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Previous work has shown that robot swarms are not always tolerant to the failure

of individual robots, particularly those that have only partially failed and continue to

contribute to collective behaviors. A case has been made for an active approach to

fault tolerance in swarm robotic systems, whereby the swarm can identify and resolve

faults that occur during operation. Existing approaches to active fault tolerance in swarms

have so far omitted fault diagnosis, however we propose that diagnosis is a feature of

active fault tolerance that is necessary if swarms are to obtain long-term autonomy. This

paper presents a novel method for fault diagnosis that attempts to imitate some of the

observed functions of natural immune system. The results of our simulated experiments

show that our system is flexible, scalable, and improves swarm tolerance to various

electro-mechanical faults in the cases examined.
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1. INTRODUCTION

The synchronized operation of social insects, such as ants, is observed to be decentralized
(Camazine et al., 2001). As a system, these insects exhibit behaviors that are robust, flexible and
scalable (Şahin, 2004). These desirable features provide the motivation for research into swarm
robotic systems.

Şahin (2004) proposed a criteria that swarm robotic systems should meet, namely that they
should:

• Consist of autonomous robots
• Feature large numbers of robots
• Consist of homogeneous robots, or a few groups of homogeneous robots
• Consist of robots with only local sensing and communication abilities
• Consist of robots that are relatively incapable or inefficient with respect to the swarm or task at

hand

Şahin (2004) identifies robustness, flexibility and scalability as properties that swarm robotic
systems that fit this criteria should inherently possess. However, it was subsequently demonstrated
that swarm robots are not always able to tolerate partially failed individuals (Winfield and
Nembrini, 2006). It has also been shown that, where faults are present, the scalability of a system
may also suffer (Bjerknes and Winfield, 2013). In light of this, Bjerknes and Winfield (2013) called
for an active approach to improving fault tolerance, whereby the swarm is able autonomously to
detect and resolve faults that occur in individual robots.

There are a number of links and algorithmic similarities between swarm systems and artificial
immune systems (AIS), which are explored in detail by Timmis et al. (2010), who proposed that the
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similarities between swarm systems and AIS make them
complimentary to one another. AIS are defined by De Castro
and Timmis (2002) as “adaptive systems, inspired by theoretical
immunology and observed immune functions, principles and
models, which are applied to problem solving.” Bjerknes and
Winfield (2013), reiterating the sentiment of Timmis et al.
(2010), suggest that AIS may offer solutions to the fault tolerance
problems they outline.

Cohen (2000) definesmaintenance as the ability of the natural
immune system to protect its host against the harm it will receive
over the course of its life, comprising three stages:

1. Recognition—distinguishing what is normal from what is
abnormal

2. Cognition—making decisions based on available information
3. Action—doing something as a result of any decisions made

The processes of recognition, cognition and action (RCA)
could be considered analogous to fault detection, diagnosis, and
recovery (FDDR) (Millard, 2016). If RCA can represent a natural
immune response in biological systems then, by analogy, FDDR
can represent an artificial immune response for engineered
systems.

The existing literature on active fault tolerance in swarms
examines fault detection alone (Tarapore et al., 2017) or fault
detection and recovery (Khadidos et al., 2015), where recovery
is only achieved by completely removing the faulty robot from
the swarm. To the best of our knowledge, no research has yet
been conducted with explicit regard to fault diagnosis in swarm
robotic systems, as defined in Şahin (2004) (with the exception of
our own previous work, O’Keeffe et al. (2017a) and O’Keeffe et al.
(2017b). We propose that fault diagnosis is a necessary feature
of active fault tolerance in order to ensure long-term autonomy.
Operating in dangerous or inaccessible environments is given
by Şahin (2004) as one of the motivations for swarm robotic
research. In these environments, it will not always be possible
to call on new robots to replace faulty ones. We propose that
swarm robotic systems that are able to diagnose partially failed
individuals and launch recovery actions (e.g., the replacement
or repair of individual actuators or sensors in real-time) will be
better suited to long-term autonomy in such environments.

