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Motor imagery (MI) based brain-computer interfaces (BCI) extract commands in real-time

and can be used to control a cursor, a robot or functional electrical stimulation (FES)

devices. The control of FES devices is especially interesting for stroke rehabilitation, when

a patient can use motor imagery to stimulate specific muscles in real-time. However,

damage to motor areas resulting from stroke or other causes might impair control of a

motor imagery BCI for rehabilitation. The current work presents a comparative evaluation

of the MI-based BCI control accuracy between stroke patients and healthy subjects. Five

patients who had a stroke that affected the motor system participated in the current

study, and were trained across 10–24 sessions lasting about 1 h each with the recoveriX

system. The participants’ EEG data were classified while they imagined left or right hand

movements, and real-time feedback was provided on amonitor. If the correct imagination

was detected, the FES was also activated to move the left or right hand. The grand

average mean accuracy was 87.4% for all patients and sessions. All patients were able

to achieve at least one session with a maximum accuracy above 96%. Both the mean

accuracy and the maximum accuracy were surprisingly high and above results seen with

healthy controls in prior studies. Importantly, the study showed that stroke patients can

control a MI BCI system with high accuracy relative to healthy persons. This may occur

because these patients are highly motivated to participate in a study to improve their

motor functions. Participants often reported early in the training of motor improvements

and this caused additional motivation. However, it also reflects the efficacy of combining

motor imagination, seeing continuous bar feedback, and real hand movement that also

activates the tactile and proprioceptive systems. Results also suggested that motor

function could improve even if classification accuracy did not, and suggest other new

questions to explore in future work. Future studies will also be done with a first-person

view 3D avatar to provide improved feedback and thereby increase each patients’ sense

of engagement.
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INTRODUCTION

A brain-computer interface (BCI) enables a direct
communication pathway between the brain and external devices.
The users perform certain mental tasks that entail distinct brain
patterns of brain activity, and automated tools can detect that
activity and thereby provide communication. Most BCIs are
noninvasive systems that rely on the electroencephalogram
(EEG). Noninvasive BCIs typically rely on one of three mental
tasks, entailing motor imagery (MI) or selective attention to
transient or oscillating stimuli (Wolpaw and Elizabeth, 2012).

Most BCIs sought to provide communication for severely
disabled users. However, recent analyses and commentaries have
addressed promising new goals and user groups, including motor
rehabilitation for stroke patients (Prasad et al., 2010;Wolpaw and
Elizabeth, 2012; Allison et al., 2013; Brunner et al., 2015). In this
approach, the users perform mental imagery tasks that are well-
established in motor rehabilitation therapy, such as imagination
of left or right hand dorsiflexion. In typical MI training, users
are instructed to imagine the movement, without any means to
confirm that the user is indeed performing the desired mental
activity. The BCI technology can provide an objective tool for
measuring MI, thus providing the possibility of “closed-loop”
feedback. Since closed-loop feedback that is effectively paired
with the desired mental activity is a critical facet of any feedback
system (Neuper and Allison, 2014), the “paired stimulation”
(PS) made possible through motor-imagery BCI research could
improve therapy outcomes. Recent research from several groups
has supported this hypothesis (Ang et al., 2011; Pichiorri et al.,
2011, 2015; Ortner et al., 2012; Luu et al., 2015; Sburlea et al.,
2015; Soekadar et al., 2015; Remsik et al., 2016; Sabathiel et al.,
2016; Serrano et al., 2017). Furthermore it is known that a closed
feedback loop increases the users performance (Wolpaw et al.,
2002).

