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This work presents a bio-inspired grasp stiffness control for robotic hands based on

the concepts of Common Mode Stiffness (CMS) and Configuration Dependent Stiffness

(CDS). Using an ellipsoid representation of the desired grasp stiffness, the algorithm

focuses on achieving its geometrical features. Based on preliminary knowledge of

the fingers workspace, the method starts by exploring the possible hand poses that

maintain the grasp contacts on the object. This outputs a first selection of feasible grasp

configurations providing the base for the CDS control. Then, an optimization is performed

to find the minimum joint stiffness (CMS control) that would stabilize these grasps. This

joint stiffness can be increased afterwards depending on the task requirements. The

algorithm finally chooses among all the found stable configurations the one that results

in a better approximation of the desired grasp stiffness geometry (CDS). The proposed

method results in a reduction of the control complexity, needing to independently regulate

the joint positions, but requiring only one input to produce the desired joint stiffness.

Moreover, the usage of the fingers pose to attain the desired grasp stiffness results in

a more energy-efficient configuration than only relying on the joint stiffness (i.e., joint

torques) modifications. The control strategy is evaluated using the fully actuated Allegro

Hand while grasping a wide variety of objects. Different desired grasp stiffness profiles

are selected to exemplify several stiffness geometries.

Keywords: bio-inspired, grasping, stiffness, robotic hand, under-actuation

1. INTRODUCTION

The human hand shows a high level of dexterity that allows to perform numerous complex tasks.
Therefore, it is often used as inspiration for designing robots to operate in human environments.

The five-fingered Shadow Dexterous HandTM1 and the Awiwi Hand (Grebenstein, 2014) are
examples of such a bio-inspired conception. Their anthropomorphic design endows the robotic
hands with a similar kinematic workspace to that of a human hand. Moreover, these robots use
actuation and perception systems that allow to imitate the dynamic movements of human hands
and to grasp a wide variety of objects. Nevertheless, the required number of sensing and actuation
units in such poly-articulated hands has contributed to an increased cost and complexity in their
manufacturing.

With the aim to introduce principled simplification strategies in the design or control of robotic
hands, recent works use underactuated and compliant mechanisms. These are endowed with

1www.shadowrobot.com/products/dexterous-hand/
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compliant elements and fewer actuators than degrees of freedom,
proving to be an effective way to reduce the design complexity
of robotic hands and prostheses, while maintaining their bio-
inspired shape (Controzzi et al., 2017; Mottard et al., 2017).

Alternatively, other approaches reproduced the human ability
to generate coordinated movements in the joint space using
the concept of postural synergies (Santello et al., 1998). These
synergies have been tackled not only from the hardware
perspective (Ajoudani et al., 2014; Catalano et al., 2014), but also
from the software viewpoint (Gioioso et al., 2013).

In this paper, we focus on another important feature
of human grasp which so far has drawn less attention: a
principled simplification of grasp stiffness control. Previous
works like Cutkosky and Kao (1989) and Prattichizzo and
Trinkle (2016) have tackled the issue through an extensive
mathematical analysis of robotic grasp compliance and its
components. Still, they dealt more with the study of the
main influencing components on the grasp compliance, rather
than providing a high-level control to modulate it. Sauser
et al. (2012) and Li et al. (2014) proposed different ways
to learn and adapt the grasp based on a desired stiffness
or external disturbances, respectively. These methods used
force-sensors as input information, and relied on human
demonstrations that needed to be re-defined when the object
changed.

While these studies addressed the grasp stiffness problem from
a more classic robotics point of view, here we propose a bio-
inspired approach that aims to reproduce the human stiffening
behavior in a robotic hand. In fact, humans have developed
effective strategies to grasp tools depending on the task to be
performed, and in particular on the task requirements in terms
of stiffness. Drilling a wall, for example, requires to be very stiff
in the direction perpendicular to the surface, while remaining
compliant in the other directions to comply to possible external
disturbances. Instead, in a fine painting task, the grasp should
be stiff on the plane parallel to the wall, while being compliant
in the perpendicular direction to the surface to comply with the
disturbances caused by the wall irregularities.

Two main concepts are at the basis of how humans control
the stiffness of the fingers that results in the object grasp
stiffness: (i) the Configuration Dependent Stiffness (CDS),
and (ii) the Common Mode Stiffness (CMS). CDS and CMS
mechanisms were firstly observed in the human arm stiffness
control. Patterns of stiffness variation depending on the arm
posture (CDS) were observed for the human arm in Mussa-
Ivaldi et al. (1985), while the work in Milner (2002) showed
that adjusting posture is more effective than using the joint
stiffness to stabilize the hand position in the presence of
external disturbances. These observations were successfully
exploited in the control framework of a robot arm (Ajoudani
et al., 2013, 2015a). Moreover, in Ajoudani et al. (2013), a
CMS variable was used to implement a coordinated activation
across the arm joints, and, simultaneously, a CDS variable was
employed to control the redundant kinematic DoFs. Assuming
an ellipsoidal representation of the endpoint stiffness (Mussa-
Ivaldi et al., 1985), the CMS variable regulated the volume
of the endpoint stiffness ellipsoid, whereas the CDS variable

modified its geometry by controlling the nullspace velocity of the
manipulator.