In this work we present a novel fault diagnosis system
that allows a simulated swarm robotic system to dynamically
characterize and identify different types of faults in real
time. We present our assessment of the system’s scalability
and flexibility to varying environments, as well as the
results of sensitivity analysis to system noise and variable
system parameters (found in Supplementary Material). The
purpose of these experiments is to observe how varying
parameter values affect system performance, and demonstrate
the viability of our system for use with robot swarms. We
then implement our diagnostic system on a simulated robot
swarm performing the collective photo-taxis algorithm used
in the work by Bjerknes and Winfield (2013), which provides
the initial motivation for active fault tolerance in robot
swarms. This work builds on our previous publication (O’Keeffe
et al., 2017b) by presenting a mostly similar fault diagnosis
mechanism with some modifications and subjecting it to more

rigorous experimentation. The extensions made by this work
are:

1. The introduction of the possibility that diagnostic tests T1−6

(detailed in section Fault Diagnosis) will classify a fault
incorrectly.

2. The introduction of active memory allocation
3. Scalability and Flexibility Analysis (section Scalability and

Flexibility)
4. Sensitivity analysis performed for noise (section

Noise Sensitivity) and system parameters (see
Supplementary Material)

5. Quantitative swarm performance assessment (section
Collective Photo-Taxis)

This work aims to demonstrate and quantify how our
proposed immune-inspired fault diagnosis mechanism
addresses the problems on fault tolerant robot swarms that
are discussed by Winfield and Nembrini (2006) and Bjerknes
and Winfield (2013), as well as highlighting some of its
limitations.

2. RELATED WORK

We approach this work with the long-term goal of producing
fully integrated FDDR for a swarm robotic system.Within FDDR
there are dependencies between the sub-processes. To illustrate,
a fault must be detected before it can be diagnosed, recovery
must be performed to establish the validity of a diagnosis
autonomously and so on. The interrelation of processes within
FDDR makes it a large problem to approach as a whole. For that
reason, previous research into FDDR in swarm robotics typically
only examines one process in significant detail.

2.1. Fault Detection for Robot Swarms
Fault detection in robot swarms has been approached in a
number of ways. Christensen et al. (2009) present a system
that is inspired by the behavior of fireflies, whereby robots are
each equipped with periodically flashing light-emitting diodes
(LEDs) that they try to synchronize with each other. The
swarm is able to detect faults when an individual robot fails
to flash its LED at suitable intervals, and this is recognized
by a neighbor in the swarm. Millard (2016), on the other
hand, uses comparisons between real-time observations of a
robot’s behavior and its expected behavior (obtained via online
simulations), in order to detect faults. In both of these studies,
the fundamental mechanism that enables faults to be detected
is, implicitly or explicitly, the comparison of an observed robot
behavior with its expected behavior, where a discrepancy between
the two indicates the presence of a fault. This comparison is
common to all previous approaches to fault detection in swarm
robotics.

The medium used for robot behavior comparisons varies
depending on the system under consideration. For example,
Khadidos et al. (2015) instruct each robot in a swarm to
broadcast information from its sensors, position coordinates
and motor values to its neighbors, and vice-versa. Based on
this information, each robot can decide where it believes its
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neighbor should be relative to itself, by calculating the distance
and angle between each other’s coordinates. If a robot reports
a state that is contradictory to the states reported by multiple
neighboring robots, it is assessed to be faulty. Similarly, Tarapore
et al. (2017) use behavioral feature vectors (BFVs) to encode a
robot’s behavior as a vector of Boolean features—where 1 and
0 indicate a present or absent behavioral feature, respectively.
Tarapore et al. (2017) implement fault detection such that BFVs
possessed by a majority of the robots in a local swarm are
interpreted as normal, whilst BFVs that are possessed by only a
minority of robots are indicative of a fault present in those robots.
An advantage of the approach taken by Tarapore et al. (2017) is
that BFVs can be used to detect faults without the need for an a
priorimodel of normal behavior (although some a priori domain-
specific knowledge is still required to define BFVs for a robot
swarm).

