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This paper lays out a framework to model the kinematics and dynamics of a rigid

spacecraft-mounted multibody robotic system. The framework is based on dual

quaternion algebra, which combines rotational and translational information in a compact

representation. Based on a Newton-Euler formulation, the proposed framework sets up

a system of equations in which the dual accelerations of each of the bodies and the

reaction wrenches at the joints are the unknowns. Five different joint types are considered

in this framework via simple changes in certain mapping matrices that correspond to the

joint variables. This differs from previous approaches that require the addition of extra

terms that are joint-type dependent, and which decouple the rotational and translational

dynamics.
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1. INTRODUCTION

The interest to operate servicing spacecraft in space has led to wide-ranging research in academia,
governmental agencies, and private companies. The space servicing market is growing, and with
it, also the need for effective and easy-to-use tools to model the different phases of the mission.
One tool of particular interest that has garnered attention for proximity operations, during which
not only the attitude, but also the position of a spacecraft has to be precisely controlled, are dual
quaternions, see for example Filipe and Tsiotras (2013a), Seo (2015), and Filipe et al. (2015).
We add to this body of literature, having as a goal to provide an intuitive development of the
multibody dynamics of a spacecraft-mounted manipulator system in dual quaternion algebra using
a Newton-Euler approach. The aim is to provide a unified mathematical framework in which to
model the different phases of a servicing mission.

1.1. Multibody Dynamics for Space Applications
When it comes to mounting a robotic manipulator on a spacecraft, the development of the
equations of motion is not as straightforward as ground-based robotic applications, due to the
complex interaction between reaction forces that arise at the joints and the conservation of angular
momentum. This is especially important for relatively small spacecraft with large manipulators,
as the stationarity assumption of the base is not longer valid. In such scenarios (that become
increasingly popular in practice) the combined base-manipulator motion has to be accounted for.
In terms of prior work in spacecraft equipped with manipulators, we can mention Hooker (1970),
who first derived the equations of motion for an n-body satellite. In his derivation, the reaction
forces and torques at the joints are not explicit in the formulation and aims to expose the body axes
so that it is convenient to incorporate control laws, internal forces and other disturbance forces
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into the model that would not be straightforward to introduce
using a Lagrangian formulation. Hooker’s approach is based on
the addition of the independent equations of motion for each of
the bodies to cancel the reaction forces, and the cancellation of
reaction torques through a clever manipulation of the equations
of motion. This leads to a system of equations where the
unknowns are the angular acceleration of the base, and the
generalized accelerations at the joints. Longman et al. (1987)
proposed a model for the operation of a robotic arm mounted
on the Space Shuttle when attitude control is enabled. The
authors in Longman et al. (1987) developed a forward and inverse
kinematic model based on an initial determination of where the
center of mass of the system is. This allows for identification
of where the satellite-body is in inertial space as a function of
joint angles, enabling a custom-derived solution of the forward
and inverse kinematics problem. The authors then provided an
approach to extract the reaction forces and torques applied on
the satellite base due to the robotic arm through the extension
of results derived using a fixed-base approach. Umetani and
Yoshida (1989) introduced the equations of motion for systems
with revolute joints and an uncontrolled (not actively controlled)
base. The authors introduce an innovative representation of the
task-space motion of the end-effector using two Jacobians—one
capturing the effect of the spacecraft’s motion, and another one
to capture the effect ofjoint rates. This framework, however, did
not account for external forces or torques. Dubowsky et al. (1989)
dealt with the problem of thruster, or joint actuator saturation
as an integral part of path-planning for the manipulators. Their
model consists of a nine-generalized-coordinate system, and they
derive the equations of motion using the Lagrangian approach,
involving a 9× 9× 9 tensor to compute the Coriolis-like term.
Papadopoulos and Dubowsky (1991a) rewrite the equations of
motion of the satellite-mounted robot arm, but this time include
actuation of the satellite base, and embed them in a quasi-
Lagrangian approach.

Papadopoulos and Dubowsky (1990, 1991b) succinctly
describe the equations of motion for a robotic arm on a satellite
under the assumption of zero initial angular momentum using
the Routhian and a compact representation of the kinetic energy
of the system. The authors proceed to argue that fixed-base and
space-based manipulators can almost always be controlled using
the same control algorithms, given the structural similarities
between the corresponding model matrices. Xu and Shum (1991)
developed a dynamical model for a robotic arm mounted on
a satellite base in the absence of thruster jets. This implies
that the motion of the system obeys the conservation of linear
and angular momentum, a fundamental fact in their derivation.
Walker and Weel (1991) provided the equations of motion for a
six degree of freedom robotic arm on a satellite base. The method
incorporates three reaction wheels and the equations are derived
using a Lagrangian formulation. They eliminate the velocity of
the satellite base from this formulation, given the constraint of
no external forces on the system, without necessarily assuming
that the initial momenta of the system are zero. Their formulation
leads to a complicated system of equations that relies on the
pre-computation of a significant amount of partial derivatives.
Carignan and Akin (2000) proposed a recursive Newton-Euler

algorithm that is easy to implement, intuitive, and has been
well adopted by the engineering community. As an example,
Dubanchet et al. (2015) hinges on this dynamics framework to
implement H∞ control on a linearized version of the plant with
the objective of designing a debris collection robotic manipulator
in space. Stoneking (2007) uses a Newton-Euler approach which
exposes the reaction forces of the system, solved for by a matrix
inversion that also yields linear and angular accelerations. The
same author proposes a decoupling of the equations for users
not interested in the reaction forces at the joints. Furthermore,
he provides a formulation for the case in which the joints are
not given by a simple primitive (revolute or prismatic), such as
is the case of a gimbaled joint. Bishop et al. (2014) used this
method for path planning and control during rapid maneuvering
of a robotic arm mounted on a spacecraft. Stoneking (2013) also
proposed an approach based on Kane’s equations of motion, in
which the generalized coordinates appear as part of a minimal
representation. In this case, extracting knowledge about the
reaction forces and torques, which are particularly important
during design phases, becomes a significantly more complicated
task.

Jain (1991) and Rodriguez et al. (1991, 1992) provided
a numerically efficient multibody dynamics framework based
on spatial operator algebra. Featherstone and Orin (2000)
and Featherstone (2008), provided generalizable algorithms to
model multibody dynamics. In particular, in section 9.3 of
Featherstone (2008) the author specializes his algorithm to
free-floating bases. Saha (1999), Mohan and Saha (2007), and
Saha et al. (2013) provided another numerical algorithm for
recursive dynamics, which claims to be even more efficient
than the one by Featherstone, and it relies on using projection
matrices to eliminate reaction forces and torques. Software
has also been developed to model general dynamical systems.
For example, Moosavian and Papadopoulos (2004) describes
SPACEMAPLE, a tool that uses an analytical formulation of
the Lagrangian equations of motion. At Tohoku University in
Japan, Yoshida (1999) and his research team developed the
SpaceDyn toolbox. The toolbox uses a recursive Newton-Euler
approach,method further explored by Carignan andAkin (2000).
Other open source toolboxes available online include SPART by
Virgili-Llop et al. (2017), developed specifically for spacecraft-
mounted manipulators, and DART by Lee et al. (2018), which
is aimed for general multibody systems, among many others.
Commercial software packages also exist. Among these, SD/FAST
by Sherman and Rosenthal (2001) is a commonly used software
package for spacecraft modeling.

In this wide literature for dynamic modeling of spacecraft-
mounted robotic manipulators, dual quaternions are mentioned
and used only a handful of times. In particular, Dooley and
McCarthy (1993) proposed using dual quaternions as generalized
coordinates, and Brodsky and Shoham (1999) proposed a
rigorous dual-number based methodology that resulted in a
Lagrangian-like framework. Brodsky and Shoham did draw
parallelisms with a Newton-Euler-type equation, but these were
always projected onto the dual axes of motion for the cases
concerning serial manipulators, obscuring any potential insight
into the reaction forces and torques at the joints.
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TABLE 1 | Quaternion operations.

