
METHODS
published: 08 June 2018

doi: 10.3389/frobt.2018.00066

Frontiers in Robotics and AI | www.frontiersin.org 1 June 2018 | Volume 5 | Article 66

Edited by:

Guanghui Wang,

University of Kansas, United States

Reviewed by:

Zhichao Lian,

Nanjing University of Science and

Technology, China

Xinlei Chen,

Facebook, United States

*Correspondence:

Leon Sixt

leon.sixt@fu-berlin.de

Specialty section:

This article was submitted to

Vision Systems Theory, Tools and

Applications,

a section of the journal

Frontiers in Robotics and AI

Received: 01 February 2018

Accepted: 17 May 2018

Published: 08 June 2018

Citation:

Sixt L, Wild B and Landgraf T (2018)

RenderGAN: Generating Realistic

Labeled Data. Front. Robot. AI 5:66.

doi: 10.3389/frobt.2018.00066

RenderGAN: Generating Realistic
Labeled Data
Leon Sixt*, Benjamin Wild and Tim Landgraf

Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany

Deep Convolutional Neuronal Networks (DCNNs) are showing remarkable performance

on many computer vision tasks. Due to their large parameter space, they require many

labeled samples when trained in a supervised setting. The costs of annotating data

manually can render the use of DCNNs infeasible. We present a novel framework called

RenderGAN that can generate large amounts of realistic, labeled images by combining

a 3D model and the Generative Adversarial Network framework. In our approach,

image augmentations (e.g., lighting, background, and detail) are learned from unlabeled

data such that the generated images are strikingly realistic while preserving the labels

known from the 3D model. We apply the RenderGAN framework to generate images

of barcode-like markers that are attached to honeybees. Training a DCNN on data

generated by the RenderGAN yields considerably better performance than training it on

various baselines.

Keywords: generative adversarial networks, unsupervised learning, social insects, markers, deep learning

1. INTRODUCTION

When an image is taken from a real-world scene, many factors determine the final appearance:
background, lighting, object shape, position, and orientation of the object, the noise of the camera
sensor, and more. In computer vision, high-level information such as class, shape, or pose is
reconstructed from raw image data. Most real-world applications require the reconstruction to
be invariant to noise, background, and lighting changes.

In recent years, deep convolutional neural networks (DCNNs) advanced to the state of the art
in many computer vision tasks (Krizhevsky et al., 2012; Razavian et al., 2014; He et al., 2015).
More training data usually increases the performance of DCNNs. While image data is mostly
abundant, labels for supervised training must often be created manually—a time-consuming and
tedious activity. For complex annotations such as human joint angles, camera viewpoint, or image
segmentation, the costs of labeling can be prohibitive.

In our project BeesBook (Wario et al., 2015), we extract and analyze the social network of a
honeybee colony. The bees are monitored with multiple cameras and can be identified by a unique
binary marker attached on their back. To track the bees, it is required to decode the binary marker
reliably. The recent successes of DCNNs (Russakovsky et al., 2015) implied that a DCNN could
decode bees markers if enough training samples are available. However, annotating an image of a
single marker takes about a minute. If we labeled only 10 images for each of the 4,096 different
IDs, we would have to work more than 680 h, i.e., several months of tedious labor. It would still
be questionable if 10 samples could reliably represent the image variance due to different lighting
conditions and object rotations in space. Thus, the main question is how can we acquire more
labeled data?

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00066
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00066&domain=pdf&date_stamp=2018-06-08
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:leon.sixt@fu-berlin.de
https://doi.org/10.3389/frobt.2018.00066
https://www.frontiersin.org/articles/10.3389/frobt.2018.00066/full
http://loop.frontiersin.org/people/523811/overview
http://loop.frontiersin.org/people/234209/overview
http://loop.frontiersin.org/people/39045/overview

Sixt et al. Generating Realistic Labeled Data

A simple solution could have been to annotate more data by
crowdsourcing the task. This would likely have created several
months of work for distributing the data, and collecting and
processing the labels. Another intuitive approach would be to
train a DCNN on images generated by a 3D renderer. We used
a simple 3D model (no lighting, shading) but could not train a
DCNN which performed well on real image data.

