
CODE
published: 24 July 2018

doi: 10.3389/frobt.2018.00087

Frontiers in Robotics and AI | www.frontiersin.org 1 July 2018 | Volume 5 | Article 87

Edited by:

Carlo Pinciroli,

Worcester Polytechnic Institute,

United States

Reviewed by:

Andreagiovanni Reina,

University of Sheffield,

United Kingdom

Lenka Pitonakova,

University of Bristol, United Kingdom

Jerome Guzzi,

Dalle Molle Institute for Artificial

Intelligence Research, Switzerland

*Correspondence:

Alan G. Millard

alan.millard@york.ac.uk

Specialty section:

This article was submitted to

Multi-Robot Systems,

a section of the journal

Frontiers in Robotics and AI

Received: 01 March 2018

Accepted: 29 June 2018

Published: 24 July 2018

Citation:

Millard AG, Redpath R, Jewers AM,

Arndt C, Joyce R, Hilder JA,

McDaid LJ and Halliday DM (2018)

ARDebug: An Augmented Reality Tool

for Analysing and Debugging Swarm

Robotic Systems.

Front. Robot. AI 5:87.

doi: 10.3389/frobt.2018.00087

ARDebug: An Augmented Reality
Tool for Analysing and Debugging
Swarm Robotic Systems
Alan G. Millard 1,2*, Richard Redpath 1,2, Alistair M. Jewers 1,2, Charlotte Arndt 1,2,

Russell Joyce 1,3, James A. Hilder 1,2, Liam J. McDaid 4 and David M. Halliday 2

1 York Robotics Laboratory, University of York, York, United Kingdom, 2Department of Electronic Engineering, University of

York, York, United Kingdom, 3Department of Computer Science, University of York, York, United Kingdom, 4 School of

Computing and Intelligent Systems, Ulster University, Derry, United Kingdom

Despite growing interest in collective robotics over the past few years, analysing and

debugging the behaviour of swarm robotic systems remains a challenge due to the lack

of appropriate tools. We present a solution to this problem—ARDebug: an open-source,

cross-platform, and modular tool that allows the user to visualise the internal state of a

robot swarm using graphical augmented reality techniques. In this paper we describe the

key features of the software, the hardware required to support it, its implementation, and

usage examples. ARDebug is specifically designed with adoption by other institutions in

mind, and aims to provide an extensible tool that other researchers can easily integrate

with their own experimental infrastructure.

Keywords: swarm robotics, augmented reality, debugging, open-source, cross-platform, code:c++

1. INTRODUCTION AND RELATED WORK

Debugging robotic systems is an inherently complex task, and the traditional software debugging
tools currently available are of limited use. Erroneous behaviour can be attributed to either bugs in
a robot’s control code, or faults in its hardware, and determining the cause of the problem is often
challenging due to the lack of feedback regarding the robot’s internal state. Simple hardware such
as on-board LEDs or LCD screens may be used to signal data to an experimenter (McLurkin et al.,
2006), however such methods are only able to convey small quantities of information. Remotely
connecting to a robot may allow an experimenter to capture detailed debug messages, but this kind
of output can be difficult to correlate with the behaviour of the robot in real-time.

These problems are exacerbated when working with swarm robotic systems (Brambilla et al.,
2013), where the quantity of debugging information required to locate and resolve a bug increases
with the number of robots in the system. Large volumes of text-based debug messages concurrently
transmitted by multiple robots are difficult for a human experimenter to interpret in real-time,
and can easily become overwhelming. Moreover, the behaviour of an individual robot in a
swarm robotic system is a product of not only its hardware, software, and interactions with its
environment, but also its interactions with other robots. This increases the number of variables
that may affect a specific robot’s behaviour, which an experimenter must keep track of in order to
isolate a bug.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2018.00087
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00087&domain=pdf&date_stamp=2018-07-24
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alan.millard@york.ac.uk
https://doi.org/10.3389/frobt.2018.00087
https://www.frontiersin.org/articles/10.3389/frobt.2018.00087/full
http://loop.frontiersin.org/people/514710/overview
http://loop.frontiersin.org/people/336620/overview
http://loop.frontiersin.org/people/531378/overview
http://loop.frontiersin.org/people/530455/overview
http://loop.frontiersin.org/people/530432/overview
http://loop.frontiersin.org/people/530445/overview
http://loop.frontiersin.org/people/11888/overview
http://loop.frontiersin.org/people/2994/overview

Millard et al. ARDebug: Robot Swarm Debugging Tool

Various debugging tools already exist for single- and multi-
robot systems, but very few have been created specifically for use
with robot swarms. Perhaps the most general-purpose tools are
the rviz1 3D visualiser and rqt2 GUI development framework
for the Robot Operating System (ROS) (Quigley et al., 2009).
However, due to its centralised architecture, ROS has not yet been
widely adopted by the swarm robotics community. Following the
recent official release of ROS 2.0, which features a distributed
architecture, ROS may eventually gain traction with swarm
roboticists. Until then, new tools and techniques are required to
make the task of analysing and debugging the behaviour of swarm
robotic systems easier for researchers.