Similarly, regarding the stiffness control of the human
hand, Milner and Franklin found that humans can modify the
endpoint stiffness geometry by varying the fingers posture (CDS),
being this process more energy-efficient than using muscle co-
contraction (Milner and Franklin, 1998). In a complementary
study, Rossi et al. (2015), presented one of the first attempts
to explore the concept of human hand synergies in the
stiffness coordinates, showing the existence of a coordinated
stiffening pattern in human fingertips during a tripod grasp
(CMS). Authors estimated the human fingertip stiffness profiles
using external stochastic perturbations, and illustrated them by
ellipsoids. The preliminary results of this study suggested that the
co-activations of the forearmmuscles contribute to a coordinated
stiffening of the fingers, leading to an increase in the amplitudes
of the major axes of the stiffness ellipsoids with minor effects on
their orientations. Therefore, in humans, CDS allows for a more
energy-efficient stiffness control than co-contraction, while CMS
limits the number of control inputs needed to achieve complex
manipulation tasks.

The approach detailed in this paper proposes to exploit the
advantages given by the CDS and CMS concepts in robotic hands.
The aim is to obtain bio-inspired and energy-effective grasps
with a simplified control strategy where n degrees of freedom are
used for the robot position control, and one to implement the
common-mode stiffness (n+1 actuation principle). Furthermore,
the method targets to use the minimum required sensory
information, taking as input only the joint positions.

This work completes and extends the preliminary study
presented in Ruiz Garate et al. (2017). Though the general idea
remains the same, validation experiments have been performed,
and several key factors of the control strategy have been
improved. The most relevant one is that, being able to represent
the grasp stiffness by an ellipsoid, the method proposed here
focuses on reproducing the main geometrical features of such an
ellipsoid instead of the overall stiffness matrix numerical values
targeted before. Moreover, the stability of the final pose is assured
during the process, whereas previously, stability was only checked
once the final solution was found. In addition, a wider variety
of objects are exploited and tested in real experiments with the
current method, using a generalization of their shapes Previously,
the method had only been tested with spherical objects in a
simulation environment. These points will be further clarified in
the following sections.

On the other hand, the approach presented in this paper
differs from the one in Ruiz Garate et al. (2018) from
a fundamental methodology point of view. The method in
Ruiz Garate et al. (2018) provides full joint trajectories assuring
grasp stability based on a simultaneous optimization of the
hand pose (joint positions) and joint stiffness (CDS/CMS). The
current approach, instead, performs a preliminary exploration of
all feasible grasp configurations by analyzing the entire fingers
workspace, and thus providing a first basis for the CDS. Then,
an optimization is done for each of these configurations trying
to maximize the grasp robustness while best approximating the
desired stiffness. The stable grasp configuration giving the nearest
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solution to the desired grasp stiffness is kept in the end. So, this
method directly outputs a final grasp configuration, differently
from Ruiz Garate et al. (2018), where the method outputted the
full trajectory through several iterations. Hence, with the current
method it is afterwards needed to compute a trajectory from the
initial pose to the final found one.

Therefore, this paper presents the first attempt to provide
a complete generalized method for the regulation of the grasp
stiffness, based on the exploration of the grasp workspace. After
a thorough explanation of our control approach (section 2), we
show its performance using the fully actuated Allegro Hand, a
robotic hand with 4 fingers and 16 DoFs2 (sections 2, 3).

2. MATERIALS AND METHODS

2.1. Problem Definition
The bio-inspired control strategy proposed in this paper exploits
the introduced concepts of CDS and CMS to regulate the grasp
stiffness of a robotic hand.

Before detailing the control policy, some mathematical
background regarding grasp stiffness is needed. Grasp stiffness
is a fundamental tool for modeling and controlling compliant
robotic grasps. Its main characteristics are discussed in Kao and
Ngo (1999), and more recently in Malvezzi and Prattichizzo
(2013), where also under-actuation is taken into account. The
object grasp stiffness matrix K ∈ R

6×6 is a symmetric matrix
that relates the wrench 1w ∈ R

6 applied to an object to its
displacement 1u ∈ R

6:

1w = K1u = (GKcG
T)1u, (1)

where G is the grasp matrix relating the contact forces and
moments transmitted through the contact points, to the set of
wrenches that the hand applies on the object. In our case, G ∈
R
6×3nc , as we assume Hard Finger contacts (Prattichizzo and

Trinkle, 2016), being nc the number of contact points on the
object. Kc ∈ R

3nc×3nc is the equivalent contact stiffness matrix
taking into account all the system compliance sources (Malvezzi
and Prattichizzo, 2013) and incorporating the fingers and object
structural elasticity (Bicchi, 1994):

Kc = (Cs + JK−1
q JT)−1, (2)

with Kq ∈ R
nq×nq being the diagonal matrix representing the

joint stiffness, and J ∈ R
3nc×nq the hand Jacobian matrix. nq is

the total number of finger joints in the hand3. Cs ∈ R
3nc×3nc is

the structural compliance matrix.
The endpoint stiffness of the fingers Kc as well as the

resulting grasp stiffnessK can be represented by translational and
rotational stiffness ellipsoids. Each of these are characterized by a
particular geometry (defined by the ellipsoid axes) and volume
(magnitude).