Here we propose a solution based on a modification to the
recently proposed GAN framework (Goodfellow et al., 2014).
We use a simple 3D model of the binary marker to generate an
idealistic image of the marker. The generator network then learns
to add the missing image detail such as lighting, background,
and image noise so that the resulting images look strikingly
real. By ensuring that the generator cannot change the ID label,
we can collect realistic images from the generator with their
corresponding labels we fed to the 3D model. This dataset can
then be used to train a DCNN which performs well on real data.

In the next section, we shortly review the state-of-the-art
in generating realistic images. Subsequently, we describe our
RenderGANmethod and compare the results of a DCNN trained
to decode the binary marker with different baselines. Finally, we
discuss our results in the BeesBook project, and in a wider context
of generating realistic data with preserved labels.

2. RELATED WORK

A common approach to deal with limited amount of labels is data
augmentation (Goodfellow et al., 2016, Chapter 7.4). Translation,
noise, and other deformations can often be applied without
changing the labels, thereby effectively increasing the number of
training samples and reducing overfitting. Ratner et al. (2017)
propose to automatically learn augmentations with GANs.

DCNNs learn a hierarchy of features—many of which are
applicable to related domains (Yosinski et al., 2014). Therefore,
a common technique is to pre-train a model on a larger dataset
such as ImageNet (Deng et al., 2009) and then fine-tune its
parameters to the task at hand (Girshick et al., 2014; Razavian
et al., 2014; Long et al., 2015). This technique only works in cases
where a large enough related dataset exists. Furthermore, labeling
enough data for fine-tuning might still be costly.

If a basic model of the data exists (for example, a 3D model
of the human body), it can be used to generate labeled data.
Peng et al. (2015) generated training data for a DCNN with 3D-
CAD models. Su et al. (2015) used 3D-CAD models from large
online repositories to generate large amounts of training images
for the viewpoint estimation task on the PASCAL 3D+ dataset
(Xiang et al., 2014). Zhou et al. (2016) also use the PASCAL 3D+
dataset to learn the dense flow prediction between images. Wu
et al. (2016) construct a network to learn a 3D skeleton of objects
such as chairs. Massa et al. (2015) are matching natural images
to 3D-CAD models with features extracted from a DCNN.
Richter et al. (2016) and Ros et al. (2016) used 3D game engines
to collect labeled data for image segmentation. However, the
explicit modeling of the image acquisition physics (scene lighting,
reflections, lense distortions, sensor noise, etc.) is cumbersome
and might still not be able to fully reproduce the particularities of

the imaging process such as unstructured background or object
specific noise. Training a DCNN on generated data that misses
certain features will result in overfitting and poor performance
on the real data.

Generative Adversarial Networks (GAN) (see Figure 1) can
learn to generate high-quality samples (Goodfellow et al., 2014),
i.e., sample from the data distribution p(x). Denton et al.
(2015) synthesized images with a GAN on the CIFAR dataset
(Krizhevsky, 2009), which were hard for humans to distinguish
from real images. While a GAN implicitly learns a meaningful
latent embedding of the data (Radford et al., 2015), there is
no simple relationship between the latent dimensions and the
labels of interest. Therefore, high-level information can’t be
inferred from generated samples. cGANs are an extension of
GANs to sample from a conditional distribution given some
labels, i.e., p(x|l). However, training cGANs requires a labeled
dataset. Springenberg (2015) showed that GANs can be used
in a semi-supervised setting but restricted their analysis to
categorical labels. Wang and Gupta (2016) trained two separate
GANs, one to model the object normals and another one
for the texture conditioned on the normals. As they rely on
conditional GANs, they need large amounts of labeled data.
Chen et al. (2016) used an information theoretic to disentangle
the representation. They decomposed the representation into a
structured and unstructured part. And successfully related on a
qualitative level the structured part to high-level concepts such
as camera viewpoint or hair style. However, explicitly controlling
the relationship between the latent space and generated samples
without using labeled data is an open problem, i.e., sampling from
p(x, l) without requiring labels for training.