Operation Definition

Addition a+ b = (a0 + b0, ā+ b̄)

Multiplication by a scalar λa = (λa0, λa)

Multiplication ab = (a0b0 − ā · b̄, a0b̄+ b0ā+ ā× b̄)

Conjugate a∗ = (a0,−ā)
Dot product a · b = (a0b0 + ā · b̄, 03×1) = 1

2 (a
∗b+ b∗a)

Cross product a× b = (0, a0b̄+ b0ā+ ā× b̄) = 1
2 (ab− b∗a∗)

Norm ‖a‖ =
√
a · a

The lack of previous work using dual quaternions in a classical
Newton-Euler framework to model serial manipulator systems
on a spacecraft motivated the work of this paper. In particular,
the highly generalizable dynamics framework presented herein
aims exploits the versatility of dual quaternions to capture
coupled rotational and translational dynamic quantities, and to
capture joint kinematic constraints at both, the velocity and
the acceleration levels. The framework is developed using dual
quaternions, an extension of the well-known quaternions, a
mathematical language that is familiar to the practitioner in
the field of spacecraft dynamics and control. Additionally, the
proposed framework consists of a non-recursive approach that
solves a well-defined system of equations for a satellite with a
tree-like architecture. By providing a simple-to-follow algorithm,
the proposed work aims at increasing the accessibility of the
uninitiated into the realm of multibody dynamics.

2. MATHEMATICAL PRELIMINARIES

2.1. Quaternions
The group of quaternions as defined by Hamilton in 1843 extends
the well-known imaginary unit j, which satisfies the equation j2 =
−1. This non-abelian group is defined by the presentation Q8 ,

{−1, i, j, k : i2 = j2 = k2 = ijk = −1}. The algebra constructed
from Q8 over the field of real numbers is the quaternion algebra,
and it gives rise to the set H. We define quaternions as H , {q =
q0+q1i+q2j+q3k : i2 = j2 = k2 = ijk = −1, q0, q1, q2, q3 ∈ R}.
This defines an associative, non-commutative, division algebra.

In practice, quaternions are often referred to by their scalar
and vectors parts as q = (q0, q), where q0 ∈ R and
q = [q1, q2, q3]

T ∈ R3. The properties of quaternion algebra
are summarized in Table 1. Previous literature has defined
quaternion multiplication as the multiplication between a 4 × 4
matrix and a vector in R4, see for example Filipe and Tsiotras
(2013b).

Since any rotation can be described by three parameters, the
unit norm constraint is imposed on quaternions for attitude
representation.Unit quaternions are closed under multiplication,
but not under addition. A quaternion describing the orientation
of frame X with respect to frame Y, qX/Y, satisfies q∗X/YqX/Y =
qX/Yq

∗
X/Y = 1, where 1 = (1, 03×1). This quaternion can be

constructed as qX/Y = (cos(φ/2), n̄ sin(θ/2)), where n̄ and θ are
the unit Euler axis, and Euler angle of the rotation, respectively.
It is worth emphasizing that q∗Y/X = qX/Y, and that qX/Y and −qX/Y

represent the same rotation. Furthermore, given quaternions qY/X
and qZ/Y, the quaternion describing the rotation from X to Z
is given by qZ/X = qY/XqZ/Y. This equation for composition
of rotations corresponds to a Hamilton product convention as
opposed to a Shuster convention, both of which are described
in Sommer et al. (2018).

Three-dimensional vectors can also be interpreted as special
cases of quaternions. Specifically, given s̄X ∈ R3, the coordinates
of a vector expressed in frame X, its quaternion representation
is given by sX = (0, s̄X) ∈ Hv, where Hv is the set of vector
quaternions defined as Hv , {(q0, q) ∈ H : q0 = 0} (see Filipe,
2014 for further information). The change of the reference frame
on a vector quaternion is achieved by the adjoint operation, and
is given by sY = q∗Y/Xs

XqY/X. Additionally, given s ∈ Hv, we can
define the operation [·]× : Hv → R4×4 as

[s]× =
[

0 01×3

03×1 [s]×

]

, where [s]× =





0 −s3 s2
s3 0 −s1
−s2 s1 0



 . (1)

For quaternions a = (a0, a) and b = (b0, b) ∈ H, the left and
right quaternion multiplication operators [[·]]L, [[·]]R : H → R4×4

will be defined as

ab , [[a]]L ∗ b , [[b]]R ∗ a, (2)

where

[[a]]L =









a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0









=
[

a0 −aT

a a0I3 + [a]×

]

, (3)

[[b]]R =









b0 −b1 −b2 −b3
b1 b0 b3 −b2
b2 −b3 b0 b1
b3 b2 −b1 b0









=
[

b0 −b
T

b b0I3 − [b]×

]

. (4)

The three-dimensional attitude kinematics evolve as

q̇X/Y = 1
2qX/Yω

X
X/Y = 1

2ω
Y
X/YqX/Y, (5)

where ωZ
X/Y , (0,ωZ

X/Y) ∈ Hv and ωZ
X/Y ∈ R3 is the angular

velocity of frame X with respect to frame Y expressed in Z-frame
coordinates.

2.2. Dual Quaternions
The group of dual quaternion elements can be defined as

Qd , {−1, i, j, k, ǫ, ǫi, ǫj, ǫk : i2 = j2 = k2 = ijk = −1,

ǫi = iǫ, ǫj = jǫ, ǫk = kǫ,

ǫ 6= 0, ǫ2 = 0}. (6)

Dual quaternion algebra arises as the algebra of the dual
quaternion group Qd over the field of real numbers, and
is denoted as Hd. When dealing with the modeling of
mechanical systems, it is convenient to define this algebra as
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TABLE 2 | Dual quaternion operations.

Operation Definition

Addition a+ b = (ar + br )+ ǫ(ad + bd )

Multiplication by a

scalar

λa = (λar )+ ǫ(λad )

Multiplication ab = (arbr )+ ǫ(adbr + arbd )

Conjugate a∗ = (a∗r )+ ǫ(a∗d )
Dot product a · b = (ar · br )+ ǫ(ad · br + ar · bd ) = 1

2 (a
∗b+ b∗a)

Cross product a× b = (ar × br )+ ǫ(ad × br + ar × bd ) = 1
2 (ab− b∗a∗)

Circle product a ◦ b = (ar · br + ad · bd )+ ǫ0
Swap as = ad + ǫar
Norm ‖a‖ =

√
a ◦ a

Vector part vec
(

a
)

= (0, ar )+ ǫ(0, ad )

Hd = {q = qr + ǫqd : qr , qd ∈ H}, where ǫ is the dual unit. We
call qr the real part, and qd the dual part of the dual quaternion
q.

Filipe and Tsiotras (2014) and Filipe (2014) have laid out
much of the groundwork in terms of the notation and the
basic properties of dual quaternions. The main properties
of dual quaternion algebra are listed in Table 2. Filipe and
Tsiotras (2013b) also conveniently define a multiplication
between matrices and dual quaternions that resembles
the well-known matrix-vector multiplication by simply
representing the dual quaternion coefficients as a vector in
R8.