2.2. Fault Diagnosis for Multi-robot
Systems
Proceeding fault detection, the next stage in FDDR is fault
diagnosis. Where fault detection is a process that identifies
deviations from normal behavior, fault diagnosis is a process
that identifies the root cause of the deviation. There have been a
number of approaches to fault diagnosis in multi-robot systems.
We make the distinction between multi-robot systems and
swarm systems here, using the definition given by Şahin (2004),
either because of hierarchical control structures or consisting of
too few robots without the suggestion of scalability. Although
the fault diagnosis approaches discussed in this section are
not explicitly designed for swarms, the described diagnostic
techniques inform our work toward fault diagnosis in robot
swarms.

Winfield and Nembrini (2006) demonstrated that different
types of fault cause robot behavior to deviate from what is
expected in different ways. As faults can be detected by observing
the discrepancies between expected and observed robot states,
faults can be diagnosed by examining what specific states or
features are discrepant. For example, Daigle et al. (2007) use the
discrepancies between model-predicted behavior and observed
robot behaviors to create a “fault signature” for different types
of faults, which can then be used to diagnose faults that occur in
real-time. Similarly, Carrasco et al. (2011) model the behavior of
normally functioning and faulty robots offline. Faults are detected
based on discrepancies between the model-predicted normal
robot state and measured robot states during operation. Faults
are then isolated by which modeled state for faulty behavior
most closely resembles the measured robot state. One limitation
of such approaches is the lack of capability to learn or adapt
to dynamic fault signatures, and rely on comprehensive prior
modeling in order to be effective. To retain the advantages
of BFVs, we would argue that it is more appropriate for an
autonomous fault diagnosis mechanism to establish models
of faulty behavior online, in which case the resulting system
will bear a closer resemblance to Learning Classifier Systems
(Shafi and Abbass, 2017) than the supervised learning methods
described by Daigle et al. (2007) and Carrasco et al. (2011), and

used in our earlier work O’Keeffe et al. (2017a). Faults can also be
diagnosed through more explicit assessment. Kutzer et al. (2008)
implement diagnosis such that faulty robots perform diagnostic
maneuvres, consisting of various tests designed to isolate the
root-cause of a fault. A trained probabilistic model is then used
to estimate the state of the faulty robot based on its observed
performance of the diagnostic maneuvres.

2.3. Bio-inspired Artificial Immunity for
Robot Swarms
Previous research toward fault detection and fault diagnosis
in robotic systems are obvious considerations for our work.
However, our work toward fault diagnosis is conducted in the
context of creating “artificial immunity” for robot swarms.

The vertebrate immune system is observed to be able to
recover its host body from harm and illness with which its
host was previously unfamiliar (Capra et al., 1999). Of equal
importance is the natural immune system’s ability to remember
what it has previously learned, allowing it to recover from known
illnesses in a more efficient manner (Capra et al., 1999).

When the vertebrate immune system encounters an infection,
the lymphocytes that recognize pathogens proliferate and
differentiate (Janeway, 1992). Once the pathogens have been
destroyed, most of the immune cells that were involved in the
immune response are eliminated, except for a small population
of long-lasting elements made up of the immune cells whichmost
effectively fought the pathogens (Floreano and Mattiussi, 2008),
known as memory cells (Kindt et al., 2007). These cells have an
increased sensitivity to antigens and will prompt a faster immune
response should their host encounter the same pathogen again
(Floreano and Mattiussi, 2008). As this process is invaluable in
maintaining a host organism for a natural immune system, so
too will it be for maintaining a robot swarm—an AIS should
seek to minimize any down-time within a swarm as this is
where the system will be most vulnerable to further faults. For
example, for emergent behaviors requiring n functioning robots,
the swarm system will be less vulnerable to faults, in terms of
task performance, if it consists of n + 1 functioning robots than
the bare minimum n. AIS should not only be able to diagnose
faults that are occurring for the first time, but also be able to
characterize these faults for comparison against any other faults
that might occur in the future. When subsequent faults do occur,
the system should be able to recognize if that fault is similar to one
it has previously encountered and diagnose it more efficiently.