Independent work by Shrivastava et al. (2016) proposes to
postprocess images of a 3D model of eyes and hand poses with
a GAN. In contrast to our work, they propose a L1-loss to ensure
that the labels remain valid.

Planar markers with binary codes have been shown to be
feasible for tracking large groups of insects. A system, previously
developed for ants (Mersch et al., 2013) was shown to successfully
track 100 bees for 2 days Blut et al. (2017). The markers in used
were originally described as fiducial markers in augmented reality
systems (Fiala, 2005) and rely on spatial derivatives to detect
the rectangular outline of a tag. A similar system using flat and
rectangular markers for tracking larger insects was also proposed
and might be adapted to honeybees (Crall et al., 2015). This

FIGURE 1 | Topology of a GAN. The discriminator network D is trained to

distinguish between “fake” and real data. The generator network G receives a

random vector as input. G is optimized to maximize the chance of the

discriminator making a mistake.

Frontiers in Robotics and AI | www.frontiersin.org 2 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

system binarizes the image globally and searches for rectangular
regions representing the corners of the marker. The previous
BeesBook vision system (Wario et al., 2015) was tailored to
specifically track all animals of small honeybee colonies over their
entire lifetime. It uses a round and curved marker and searches
for ellipse-shaped edge formations.

3. RENDERGAN

In the BeesBook project (Wario et al., 2015), we need to decode
the position, orientation and binary id of markers attached to
honeybees in a hive. Due to the large amount of honeybees this
task can’t be done manually. Although we invested a substantial
amount of time on labeling, a DCNN trained on the limited
labeled dataset did not perform well. We therefore wanted to
synthesize labeled images which are realistic enough to train an
improved decoder network.

3.1. 3D Model
We use a 3DModel to generate an idealistic image of the marker.
The 3D model comprises a mesh which represents the structure
of the marker and a simple camera model to project the mesh
to the image plane (see Figure 2). The model is parameterized
by its position, pitch, yaw and roll, and bit assignment. Given
a parameter set, the 3D model is rendered to an image of the
marker, a background segmentation mask and a depth map. The
generated images is an idealistic representation of the marker

FIGURE 2 | (A) The marker represents a unique binary code (cell 0–11) and

encodes the orientation with the semicircles 12 and 13. The red arrow points

toward the head of the bee. This marker encodes the id 100110100010. (B)

Cutout from a high-resolution image.

and lacksmany important factors: blur, lighting, background, and
image detail (see Figure 3). A DCNN trained on data from this
idealistic model did not generalize to real images.

The discriminator gradients cannot be backpropagated
through the 3D model. Still, we want to learn the distributions of
the inputs of the 3D model such as the orientation and position.
While there exists differentiable renders (Loper and Black, 2014),
we found it the easiest to train a neural network to emulate the
3D model. Its outputs are indistinguishable from the images of
the 3D model. Yet, the neural network allows backpropagation
of the gradients. The weights of the 3D model network are
fixed during the GAN training. The bit assignments are sampled
uniformly.

3.2. Augmentations
Normally augmentations are used to enlarge and diversify the
training data. Typical augmentations are translation, rotation,
adding noise, and scaling of pixel intensities. The parameters
of the augmentations are normally sampled from a random
distribution. Here, one has to ensure that the augmentations
don’t change the content of the image. For example, adding too
much noise can occlude the object.

In the RenderGAN, we would like to learn the parameters to
a set of augmentation such that a simple 3D model is morphed
to a realistic image. We have to ensure that all augmentations
preserve the high-level information.

We apply different augmentations that account for blur,
lighting, background, and image detail. The output of the
3D model and of each augmentation is of the same shape
as the image. In Figure 4, the structure of the generator is
shown.

3.2.1. Blurriness
The 3D model produces hard edges, but the images of the real
tags show a broad range of blur. The generator produces a scalar
α ∈ [0, 1] per image that controls the blur.

φblur(x,α) = (1− α)
(

x− bσ (x)
)

+ bσ (x) (1)

where bσ (x) = x ∗ kσ denotes convolving the image x with a
Gaussian kernel kσ of scale σ . The implementation of the blur
function is inspired by Laplacian pyramids (Burt and Adelson,
1983). As required for augmentations, the labels are preserved,
because we limit the maximum amount of blur by picking σ = 2.
φblur is also differentiable w.r.t the inputs α and x.