Analogous to the set of vector quaternions Hv, we can
define the set of vector dual quaternions as Hv

d
, {q =

qr + ǫqd : qr , qd ∈ Hv}. For vector dual quaternions we
will define the skew-symmetric operator [·]× : Hv

d
→ R8×8

as

[s]× ,

[

[sr]
× 04×4

[sd]
× [sr]

×

]

. (7)

For dual quaternions a = ar + ǫad and b = br + ǫbd ∈ Hd,
the left and right dual quaternion multiplication
operators [[[[[[ · ]]]]]]L, [[[[[[ · ]]]]]]R : Hd → R8×8 are defined
as

ab , [[[[[[a]]]]]]L ⋆ b , [[[[[[b]]]]]]R ⋆ a, (8)

where

[[[[[[a]]]]]]L =
[

[[ar]]L 04×4

[[ad]]L [[ar]]L

]

and [[[[[[b]]]]]]R =
[

[[br]]R 04×4

[[bd]]R [[br]]R

]

. (9)

The following lemma deals with the transformation
invariance of the dual quaternion cross product
operation.

LEMMA 1. The dual quaternion cross product is invariant to
frame transformations. Specifically,

aY×bY = (q∗Y/Xa
XqY/X)×(q∗Y/Xb

XqY/X) = q∗Y/X(a
X×bX)qY/X. (10)

PROOF. From the definition of the dual quaternion cross
product given in Table 2, we have that

q∗Y/X(a
X × bX)qY/X = q∗Y/X(a

XbX − (bX)∗(aX)∗)qY/X
= q∗Y/Xa

XbXqY/X − q∗Y/X(b
X)∗(aX)∗qY/X

= q∗Y/Xa
XqY/Xq

∗
Y/Xb

XqY/X

− q∗Y/X(b
X)∗qY/Xq

∗
Y/X(a

X)∗qY/X
= (q∗Y/Xa

XqY/X)× (q∗Y/Xb
XqY/X)

= aY × bY.

(11)

The following lemma recasts the identity operation on a dual
quaternion in terms of the left and right dual quaternion
multiplication operations.

LEMMA 2. Given unit q ∈ Hd, the left and right dual quaternion
multiplication matrix operators satisfy the following identities:

[[[[[[q]]]]]]L[[[[[[q
∗]]]]]]R[[[[[[q

∗]]]]]]L[[[[[[q]]]]]]R = I8×8

[[[[[[q∗]]]]]]L[[[[[[q]]]]]]R[[[[[[q]]]]]]L[[[[[[q
∗]]]]]]R = I8×8

(12)

PROOF. To prove the first equality, let us apply the left-hand-side
on the generic dual quaternion a ∈ Hd and apply the definition
of the multiplication matrix operators given in Equation (8) as

[[[[[[q]]]]]]L[[[[[[q
∗]]]]]]R[[[[[[q

∗]]]]]]L[[[[[[q]]]]]]R ⋆ a = [[[[[[q]]]]]]L[[[[[[q
∗]]]]]]R[[[[[[q

∗]]]]]]L ⋆ aq

= [[[[[[q]]]]]]L[[[[[[q
∗]]]]]]R ⋆ (q

∗aq)

= [[[[[[q]]]]]]L ⋆ (q
∗aq)q∗

= q(q∗aq)q∗,

(13)

and since qq∗ = qq∗ = 1, the result follows. The second equality
is proven analogously.

Since rigid body motion has six degrees of freedom, a dual
quaternion needs two constraints to parameterize it. The dual
quaternion describing the relative pose of frame B relative to I is
given by qB/I = qB/I,r + ǫqB/I,d = qB/I + ǫ 12qB/IrBB/I, where rBB/I is the
position quaternion describing the location of the origin of frame
B relative to that of frame I, expressed in B-frame coordinates. It
can be easily observed that qB/I,r · qB/I,r = 1 and qB/I,r · qB/I,d = 0,
where 0 = (0, 0̄), providing the two necessary constraints. Thus,
a dual quaternion representing a pose transformation is a unit
dual quaternion, since it satisfies q · q = q∗q = 1, where
1 , 1+ ǫ0. Additionally, we also define 0 , 0+ ǫ0.

Similar to the standard quaternion relationships, two dual
quaternion transformations can be composed to yield a third one
via dual quaternion multiplication as qZ/X = qY/XqZ/Y. Finally,
the dual quaternion inverse is obtained using the conjugation
operation, denoted as q∗Y/X = qX/Y.

A useful equation is the generalization of the velocity of a
rigid body in dual form, which contains both the linear and
angular velocity components. The dual velocity of the Y-frame
with respect to the Z-frame, expressed in X-frame coordinates, is
defined as

ω
X
Y/Z = q∗X/Yω

Y
Y/ZqX/Y = ωX

Y/Z + ǫ(vXY/Z + ωX
Y/Z × rXX/Y), (14)
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where ωX
Y/Z = (0, ω̄X

Y/Z) and vXY/Z = (0, v̄XY/Z), ω̄
X
Y/Z and v̄XY/Z ∈ R3

are, respectively, the angular and linear velocity of the Y-frame
with respect to the Z-frame expressed in X-frame coordinates,
and rXX/Y = (0, r̄XX/Y), where r̄XX/Y ∈ R3 is the position vector
from the origin of the Y-frame to the origin of the X-frame
expressed in X-frame coordinates. In particular, the dual velocity
of a rigid body assigned to frame i with respect to the inertial
frame, expressed in i-frame coordinates will be denoted ω

i

i/I
=

ω i

i/I
+ ǫv i

i/I
.

In general, the dual quaternion kinematics can be expressed
as Filipe and Tsiotras (2013b)

q̇X/Y = 1
2qX/Yω

X
X/Y = 1

2ω
Y
X/YqX/Y. (15)

2.2.1. Wrench and Twists and Their Transformations

Using Dual Quaternions
In order to take full advantage of the potential of dual quaternions
in the context of dynamic modeling of multibody systems, we
have to specify how forces and torques are shifted from one frame
to another. This will allow us, for example, to easily shift the
application of a reaction force at a joint onto the center of mass of
a given body, among other applications. A wrenchWZ(Op) ∈ Hv

d
expressed in Z-frame coordinates can be expressed in terms of its
components as

WZ(Op) = f Z + ǫτ Z, (16)

where f Z = (0, f̄ Z), τ Z = (0, τ̄ Z) ∈ Hv represent force and
torque quaternions applied at point Op as shown in Figure 1.
Equivalently, we can describe the effect of f Z and τ Z about
another point Oq as

WZ(Oq) = f Z + ǫ(τ Z + rZp/q × f Z), (17)

where the extra torque term is due to themoment arm from point
Oq to point Op, captured by the position vector rZp/q. Applying
a frame transformation operation on a wrench about point OX

FIGURE 1 | Wrench interpretation.

expressed in X-frame coordinates, given byWX(OX) = f X + ǫτX,
yields the following expression

WY(OY) = q∗Y/XW
X(OX)qY/X

= (qY/X + ǫ 12 r
X
Y/XqY/X)

∗(f X + ǫτX)(qY/X + ǫ 12 r
X
Y/XqY/X)

= (q∗Y/X + ǫ 12q
∗
Y/Xr

X∗
Y/X)(f

X + ǫτX)(qY/X + ǫ 12 r
X
Y/XqY/X)

= (q∗Y/X − ǫ 12q
∗
Y/Xr

X
Y/X)(f

X + ǫτX)(qY/X + ǫ 12 r
X
Y/XqY/X)

= (q∗Y/X − ǫ 12q
∗
Y/Xr

X
Y/X)(f

XqY/X + ǫ(τXqY/X + f X 1
2 r

X
Y/XqY/X))

= q∗Y/X f
XqY/X − ǫ( 12q

∗
Y/Xr

X
Y/X f

XqY/X)

+ ǫ(q∗Y/XτXqY/X + q∗Y/X f
X 1
2 r

X
Y/XqY/X)

= f Y + ǫ(τY + 1
2q

∗
Y/X f

XqY/Xq
∗
Y/Xr

X
Y/XqY/X

− 1
2q

∗
Y/Xr

X
Y/XqY/Xq

∗
Y/X f

XqY/X)

= f Y + ǫ(τY + 1
2 f

YrYY/X − 1
2 r

Y
Y/X f

Y)

= f Y + ǫ(τY + 1
2 f

YrYY/X − 1
2 (r

Y
Y/X)

∗(f Y)∗),

and by the definition of the cross product of two pure quaternion
quantities given in Table 2, we get that

WY(OY) = q∗Y/XW
X(OX)qY/X

= f Y + ǫ(τY + f Y × rYY/X)

= f Y + ǫ(τY + rYX/Y × f Y). (18)

The transformation described by Equation (18) implies that,
given the dual force (e.g., force and torque) applied on a body
at location OX, the equivalent wrench about a different location
OY can be computed by using a simple frame transformation
operation, commonly known as the shifting law. As expected, the
transformation changes the reference frame in which the original
(X-frame) force and torque are being expressed, but it also adds a
torque term that arises due to the lever of the force f X with respect
to the new reference point OY.