Within the PS approach, the classifiers must accurately
interpret a user’s MI. Thus, even though the overall goal of PS
is not communication but rehabilitation, classification accuracy
is relevant. Ineffective classification could mean that the system
provides rewarding feedback when users are not imagining
the correct movement, or the other way round: provide no
feedback even if the patient is doing correct imagination. Both
cases reduce the advantage of PS over conventional therapy,
where, for example, the patient has to imagine a limb movement
while a therapist or assistive device is mobilizing that limb.
Furthermore, a reduced accuracy would correspond to a lower
training intensity and of course the treatment time of stroke
patients should be optimally used. Finally, the BCI accuracy
can serve as performance feedback for patients to motivate
them to participate in the training and to try to reach optimal
performance. The inclusion of FES to stroke rehabilitation could
further improve classification accuracy (Do et al., 2011).

In MI BCIs for stroke rehabilitation or communication,
accurate classification relies on the automated signal processing
tools used. Guger and colleagues tested the accuracy of a MI-
based BCI in 2003 on 99 healthy users. Ninety-Three Percent
of these users reached an accuracy level better than 60% (Guger
et al., 2003). Due to constraints in available time for each subject

and the usage of passive EEG electrodes, that study used an
easy setup with two bipolar channels. More advanced approaches
take advantage of a high number of EEG channels to increase
accuracy. The method of common spatial patterns (CSP) is often
used to create subject specific spatial filters for these setups.
Numerous articles explored classification accuracy with CSP with
different subjects (Vidaurre and Blankertz, 2010; Ortner et al.,
2015). A study with 64 EEG channels from 20 healthy young
adults (mean age 23.5) while they imagined left or right hand
movement within one 60-min BCI session achieved a mean
accuracy rate of 72.4%, while the mean maximum accuracy rate
was 80.7%.

The current pilot study explores stroke patients’ BCI
classification accuracy by using a MI BCI with continuous cursor
feedback and additional functional electrical stimulation (FES).
The afferent feedback provided by FES temporally coupled with
task-related motor execution could facilitate brain plasticity
(Quandt and Hummel, 2014). A second goal is to see if the MI
performance of stroke patients gets better with training, and we
also investigate improvements in motor function resulting from
training. In a meta-analysis the accuracy is compared to data
from healthy controls assessed in one of our earlier study (Ortner
et al., 2015) where we used the same paradigm and experimental
setup, except the FES.

MATERIALS AND METHODS

The study was approved by the institutional review board
of the Rehabilitation Hospital of Iasi, and all patients signed
an informed consent and an authorization for release of
photographs and videos before the start of the study.

All patients used an early version of the recoveriX system,
consisting of a computer, a FES device, a biosignal amplifier with
active EEG electrodes, and a feedback screen for the patient. Each
patient was seated one meter in front of a computer monitor. The
electrodes for functional electrical stimulation (FES) were placed
over the posterior muscles of the forearms to induce wrist and
finger extension upon stimulation. The complete setup is shown
in Figure 1.

During hospitalization, in addition to the recoveriX training,
all patients performed 30min of conventional rehabilitation
therapy per working day. This therapy consisted of passive and
active movements performed individually or in larger groups,
under the supervision of a therapist.

Patient Description and Inclusion and
Exclusion Criteria
Five patients participated in the study (mean age: 60 years, 3
males, 2 females). Table 1 summarizes information about the
patients in our study. They all suffered an ischemic stroke in the
territory of the sylvian artery (three of them had cortical strokes
and two deep lacunary strokes).

The study was carried out in the Neurology Clinic of the
Rehabilitation Hospital of Iasi. Inclusion criteria were:

• Age between 18 to 70 years;
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FIGURE 1 | The left panel presents the experimental setup with a patient sitting in front of a computer screen wearing a 64 channel EEG cap. The EEG signals are

decoded by a g.HIamp biosignal amplifier, and FES is provided through an 8-channel neurostimulator. The FES electrodes are assembled on both forearms to perform

wrist extension. The written and informed consent has been obtained from the depicted individuals for the publication of their identifiable image. The right panel

displays the electrode placement used in this study, according to the 10–20 international system.

TABLE 1 | The coded list of participants in the study, the time interval between the stroke occurrence and the start of recoveriX training, description of movement

difficulties and number of recoveriX sessions.