FIGURE 3 | First row: Images from the 3D model without augmentation. Below: Corresponding images from the RenderGAN. Last row: Real images of bee’s

markers.

Frontiers in Robotics and AI | www.frontiersin.org 3 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

FIGURE 4 | Augmentations of the RenderGAN applied to the BeesBook project. The arrows from G to the augmentations φ depict the inputs to the augmentations.

The generator provides the position and orientations to the 3D model, whereas the bits are sampled uniformly. On top, the output of each stage is shown. The output

of φdetail is forwarded to the discriminator.

3.2.2. Lighting of the Tag
The images from the 3D model are binary. In real images, tags
exhibit different shades of gray. We model the lighting by a
smooth scaling and shifting of the pixel intensities. The generator
provides three outputs for the lighting: scaling of black parts
sb, scaling of white parts sw and a shift t. All outputs have
the same dimensions as the image x. An important invariant is
that the black bits of the tag must stay darker than the white
bits. Otherwise, a bit could flip, and the label would change. By
restricting the scaling sw and sb to be between 0.10 and 1, we
ensure that this invariant holds. The lighting is locally corrolated
and should cause smooth changes in the image. Hence, Gaussian
blur b(x) is applied to sb, sw, and t.

φlighting(x, sw, sb, t) = x ·b(sw) ·W(x)+x ·b(sb) · (1−W(x))+b(t)
(2)

The segmentation mask W(x) is one for white parts and zero
for the black part of the image. As the intensity of the input
is distributed around −1 and 1, we can use thresholding to
differentiate between black and white parts.

3.2.3. Background
The background augmentation can change the background pixels
arbitrarily. A segmentationmask Bx marks the background pixels
of the image xwhich are replaced by the pixels from the generated
image d.

φbg(x, d) = x · (1− Bx) + d · Bx (3)

The 3D model provides the segmentation mask. As φbg can only
change background pixels, the labels remain unchanged.

3.2.4. Details
In this stage, the generator can add small details to the whole
image including the tag. The output of the generator d is passed
through a high-pass filter to ensure that the added details are
small enough not to flip a bit. Furthermore, d is restricted to be

in [−2, 2] to make sure the generator cannot avoid the highpass
filter by producing huge values. With the range [−2, 2], the
generator has the possibility to change black pixels to white,
which is needed to model spotlights.

φdetail(x, d) = x+ highpass(d) (4)

The high-pass is implemented by taking the difference between
the image and a blurred version of the image (σ = 3.5). As
the spotlights on the tags are only a little smaller than the bits,
we increase its slope after the cutoff frequency by repeating the
high-pass filter three times.

The image augmentations are applied in the order as listed
above: φdetail ◦ φbackground ◦ φlighting ◦ φblur . Please note that
there exist parameters to the augmentations that could change
the labels. As long as it is guaranteed that such augmentations
will result in unrealistic looking images, the generator network
will learn to avoid them. For example, even though the detail
augmentation could be used to add high-frequency noise
to obscure the tag, this artifact would be detected by the
discriminator.

3.3. Technical Details
3.3.1. Architecture of the Generator
The generator network has to produce outputs for each
augmentation. Here, we outline the most important parts. In
Appendix E (SupplementaryMaterial), we show how the network
modules are connected and list all layers. The generator starts
with a small network consisting of dense layers, which predicts
the parameters for the 3D model (position, orientations). The
output of another dense layer is reshaped and used as starting
block for a chain of convolution and upsampling layers. We
found it advantageous tomerge a depthmap of the 3Dmodel into
the generator as especially the lighting depends on the orientation
of the tag in space. The input to the blur augmentation is
predicted by reducing an intermediate convolutional feature map

Frontiers in Robotics and AI | www.frontiersin.org 4 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

to a single scalar. An additional network is branched off to predict
the input to the lighting augmentation. For the background
generation, the output of the lighting network is merged back
into the main generator network together with the actual image
from the 3D model.