Equivalently, the following transformation ofWY(OY) = f Y+
ǫτY can be easily derived:

WX(OX) = qY/XW
Y(OY)q

∗
Y/X

= f X + ǫ(τX + rXY/X × f X). (19)

Finally, when using wrenches, subscripts will be used to denote
the source of, or a descriptor for, the wrench. For example,
WX

ext(Op) denotes that the source of the wrench is “ext,” which
for our case denotes an external force and torque applied at the
end effector of the robotic arm. It is worth emphasizing that
the wrench transformation can be used to merely change the
orientation of the frame on which the wrench is expressed, or to
simply translate the origin, without re-orientating the axes.

The frame transformation relationships we have just derived
not only apply to wrenches, but also to twists. Therefore, given
the twist sX = sXr + ǫsX

d
the adjoint transformation can be

described by

sY = q∗Y/Xs
XqY/X

= sYr + ǫ(sYd + sYr × rYY/X)

= sYr + ǫ(sYd + rYX/Y × sYr ).

(20)
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Equivalently, given sY = sYr + ǫsY
d
, the inverse adjoint

transformation is described by

sX = qY/Xs
Yq∗Y/X

= sXr + ǫ(sXd + sXr × rXX/Y)

= sXr + ǫ(sXd + rXY/X × sXr ).

(21)

2.2.2. Dual Inertia Matrix, Dual Momentum and 6-DOF

Rigid Body Dynamics
The dual inertia matrix for a rigid body computed about its center
of mass can be as follows Filipe and Tsiotras (2013b)

M
i
,









1 01×3 0 01×3

03×1 m
i
I3×3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 Ī
i









, (22)

wherem
i
∈ R is the mass of the i-th body, Ī

i
∈ R3×3 is the rigid

body mass inertia matrix of the i-th body, and I3×3 is the 3-by-3
identity matrix.

The dual momentum of body i computed about its center of
mass and expressed in local frame i can be defined as

H i
i
(O

i
) = H i

i/I
, M

i
⋆ (ω i

i/I
)s, (23)

where the ⋆ operator can be interpreted as conventional matrix-
vector multiplication when the dual quaternion is represented
as a vector in R8. The kinetic energy for a rigid body can be
computed as

KE = 1
2 (ω

i

i/I
)s ◦ (M

i
⋆ (ω i

i/I
)s). (24)

We can also define the matrix operator H (·) : R8×8 →
R8×8 to eliminate the swap operation in a matrix-dual
quaternion multiplication. Applied on a matrix multiplying a
dual quaternion a ∈ Hd, we have that

H (M) ⋆ a , M ⋆ as. (25)

In block form, this operator acts on M ∈ R8×8, composed of
blocksM1,M2 ∈ R8×4, as follows

H (M) = H ([M1,M2]) = [M2,M1] , (26)

and, in particular, it acts on the dual inertia matrixM
i
as

H
(

M
i

)

=









0 01×3 1 01×3

03×1 03×3 03×1 m
i
I3×3

1 01×3 0 01×3

03×1 Ī
i

03×1 03×3









. (27)

Therefore, we can also write the dual momentum as

H i

i/I
= H

(

M
i

)

⋆ ω
i

i/I
. (28)

The following lemma deals with the invertibility of H
(

M
i

)

.

LEMMA 3. The inverse of H
(

M
i

)

, H
(

M
i

)−1
, exists and is given

by

H
(

M
i

)−1 =









0 01×3 1 01×3

03×1 03×3 03×1 Ī−1
i

1 01×3 0 01×3

03×1
1

m i
I3×3 03×1 03×3









. (29)

PROOF. Through evaluation, H
(

M
i

)−1
H

(

M
i

)

= H
(

M
i

)

H
(

M
i

)−1 = I8×8.

For a multibody system S, with B rigid bodies whose centers
of mass are located at i, Equation (23) can be generalized to

HI
S(OI) =

B
∑

i=1

q
i/I
H i

i
(O

i
)q∗

i/I
=

B
∑

i=1

q
i/I
(M

i
⋆ (ω i

i/I
)s)q∗

i/I
,

(30)
yielding the dual momentum of the system computed about the
origin of the inertial frame and expressed in I-frame coordinates.
The kinetic energy of Equation (24) can be generalized as

KE = 1
2

B
∑

i= 1

(ω i

i/I
)s ◦ (M

i
⋆ (ω i

i/I
)s). (31)

From Equation (23), we can compute the 6-DOF dynamic
equations of motion of body i as

Ḣ i

i/I
+ ω

i

i/I
×H i

i/I
= W i

i (O i
), (32)

or equivalently,

M
i
⋆ (ω̇ i

i/I
)s+ω

i

i/I
×

(

M
i
⋆ (ω i

i/I
)s

)

=W i
i (O i

), (33)

whereW i
i (O i

) = f i + ǫτ i is the net wrench applied on body i
about its center of mass.

3. MULTIBODY SYSTEM MODELING
USING DUAL QUATERNIONS

This section aims to provide a generalized dual quaternion
framework to model the kinematics and the dynamics of a
multibody system that contains joints of the following types:

1. Revolute (R)
2. Prismatic (P)
3. Spherical (S)
4. Cylindrical (C)
5. Cartesian (U).

The approach is aimed toward characterizing spacecraft with
one or more serial robotic arms having varying lengths. The
framework, in fact, will hold for robotic arms that branch out
themselves, while preserving a rooted tree structure, with the
satellite base being the root.

As in previous sections, we will use roman variables for
frames, subscripts and superscripts of physical quantities.We will
use standard math font for the labeling of physical components,
like bodies and joints. For example, body i will have its center of
mass at i.

Frontiers in Robotics and AI | www.frontiersin.org 6 November 2018 | Volume 5 | Article 128

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Valverde and Tsiotras Modeling Multibody Systems Using DQs

FIGURE 2 | (A) Conceptual spacecraft architecture. (B) Architecture as rooted tree with labeled joints.

3.1. Variable Definition and Conventions
We will model the spacecraft as a graph G(v, e), where v is the
number of vertices, and e represents the number of edges. This
graph, in particular, will correspond to that of a directed and
rooted tree with arborescent branching, that is, a graph with
tree structure where direction of the edges matters, and these in
general point away from the root.

For our specific application, the nodes of the graph
will be the different rigid bodies composing the serial
manipulator(s), and the edges will be the different joints
of the manipulator(s). Figure 2A shows an example of the
labeling for the different rigid bodies composing a two-arm
configuration on a satellite. The same configuration is shown
in Figure 2B with the labeling of the vertices (nodes) and edges
accordingly.