Patient Time between the stroke and

recoveriX training/stroke location

Difficulties right hand Difficulties left hand Sessions Age Sex

P1 12 months/Cortical-lacunary in the

deep territory of the MCA

No Yes (limited opening and

grasping)

14 64 M

P2 1 month/Cortical -lacunary in the

deep territory of the MCA

Yes (limited movement) No 24 61 F

P3 4 years/Cortical–superficial sylvian

territory

No Yes (paralyzed hand) 10 40 F

P4 4 months/

Cortical-superficial sylvian territory

Yes (limited hand

movement)

No 22 69 M

P5 3 months/Cortical-lacunary in the

deep territory of the MCA

No Yes (limited left arm

movement)

24 64 M

Three patients were trained in the sub-acute phase and 2 patients in the chronic state.

FIGURE 2 | Timing within one trial. A beep indicates the start of the trial after 2 s. Then, a visual cue is presented for one second. From second four until the end of

the trial (second 8) visual and FES feedback is provided to the user.
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• Survivor of a stroke in the territory of the middle cerebral
artery, with residual spastic hemiparesis;

• Chronic stroke (between 1 month to 5 years in our study);
• Upper limb deficits defined by the patient and investigator as

disability in performing daily activities;
• Able to attend the research or rehabilitation center as required

for the protocol.

We have excluded patients with significant
speaking/understanding and/or cognitive disorders, pacemakers
or other cardiac/cerebral/spinal cord implants which do not
allow the use of Functional Electrical Stimulation (FES), as
well as intense spasticity and/or wrist clonus, or upper limb
deformities (viciously consolidated fractures).

Data Acquisition and Experimental
Paradigm
Data were recorded from 64 electrode sites (Figure 1, right side).
The sampling rate was 256Hz. A bandpass filter with cutoff
frequency at 0.5 and 30Hz was applied. The method of common
spatial patterns (CSP) was used for spatial filtering. The spatially
filtered data were classified using the linear discriminant analysis
(LDA).

Each session began with mounting the electrode cap and
FES pads. FES stimulation was provided through an 8-channel
neurostimulator (MOTIONSTIM8, Krauth+Timmermann
GmbH, Germany). The investigator adjusted FES parameters
(pulse width and current) before each session to induce wrist
dorsiflexion and hand opening without causing discomfort
in both upper limbs. The most frequent setting was: healthy
hand current ∼15mA, PW 300 us; affected hand: 20–22mA,
PW 300 µs. All patients participated in one practice session
to become familiar with the system and feedback. During this
practice session, patients were taught how to perform theMI task
and performed two runs. The visual and FES feedback during
the practice runs was artificially generated by the paradigm,
and the recorded data was used as calibration data for the
next session. Each run lasted 6min and contained 40 MI trials
(20 for each hand). Each trial lasted for 8 s with a 2 s break

in-between. At the beginning of each trial, a cross was displayed
in the center of the screen. After 3 s, an arrow pointed to the
left or right side, providing the command to perform MI of
either the left or right hand. One second later, the feedback
bar appeared and was presented for four seconds. It showed
the classified LDA distance, extending to the left for a negative
LDA distance and to the right for a positive LDA distance
(Figure 2).

A negative distance means that the left hand was classified,
whereas a positive distance means the right hand was classified.
In parallel, the FES system induced movements on the left
or right hand, according to the classification result. A certain
threshold had to be exceeded for a preceding time of 0.5 s to
start stimulation. All subsequent (i.e., post-practice) sessions
contained six runs in total, 4 runs as training data and 2 runs
as test data (Figure 3). A short break was conducted between the
runs.

With three of the patients (with less severe motor
impairment), we were able to assess hand function using
the “nine-hole PEG test” [9-HPT; (Croarkin et al., 2004)]. This
test measures the time required to put 9 small metal pegs into a
board with 9 holes, then remove the pegs. We also recorded the
number of times a peg was dropped. The test is repeated for both
hands.