It has been shown that augmented reality—the process of
superimposing computer-generated graphics onto a view of
the real world, to create a composite perspective (Azuma,
1997)—can be used to overcome some of the limitations of
traditional debugging tools when engineering robotic systems
(Collett and MacDonald, 2010). For example, Ghiringhelli et al.
(2014) demonstrated a promising approach to debugging multi-
robot systems, by augmenting a video feed with real-time
information obtained from the robots being observed. Although
the generalisability of their system was somewhat limited due to
dependence on specialised robotic hardware, they showed that
augmented reality tools can be used effectively for debugging
multi-robot systems.

This paper presents ARDebug—a novel augmented reality
tool that is specifically designed for analysing and debugging the
behaviour of swarm robotic systems, which builds on the success
of Ghiringhelli et al. (2014), offering a more generalised tool that
can meet the requirements of a wider variety of swarm systems. It
provides an experimenter with a single intuitive interface through
which they can view the internal state of robots in a swarm in
real-time, making the process of identifying, locating, and fixing
bugs significantly easier. Similar mixed reality (Hoenig et al.,
2015) applications exist that allow robots to perceive augmented
reality environments through the use of virtual sensors (Reina
et al., 2015, 2017; Antoun et al., 2016), which can aid the
debugging process through the creation of reproducible virtual
environments, but ARDebug differs from these tools in its
focus on presenting detailed debugging information to a human
experimenter.

2. SYSTEM ARCHITECTURE

ARDebug works in real-time, tracking each of the robots within
a video feed and combining their position information with
other internal data obtained wirelessly from the robots. By fusing
these data sources, researchers are provided with a new tool for
identifying bugs and diagnosing faults in robot swarms. Users
are able to compare the internal data that defines each robot’s
“understanding” of its environment, against a view of that same
environment, thus making any perception anomalies apparent.

An experimenter is also able to observe the behaviour of a
swarm robotic system while simultaneously being informed of

1http://wiki.ros.org/rviz
2http://wiki.ros.org/rqt

changes to each robot’s state. ARDebug uses graphical augmented
reality techniques alongside more traditional textual/visual data
presentation to make this possible, with the aim of reducing the
time required for a user to identify bugs or faults. The primary use
case for the system is in lab-based development and debugging of
new robot behaviours, prior to their use in experimental work or
deployment in the field.

The experimental infrastructure required for the debugging
system presented in this paper comprises three main
components: the robots themselves, a tracking system, and
the core ARDebug software (described in section 3). A host
machine collects data sent wirelessly from the individual
robots, as well as position and orientation (or pose) data from a
tracking system. The application then combines these sources of
information and presents them to the user.

2.1. Tracking Infrastructure
In our own experimental setup, the position and orientation of
each robot is tracked using a JAI GO 5000C-PGE 5-megapixel
camera (maximum resolution of 2,560 × 2,048), and the ArUco
fiducial marker detection library (Garrido-Jurado et al., 2014).
The camera is positioned 2.5m above the centre of the arena,
which is approximately 2.5m square. A 5.2 cm square ArUco
marker, is attached to the top of each robot and tracked by
the camera using ArUco image processing algorithms built into
OpenCV (Bradski, 2000). The image coordinates of each tag can
be easily converted into real-world coordinates using a simple
camera back-projection model (Sturm et al., 2011).

The use of a passive marker-based tracking algorithm means
that no additional hardware is required to track the robots;
any robot can be tracked as long as a fiducial marker can be
attached to it. The minimum tracking hardware required to use
ARDebug is incredibly low cost—ArUco tags that can simply be
printed on paper, and a single visible-light camera of sufficient
resolution to decode the fiducial markers at the desired distance.
Inexpensive low-resolution cameras can be used if necessary,
either by printing larger ArUco tags, or by generating a set of
markers that are easier to distinguish at longer distances.