The objective of the proposed method is to manipulate the
grasp stiffness K toward a desired Kd while preserving the grasp

2http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand
3This work only considers finger joint movements, keeping a fixed wrist
configuration.

contact points. We focus on the translational part of the desired
grasp stiffness, i.e., Kd,t , influencing the translational interaction
force profiles that play an important role in manipulation of daily
objects. For example, doing a precise object placement in a hole,
the grasp should be most stiff in the hole direction, whereas it
should be compliant in the other ones.

To attain the desired grasp stiffness, the proposed method
controls the hand pose q (CDS) and the joint stiffness Kq (CMS).
The CDS control is implemented by manipulating the vector q
that contains the joint angular positions q = [q1, q2, ...qnq ]. The
changes in the hand pose reflect into geometrical variations of
the grasp stiffness ellipsoid. On the other hand, the CMS control
regulates the synergistic finger stiffness Kq, mainly providing
modifications of the stiffness ellipsoid volume. For every finger
f , Kq = α Ŵf , where α is the CMS parameter (Nm/rad) and Ŵf

is a constant normalized vector implementing the coordinated
stiffening of the hand fingers (Rossi et al., 2015). Therefore, the
maximum achievable grasp stiffness volume is limited by the
maximum applicable α.

Being Kt represented by a 3D ellipsoid, differently from
Ruiz Garate et al. (2017), where the whole translational
matrix numerical values were targeted, here we define the task
requirements bymeans of high-level features of the grasp stiffness
ellipsoid geometry. Our method is therefore designed to target, in
descending order of importance:

• main axis orientation of the desired grasp stiffness ellipsoid,
• secondary axis orientation of the desired grasp stiffness

ellipsoid,
• length ratio of the two main axes.

To measure the performance of our method in matching these
features, we define three indexes:

θ1 = min{|arccos(U1,d U1)|, |arccos(−U1,d U1)|} (3)

θ2 = min{|arccos(U2,d U2)|, |arccos(−U2,d U2)|} (4)

β =
∣

∣

∣

Dd,1

Dd,2
−

D1

D2

∣

∣

∣
(5)

θ1 and θ2 are the difference in orientation between the desired
and obtained main and secondary axes, respectively. The
orientation of these axes is defined from the eigenvectors of Kt .
U1 represents the main eigenvector and U2 the secondary one. β
is the difference between the desired and obtained length ratio.
To compute this ratio, the eigenvalues of Kt are used, where D1

stands for the main eigenvalue and D2 for the secondary one.
Besides matching the geometrical features of Kt , the control

strategy must ensure grasp stability. To this aim, the stiffness
ellipsoid volume can be tuned so to maximize an index of
grasp robustness. We decided to use a simplified version of
the Potential Contact Robustness (PCR) index (Pozzi et al.,
2017). By using this index, the method will be now able to
assure robust grasps. The PCR is based on the distance of the
contact force from the friction cone boundaries, and increases
as the grasp becomes more robust. We adjust the equation to
focus only on the Coulomb friction constraint, maximizing the
distance to the friction cone (Pozzi et al., 2017). Every contact
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point c is considered to be stable if:

ǫ ‖λc‖ − λn,c < s, (6)

where λc represents the contact force, λn,c the normal component
of the forces, s is a security margin set to −0.01, and ǫ = 1√

1+µ2

being µ = 0.8 the coefficient of friction.

2.2. CDS and CMS Control Strategy
Based on the introduced concepts of stiffness geometry and
grasp stability, the proposed algorithm consists of four main
consecutive steps outlined in Figure 1. A preliminary process
should be done to explore the workspace of each of the hand
fingers. Fingertip locations FTws with respect to the world frame

together with their corresponding transformation matrices Tws

and joint positions Qws are stored (Figure 1). Then, the main
steps are, in consecutive order:

1. Stabilization of the initial grasp.
2. Search of compatible configurations preserving the contact

points.
3. Grasp optimization (CDS+CMS).
4. Trajectory generation.

These processes are described in more detail in the
following subsections. For every new grasp, the first two
steps need to be executed. Then, the desired stiffness
can be changed only requiring to perform the two last
ones.

FIGURE 1 | Control scheme. The left dashed box contains the prelimiary steps to be done for each new hand and grasp: from the fingers workspace, configurations

keeping similar contact points to the initial grasp are found and stored as Qc. Once these configurations are found they can be re-used for every new desired stiffness

Kd . The right dashed box contains the optimization of the found configurations Qc to find the minimum joint stiffness that stabilizes the grasp while trying to obtain the

main features of the desired grasp stiffness Kd . The stable grasp giving the closest features to the desired ones is kept and a trajectory is generated for the finger

joints toward it.

FIGURE 2 | Initial grasp stabilization scheme. Once the hand is in a grasping position, the encoders are read. These values (qencoders) are sent to create a virtual

model of the hand and object. From this information, joint reference values are found that stabilize the grasp. Those values (qref ) together with the chosen initial joint

stiffness Kq are command to the hand resulting in the initial stable grasp.
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FIGURE 3 | (A) Picture of the hand with all joints set to 0 deg. In red the joints directions for the index (qi,1...4) and the thumb (qt,1...4) are displayed. The middle and

little finger have similar joints to the index. (B) Set of objects used during the experiments.