Due to practical limitations in working with the patients
(including both logistical (e.g., distance from study center
and availability) and physical capacities), the total number of
experimental sessions ranged from 10 to 24 across different
participants. 9-HPT testing was performed after every third
recording session with the three available cases. We also
conducted testing using the Medical Research Council (MRC)
guidelines for all five patients.

Feature Extraction and Classification
The Common Spatial Patterns (CSP) approach is a frequently
used algorithm in MI-based BCIs. It designs subject specific
spatial filters resulting in maximized variance for one class
of MI, and a minimized variance for the other class. Further
explanations about the method of CSP could be found e.g., here

FIGURE 3 | Workflow of one session. The training data consisting of 4 runs were recorded using the CSP filters and classifier generated in the previous session. The

test data was used to generate a new set of CSP filters and LDA classifier that were tested online while recording runs 5 and 6.
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(Mueller-Gerking et al., 1999; Ramoser et al., 2000; Blankertz
et al., 2008). By spatially filtering the EEG data with the CSP
filters, four features are created. These four features are further
processed before classification is done. First, the variance (VARp)
is calculated for a time window of 1.5 s. Second, they are
normalized and log-transformed, as follows:

xp = log

(

VARp
∑4

p=1 VARp

)

The vector of features is therefore: −→x = [x1x2x3x4]
T . A

Fisher’s linear discriminant analysis (LDA, Lemm et al., 2011)
classification was done to categorize the data as either left hand

MI or right hand MI. The discrimination function of the LDA is
defined by a hyperplane, which is also called decision surface. The
LDA distance g

(

−→x
)

is calculated as:

g
(

−→x
)

= wT−→x + w0

The plane is parametrized by its normal vector wT and the
bias w0 (Duda et al., 2000). wT is also called the LDA weight
vector.−→x represents the vector of features as defined above. The
hyperplane divides the feature space into two half-spaces. The
function g

(

−→x
)

gives a measure of the distance from a point −→x
to the hyperplane. The distance can have a positive sign or a
negative sign, the sign defines on which side of the hyperplane

FIGURE 4 | BCI accuracy attained for different subjects and sessions, as well as trendlines for each subject. The slope and regression coefficients (rcx) are presented

for each trendline. Please note that the x-axis is not linear to highlight early and late training effects. The horizontal dashed red line reflects the significance threshold.

TABLE 2 | The minimum, the average and the maximum accuracy and improvement for the patients.

Patient Minimum

accuracy [%]

Average

accuracy [%]

Maximum

accuracy [%]

Accuracy

improvement

Motor

improvement

P1 62.5 82.7 97.5 Yes Yes

P2 82.5 90.3 96.2 No Yes

P3 60 83.7 96.2 Yes Yes

P4 71.3 85.6 96.2 No Yes

P5 70 94.5 98.3 Yes Yes

Total 69.3 87.4 96.9
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an observation lies. Therefore, −→x is classified as left hand MI
if g

(

−→x
)

has a negative sign and as right hand MI otherwise.
In the calibration phase, the training data (runs 1 to 4), was
used to calculate 5 sets of spatial filters and classifiers from two-
second time windows, shifted in time with a 0.5 s Hamming
window based on data from the time interval from 4 to 8 s in
each trial. The classifier with the highest ten-fold cross-validated
accuracy (Naseer et al., 2014) was chosen to provide visual and
FES feedback while recording runs five and six, which were used
to calculate the online accuracy (Ao) of the chosen classifier for
the current session as follows:

Ao =
NCC

N
× 100,

where NCC is the number of correctly classified trials and N is
the total number of trials. While recording the first four runs,
the feedback was provided using the spatial filters and classifier
calculated in the previous session.