Alternative tracking systems can also be integrated into the
system with relative ease, by sending tracking data to the core
ARDebug application in JSON3 format. For example, an infra-
red (IR) motion capture system such as OptiTrack (Millard et al.,
2014) or Vicon4 could be used instead in conjunction with a
visible-light camera.

2.2. Robot Platform
ARDebug is designed to be agnostic to the robot platform used—
any robot that can transmit its internal state in JSON format
via Wi-Fi or Bluetooth can be integrated with the software.
We provide example code for integrating the system with
two different swarm robotic platforms: the widely-used e-puck
(Mondada et al., 2009) viaWi-Fi, and the Psi Swarm (Hilder et al.,
2016) via Bluetooth.

3https://www.json.org
4https://www.vicon.com

Frontiers in Robotics and AI | www.frontiersin.org 2 July 2018 | Volume 5 | Article 87

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
https://www.json.org
https://www.vicon.com
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Millard et al. ARDebug: Robot Swarm Debugging Tool

In order to enable Wi-Fi communication with ARDebug,
we have equipped each of our e-puck robots with a Linux
extension board (Liu and Winfield, 2011) featuring an ARM
processor and a Wi-Fi adapter. Robot control code was written
for the ARM processor using the ARGoS framework (Garattoni
et al., 2015), which communicates with the e-puck’s dsPIC
microcontroller that interfaces with the robot’s sensors and
actuators. This extension board could equivalently be replaced
with the popular Gumstix Overo COM turret5, or the new Pi-
puck extension board (Millard et al., 2017), which extends the
e-puck’s capabilities by interfacing it with a Raspberry Pi single-
board computer.

The Psi Swarm robot instead communicates with ARDebug
via Bluetooth, using control code written for its mbed
microcontroller. Despite using a different communication
protocol, the data transmitted to/from the robot conforms to
the same JSON interface. These two sets of example code are
provided to make it easy for other users to integrate their own
robot platforms with ARDebug.

3. ARDEBUG SOFTWARE

ARDebug displays data retrieved from the robots superimposed
onto a video feed of the arena, in conjunction with robot
pose data obtained via a tracking system. The design of the
user interface focuses on presenting information to the user
in a structured manner that is readily understood. High-level
information is made available by means of graphical and textual
overlays, with the ability to access more detailed information
about the selected robot(s) via data tables and real-time charts.
Previous research into interfaces for interacting with multi-robot
systems has shown that users prefer this type of design (Rule and
Forlizzi, 2012). Due to the volumes of data present in swarm
systems, these filtering capabilities are critically important for
focusing on the key data elements relevant to the task at hand.

3.1. Key Features
The ARDebug GUI, shown in Figure 1, is split into four regions.
The visualiser (top-left) displays the augmented video feed, and
can generate overlays showing a robot’s position, orientation,
ID, and any data that the robot reports via the JSON interface.
Each of these overlays can be individually set to display for
all of the selected robots in the system, or for only one robot.
The connection pane (top-right), is used to display a list of the
robots currently known to the system, and tabs allow access
to network controls, Bluetooth device management, and data
logging settings. The details pane (bottom) is used to display data
transmitted by the selected robot(s), which can be overlaid onto
the video feed, or displayed visually as a real-time chart in the
fourth region of the application. A video demonstrating the use
of these features to debug a swarm robotic system can be found
on our website6.

The Data Visualisation tab lists data transmitted by the
selected robot(s) to the ARDebug application. This data is

5http://www.gctronic.com/doc/index.php/Overo_Extension
6https://www.york.ac.uk/robot-lab/ardebug/

formatted as a series of key/value pairs, allowing the user to
report any information from within their robot code that they
deem important to the debugging process. For example, the user
can define custom data fields such as the robot’s current battery
voltage, control code iteration, or random walk timer value. Each
of these custom data elements can be simultaneously displayed
on the visualiser; battery voltage could even be rendered as
a floating bar next to each robot if desired. Users can easily
add their own visualisations to the software by subclassing an
abstract visualisation element class, and drawing with geometric
primitives.

These key/value pairs can also be visualised using real-time
charts. For example, ARDebugwill display any array of numerical
values as a bar chart. This feature can be used to graphically
represent a robot’s sensor readings, such as ambient and reflected
infra-red light. Strings, such as the robot’s current state, are
instead displayed as a pie chart showing the distribution of
values across the selected robots, which are assigned colours
in the visualiser in relation to the segments of the chart (as
shown in Figure 1). This information can be useful to determine
whether a robot is getting stuck in a particular state under certain
conditions. Finally, single numerical values, such as a robot’s
battery voltage, are visualised as a line chart displaying the recent
history of reported values over time.