For the discriminator architecture, we mostly rely on the
architecture given by Radford et al. (2015), but doubled the
number of convolutional layers and added a final dense layer.
This change improved the quality of the generated images.

3.3.2. Clip Layer
Some of the augmentation parameters have to be restricted to
a range of values to ensure that the labels remain valid. The
training did not converge when using functions like tanh or
sigmoid due to vanishing gradients. We are using a combination
of clipping and activity regularization to keep the output in a
given interval [a, b]. If the input x is out of bounds, it is clipped
and a regularization loss r depending on the distance between x
and the appropriate bound is added.

r(x) =

γ ||x− a||1 if x < a

0 if a ≤ x ≤ b

γ ||x− b||1 if x > b

(5)

f (x) = min(max(a, x), b) (6)

With the scalar γ , the weight of the loss can be adapted. For us
γ = 15 worked well. If γ is chosen too small, the regularization
loss might not be big enough to move the output of the previous
layer toward the interval [a, b]. During training, we observe that
the loss decreases to a small value but never vanishes.

3.3.3. Training
We train generator and discriminator as in the normal GAN
setting. We use 2.4 M unlabeled images of tags to train the
RenderGAN. We use Adam (Kingma and Ba, 2014) as an
optimizer with a starting learning rate of 0.0002, which we reduce
in epoch 200, 250, and 300 by a factor of 0.25. In Figure 5B the
training loss of the GAN is shown. The GAN does not converge
to the point where the discriminator can no longer separate
generated from real samples. There is also a difference between
how real and fake tags are scored by the discriminator after
training (see Figure 5A). The augmentation might restrict the
generator too much such that it cannot model certain properties.

Nevertheless, it is hard for a human to distinguish the generated
from real images. In some cases, the generator creates unrealistic
high-frequencies artifacts. The discriminator unfailingly assigns
a low score to theses images. We can therefore discard them for
the training of the supervised algorithm. More generated images
are shown in Appendix A (Supplementary Material). In Figure 6,
we show random points in the latent space, while fixing the tag
parameters. The generator indeed learned to model the various
lighting conditions, noise intensities, and backgrounds.

4. RESULTS

We constructed the RenderGAN to generate labeled data. But
does a DCNN trained with the RenderGAN data perform better
than one trained on the limited amounts of real data? And
are learned augmentations indeed needed or do simple hand-
designed augmentation achieve the same result? The following
paragraphs describe the different datasets used in the evaluation.
We focus on the performance of a DCNN on the generated data.
Thus, we do not compare our method to conventional GANs as
those do not provide labels and are generally hard to evaluate.

4.1. Data From the RenderGAN
We generate 5million tags with the RenderGAN framework. Due
to the abundance, one training sample is only used twice during
training. It is not further augmented.

4.2. Real Data
The labels of the real data are extracted from ground truth data
that was originally collected to evaluate bee trajectories. This
ground truth data contains the path and id of each bee over
multiple consecutive frames. Data from five different time spans
was annotated—in total 66 K tags. As the data is correlated in
time (same ids, similar lighting conditions), we assign the data
from one time span completely to either the train or test set.
The data from three time spans forms the train set (40 K). The
test set (26 K) contains data from the remaining two time spans.
The ground truth data lacks the orientation of the tags, which
is therefore omitted for this evaluation. Due to the smaller size
of the real training set, we augment it with random translation,
rotation, shear transformation, histogram scaling, and noise (see
Appendix C in Supplementary Material for exact parameters).

FIGURE 5 | (A) Histogram of the discriminator scores on fake and real samples. (B) Losses of the generator (G) and discriminator (D).

Frontiers in Robotics and AI | www.frontiersin.org 5 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

FIGURE 6 | Random points in the z-space given the tag parameters.

TABLE 1 | Datasets created with learned representations and hand-designed

augmentations.