As is common in graph theory, matrices will aid in the
description of the system’s topology. Two matrices will be
particularly useful in this generalization: the incidence matrix,
denoted by C, and the branch termination vector, denoted
as T. The incidence matrix contains information about the
connectivity between the joints and the bodies. The columns
of the incidence matrix represent rigid bodies, while the rows
represent joints. Thus, entry Cij indicates the relationship

between joint i and rigid body j as follows

(C)i,j = cij ,











1, if joint i is proximal, body j is distal,

0, if joint i is not connected to body j,

−1, if joint i is distal, body j is proximal,

(34)

where the relative positions are with respect to the satellite base.
The branch termination vector, T denotes whether the given

body is the end of a branch. The body will most likely be an
end-effector and external wrenches due to interaction with the
environment may be applied on it. We define the vector T as

(T)i = ti ,

{

1, if body i ends a branch,

0, otherwise.
(35)

We will define the functions N(·), P(·) as follows. Given a row
or column of matrix C, or vector T, they output the indices of
the “−1” entries, and the indices of the “+1” entries, respectively.
Additionally, we will use the notation C(:, j) to identify the j-th
column ofC,C(i, :) to identify the i-th row of matrixC. It is worth
emphasizing that each row will contain exactly one “−1” entry
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FIGURE 3 | Robotic arm configuration on a satellite base.

and exactly one “+1” entry, although, in general, columns can
have several “−1” or “1” entries1.

EXAMPLE 1. The incidence and branch termination matrices for
the architecture shown in Figure 3 are given by

C =

1 2 3 4 5












Joint J1 −1 1 0 0 0
Joint J2 0 −1 1 0 0
Joint J3 0 0 −1 1 0
Joint J4 0 0 0 −1 1

(36)

T =





































1 0

2 0

3 0

4 0

5 1

(37)

As example of the usage of the functions N(·) and P(·), we have

N(C(1, :)) = N(row 1 of matrix C) = {1}, (38)

P(C(1, :)) = P(row 1 of matrix C) = {2}, (39)

P(T) = P(vector T) = {5}. (40)

1The column corresponding to the satellite base will only have “−1” values, since

no joint is proximal. The columns corresponding to end-effector bodies will

only possess “+1” values since end-effectors are all distal with respect to their

corresponding joint.

TABLE 3 | Generalized coordinates ŴJi for joint Ji depending on its type.

Joint type Generalized coordinate parametrization di (DOF)

R θi/ k
∈ R

1 1

P zi/ k
∈ R

1 1

S [φi/ k
, θi/ k

,ψi/ k
]T ∈ R

3 3

C [θi/ k
, zi/ k

]T ∈ R
2 2

U [xi/ k
, yi/ k

, zi/ k
]T ∈ R

3 3

k = N(C(i, :))

Let Ni be the length of branch i, di be the degrees of freedom
of joint Ji, J the total number of joints, and B the total number
of rigid bodies. Therefore, B = 1 + J, and J =

∑

i ∈ Branches

Ni.

Using this notation, matrix C ∈ RJ×B and vector T ∈ RB.
We will define D as the total number of degrees of freedom
added by the joints, which can be computed as D =

∑

i ∈ Joints
di.

Exploiting the duality between degrees of freedom at a joint, di,
and the dimensionality of the reaction wrench, ri, we will define
R =

∑

i ∈ Joints
ri =

∑

i ∈ Joints
6− di.

The vector y ∈ R8B is defined as the collection of dual
velocities, given by

y ,

















ω
1

1/I

...
ω

i

i/I

...
ω

B

B/I

















. (41)

The vector of generalized coordinates Ŵ ∈ RD represents the
generalized coordinates of the joints and it is defined as

Ŵ ,

















ŴJ1

...
ŴJi

...
ŴJJ

















, (42)

where the form of ŴJi
is dependent upon the type of joint Ji.

Table 3 lists the parametrization used for each type of joint. Here
it is worth noting that the generalized coordinates parametrize
the motion of the i frame (fixed to the distal body with respect
to the joint) with respect to the proximal body, which is captured
by the index k, where k = N(C(i, :)). In particular, S joints are
modeled with an Eulerian 3-2-1 (yaw ψ , pitch θ , roll φ) rotation
sequence for uniformity with other types of joints, even though
these can be better parametrized by quaternions to avoid issues
with singularities during the evaluation of the kinematics.
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FIGURE 4 | Body frame labeling and wrench definition at joint Ji between

bodies i + 1 and k = N(C(i, :)).

Thus, the state vector for any given spacecraft-robotic arm
configuration will be given by

x ,





q
1/I

Ŵ

y



 , (43)

where q
1/I

∈ Hd is the pose of the base.
Figure 4 shows joint Ji with its associated frame i; the frame

i+1, which has the same orientation as frame i but its origin is at
the center of mass of body i + 1; and the frame at the center of
mass of the proximal body denoted by k, where k = N(C(i, :)).
The origin of the i frame is positioned at the physical interface
between the two adjoining bodies. Figure 4 also shows three types
of wrenches. The reaction and actuation wrenches appear at the
joint, with their point of application being the origin of the joint
frame Oi, and their coordinates expressed in the i frame. We
additionally show the body wrenchW i+1

i+1 (O i+1
). Joint actuation

wrenchesW i
act,i(Oi) induce motion about the degrees of freedom

of the joint. Reaction wrenches W i
i+1/k(Oi) arise due to physical

constraints at the joints, and they are dual in nature to the joint
actuation wrenches. Body wrenches, which are assumed to act
at the center of mass of the body, come from control sources
or other natural phenomena such as gravitational effects, or
atmospheric drag, all appropriately transformed to the center of
mass through the shifting law. For an example on the use of
the naming convention for frames and wrenches, the reader is
referred to the Appendix.

It will be assumed that the degrees of freedom of the joints are
along the Zi-axis, which is a common assumption in the field of
robotics, while the Xi and Yi axes can be selected according to
any predetermined set of rules, such as those laid out in Chapter
5 of Jazar (2010). The exceptions are the Cartesian and spherical
joints, both of which have three degrees of freedom, and for
which an orientation of the axesmust be assumed a priori. For the
cartesian joint, the local coordinate system is defined such that it
is parallel to the physical axes of motion. For the spherical joint,

one suggestion is to define theXi pointing toward the i+1th rigid
body, while the Yi and Zi complete the orthogonal axis system.

We will define T ∈ RR, the collection of reduced reaction
wrenches, as

T ,























W̃
1

2/1(O1)
...

W̃
i

i+1/N(C(i,:))(Oi)

W̃
i+1

i+2/N(C(i+1,:))(Oi+1)
...

W̃
B

B+1/N(C(B,:))(OB)























, (44)

where W̃
i

i+1/N(C(i,:)) ∈ Rri is obtained from W i
i+1/N(C(i,:)) ∈ Hd

by eliminating the entries that correspond to the generalized
coordinate of the joint, since there are no reaction forces or
torques applied on the bodies about that generalized coordinate.

In general, we can obtain W̃
i

i+1/N(C(i,:)) from W i
i+1/N(C(i,:)) using

the relationship W i
i+1/N(C(i,:)) = ViW̃

i

i+1/N(C(i,:)), the form of

the matrix Vi ∈ R8×ri depending on the type of joint.
Table 4 lists the general wrench W i

i+1/N(C(i,:)), the reduced wrench

W̃
i

i+1/N(C(i,:)), and the mapping matrix Vi for each of the joints
considered. The matrix Eπ(1,2,3,4,5,6,7,8;i) is formed by removing
rows π(1, 2, 3, 4, 5, 6, 7, 8; i) from the eight-by-eight identity
matrix, I8×8. The function π(·; i) selects an ordered subset of
{1, 2, 3, 4, 5, 6, 7, 8} based on the type of joint i. The matrices 3i

are provided for compactness, as they will be used in a future
section as a way of eliminating a degree of freedom from a
constraint equation for a given type of joint. Also, for completion
purposes, we provide the form of the actuation wrenches in
Table 5 and its corresponding mapping matrix from reduced
actuation wrenches, identified by Vact,i.