It must be noted that during the process we refer to two
type of hands: (i) the actual hand based on the measurement
of the joint positions q, and (ii) the virtual hand from which
the reference joint positions qref are defined such that the actual
hand slightly squeezes the object and stabilizes the grasp. This
last pose drives the fingers of the virtual hand inside the object
(see Figure 2).

The encoder readings of the joints positions are the only
sensory information the method relies on. This means that
no information needs to be acquired from the real hand in
terms of force pressure, orientation, object position, etc. The
fact that no extra force or visual information is required
makes the method generalizable to almost any hand and
object. However, to do so the following assumptions are
made:

• We focus on fingertip grasps, as with power grasps the
possibility of having in-hand manipulation is very limited. For
the sake of simplicity all contacts are modeled as hard finger
contacts where only forces (and no moments) are transmitted
(Prattichizzo and Trinkle, 2016).

• Due to the lack of visual information, to find the object
location (position and orientation), it has to be attached to
one of the fingers, similarly to Sundaralingam and Hermans
(2017). The thumb is chosen for this purpose. This means
that at every evaluated configuration i, the transformation
between the object frame and that of the thumb remains
constant and equal to the one of the initial configuration
(thumbTobj,0 = thumbTobj,i). Therefore, from any location of
the thumb fingertip, the new object location can be retrieved.

• Due to possible model inaccuracies, for the main stiffness
computations the contact locations are approximated to be
exactly at the fingertips, whose positions can be retrieved from
direct kinematics.

TABLE 1 | Selected objects for the experiments, type of grasp implemented, and

chosen desired stiffness.

Object Grasp type Desired stiffness

Lemon 2-fingertip grasp Kt,d = diag[5000, 500, 600] N/m

Orange 2-fingertip grasp Kt,d = Rot(Y , π
4 )Kt,ini

Apple 3-fingertip grasp Kt,d = Rot(Y , π
4 )Kt,ini

Gelatin box 3-fingertip grasp Kt,d = Rot(Y , −π
4 )Kt,ini

Banana 3-fingertip grasp Kt,d = Rot(Y , π
2 )Kt,ini

Metal mug 3-fingertip grasp Kt,d = Rot(Z, π
4 )Kt,ini

Pudding box mug 4-fingertip grasp Kt,d = diag[5000, 500, 600] N/m

• To analyse the stability and check if any contact was lost,
contacts between the virtual reference hand and the object
are searched for. As qref should drive the fingers toward the
inside of the object to stabilize the grasp (Figure 2), the contact
points must be always detectable. If they are not found, then
certainly the contact has been lost. These contact points are
obtained analytically as the intersection between the fingertips
of the virtual stabilized hand, modeled as spheres of a known
radius rs, and the object. This method takes into account the
fingertip volume, differing from the one in Ruiz Garate et al.
(2017), where contacts where only detectable if an intersection
occurred between the the main axis of the last finger link and
the object.

2.2.1. Stabilization of the Initial Grasp
The initial grasp serves as starting point for the exploration for
the CDS control, as we look for new configurations holding the
same contact points as the initial one. It can be specified by setting
the finger joints in a desired configuration, or by closing the hand
with a grasp planner and retrieving the actual values. This initial
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configuration is sent to the algorithm, that creates a virtual model
of both the hand and the object (see Figure 2, upper arrow). Due
to the lack of visual information, the object is supposed to be
initially aligned with the centre of the fingertip of the thumb.
From the obtained virtual grasp model, the contact points are
defined.

Similarly to Ruiz Garate et al. (2018), at this stage a hand
configuration is looked for such that it squeezes the object and
stabilizes the initial grasp. To do so, an optimization is carried
out where a cost function based on the PCR index is computed
using the method in Gabiccini et al. (2011). This optimization
computes a set of internal forces such that the contact forces
λc = −G#w + Ey are as far as possible from their friction cone

limits. w stands for the external wrench applied and E represents
the basis of the controllable subspace of internal forces. y is a
vector that parametrizes the homogeneous part of the solution
of the equation w = −Gλc. Once an optimal set of internal
forces λopt = Eyopt is found, the displacement of the end-
effector (fingertips) corresponding to that force can be found as
dx = K−1

c λopt . The complementary joint displacement dq =
JT(JJT)−1dx is then applied to the virtual hand model, while
keeping the object in place. Figure 2 shows a schematic layout
of this process.

A final check is performed to assure that the newly found
configuration is stable using Equation (6) and λopt = Eyopt .
If the grasp proves to be stable, this configuration is finally

TABLE 2 | Initial values and results of the algorithm when manipulating the different objects.