We have argued that fault diagnosis necessitates an integrated
fault detection mechanism. The suitability of BFVs for fault
detection in robot swarms has been demonstrated by Tarapore
et al. (2017). In our previous work (O’Keeffe et al., 2017a), we
demonstrated that we could design BFVs for a swarm robotic
system that could then be used to classify different types of fault
using a decision tree Quinlan (1986).

The use of BFVs in FDDR relies on a BFV consisting of
features that adequately represent normal robot behavior, as well
as deviations from normal robot behavior. We achieve this by
considering robot hardware, behavior(s) and the types of fault a
given system could be vulnerable to.
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3. METHODS

We now propose a novel method for adaptive fault diagnosis,
using BFVs as a medium for fault characterization. This system
will be subjected to a series of experiments, detailed later in this
section, to assess its viability for improving fault tolerance in
robot swarms.

3.1. Experimental Setup
We use simulated models of the marXbot (Bonani et al.,
2010) swarm robotic platform . These are two-wheeled, 17cm
diameter swarm robots, with on-board proximity and range
and bearing (RAB) sensors. In the experiments conducted for
this work the robots exhibit flocking, aggregation, obstacle
avoidance and collective photo-taxis swarm behaviors. In all
of these behaviors, each robot moves in response to the
position of its neighbors and/or point of interest. In our
experiments, a normally functioning robot will always be
motional.

The faults types we examine are chosen based on a cross-
section of the literature that informs our work. Therefore, some
of the fault types are not necessarily chosen with explicit regard
to the marXbot platform, but with respect to an as-yet undefined
swarm robotic system that we conceive of performing in the
circumstances described by Şahin (2004).

The faults considered in this work are:

• Software hang (H1): This fault will cause a robot to get
stuck performing whatever action it was performing at the
last moment it was normally functioning. Software hang is
given by Christensen et al. (2008) as an example of a fault that
necessitates exogenous approaches to fault detection.

• Power failure (H2): A robot that suffers a power failure
will completely stop moving and remain unresponsive to its
surroundings. Power failure is a recurring example in work on
fault tolerance (Carlson, 2004; Winfield and Nembrini, 2006).

• Complete Sensor failure (H3): For a complete sensor failure
an individual robot will be unable to detect the presence
of any neighbors, light sources or obstacles. Sensor failure
is another recurring example used in fault tolerant swarm
research (Carlson, 2004; Winfield and Nembrini, 2006).

• Complete Motor failure (H4): A complete motor failure will
cause one of the afflicted individual’s motors to stop and
henceforth become unresponsive to its controller. The other
motor will remain functional, meaning that the afflicted robot
will either stop completely if it is trying to turn using its
faulty motor, or otherwise be limited to turning on the spot.
In the study by Winfield and Nembrini (2006) motor failure
is the most damaging to collective behavior, and therefore an
obvious choice for inclusion in this study.

• Partial Motor failure (H5): For partial motor failure the
individual’s faulty motor will remain responsive, however it
will only allow its associated wheel to turn at half speed.
Another fault type included in the study by Winfield and
Nembrini (2006), partial motor failure is less damaging to
collective behavior than complete motor failure, but still
results in a reduction in overall swarm performance.

• Partial Sensor failure (H6): For a partial sensor failure a robot
will only be able to detect the presence of neighbors, light
sources and obstacles within±60 ◦ of its current heading. This
is similar to the definition of partial sensor failure used by
Millard (2016) in their work on fault tolerant robot swarms.