3.2. Kinematics
The kinematics of the system are fully characterized by the
kinematics of the satellite base, and the kinematics of the joint
generalized coordinates. The pose of the satellite base evolves as

q̇
1/I

= 1
2q 1/I

ω
1

1/I
. (45)

The joint dual velocity expressed in joint coordinates can be
determined from

ω
i
i/ k

= q
i+1/i

ω
i+1

i+1/I
q∗

i+1/i
−q∗i/ k

ω
k

k/I
qi/ k

, k = N(C(i, :)), (46)

while the generalized coordinates of the joints can be determined
to evolve as

Ŵ̇Ji
= LJi

ω
i
i/ k

= LJi
(q

i+1/i
ω

i+1

i+1/I
q∗

i+1/i
− q∗i/ k

ω
k

k/I
qi/ k

), k = N(C(i, :)).

(47)

The matrix LJi
depends on the joint type, and these are listed in

Table 6.
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TABLE 4 | Form of reduced reaction wrenches for different joint types.

Joint type W i

i+1/i
W̃

i

i+1/i Vi 3i

R (0, [fx , fy , fz ]
T)+ ǫ(0, [τx , τy , 0]T) [fx , fy , fz , τx , τy ]

T ET158 E145

P (0, [fx , fy , 0]
T)+ ǫ(0, [τx , τy , τz ]T) [fx , fy , τx , τy , τz ]

T ET145 E158

S (0, [fx , fy , fz ]
T)+ ǫ(0, [0, 0, 0]T) [fx , fy , fz ]

T ET15678 E12345

C (0, [fx , fy , 0]
T)+ ǫ(0, [τx , τy , 0]T) [fx , fy , τx , τy ]

T ET1458 E1458

U (0, [0, 0, 0]T)+ ǫ(0, [τx , τy , τz ]T) [τx , τy , τz ]
T ET12345 E15678

TABLE 5 | Form of actuation wrenches for different joint types.

Joint type W i
act,i Vact,i

R (0, [0, 0, 0]T)+ ǫ(0, [0, 0, τz ]T) ET1234567

P (0, [0, 0, fz ]
T)+ ǫ(0, [0, 0, 0]T) ET1235678

S (0, [0, 0, 0]T)+ ǫ(0, [τx , τy , τz ]T) ET12345

C (0, [0, 0, fz ]
T)+ ǫ(0, [0, 0, τz ]T) ET123567

U (0, [fx , fy , fz ]
T)+ ǫ(0, [0, 0, 0]T) ET15678

TABLE 6 | Mapping matrix from angular velocity to generalized coordinates.

Joint type LJi

R
[

0, 0, 0, 1, 0, 0, 0, 0
]

P
[

0, 0, 0, 0, 0, 0, 0, 1
]

S









0 1 tan(θi/ k
) sin(φi/ k

) cos(φi/ k
) tan(θi/ k

) 0 0 0 0

0 0 cos(φi/ k
) − sin(φi/ k

) 0 0 0 0

0 0 sin(φi/ k
)/ cos(θi/ k

) cos(φi/ k
)/ cos(θi/ k

) 0 0 0 0









C





0, 0, 0, 1, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 1





U









0, 0, 0, 0, 0, 1, 0, 0

0, 0, 0, 0, 0, 0, 1, 0

0, 0, 0, 0, 0, 0, 0, 1









Furthermore, from Equation (46), we can derive an
acceleration-level relationship at each joint given by

ω̇
i
i/ k

= q
i+1/i

ω̇
i+1

i+1/I
q∗

i+1/i
− q∗i/ k

ω̇
k

k/I
qi/ k

−q∗i/ k
(ω k

k/I
× ω

k
i/ k

)qi/ k
, k = N(C(i, :)), (48)

resulting in

0 = 3iq i+1/i
ω̇

i+1

i+1/I
q∗

i+1/i
−3iq

∗
i/ k

ω̇
k

k/I
qi/ k

−3iq
∗
i/ k

(ω k

k/I
× ω

k
i/ k

)qi/ k
, k = N(C(i, :)), (49)

where we have used the fact that 3iω̇
i
i/ k

= 0, by construction of

3i, defined in Table 4.

3.3. Dynamics
Wewill now generalize the rigid body Newton-Euler dynamics to
that of a spacecraft with multiple serial robotic manipulators. We

will show that the equations of motion can be cast in the form

[

S11 S12

S21 S22

] [

ẏ

T

]

=
[

B1

B2

]

. (50)

We will define each of the blocks S11 ∈ R8B×8B, S12 ∈ R8B×R,
S21 ∈ RR×8B, S22 ∈ RR×R, B1 ∈ R8B, and B2 ∈ RR

independently.
The block S11 is composed of the dual inertia matrix for each

of the bodies. It is given by

S11 =

















H
(

M
1

)

. . . 08×8

. . .
...

H
(

M
i

)

...
. . .

08×8 . . . H
(

M
B

)

















. (51)

Notice that since this matrix is block diagonal, its inverse can be
easily computed as the inverse of its sub-blocks, which exist as
proven in Lemma 3. Thus, in cases when there are no moving
mechanical components, fluid slosh, or fuel consumption, the
inverse of S11 can be pre-computed and stored in memory to
speed up computations. The block S22 ∈ RR×R represents the
effect of the reaction wrenches on the constraint equations. Since
wrenches do not appear in the constraint equations, this block is
composed of zeros. Explicitly, this block is given by

S22 = 0R×R. (52)

The block S12 ∈ R8B×R couples the reaction wrenches with the
dynamics of each body. These wrenches initially appear on the
right-hand side of the Newton-Euler equation and are moved to
the left-hand side as an unknown. The point of application of
the wrench and the frame of reference are shifted to the center
of mass of the body for which the equation is being derived.
The matrix is composed of blocks of size (S12)ij ∈ R8×rj ,
corresponding to the attachment of body i to joint j, where each
of these blocks is specified as

(S12)ij =











−[[[[[[q∗
i/j
]]]]]]L[[[[[[q i/j

]]]]]]RVj, if cji = 1,

08×rj , if cji = 0,

[[[[[[qj/ i
]]]]]]L[[[[[[q

∗
j/ i
]]]]]]RVj, if cji = −1.

(53)

The form of matrix Vj depends on the type of joint as was
detailed in Table 4. The block S21 ∈ RR×8B introduces the dual
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accelerations of each body into the constraint equations. The
matrix is composed of blocks (S21)ij ∈ Rri×8, corresponding
to the constraint at joint i and its relationship with body j as
described by Equation (49). These sub-blocks are specified as

(S21)ij =















3i[[[[[[q j/i
]]]]]]L[[[[[[q

∗
j/i
]]]]]]R, if cij = 1,

0ri×8, if cij = 0,

−3i[[[[[[q
∗
i/ j
]]]]]]L[[[[[[qi/ j

]]]]]]R, if cij = −1.

(54)

The form of matrix 3i depends on the type of joint and it is
provided in Table 4.