θ1 (deg) θ2 (deg) β α (Nm/rad) PCR

Lemon

Initial 61.97 62.15 1.962 4 0.5

Final 29.63 16.77 0.3025 3.497 0.2931/0.4332

Orange

Initial 44.95 44.18 0 4 0.5352

Final 7.983 7.97 0.8283 2 0.522/1.8541

Apple

Initial 44.95 44.84 0 4 0.1072

Final 8.01 10.75 3.213 2 0.1972/0.7089

Gelatin box

Initial 44.96 45 0 4 0.1359

Final 0.3403 3.627 0.8762 4.066 0.1412

Banana

Initial 89.96 89.19 0 4 0.06216

Final 0.8445 16.65 0.5455 3.307 0.003346/0.0113

Metal mug

Initial 39.67 21.13 0 4 0.1127

Final 19.78 7.172 4.4751 5.99 0.1116

Pudding box

Initial 33.02 35.05 6.955 4 0.00241

Final 2318 11.71 6.921 3.393 0.000821/0.0036

The second value in the final PCR is only shown if the found α is less than the initial value, and it displays the PCR if the initial α is kept. All the values are computed using at least the

minimum initial value of α.

FIGURE 4 | Initial and final values of (A) the difference in orientation between the desired and obtained main axis (θ1), and (B) the difference in orientation between the

desired and obtained secondary axis (θ2).
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commanded to the real hand, assuring the stability of the initial
grasp (Figure 2, lower arrow).

2.2.2. Search of Compatible Configurations
From the fingers workspace obtained preliminary, configurations
keeping similar fingertip locations as the initial ones are stored
(Qc in Figure 1). For this step, the fingertip locations used are
the ones before the stabilization driving them inside the object. A
maximum of 5000 configurations of the workspace are evaluated
as a compromise between the number of possible solutions and
the required time.

To find similar fingertip configurations, the distance from the
object center to the fingertips is checked. Therefore, it is first
necessary to determine the object location, and afterwards define
the fingers position with respect to the object frame. The initial
transformationmatrix of the thumbwith respect to the object can
be retrieved from the initial ones of the object and the thumbwith
respect to the world frame: thumbTobj,0 = (wTthumb,0)

−1 wTobj,0.
The rest of initial fingertip positions with respect to the object
frame are obtained as: objPf ,0 = (wTobj,0)

−1 wPf ,0. The values of
wPf ,0 and

wTthumb,0 can be obtained using the D-H parameters of
the hand and solving the forward kinematics.

Similarly, at every new hand configuration qi of the
explored workspace, wPf ,i and

wTthumb,i are retrieved. As the
transformationmatrix between the thumb and the object remains

fixed, the new object frame is estimated:

wTobj,i =w Tthumb,i
thumbTobj,0 (7)

and the new fingertip positions with respect to the object frame
can be retrieved:

objPf ,i = (wTobj,i)
−1 wPf ,i (8)

Configurations satisfying
∥

∥

∥

objPf ,0 −obj Pf ,i

∥

∥

∥
< 5 mm are stored

inQc = {q1, q2, ..., qc}. This threshold is chosen as a compromise
between the need to keep the same grasp contacts and allowing a
reasonable movement of the fingertip locations.

Though this process can be time consuming, it only needs to
be executed once when the grasp is first defined. Then, for all
possible targeted stiffness, these values can be re-used (Figure 1).

This process provides all the possible hand configurations that
hold similar contact points to the initial one. However, at each
of this configurations the resulting grasp stiffness geometry are
different, providing the basis of the CDS control.

2.2.3. Grasp Optimization
As outlined in Figure 1, for all feasible configurations found
in the previous step, an optimization is performed to find
a synergistic joint stiffness α that maximizes the the grasp

FIGURE 5 | (A) Lemon virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final main

ellipsoid axis orientation and that of the desired stiffness. The scale for the desired stiffness ellipsoid graph is set smaller for visualization purposes.
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robustness (PCR) while trying to stay as close as possible to
the desired stiffness geometry. Therefore, the function to be
optimized f (α) is defined as:

minimize
α

f (α) = 106Ke +
1

PCR

subject to αmin ≤ α ≤ αmax

(9)

To obtain PCR from each configuration, depending on α,
new reference finger joint positions are found that stabilize
the grasp. This is done following the same procedure as in
section 2.2.1. In order to run this optimization, the function
fminbnd (MATLAB and Statistics Toolbox, The MathWorks,
Inc., Natick, Massachusetts, United States) is used, optimizing α

by first computing the grasp stiffness and then trying to find the
stabilized grasp.

The stiffness error Ke is defined as a weighted function on
the difference between the desired and actual stiffness parameters
described previously (Equations (3)–(5)):

Ke = θ1 + 0.5 θ2 + 0.01
∣

∣

∣

Dd,1

Dd,2
−

D1

D2

∣

∣

∣
(10)

This step provides the CMS control for each of the previously
found configurations adapting mainly the volume of the grasp

stiffness depending on the attainable stability. If the found α is
smaller than the one defined for the initial grasp, the latter is kept.
Nonetheless, this value can be afterwardsmanipulated by the user
depending on task specifications or external inputs.

The optimization stops if incompatible contact points are
found during the stabilization and previous values are kept. From
all the feasible configurations that result in a stable grasp, finally
the one with the lowest Ke is kept as the optimal. In this way, the
achievement of the desired stiffness is prioritized in the process
(CDS control).

2.2.4. Trajectory Generation
The previous steps provide a final stable configuration that
best matches the desired stiffness characteristics in terms of
orientation and shape. To move from the original configuration
to the final one, a trajectory is needed (Figure 1).