RESULTS

Classification Accuracy
Figure 4 presents BCI control accuracy scores for all five patients,
based on the online results (not post-hoc cross-validated data)
achieved while recording runs five and six (the data from runs
1–4 was used to set up the CSP filter and to train the LDA),
and the trend-lines of the accuracies in each patient. Patients P1,
P2, P4, and P5 started with an accuracy above 70%. P3 began at
only 61%, which is below the significance threshold of 61.4%, but
improved rapidly. The threshold for significant accuracy depends
on the total number of trials (Billinger et al., 2013; Yuan et al.,
2013), and we developed the significance threshold of 61.4% for
each run based on MATLAB’s binofit function, which uses the
Clopper-Pearson method for calculating the confidence intervals
(Cruse et al., 2011).

TABLE 3 | The results of the 9-hole PEG test for patients P1, P2, and P5.

Sessions Paretic hand Time

[s]/dropped PEGs

Healthy hand Time

[s]/dropped PEGs

P1 P2 P5 P1 P2 P5

0 (baseline) 52/1 65/- 46/- 31/-

3 52/2 54/- 46/- 32/-

6 45/- 45/- 40/1 32/-

9 40/- 42/- 90/1 35/- 31/- 26/-

12 40/- 42/- 77/- 32/- 31/- 26/-

15 38/- 38/- 94/- 33/- 29/- 26/-

18 34/- 60/- 29/- 25/-

21 30/- 61/- 29/- 25/-

24 30/- 52/- 29/- 26/-

Total time

improvement [s]

14 35 38 13 2 0

The table contains the time to complete the test and dropped PEGs for the left and

right hands for several sessions. The bottom row presents the total time improvement

in seconds.

Minimum, average, and maximum accuracies are shown in
Table 2. All patients reached an average accuracy above or equal
to 82.7% during the training, and patients P2 and P5 were above
90%. Every patient attained accuracy above or equal to 96.2%
in at least one session. P1, P3, and P5 improved their accuracy
with training, P2 consistently exhibited high accuracy, and P4’s
accuracy actually declined during training, though it did not vary
much overall.

Motor Performance Improvement
Table 3 presents the results of 9-hole PEG tests for P1, P2, and P5.
The first line in the table, numbered as session zero, represents
the baseline performance for that patient. P1’s 9-hole PEG test
time improved for both healthy and paretic hands. P2 and P5
improved with the paretic hand. The “total time improvement”
row at the bottom of Table 3 shows that all three participants
required less time to perform the 9-HPT with the paretic hand
after training. P1 and P2 may have exhibited a “ceiling effect,”
as their performance with the paretic hand became close (P1) or
equal (P2) to the non-paretic hand.

Patient P5’s condition didn’t allow him to perform the 9-hole
PEG test during the first training session. After 9 sessions of
training, the motor functions of his left hand improved such that
he managed to perform the task for the first time, which was
designated as the baseline.

P3 could not perform the 9-hole PEG test because of the
severity of the motor deficit. After the 10th session, she regained
some voluntary control of wrist dorsiflexion, as shown in
Figure 5, but no improvement in voluntary finger control.

P4 also could not perform the 9-hole PEG test throughout the
study. He started to move his index finger and thumb after the
12th session (MRC scores of 1, Table 4), and the range of his
fingers’ voluntary movements increased after the 22nd session
(MRC score of 2), but he did not achieve enough motor control
to allow fine prehension.

DISCUSSION

The present results suggest that stroke patients can control a
BCI with high accuracy even with the lesioned hemisphere,
despite damage to motor areas and other potential problems
(such as diminished attention, concentration, or motivation).
Interestingly, the grand average accuracy of all 5 patients is 87.4%
and the mean maximum accuracy is 96.9% across all subjects and
sessions (10 to 24). This might be explained by the patients’ high
motivation to participate in the study. Patients reported that they
were eager to come back for further recoveriX training because
they could see a functional improvement.

