Finding or creating signatures requires a thorough understanding 
of the system at hand. Please find below a couple of examples.

An accelerometer seems to be an ideal candidate for time 
sequence classification. Acceleration continuously changes over 
time with robot movement. An accelerometer is a proprioceptive 

sensor; therefore, signatures occur naturally. Now, we have to take 
a look at the acceleration measurements during specific events 
and investigate whether we can build signatures that suffice the 
three criteria: (1) contain time varying measurements (2) are 
systematically reoccurring and (3) are distinct to other signatures. 
Intuitively, the acceleration measurements should look different 
for collisions and successful movements. The acceleration 
measurements should also change in magnitude and frequency 
for movements on increasingly rough surfaces potentially allowing 
terrain detections. We postulate that the accelerometer does not 
suffer from low signal-to-noise ratios.

Physical measurement variable: “acceleration”
Measurands: “collisions”, “successful movements”, “terrain”
A time of flight (TOF) ranging sensor determines the distance 

to objects by measuring the time it takes a light beam to travel to 
an object and back. You can implement a TOF sensor pointing 
upwards to measure the distance to objects above the robot. 
Since TOF sensors are exteroceptive sensors, we have to think 
about environmental modifications that help creating signatures. 
For example, we could install a 3D surface above the robot. The 
surface could have periodically reoccurring patterns similar to 
our magnetic fields illustrated in Figure 4 depicting a “reference 
map” at any given time. Any straight movement should result in 
a periodically reoccurring measurement pattern which could 
potentially allow to verify a movement, collision and distance 
itself. While this setup is more difficult to establish than using 
the accelerometer, it uses a completely new dimension, the area 
above a robot, that could allow a robot to perform a variety of new 
tasks. The surfaces can be arbitrarily changed; each surface being 
a new robot environment with its own challenges. For example, 
a robot swarm could search for objects in the “sky” investigating 
meta-heuristic search strategies. The interested reader is referred to 
Senanayake et al.’s literature review on search strategies for swarm 
robots (Senanayake et al., 2016).

Physical measurement variable: “light”
Measurands: “distance”, “collisions”, “successful movements”

TaBle 3 |  List of all sensors from the swarm robotic systems in Table 1. 
Sensors are divided into proprioceptive and exteroceptive sensors.

Proprioceptive sensors exteroceptive sensors

Wheel Encoder IR Transceiver
Torque Sensor Humidity Sensor
Accelerometer Tactile Sensor
Inclinometer Microphone
Gyroscope Temperature Sensor
Voltagemeter Light Sensor

Camera
Radio
Antenna
Force Sensor
RFID Reader
Magnetometer

Artificial Signatures
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