Based on the work of Sundaralingam and Hermans (2017), we
compute a smooth trajectory of 40 steps with 1t = 0.05 s. At
each step, the following function is optimized:

minimize
q̇

f(q) =
∑

(|qd − qi|)+ 102
∥

∥

∥

objPf ,0 − objPf ,i

∥

∥

∥

subject to q̇min ≤ q̇ ≤ q̇max

(11)

FIGURE 6 | (A) Orange virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final

main ellipsoid axis orientation and that of the desired stiffness.
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FIGURE 7 | (A) Apple virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final main

ellipsoid axis orientation and that of the desired stiffness.

q̇min and q̇max are set to −30 and 30 deg/s respectively for every
joint, and the initial joint angular velocity to a random value
between 0 and 30 deg/s. A high weight is given to the second
term of the equation to assure that the contact points are not
lost. For this optimization, the fmincon function (MATLAB and
Statistics Toolbox, The MathWorks, Inc., Natick, Massachusetts,
United States) is used with a maximum of 50 iterations.

The joint stiffness obtained from the grasp optimization is
applied from the beginning of the trajectory. This value is always
equal or higher than the initial stiffness to provide better stability.

2.3. Experimental Validation
To evaluate the proposed method, we carried out experiments
with the Allegro Hand (SimLab Co., Ltd.), a 4-fingered robotic
hand with 16 independent torque-controlled joints, 4 joints per
finger4 (see Figure 3A). One of its main features is the“roll-
pitch”-type MCP joint of the fingers, that gives the hand high
dexterity (Lee et al., 2017). The torque controlled fully actuated
Allegro hand allows to simulate the CDS/CMS control via active
joint impedance control. This control is implemented as:

τ = kq δq+ kd δq̇+ τ g (12)

4http://wiki.wonikrobotics.com/AllegroHandWiki/index.php/Allegro_Hand

where kq = diag(Kq) ∈ R
16 is the vector of joint stiffness

values, and kd ∈ R
16 contains the damping parameters found

from already provided stable coefficients cf as kd =
√

kp
cf
. τ g

is the gravity torque vector compensating for the weight of the
hand. This value was provided with the hand software. In this
way, when the joint stiffness is set to very low values, the hand is
controlled in gravity compensation mode.

To compute the grasp stiffness, the joint stiffness synergy is
defined asŴf = [0.7, 0.95, 1, 0.8] for the index, middle, and little
gingers, and Ŵf = [1, 0.95, 1, 0.95] for the thumb. These values
are chosen based on the mechanical characteristics of the hand
and the selected vertical set-up (the pedestal of the hand being
fixed to a table).

For the stability optimization, a minimum and maximum
contact force of 2 and 5 N respectively are specified. This avoids
getting a reference position that goes too much inside the object
which, due to the hand configuration, would provide a big push
from the upper fingers and prevent the lower finger (the thumb
in this case) from moving. Based on the technical specifications
from the hand, during the optimization α is allowed to vary
between 2 and 6 Nm/rad. The initial value of α is set to
4 Nm/rad.
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To test the different aspects of the algorithm, we decided to
use several objects from the YCB set (Calli et al., 2015): lemon,
orange, apple, gelatin box, banana, metal mug, and pudding box,
displayed in Figure 3B. These objects are modeled as generic
shapes: spheres, cuboids, or cylinders. With this generalization,
the method is able to cover a wider variety of objects than it was
possible in Ruiz Garate et al. (2017), where only spheres where
studied, and Ruiz Garate et al. (2018), where yet no cylinders
where available. Different grasps (2, 3, 4 fingertip grasps) are
chosen depending on the shape and weight of the object. This
decision is done together with the different desired stiffness
to demonstrate the full potential of our control strategy. The
combinations of selected grasp types and target stiffness are
detailed in Table 1.

3. RESULTS

Experimental results are evaluated in terms of:

• difference in orientation between the desired and obtained
main axis of the stiffness ellipsoid: θ1,

• difference in orientation between the desired and obtained
secondary axis of the stiffness ellipsoid: θ2,

• difference between the desired and obtained length ratio of the
two main axes: β ,

• initially chosen and finally minimum found CMS parameter α,
• Potential Contact Robustness index (PCR).

Table 2 shows the obtained values corresponding to these
parameters. Results concerning the principal features of grasp
stiffness orientation (θ1 and θ2) are also visually depicted in
Figure 4. Figures 5–11 show the initial and final virtual grasp
configurations together with the initial, desired, and final grasp
stiffness ellipsoids in the performed experiments.

Difference between desired and initial main axis orientation θ1
decreases for all tested cases. This decrease ranges from 50.14%
in the worst case to 99.24% in the best. Similar decreases are
observed for the secondary axis, where the reduction spans from
66.06 to 91.94%.

For the cases where a manual translational stiffness is defined
(lemon and pudding box), the error in the length ratio β is
decreased (by 84.58 %, for the lemon) or remains almost the
same (difference of 0.4889 %, for the pudding box). In the case
when the objective stiffness is defined as a rotation of the initial
one, the initial error in length ratio is zero. Therefore any change
will increase it. This error is in any case kept quite low (below

FIGURE 8 | (A) Gelatin box virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final

main ellipsoid axis orientation and that of the desired stiffness.
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FIGURE 9 | (A) Banana virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final

main ellipsoid axis orientation and that of the desired stiffness.