Name Learned Hand-Designed

HM 3D 3D model Blur, lighting, background,

noise, spotlights

HM LI 3D model, blur, lighting Background, noise,

spotlights

HM BG 3D model, blur, lighting,

background

Noise, spotlights

4.3. RenderGAN + Real
We also train a DCNN on generated and real data which is mixed
at a 50:50 ratio.

4.4. Handmade Augmentations
We tried to emulate the augmentations learned by the
RenderGAN by hand. For example, we generate the background
by an image pyramid where the pixel intensities are drawn
randomly. We model all effects, i.e., blur, lighting, background,
noise, and spotlights (see Appendix B in Supplementary Material
for details on their implementation). When sampling the 5
million images from the RenderGAN, we also save the simple
tags and all between steps which are then the input to the
augmentations. The augmentations are applied on the fly
during training. Therefore, we can rule out that the amount of
training samples is responsible for the performance differences.
We apply the handmade augmentation to different learned
representations of the RenderGAN, e.g., we use the learned
lighting representation and add the remaining effects such as
background and noise with handmade augmentations (HM
LI). See Table 1 for the different combinations of learned
representations and hand designed augmentations.

4.5. Computer Vision Pipeline CV
The previously used computer vision pipeline (Wario et al., 2015)
is based on manual feature extraction. For example, a modified
Hough transformation to find ellipses. The MHD obtained by
thismodel is only a rough estimate given that the computer vision
pipeline had to be evaluated and fine-tuned on the same data set
due to label scarcity.

4.6. Training Setup
An epoch consists of 1,000 batches á 128 samples. We use early
stopping to select the best parameters of the networks. For the
training with generated data, we use the real training set as the
validation set. When training on real data, the test set is also used
for validation. We could alternatively reduce the real training set
further and form an extra validation set, but this would harm
the performance of the DCNN trained on the real data. We use
the 34-layer ResNet architecture (He et al., 2015) but start with
16 feature maps instead of 64. The DCNNs are evaluated on the
mean Hamming distance (MHD) i.e., the expected value of bits
decoded wrong. Human experts can decode tags with a MHD of
around 0.23.

4.7. Results
In Table 2, we present the results of the evaluation. The training
losses of the networks are plotted in Figure 7. The model trained
with the data generated by the RenderGAN has an MHD of
0.424. The performance can furthermore be slightly improved
by combining the generated with real data. The small gap in
performance when adding real data is a further indicator of the
quality of the generated samples.

If we use predictions from this DCNN instead of the computer
vision pipeline, the accuracy of the tracking improves from 55%
of the ids assigned correctly to 96%. At this quality, it is possible
to analyze the social behavior of the honeybees reliably.

Compared to the handmade augmentations (HM 3D), data
from the RenderGAN leads to considerably better performance.
The large gap in performance between the HM 3D and HM
LI data highlights the importance of the learned lighting
augmentation.

5. DISCUSSION

We proposed a novel extension to the GAN framework for
adding realism to a simplistic 3D object model. Compared to
computer graphics pipelines, the RenderGAN can learn complex
effects from unlabeled data that would be otherwise hard to
model with explicit rules. Contrary to themany variants of GANs,
the generator provides explicit information about the synthesized
images, which can be used as labels for supervised learning. The
training of the RenderGAN requires no labels.

In our project BeesBook, RenderGAN was able to generate
very realistic images of bee markers. A decoder DCNN trained

Frontiers in Robotics and AI | www.frontiersin.org 6 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

TABLE 2 | Comparison of the mean Hamming distance (MHD) on the different data sets. More samples of the training data can be found in Appendix D

(Supplementary Material).

Data MHD Training data

Real 0.956

HM 3D 0.820

HM LI 0.491

HM BG 0.505

RenderGAN 0.424

RenderGAN + Real 0.416

CV 1.08

FIGURE 7 | Training and validation losses of DCNNs trained on different data sets. As some data sets are missing the orientation of the tags, only the loss of the bits

are plotted. Binary crossentropy is used as loss for the bits. The train and validation loss of each dataset have the same color.

on this data outperforms decoders trained on various baselines.
Compared to the previously used non-neural algorithm (Wario
et al., 2015) RenderGAN improved the decoding accuracy
significantly. Consequently the downstream tracking process that
links detections through time improved in several respects. For
the BeesBook project, RenderGAN was a key enabler. Without
accurate ID decodings, a much larger portion of trajectories (and
behaviors that we predict from them) would be assigned incorrect
IDs. We have now created the largest database of honeybee
trajectories consisting of approximately 4,000 animals, followed
over a nine weeks recording period.