The vector B1 ∈ R8B corresponds to the right hand side of
the Newton-Euler equation. In particular, it contains the non-
linear term ω × (M ⋆ ω

s), the known wrenches applied at the
center of mass, and the wrenches due to joint actuation. If the
body ends a branch, it is assumed that it can interact with the
environment at a specific point in the body. This is included in
B1 as well through “external” wrenches. External wrenches for
branch i will be assumed to act at frame Gi, the frame assigned
to the end-effector of branch-terminating body i, and they will be

denoted by W
Gi
ext,i (OGi

). The vector is composed of sub-vectors

(B1)i ∈ R8 given by

(B1)i = −ω
i

i/I
× (M i ⋆ (ω

i

i/I
)s)+W i

i (O i )+tiqGi/ i
W

Gi
ext,i(OGi )q

∗
Gi/ i

−
∑

j∈N(C(:,i))

qj/ i
W

j
act,j(Oj )q

∗
j/ i

+
∑

j∈P(C(:,i))
q∗

i/j
W

j
act,j(Oj )q i/j

.

(55)

The vector B2 ∈ RR corresponds to the right-hand-side of
the constraint equations for each of the joints. In particular, it
contains a cross term of dual velocities that arises when taking
the derivative of the dual velocity constraint to yield a dual
acceleration constraint, detailed in Equation (49). The vector is
composed of sub-vectors (B2)i ∈ Rri , given by

(B2)i = 3iq
∗
i/ k

(ω k

k/I
× ω

k
i/ k

)qi/ k

= 3iq
∗
i/ k

ω
k

k/I
qi/ k

× ω
i
i/ k

, k = N(C(i, :)), (56)

where in the last equality we used the invariance of the dual
quaternion cross product, proven in Lemma 1.

Finally, since S11 is always invertible and S22 = 0R×R, we can
avoid inverting the large matrix on the left-hand-side of Equation
(50) by using the Schur complement. Thus, if

S ,

[

S11 S12

S21 S22

]

=
[

S11 S12

S21 0R×R

]

(57)

we define the Schur complement of block S11 as S/S11 ,

−S21S
−1
11 S12. Therefore, the inverse of S is given by

S
−1 =

[

S
−1
11 + S

−1
11 S12(S/S11)

−1S21S
−1
11 −S

−1
11 S12(S/S11)

−1

−(S/S11)
−1S21S

−1
11 (S/S11)

−1

]

.

(58)

Hence, we can solve for the unknowns as
[

ẏ

T

]

= S
−1

[

B1

B2

]

, (59)

which upon expansion, yields

T = (S21S
−1
11 S12)

−1(S21S
−1
11 B1 − B2),

ẏ = −S
−1
11 S12T+ S

−1
11 B1

= −S
−1
11 S12(S21S

−1
11 S12)

−1(S21S
−1
11 B1 − B2)+ S

−1
11 B1.

(60)

FIGURE 5 | (A) Center of mass deviation from initial position, (B) kinetic

energy of the system, and (C) condition number of S.
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FIGURE 6 | (A) Change in center of mass location, (B) linear, and (C) angular

momentum comparison between decoupled and dual quaternion formulations.

3.4. Locking or Prescribing Joint Motion
In some instances, it is desirable to lock a certain degree a
freedom or prescribe its generalized coordinate, while still being
able to determine the reactionwrenches produced by thismotion.
Additionally, knowledge of the required actuation wrench can
provide insight into the holding torque that a given motor must
provide, or exert during specific smaneuvers. A straight-forward
modification of the equations provided herein can yield this
information.

Let the admissible dual velocity and acceleration of the
prescribed-motion for joint Ji be given by

ω
i
i/ k

= ωpres, k = N(C(i, :)),

ω̇
i
i/ k

= ω̇pres.
(61)

The generalized speed is still mapped as follows

Ŵ̇Ji
= LJi

ω
i
i/ k

. (62)

Assuming knowledge of the proximal body’s dual acceleration

ω̇
k

k/I
, which must be solved for in tandem with all other dual

accelerations and reaction wrenches, and since all velocity-
level quantities are known, the distal body’s dual velocity and
acceleration are fully described by the kinematic relationships

Dual Velocity: ω
i+1

i+1/I
= q∗

i+1/i
ω
i
i/ k

q
i+1/i

+q∗
i+1/ k

ω
k

k/I
q

i+1/ k

(63)

Dual Acceleration: ω̇
i+1

i+1/I
= q∗

i+1/i
ω̇
i
i/ k

q
i+1/i

+ q∗
i+1/ k

(ω̇ k

k/I
+ ω

k

k/I
× ω

k
i/ k

)q
i+1/ k

,

(64)

both of which can be easily derived from Equations (46) and
(48). Since the dual acceleration ω̇

i+1

i+1/I
is no longer an unknown,

we must remove the corresponding equations from the system
of equations presented in Equation (50). To do this, we remove
ω̇

i+1

i+1/I
from the vector of unknowns ẏ, and block-matrices

(S11){:,i+1}, (S21){:,i+1}, which are the corresponding coefficients
of ω̇

i+1

i+1/I
that appear in both Newton-Euler, and constraint

equations. For the sake of exposition, let us rename these

modified variables as ˆ̇y, Ŝ11, and Ŝ21.
Next, we need to manipulate the modified Newton-Euler

equation for bodies i + 1 and k = N(C(i, :)), since both are
connected to joint Ji, to include the actuation wrench as part of
the vector of unknowns. In general terms, this equation is given
by

q∗
i+1/i

W i
act,i(Oi )q i+1/i

= (Ŝ11){i+1,:} ˆ̇y+ (S12){i+1,:}T− (B1){i+1,0,i}
(65)

and

− qi/ k
W i

act,i(Oi )q
∗
i/ k

= (Ŝ11){k,:} ˆ̇y+ (S12){k,:}T− (B1){k,i,0} (66)

where we have defined

(B1){i,p,r} , −ω
i

i/I
× (M

i
⋆ (ω i

i/I
)s)+W i

i
(O

i
)

+tiqGi/ i
W

Gi
ext,i(OGi

)q∗Gi/ i

−
∑

j∈N(C(:,i))
j 6=p

qj/ i
W

j
act,j(Oj )q

∗
j/ i

+
∑

j∈P(C(:,i))
j 6=r

q∗
i/j
W

j
act,j(Oj )q i/j

. (67)
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FIGURE 7 | Proposed architecture with joint types in nominal configuration

and body labeling.

By manipulating Equations (65) and (66), we obtain

(Ŝ11){i+1,:} ˆ̇y + (S12){i+1,:}T− [[[[[[q∗
i+1/i

]]]]]]L[[[[[[q i+1/i
]]]]]]RVact,iW̃

i

act,i(Oi )

= (B1){i+1,0,i}, (68)

and

(Ŝ11){k,:} ˆ̇y+ (S12){k,:}T+ [[[[[[qi/ k
]]]]]]L[[[[[[q

∗
i/ k

]]]]]]RVact,iW̃
i

act,i(Oi ) = (B1){k,i,0}.

(69)

Further manipulation of Equation (68) allows clearing W̃
i

act,i(Oi )
of transformations as

VT
act,i[[[[[[q i+1/i

]]]]]]L[[[[[[q
∗
i+1/i

]]]]]]R(Ŝ11){i+1,:} ˆ̇y+VT
act,i[[[[[[q i+1/i

]]]]]]L[[[[[[q
∗
i+1/i

]]]]]]R

(S12){i+1,:}T− W̃
i
act,i(Oi ) = VT

act,i[[[[[[q i+1/i
]]]]]]L[[[[[[q

∗
i+1/i

]]]]]]R(B1){i+1,0,i}, (70)

where we have used Lemma 2 and the fact that VT
act,iVact,i = Idi×di

for W̃
i

act,i(Oi ) ∈ Rdi .
The resulting system of equations will be of the form

[

ϒ Ŝ11 ϒS12 Sact,i,1

Ŝ21 S22 Sact,i,2

]







ˆ̇y

T

W̃
i

act,i(Oi )






=

[

ϒB̂1

B2

]

. (71)

Here we have that

Sact,i,2 = 0R×di , (72)

while Sact,i,1 ∈ R(8(B−1)+di)×di is described by

(Sact,i,1)j =



















−Idi×di if j = i,

08×di if j 6= i, j 6= k,

+[[[[[[qi/ k
]]]]]]L[[[[[[q

∗
i/ k

]]]]]]RVact,i if j = k.