0.9) except for the apple and the metal mug, where it reaches a
value of 4. However, as it can be observed in Figures 7, 10 these
differences do not have a major influence on the overall stiffness
geometry.

The minimum required synergistic joint stiffness parameter
α (Table 2) is generally lower than the initial one, except for
the gelatin box and the metal mug. The minimum values are
of 2 Nm/rad while the maximum almost reaches the limit of 6
Nm/rad.

PCR varies from an initial range of [0.00241–0.5352] to a final
of [0.0036–1.8541]. If the minimum found stiffness is considered,
PCR decreases for all cases except the apple and gelatin box.
However, if the lower bound on the initial stiffness is considered,
PCR only decreases significantly in the case of the banana.

Finally, Figure 12 shows the performed experiments for
each object as sequences of frames. The video available
in “Supplementary Video 1” shows the presented CDS/CMS
stiffness regulation method for the lemon, the apple, and the
gelatin box cases.

4. DISCUSSION

From the results shown in Table 2 and Figure 4, it can be
seen how the error in the main considered features (the stiffest

directions) always decreases. In the worst case, the error is
reduced by 50% of the initial one and is almost zero in the
the best case. These results are generally better than those
in Ruiz Garate et al. (2018). In Ruiz Garate et al. (2018), a
trajectory is generated based on the simultaneous optimization
of all parameters with no pre-knowledge of the hand workspace,
whereas the proposed algorithm does a preliminary exploration
of the fingers workspace and an evaluation of the hand
configurations based on such exploration. This has the advantage
of being sure to find a global optimum based on the proposed
criteria. On the other hand, it has the drawback of only giving the
final grasp configuration. This means that a trajectory must be
generated, which is done based on the method of Sundaralingam
and Hermans (2017). However, no proper stability criterion is
included in this trajectory generation, which could be done,
if required, by adding an extra condition to Equation (11).
Nonetheless, in our experiments keeping the fingertip distance
constant and a minimum joint stiffness was enough to generate
stable trajectories.

Regarding the error in the length ratio, as we prioritize the axes
orientation, β is only improved if it does not cause major impact
in these orientations. Therefore, while in the case of the lemon
(Table 2, Figure 5) the error is significantly reduced, for the
pudding box (Table 2, Figure 11) this error is almost unchanged.
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FIGURE 10 | (A) Metal mug virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the initial/final

main ellipsoid axis orientation and that of the desired stiffness. The scale for the final stiffness ellipsoid graph is set larger for visualization purposes. As the difference

between the ellipsoids are not very visible due to the 3D perspective, at the top of each graph the projection of each ellipsoid in the “XY” plane is plotted.

Moreover, a particular orientation might not be possible together
with a specific length ratio, and so the first prevails. In any case,
this error is kept quite low.

With respect to the synergistic joint stiffness parameter α,
Table 2 shows that the main influence on the minimum required
joint stiffness is not the size of the object or its weight (the gelatin
box of 97 g gave a value of 4.066 while the pudding box of 187 g
is only 3.393 Nm/rad). Also, the lemon required a higher α than
the orange or the apple, being it smaller. This is in concordance
with the fact that the stability values are computed based on
the relation between the normal and tangential contact forces
(Equation 6). This means that the distribution of these forces
plays a major role. Therefore, the arrangement of the contacting
fingers and their relative position with respect to the object
surface are the main factors to assure stability. It must be pointed
out that, as shown in Equation (12), a gravity compensation term
is already included in the hand command. Hence, there is not
need for additional torque coming from the joint stiffness term
to hold the grasp pose. Nonetheless, some minimum stiffness is
needed to comply with the object weight and inaccuracies of the
gravity compensation.

In spite of that, though the joint stiffness magnitude might
not be the most important factor to determine stability, it

does play a significant role. Actually, as it can be seen from
the PCR values in Table 2, for the cases where the found
minimum α is smaller than the initial one, the PCR is lower
than what we would obtain keeping α to the initial value of
4 Nm/rad. This means that increasing the joint stiffness has
a positive impact in the overall grasp robustness. However, if
the increase is not properly handled it can saturate the motors.
Thus, a hint on the minimum stiffness value required can be
useful.

During the experiments, the three-finger grasp is more
widely tested because it clearly shows the changes on the hand
configuration while being able to grasp a big diversity of objects.
Only one four-finger grasp is tested. This is due to the constraint
put by the stability criterion. We consider that the grasp is stable
if all contact points are within the limits of the friction cone.
However, this condition might be too strict for the cases with
many contacts, as some might not necessarily be stable, whereas
the overall grasp is. Other stability criteria could be studied to
deal with numerous contact cases, for example by starting from
the one presented in Pozzi et al. (2018). Here, the presented
four-finger grasp serves as a proof of the generalization of the
overall method. The control law that was used to regulate the
joint impedance (Equation (12)) is based on a simple PD torque
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FIGURE 11 | (A) Pudding box virtual grasp in the initial and final configurations, (B) Initial, objective, and final stiffness. θ1 indicates the difference between the

initial/final main ellipsoid axis orientation and that of the desired stiffness.

control scheme. This control could be enhanced, e.g., taking the
joint torque limits into account (Ajoudani et al., 2015b), or the
instability of joint stiffness parameters (Maekawa et al., 1990).
In de Jesús Rubio (2018), a method enhancing stability is tested
with a robotic arm in which the states to regulate are more than
the available inputs. Similar methods to that one or the one
proposed in Pan et al. (2016b) could be studied to assure tracking
stability and faster response for the robotic hand joints. Also,
more advanced controls could be though of, like e.g., the one
proposed in Pan et al. (2016a), joining a PD control term in the
feedback loop and a radial-basis-function (RBF) neural network
(NN) in the feedforward loop, including therefore a learning
control mechanism.