ARDebug also offers a number of convenience features,
including: data logging for post-experiment analysis; selection of
robots via the visualiser, so they can be more easily differentiated
or flagged for analysis; and the inclusion of ArUco tag detection
as a core feature of the application, making it easier for users to
get started with the software. The mapping between ArUco tags
and robot IDs can be configured by simply modifying a JSON
configuration file (a default mapping file is generated if one is not
found).

3.2. Implementation
ARDebug has been implemented following a model-view-
controller (MVC) architecture (Krasner and Pope, 1988), and is
designed to be highly modular. Figure 2 shows a breakdown of
the software architecture, including the key modules, organised
according to both MVC layer and threading.

The Model layer contains data describing the current state
of the robots, which is dealt with by the data model. New data
from the robots or tracking system is received and parsed in the
Controller layer, on task-specific threads, before being passed to
the application controller, which handles updating themodel. The
View layer contains the user interface and is updated regularly to
display the contents of the model, as well as receiving and passing
user input messages to the central application controller. Using
anMVC architecture in this way ensures that only one copy of the
data describing the robots is maintained, and state information
is not entangled within the user interface. Combined with the
modular design, this allows individual elements of the software
to be easily replaced without disrupting other elements or the
overall structure.

The software is currently known to work under Ubuntu 16.04
or later, and macOS 10.13.5. OpenCV and the Qt application

Frontiers in Robotics and AI | www.frontiersin.org 3 July 2018 | Volume 5 | Article 87

http://www.gctronic.com/doc/index.php/Overo_Extension
https://www.york.ac.uk/robot-lab/ardebug/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Millard et al. ARDebug: Robot Swarm Debugging Tool

FIGURE 1 | The ARDebug user interface, showing a top-down view of a heterogeneous swarm comprising Linux-enhanced e-pucks and Psi Swarm robots. The Data

Visualisation tab shows internal data received from the selected robot that can optionally be overlaid onto the video feed, along with the robot’s recent trajectory

history and graphical representations of its sensor readings. In this particular example, a real-time pie chart is also used to visualise the distribution of internal state

data across the swarm.

framework7 were chosen as the base upon which to build
the ARDebug software, as they are mature, cross-platform
libraries, with refined APIs and extensive documentation. They
are also free, open-source software—Qt is released under GNU
Lesser General Public License v3.0; and OpenCV, along with its
implementation of the ArUco library, is released under the 3-
Clause BSD License. It is hoped that the use of these libraries will
enhance the maintainability and longevity of ARDebug.

3.3. Scalability
We have tested ARDebug with heterogeneous swarms of up 25
robots (15 e-pucks and 10 Psi Swarm robots), communicating
with the application via a combination of Wi-Fi and Bluetooth in
100ms intervals.With the software running on a server housing a
16-core Intel Xeon E5520 (2.27GHz) and 16GB RAM, ARDebug
was able to track all of the robots and visualise their internal
state in real-time. OpenCV’s ArUco library implementation
supports multi-threaded execution, so scales well as the number
of robots in a swarm increases. We have verified that the
software is able to track up to 50 ArUco tags in real-time, which
is representative of the number of robots used in large-scale
swarm experiments [excluding miniature robotic platforms such
as Kilobots (Rubenstein et al., 2012) or Droplets (Farrow et al.,
2014), which are not supported by ARDebug].

7https://www.qt.io

If the experimental arena covers a large spatial area, then
it may be necessary to stitch together images from multiple
overhead cameras in order to track an entire swarm. If high
resolution cameras are used, the computational load can be
distributed by performing ArUco tag detection on multiple
servers, which then send tracking data to the ARDebug
application via the JSON interface.

The performance of the application (post-tracking) is largely
independent of number of robots, the amount of data they send,
and the frequency they send it at. This is because ARDebug
collates received data over a short time window before triggering
an update to the GUI, instead of updating the user interface upon
receipt of each JSON packet.

3.4. Current Limitations
ARDebug is currently limited to tracking robots in a 2D plane,
but could be extended for use with flying robots moving in
three dimensions if integrated with a tracking system such as
OptiTrack or Vicon. The application is also only able to integrate
with robotic platforms that can communicate with a server via
Bluetooth orWi-Fi. This therefore excludes Kilobots (Rubenstein
et al., 2012) andDroplets (Farrow et al., 2014), which are only able
to communicate via IR light.