We believe that RenderGAN might be applicable to similar
problems in other domains. The specific requirements of the
BeesBook project can be generalized to many popular settings.
Many applications could benefit from a decoder network that
extracts high level properties that are costly to label, such
as the pose of cars, facial features in portrait photos, or the

body posture of pedestrians. Most computer vision algorithms
in these domains rely already on an object model. Applying
RenderGAN would then only require an additional definition
of appropriate augmentations which can model the domain
specific image artifacts. Some augmentations described here,
such as background and the highpass filter, are very general
and could be useful in other areas. Once RenderGAN is set up,
arbitrary amounts of labeled data can be acquired with no further
effort.

Furthermore, the RenderGAN approach can save substantial
amounts of time if the data distribution changes. For example,
if we would alter the marker design in the BeesBook project
to include more bits, only small adaptations to the 3D
model’s source code and potentially some hyperparameters
of the augmentations would be sufficient. In contrast, every
change in object design would require new sessions of manual
labeling.

Frontiers in Robotics and AI | www.frontiersin.org 7 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

6. FUTURE WORK

For future work, it would be interesting to see the RenderGAN
framework used on other tasks, e.g., human faces, pose
estimation, or viewpoint prediction. In different contexts,
different augmentations may be required, for example,
colorization, affine transformations, or diffeomorphism.
The RenderGAN could be especially valuable to domains where
pre-trained models are not available or when the annotations are
complex. Another direction of future work might be to extend
the RenderGAN framework to other fields. For example, in
speech synthesis, one could use an existing software synthesizer
as a basic model and improve the realism of the output with a
similar approach as in the RenderGAN framework.

ETHICS STATEMENT

German law does not require approval of an ethics committee for
studies involving insects.

AUTHOR CONTRIBUTIONS

LS, BW, and TL: conceptualization, data curation, writing-
original draft, writing-review and editing; LS: methodology,
software, visualization; TL: resources, supervision, project
administration.

ACKNOWLEDGMENTS

We acknowledge support by the Open Access Publication
Fund of the Freie Universität Berlin. The BeesBook project
was supported by the Northgerman Supercomputing Alliance
(HLRN), project reference beb00002.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2018.00066/full#supplementary-material

REFERENCES

Blut, C., Crespi, A., Mersch, D., Keller, L., Zhao, L., Kollmann, M., et al. (2017).

Automated computer-based detection of encounter behaviours in groups of

honeybees. Sci. Rep. 7:17663. doi: 10.1038/s41598-017-17863-4

Burt, P., and Adelson, E. (1983). The laplacian pyramid as a compact image code.

IEEE Trans. Commun. 31, 532–540.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel,

P. (2016). Infogan: interpretable representation learning by information

maximizing generative adversarial nets. arXiv preprint arXiv:1606.

03657.

Crall, J. D., Gravish, N., Mountcastle, A. M., and Combes, S. A. (2015). BEEtag:

a low-cost, image-based tracking system for the study of animal behavior

and locomotion. PLoS ONE 10:e0136487. doi: 10.1371/journal.pone.01

36487

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet:

a large-scale hierarchical image database,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2009. CVPR 2009 (Miami Beach, FL),

248–255.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). “Deep generative image

models using a laplacian pyramid of adversarial networks,” in Advances in

Neural Information Processing Systems (Montréal, QC), 1486–1494.

Fiala, M. (2005). “ARTag, a fiducial marker system using digital techniques,”

in 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), Vol. 2 (San Diego, CA), 590–596.

Girshick, R., Donahue, J., Darrell, T., andMalik, J. (2014). “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Columbus, OH),

580–587.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Book in

preparation for MIT Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems (Montréal, QC), 2672–2680.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385.

Kingma, D., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe), 1097–1105.

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for

semantic segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Boston, MA), 3431–3440.

Loper, M. M., and Black, M. J. (2014). “Opendr: an approximate differentiable

renderer,” in European Conference on Computer Vision (Zürich: Springer),

154–169.