As stated in the introduction, whereas in Ruiz Garate et al.
(2017) a grasp is found and then checked to be stable, the
proposed method includes the stability as a condition during the
search of the optimal grasp configuration. This assures that any
final found configuration will be stable.

Moreover, differently from Ruiz Garate et al. (2017) and
following the line of Ruiz Garate et al. (2018), the method does
not try to achieve the overall stiffness matrix. Instead, based on
the property of the stiffness matrix to be defined as an ellipsoid,
high-level features are chosen as objective. In this way, the desired

stiffness can be defined based on the task requirements in a simple
way: which translational directions of the grasp should be stiffer
or more compliant. Likewise, if the stiffness requirements are
being transferred from a teleoperation set-up, the master can
have very different structure, configuration, mass, etc. Hence,
the volume of the stiffness ellipsoid might not be reproducible,
while the high-level features of the task requirements can still be
transferred.

As we start from the premise that no sensory information
is available apart from the encoder position, there is no visual
information regarding the object shape. Therefore, we generalize
the objects as spheres, cuboids, or cylinders. Experiments show
that this generalization is sufficient for most daily objects
(see Figures 5–11). However, in some cases like the banana
(Figure 9), the generalization only applies if the fingers are
positioned in the close vicinity of each other. In case of such
irregular objects, a more detailed object model would be needed.
However, such implementation would be computationally costly,
not only for the modeling, but also when determining if the
contact points are maintained and stable.

Another point to be noticed is that no self-collision detection
method is included in the algorithm. So far, the inherent joint
limits of the hand, and the fact that an object is being held,
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FIGURE 12 | Sequential captures of the configuration changes on the different grasps depending on the initial pose and desired stiffness. (A) Lemon, (B) orange, (C)

apple, (D) gelatin box, (E) banana, (F) metal mug, and (G) pudding box.

prevent the fingers from colliding with each other. In the case
of manipulating very small objects, or needing a particular
configuration of the fingers that are not in contact with the object,

a collision detection should be implemented. This would require
either contact sensors or a full modeling of the volumes and
contacts between all finger links.
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Possible applications of our method range frommore classical
teleoperation scenarios, where geometry of the grasp stiffness
of the master can be intuitively transferred onto the slave’s
one. Then, the grasp stability can be regulated based on the
local sensory feedback. More innovative applications could be
for example, a robotic system that exploits the environmental
constraints, contributing to the CDS control (Eppner et al.,
2015).

5. CONCLUSIONS

This manuscript proposed a control method to achieve a desired
grasp stiffness based on high-level features of the task to execute.
As the grasp stiffness can be represented by a 3D ellipsoid,
these features were defined from the geometrical aspects of such
ellipsoid, namely main and secondary axes orientation, and their
length ratio. These features were targeted while assuring the
stability of the grasp.

The presented control approach was based on the bio-
inspired concepts of CDS and CMS that characterize the way
humans regulate the fingers endpoint stiffness. The CDS control
changed the hand pose influencing the overall geometry of the
stiffness ellipsoid. The CMS control modified the synergistic
joint stiffness and consequently the volume of the ellipsoid,
which had a more important role in assuring the stability.
This algorithm was constrained to keep the same grasp
contacts so that the object was always held from the same
points.

The method demonstrated to reduce the error between
the desired and obtained main stiffness geometry features.
Moreover, it proved to work in the absence of sensory
information (except for the joint encoders), based on the
proposed assumptions on the object shapes and contact
points.

Future work will envisage the study of alternative and less
conservative criteria to analyze the grasp stability. Also, the
application of the control paradigms to other robotic hands
would be interesting. At a higher level, the human hand−arm
system could be studied during grasp stiffness regulation in
manipulation tasks, for a possible development of a CDS/CMS
control of the equivalent artificial hand−arm composite.

AUTHOR CONTRIBUTIONS

VRG and MP significantly contributed to the development of
algorithm, the execution of experiments, the analysis of results,
and the writing of the manuscript. AA significantly contributed
to the development of the algorithm, the analysis of results, and
the writing of the manuscript. DP significantly contributed to
the analysis of results and the writing of the manuscript. All the
authors approved the submitted version of the manuscript.

FUNDING

This work is supported in part by the EU H2020 projects SOMA:
SOft MAnipulation (no. 645599), and SoftPro: Synergy-based
Open-source Foundations and Technologies for Prosthetics and
RehabilitatiOn (no. 688857).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2018.00089/full#supplementary-material

Supplementary Video 1 | This video shows how the proposed method was able
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