An inherent limitation of the Bluetooth specification means
that only 7 robots can simultaneously connect to a single
Bluetooth adapter. In order to use ARDebug with more
than 7 Bluetooth-connected robots, it is necessary to use

Frontiers in Robotics and AI | www.frontiersin.org 4 July 2018 | Volume 5 | Article 87

https://www.qt.io
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Millard et al. ARDebug: Robot Swarm Debugging Tool

FIGURE 2 | ARDebug software architecture. Components are split across Model, View, and Controller layers, and Main, Network, and Camera threads.

multiple adapters that communicate with up to 7 robots
each. If Wi-Fi/Bluetooth communication is used for inter-robot
communication as part of an experiment, then also sending data
to ARDebug may create a communication bottleneck. However,
this can be mitigated by reducing the amount and frequency of
data transmitted to the application.

4. CONCLUSIONS

Appropriate debugging tools are necessary if the behaviour
of swarm robotic systems are to be analysed and debugged
effectively. In particular, tools are needed that allow an
experimenter to visually inspect and interpret the data held by
each robot in the system. This paper has presented ARDebug—
a tool for monitoring a robot swarm by displaying its internal
data in real-time. Augmented reality techniques are employed
to visualise the data, with the aim of making it readily
understandable, and therefore quicker to parse than numerical
or textual data alone.

ARDebug aims for minimal hardware requirements, cross-
platform compatibility, and is implemented in a modular
fashion to allow easy modification and integration with different
hardware. The software is open-source (released under the GNU
General Public License v3.0), and has been made freely available
online in the hope that it will contribute a useful tool to the field

of swarm robotics research: 10.5281/zenodo.1283488 (Datasheet
1 in Supplementary Material).

Scenarios in which ARDebug is envisioned to be useful
include: diagnosing robot control code bugs, identifying sensor
hardware faults or calibration issues, and verifying actuator
hardware operation. Access to internal state information and
decision-making variables could aid in debugging robot control
code, for instance, by checking that state transitions are occurring
in response to stimuli, or by checking that variables are being
updated correctly.

A number of future extensions to the system are planned:
support for scripting custom video augmentations, to allow
users to more easily tailor the system to their own needs; video
recording and data log replay, formore in-depth post-experiment
analysis and debugging; and bidirectional communication
between ARDebug and the robots, allowing the software to be
used as a central experiment controller.

AUTHOR CONTRIBUTIONS

AM, RR, and AJ wrote sections of the paper. AJ wrote the initial
version of the software and documentation, which was then
developed further by AM, RR, and CA. AM, RJ, and JH worked
on experimental infrastructure that enabled the development of
the software. LM and DH supervised the project.

Frontiers in Robotics and AI | www.frontiersin.org 5 July 2018 | Volume 5 | Article 87

https://doi.org/10.5281/zenodo.1283488
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Millard et al. ARDebug: Robot Swarm Debugging Tool

FUNDING

This work is funded by EPSRC grants EP/N007050/1 and
EP/L000563/1.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2018.00087/full#supplementary-material

REFERENCES

Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., and Dorigo, M.

(2016). “Kilogrid: a modular virtualization environment for the Kilobot robot,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Daejeon: IEEE), 3809–3814.

Azuma, R. T. (1997). A survey of augmented reality. Presence Teleoperat. Virtual

Environ. 6, 355–385.

Bradski, G. (2000). The OpenCV Library. Dobbs J. Softw. Tools 25, 120–

123. Available online at: http://www.drdobbs.com/open-source/the-opencv-

library/184404319

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:

a review from the swarm engineering perspective. Swarm Intell. 7, 1–41.

doi: 10.1007/s11721-012-0075-2

Collett, T. H. J., and MacDonald, B. A. (2010). An augmented reality debugging

system for mobile robot software engineers. J. Softw. Eng. Robot 1, 18–32.

Available online at: http://hdl.handle.net/2292/8956

Farrow, N., Klingner, J., Reishus, D., and Correll, N. (2014). “Miniature six-channel

range and bearing system: algorithm, analysis and experimental validation,”

in IEEE International Conference on Robotics and Automation (ICRA) (Hong

Kong), 6180–6185.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M.

(2015). Software Infrastructure for e-puck (and TAM). Technical Report

TR/IRIDIA/2015-004, Université Libre de Bruxelles.