In addition to motivating patients, the real-time feedback
may have contributed in other ways. The feedback provided a
means to coach the patients to perform the training optimally. P3
started with very poor classification accuracy and was encouraged
to improve by the experimenter, which resulted in a clear
improvement over training sessions. The feedback also provides
an objective measure of task compliance, and can help maintain
patients’ attention. Feedback provided through visual stimuli
and the FES system should better engage patients by engaging
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FIGURE 5 | The voluntary wrist movements performed by patient P3 after 10 sessions of recoveriX training. Four years after the stroke the patient was not able to do

any kind of voluntary movements with the hand and wrist, her arm being totally paralyzed from the elbow downwards. After the training, she was able to voluntary

perform the wrist dorsiflexion on a range of about 45 degrees.

TABLE 4 | Medical Research Council scale (MRC) scores (range from 0 to 5) for different muscle groups of the affected upper limbs (before/after training).

Patient Elbow flexion Elbow extension Wrist flexion Wrist extension Finger flexion Finger extension

P1 4/4 4/4 4/4 4/4 4/4 4/4

P2 3/5 3/5 3/5 3/5 3/5 2/5

P3 2/2 2/2 0/1 0/2 0/0 0/0

P4 4/4 3/3 2/2 2/2 1/2 1/2

P5 4/5 3/4 3/5 3/4 3/5 3/4

visual, tactile, and proprioceptive systems that feed back to
the sensorimotor system. BCI-FES training has been shown to
produce functional gains, but still large scale clinical trials are
missing to show the efficacy (Young et al., 2014).

Another reason that tight coupling between each user’s brain
activity and feedback is important is that it can improve Hebbian
learning, which is critical to motor recovery after stroke. This
simultaneous activation is critical in Hebbian learning. Within
this hypothesis, if the two areas are not simultaneously active—
such as if the patient is not imagining the expected movement
during some or all of the stimulation—then therapy benefits
are reduced. BCI systems that activate feedback mechanisms
in situations when MI is performed correctly should facilitate
this simultaneous activation and thus improve therapy outcomes,
as noted by several groups cited above. Indeed, further research
exploring optimal adaptive parameters to best couple FES
activation and other feedback with relevant CNS activity is
warranted.

In 2015, our group performed a study on 20 healthy subjects
using the same paradigm. The only difference in the experimental
setup was the use of FES feedback only on stroke patients.
All subjects operated the CSP-based BCI across one session.
The grand average maximum accuracy was 80.7%, compared
to 96.9% in this study. The grand average mean accuracy was
72.4%, compared to 87.4% in the current study. While that study
used fewer training sessions than the current study, the mean
accuracy in session 2 of the current study is 78%, which is still
higher. The fact that all patients from the current study attained
above 90% accuracy in at least one session could be a proof

that many stroke patients can achieve very good classification
accuracies.

In a study from 2000 (Guger et al., 2000), three subjects
were trained over 6 or 7 sessions (2 without feedback and all
others with feedback). This study used 27 electrodes with CSP
and LDA like the current study. S1, S2, and S3 achieved 87.7,
74.0, and 77.5% mean accuracy across all feedback sessions.
S1 and S2 continuously improved their performance to 98.2
and 93.2%. S3 showed some fluctuations and had the highest
accuracy in session 2, but the last session was similar with
86% accuracy. In this case, 2 out of 3 patients achieved
accuracy above 90%, but were trained less than in the current
study.

Ang et al. (2011) compared the performance of 46 stroke
patients to 16 healthy subjects (Ang et al., 2011), using filter bank
CSPs for feature extraction. He found 6 out of the 46 patients
to perform at chance level and the healthy controls to perform
slightly better than patients. The average accuracy of the patients
was 74 vs. 78% of controls. The BCI in this study classified active
state vs. resting state, which could explain the worse accuracy
compared to our results. It confirms though that most stroke
patients have a good BCI control, a finding that is in coherence to
our results.

Before this study, we hypothesized that it might be more
difficult for the stroke patients to achieve high accuracies, but the
patients performed very well. As shown in Table 3 and Figure 5,
all patients did exhibit improvements in motor function, both
in the sub-acute and chronic stage. Further research should
parametrically compare improvements to conventional controls.
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An imperfect classification accuracy is also not necessarily a
problem for patient training. If a user reaches 90% accuracy,
for example, then 90% of the paired-stimuli (brain and
FES) are still provided correctly. This should be sufficient to
convey a sense of control, and could also help users improve
further.