Massa, F., Russell, B., and Aubry, M. (2015). Deep exemplar 2d-3d detection by

adapting from real to rendered views. arXiv preprint arXiv:1512.02497.

Mersch, D. P., Crespi, A., and Keller, L. (2013). Tracking individuals shows spatial

fidelity is a key regulator of ant social organization. Science 340, 1090–1093.

doi: 10.1126/science.1234316

Peng, X., Sun, B., Ali, K., and Saenko, K. (2015). Learning deep object detectors

from 3D models. ICCV (Santiago).

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks.

arXiv:1511.06434.

Ratner, A. J., Ehrenberg, H. R., Hussain, Z., Dunnmon, J., and Ré, C. (2017).

Learning to compose domain-specific transformations for data augmentation.

arXiv preprint arXiv:1709.01643.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). “Cnn features

off-the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern RecognitionWorkshops (Columbus,

OH), 806–813.

Richter, S. R., Vineet, V., Roth, S., and Koltun, V. (2016). “Playing for data: ground

truth from computer games,” in European Conference on Computer Vision

(Amsterdam: Springer), 102–118.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016). “The

synthia dataset: a large collection of synthetic images for semantic segmentation

of urban scenes,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 3234–3243.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., and Webb, R.

(2016). Learning from simulated and unsupervised images through adversarial

training. arXiv preprint arXiv:1612.07828.

Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with

categorical generative adversarial networks. arXiv preprint arXiv:1511.06390.

Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015). “Render for CNN: viewpoint

estimation in images using cnns trained with rendered 3d model views,”

in Proceedings of the IEEE International Conference on Computer Vision

(Santiago), 2686–2694.

Frontiers in Robotics and AI | www.frontiersin.org 8 June 2018 | Volume 5 | Article 66

https://www.frontiersin.org/articles/10.3389/frobt.2018.00066/full#supplementary-material
https://doi.org/10.1038/s41598-017-17863-4
https://doi.org/10.1371/journal.pone.0136487
https://doi.org/10.1126/science.1234316
https://doi.org/10.1007/s11263-015-0816-y
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Sixt et al. Generating Realistic Labeled Data

Wang, X., and Gupta, A. (2016). Generative image modeling using style and

structure adversarial networks. arXiv preprint arXiv:1603.05631.

Wario, F., Wild, B., Couvillon, M. J., Rojas, R., and Landgraf, T. (2015).

Automatic methods for long-term tracking and the detection and

decoding of communication dances in honeybees. Front. Ecol. Evol. 3:103.

doi: 10.3389/fevo.2015.00103

Wu, J., Xue, T., Lim, J. J., Tian, Y., Tenenbaum, J. B., Torralba, A., et al. (2016).

“Single image 3d interpreter network,” in European Conference on Computer

Vision (Springer), 365–382.

Xiang, Y., Mottaghi, R., and Savarese, S. (2014). “Beyond pascal: a benchmark for

3d object detection in the wild,” in IEEE Winter Conference on Applications of

Computer Vision, 75–82.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). “How transferable

are features in deep neural networks?” in Advances in Neural Information

Processing Systems (Montréal, QC), 3320–3328.

Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., and Efros, A. A. (2016). “Learning

dense correspondence via 3d-guided cycle consistency,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Las Vegas, NV),

117–126.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Sixt, Wild and Landgraf. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 9 June 2018 | Volume 5 | Article 66

https://doi.org/10.3389/fevo.2015.00103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	RenderGAN: Generating Realistic Labeled Data
	1. Introduction
	2. Related Work
	3. RenderGAN
	3.1. 3D Model
	3.2. Augmentations
	3.2.1. Blurriness
	3.2.2. Lighting of the Tag
	3.2.3. Background
	3.2.4. Details

	3.3. Technical Details
	3.3.1. Architecture of the Generator
	3.3.2. Clip Layer
	3.3.3. Training

	4. Results
	4.1. Data From the RenderGAN
	4.2. Real Data
	4.3. RenderGAN + Real
	4.4. Handmade Augmentations
	4.5. Computer Vision Pipeline CV
	4.6. Training Setup
	4.7. Results

	5. Discussion
	6. Future Work
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