Garrido-Jurado, S., noz Salinas, R. M., Madrid-Cuevas, F., and Marín-

Jiménez, M. (2014). Automatic generation and detection of highly

reliable fiducial markers under occlusion. Pattern Recogn. 47, 2280–2292.

doi: 10.1016/j.patcog.2014.01.005

Ghiringhelli, F., Guzzi, J., Di Caro, G. A., Caglioti, V., Gambardella, L. M.,

and Giusti, A. (2014). “Interactive augmented reality for understanding and

analyzing multi-robot systems,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (Chicago, IL), 1195–1201.

Hilder, J. A., Horsfield, A., Millard, A. G., and Timmis, J. (2016). “The Psi swarm:

a low-cost robotics platform and its use in an education setting,” in Conference

Towards Autonomous Robotic Systems (Sheffield: Springer), 158–164.

Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., and Ayanian, N. (2015).

“Mixed reality for robotics,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (Hamburg), 5382–5387.

Krasner, G. E., and Pope, S. T. (1988). A description of the model-view-controller

user interface paradigm in the smalltalk-80 system. J. Object Oriented Program.

1, 26–49.

Liu, W., and Winfield, A. F. T. (2011). Open-hardware e-puck Linux extension

board for experimental swarm robotics research. Microprocess. Microsyst. 35,

60–67. doi: 10.1016/j.micpro.2010.08.002

McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., and Schmidt, B.

(2006). “Speaking swarmish: human-robot interface design for large swarms of

autonomous mobile robots,” in AAAI Spring Symposium: To Boldly Go Where

No Human-Robot Team Has Gone Before (Palo Alto, CA), 72–75.

Millard, A. G., Hilder, J. A., Timmis, J., and Winfield, A. F. T. (2014). “A low-

cost real-time tracking infrastructure for ground-based robot swarms,” in

Proceedings of the 9th International Conference on Swarm Intelligence (ANTS)

(Brussels: Springer), 278–279.

Millard, A. G., Joyce, R., Hilder, J. A., Fleşeriu, C., Newbrook, L., Li, W., et al.

(2017). “The Pi-puck extension board: a Raspberry Pi interface for the e-puck

robot platform,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Vancouver, BC), 741–748.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009).

“The e-puck, a robot designed for education in engineering,” in Proceedings

of the 9th Conference on Autonomous Robot Systems and Competitions, Vol. 1,

(Castelo Branco), 59–65.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:

an open-source robot operating system,” in ICRA Workshop on Open Source

Software, Vol. 3 (Kobe), 5.

Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A., and Sabo, C. (2017).

ARK: augmented reality for Kilobots. IEEE Robot. Autom. Lett. 2, 1755–1761.

doi: 10.1109/LRA.2017.2700059

Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., et al.

(2015). “Augmented reality for robots: virtual sensing technology applied to

a swarm of e-pucks,” in NASA/ESA Conference on Adaptive Hardware and

Systems (AHS) (Montreal, QC: IEEE), 1–6.

Rubenstein, M., Ahler, C., and Nagpal, R. (2012). “Kilobot: A low cost scalable

robot system for collective behaviors,” in IEEE International Conference on

Robotics and Automation (ICRA) (Saint Paul, MN: IEEE), 3293–3298.

Rule, A., and Forlizzi, J. (2012). “Designing interfaces for multi-user, multi-

robot systems,” in Proceedings of the Seventh Annual ACM/IEEE International

Conference on Human-Robot Interaction (Boston, MA), 97–104.

Sturm, P., Ramalingam, S., Tardif, J.-P., Gasparini, S., and Barreto, J. (2011).

“Camera models and fundamental concepts used in geometric computer

vision,” in Foundations and Trends in Computer Graphics and Vision, 36–89.

Available online at: https://hal.archives-ouvertes.fr/inria-00590269/

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Millard, Redpath, Jewers, Arndt, Joyce, Hilder, McDaid and

Halliday. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 6 July 2018 | Volume 5 | Article 87

https://www.frontiersin.org/articles/10.3389/frobt.2018.00087/full#supplementary-material
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
https://doi.org/10.1007/s11721-012-0075-2
http://hdl.handle.net/2292/8956
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.micpro.2010.08.002
https://doi.org/10.1109/LRA.2017.2700059
https://hal.archives-ouvertes.fr/inria-00590269/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	ARDebug: An Augmented Reality Tool for Analysing and Debugging Swarm Robotic Systems
	1. Introduction and Related Work
	2. System Architecture
	2.1. Tracking Infrastructure
	2.2. Robot Platform

	3. ARDebug Software
	3.1. Key Features
	3.2. Implementation
	3.3. Scalability
	3.4. Current Limitations

	4. Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References