(73)

The vectors B̂1 and B1 are identical, except the (i+1)-th and k-th
entries, which are computed as

(B̂1)i+1 : = (B1){i+1,0,i}

(B̂1)k : = (B1){k,i,0}.
(74)

Additionally, the block diagonal matrix ϒ is described as

(ϒ)(j,j) =
{

VT
act,i[[[[[[q i+1/i

]]]]]]L[[[[[[q
∗
i+1/i

]]]]]]R if j = i, i is prescribed

I8×8 if j 6= i.

(75)

It is worth emphasizing that the resulting matrix

[

ϒ Ŝ11 ϒS12 Sact,i,1

Ŝ21 S22 Sact,i,2

]

(76)

belongs to R(8(B−1)+R+di)×(8(B−1)+R+di) and thus, it is square and
invertible.

3.5. Framework Summary
Algorithm 1 provides a detailed description of how to implement
the kinematics and dynamics framework introduced in the
previous sections.

4. EVALUATION OF NUMERICAL
PERFORMANCE

We studied the performance of the algorithm on the
satellite shown in Figure 3 without the end-effector.
The inertias for the four different bodies were chosen
as M

1
= diag (1, 10, 10, 10, 1, 50, 50, 50) [kg, kg ·m2],

M
2

= diag (1, 5, 5, 5, 1, 2, 2, 1) [kg, kg ·m2], M
3

=
diag (1, 5, 5, 5, 1, 1, 2, 2) [kg, kg ·m2], and M

4
=

diag (1, 5, 5, 5, 1, 1, 2, 2) [kg, kg ·m2]. The geometry of the system
was chosen as r̄ 1

1/ 1
= (0, 0, 2.0)T [m], r̄ 2

1/ 2
= (0, 0, −1.5)T [m],

r̄ 2
2/ 2

= (0, 0, 1.5)T [m], r̄ 3
2/ 3

= (−1.5, 0, 0)T [m],

r̄ 3
3/ 3

= (1.5, 0, 0)T [m], r̄ 4
3/ 4

= (−1.5, 0, 0)T [m], and

r̄ 4
e/ 4

= (1.5, 0, 0)T [m], where the orientation of the frames for
each of the bodies can be found in Chapter 5 of Valverde (2018).

The simulation was run using MATLAB R2017a’s ODE45.
The integrator’s option AbsTol (absolute tolerance) was set to
1×10−14 and RelTol (relative tolerance) was set to 2.220×10−14;
the final time was set to tf = 70 s. To evaluate center of mass,
linear momentum, and angular momentum conservation, only
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Algorithm 1 Kinematics and dynamics of spacecraft-mounted
robotic systems.

1: Given: x(0), final time tf , C, T, Vi, Vact,i, 3i and q
i+1/i

from
geometry

2: Optionally given: Index j, ωpres, ω̇pres

3: While t < tf
4: Extract q

1/I
, Ŵ, y from x

5: Extract ŴJi
from Ŵ

6: Compute qi/ k
from ŴJi

, where k = N(C(i, :)), for all i

7: Extract ω i

i/I
from y for all i

8: Compute ω
i
i/ k

using Equation (46) for all i

9: If Joint j is prescribed

10: Compute ω
j+1

j+1/I
from Equation (63)

11: Compute ω
i+1

i+1/I
using joint velocities ω

i
i/ k

for all

outboard bodies i+ 1 > j+ 1 on same branch
12: End If

13: Compute q̇
1/I

from Equation (45)

14: Compute Ŵ̇Ji
from Equation (47) for all i

15: Assemble S11, S12, S21, S22, B1, B2

16: If Joint j is prescribed

17: Compute Ŝ11 from S11, Ŝ21 from Ŝ21

18: Compute B̂1 from B1 using Equation (74)
19: Compute ϒ from Equation (75)

20: Solve for ˆ̇y, T and W̃
j

act,j(Oj ) using Equation (71)

21: Compute ω̇
j+1

j+1/I
from Equation (64)

22: Assemble ẏ from ˆ̇y and ω̇
j+1

j+1/I

23: Else

24: Solve for ẏ and T using Equation (60)
25: End If

26: Assemble ẋ from q̇
1/I
, Ŵ̇, ẏ

27: Integrate ẋ
28: EndWhile

internal (joint) wrenches were applied. The generalized forces on
the wrenches

W1
act,1(O0) = 0+ ǫ(0, [0, 0, (τ̄act,1)z]T)

W2
act,2(O1) = 0+ ǫ(0, [0, 0, (τ̄act,2)z]T)

W3
act,3(O2) = 0+ ǫ(0, [0, 0, (τ̄act,3)z]T),

(77)

were set to

(τ̄act,1)z =
{

0.5 sin(t − 2) N, 2 s < t < 5 s

0, otherwise

(τ̄act,2)z =
{

0.5 sin(t − 10) N, 10 s < t < 12 s

0, otherwise

(τ̄act,3)z =
{

0.5 sin(t − 20) N, 20 s < t < 22 s

0, otherwise.

(78)

The deviation of the center of mass of the system with respect to
its initial position is shown in Figure 5A. The total kinetic energy
of the system is shown in Figure 5B, and the condition number
for matrix S, described in Equation (57), is plotted in Figure 5C

at every time step.
The equations of motion were derived for the same

architecture using classical Newton-Euler techniques as in the
framework proposed by Stoneking Stoneking (2007), where
the rotational dynamics are decoupled from the translational
dynamics. The implementation required deriving the constraint
equations for revolute joints, since these are not explicitly
addressed by Stoneking. The numerical performance differences
between the dual quaternion approach (DQ), and the decoupled
formulation (Decoupled) of the dynamics, were evaluated for
the same set of inputs. Figure 6A shows the comparison of the
norm of the change of the center of mass of the system with
respect to its initial position as a function of time. Next, the
conservation of the linear and angular momenta of both systems
is compared as shown in Figures 6B,C. As expected, the dual
quaternion formulation possesses a numerical advantage since
it more naturally accounts for the coupling between the rigid
bodies’ translational and rotational motion.

5. CONCLUSION

In this paper we have provided an intuitive approach to derive
the dynamics of a satellite with a rooted-tree configuration with
different joint types, including revolute, prismatic, spherical,
cylindrical, and cartesian joints using dual quaternions. The
approach exploits the structure of the Newton-Euler form of
the dynamical equations of motion for a rigid body in dual
quaternion form, allowing for the determination of the reaction
wrenches at the joints. The different nature of the joints is
captured by simple changes in the mapping matrices associated
with each joint, and not through a fundamental change in
the form of the equations - an advantage provided by the
coupled nature of the kinematic and dynamic relationships
expressed in terms of dual quaternions. The proposed framework
can be particularly beneficial during proximity operations
of a robotic servicing mission. Combining existing dual
quaternion-based pose-tracking controllers with the proposed
dual quaternion framework for the modeling of the multibody
robotic servicer allows for the use of a unified algebra to model
the different phases, ranging from navigation, to grappling and
servicing.
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APPENDIX:

Labeling Example on Two Arm Manipulator
We present an example of a spacecraft with two robotic arms,
each with five links and three different types of joints. The
example aims to further familiarize the reader with the proposed
notation. The architecture of the satellite is shown in Figure 7.
Figure 8 shows a schematic of the coordinate frames and
the wrenches defined during implementation of the proposed
framework. Reaction wrenches and actuation wrenches are
assumed positive as applied on the body on which they are
shown, and negative on the proximal body relative to the joint.
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