It is also interesting to compare the performance of more
recent vs. more chronic patients. Chronic patients P1 and
P3 achieved a mean accuracy of 82.7 and 83.7%. Patients
with more recent strokes (less than 3 months)—P2, P4, and
P5—achieved 90.3, 85.6, and 94.5%. Therefore, it seems that
it is easier for sub-acute patients to attain high accuracies,
but of course more data is necessary to explore this issue
further.

Patients P1, P2, and P5 had a cortical small lacunar stroke in
the deep territory of the MCA, while P3 and P4 had a cortical
superficial stroke. P5 outperformed all other patients in terms of
accuracy and showed also the biggest improvement in the 9-hole
PEG test (38 s), butmore data would be necessary tomake further
conclusions.

We observed a non-continuous increase in control accuracy
during the first sessions in only P3 and P5. Medication
and fatigue could be factors that affect performance and
performance variability. We did not parametrically assess
the possible effects of these two factors, which would be
of interest in future work. Nonetheless, accuracy can serve
as an objective measure of whether patients are able and
willing to perform MI tasks that are often required during
therapy. Even without motor improvements, accuracy provides
an important tool to inform the operator that the patient
is participating. The precision of this detection remains
an issue for further research; with current EEG methods,
patients might be imagining slightly different movements than
expected.

One of the possible confounders in our study is the
lack of homogeneity of stroke patients. Further studies will
have to explore patients with different sizes and locations
and age of the ischemic lesion to develop more definitive
results and further explore which patients would benefit from
this technique. As a preliminary result, our study shows
that the training had a favorable impact on patients with
different types of strokes. Further work might elucidate how
to best tailor therapy and expected outcomes for different
patients.

We also found that older patients had difficulty with the bar
feedback when classification was incorrect, because it was hard to
associate the corresponding movement with the feedback. Some
recent work has validated VR technology within the context of
MI BCIs for stroke rehabilitation (Luu et al., 2015; Soekadar
et al., 2015; Remsik et al., 2016; Sabathiel et al., 2016). Therefore,
a newer version of the recoveriX system uses a virtual avatar,
and the patient sees the left and right hands in a first-person
perspective (Sabathiel et al., 2016). At the beginning of each
trial, the left or right hand moves for 1 s, which triggers the

patient to start the corresponding movement imagery. When
the BCI system correctly classifies the activity, then the avatar
hand movement is prolonged and the FES is triggered. When
the classification is wrong, then the avatar and the FES are
temporarily inactive. Future patients will be trained with this
VR-based system. Future work needs to further explore the
relative contributions of different types of feedback, including
FES activation and visual feedback such as bar feedback and
avatars, which cannot be definitively answered from the present
study.

Most importantly, these and other questions need to be
further explored with larger groups of patients. In 2015, our
group performed a study on 20 healthy subjects using the
same paradigm on the same hardware system (Ortner et al.,
2015). The only difference in the experimental setup was
the use of FES feedback only on stroke patients. While new
research shows that active FES mainly contribute to cortical
reorganization, expressed in motor improvements as tested after
the BCI sessions (Quandt and Hummel, 2014), the focus of
the main experimental session was to determine the level of
classification accuracy for stroke patients and to compare it
with the one from previous study on healthy subjects. Indeed,
further work may explore at which degree the effect of the
neurofeedback (either visual or FES) influences or not the
classification accuracy during a session or over the entire
experiment on a subject. The current results are presented as
a limited case study with only five patients. The small sample
size and the absence of a control group represent the main
drawbacks of this work. At the same time, these facts limit
the opportunities for statistical testing and exploring differences
within patient groups (such as sub-acute vs. chronic), and
the nature of the indirect comparison with another study is
inconclusive.
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