The robot BFV used in this work, where the binary vector
BFV(t) = [F1(t), F2(t), F3(t), F4(t), F5(t), F6(t)], is designed by
considering, in order, the robot’s hardware, its behavior(s) and
potential fault types—arriving at the following set of features:

F1(t) = 1 if NR(t) > 0, otherwise F1(t) = 0 (1)

where NR(t) is the total number of neighbors in sensing range
(approximately 1m) of the robot at time t.

F2(t) = 1 if NC(t) > 0, otherwise F2(t) = 0 (2)

where NC(t) is the total number of neighbors at a distance less
than the close proximity threshold,C, (approximately 0.3m) from
the robot at time t.

F3(t) = 1 if |v(t)| > 0.8|vmax|, otherwise F3(t) = 0 (3)

where |v(t)| is the magnitude of linear velocity at time t and
|vmax| is the maximum linear velocity a robot can achieve
(approximately 5cms−1 in this work).

F4(t) = 1 if |v(t)| > 0.2|vmax|, otherwise F4(t) = 0 (4)

F5 = 1 if |θ(t)| > 0.4|θmax|, otherwise F5(t) = 0 (5)

where |θ(t)| is the magnitude of angular velocity at time t and
|θmax| is the maximum angular velocity a robot can achieve
(approximately 24◦s−1 in this work).

F6(t) = 1 if H1 = True at time t, otherwise F6(t) = 0 (6)

F6 is inspired by the watchdog timer (Huang and Selman, 1986)
commonly found in embedded systems. If a robot’s software
becomes stuck or crashes, its feature F6 will return a value of 1.

Features are updated at each control-step with threshold
values for F3, F4 and F5 set to 80% of vmax (Equation 3),
20% of vmax (Equation 4) and 40% of ωmax (Equation 5),
respectively. These thresholds allow for clear distinctions in
individual robot behavior to be represented in the robot’s BFVs
whilst also being tolerant of simulated electro-mechanical noise,
as we demonstrated previously in O’Keeffe et al. (2017a).

Whilst the six features described are only one possible
imagining of a BFV for our system, we demonstrated in O’Keeffe
et al. (2017a) that F1 − F5 were each individually discriminatory
when a decision tree was used to classify the same six fault types,
and the merits of F6 for classifying software hang faults were
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clearly demonstrated in our subsequent work (O’Keeffe et al.,
2017b).

In their work on fault detection, Christensen et al. (2008)
propose that purely endogenous approaches are inadequate,
using the example of a robot suffering controller software
hang being unable to communicate this to the swarm, and
propose that exogenous approaches are necessary. However,
based on knowledge of the system we are working with,
purely exogenous approaches will also be inadequate—it would
be very difficult in some cases for an independent observer
to distinguish a robot afflicted with complete sensor failure,
which has has caused it to get stuck against a wall, from a
robot that happened to be near a wall when its motors failed,
rendering it motionless, as both faults have the same effect on
the robot’s observed behavior. We propose that a combined
endogenous and exogenous approach, whereby each robot
estimates its own BFVs proprioceptively as well as exteroceptively
estimating the BFVs of any neighbors in range, would be
less susceptible to the problems outlined with either approach
individually.

F1−2 are estimated proprioceptively by the robot’s own RAB
sensor, and exteroceptively by the RAB sensors of the robots
neighbors (as the swarm is homogeneous, if a given robot
can detect a neighbor, the neighbor can detect that robot).
F3−5 are estimated proprioceptively by the robot monitoring
its own controller output to motors, and exteroceptively
by the rate of change in readings from a neighbor’s RAB
sensor.

3.2. Integrated Fault Diagnosis
Here we detail our proposed system for fault diagnosis and how
it is integrated with provisional fault detection and recovery
mechanisms for an autonomous approach to FDDR:

3.2.1. Fault Detection

Each of the faults described in section Experimental Setup
will cause some discrepancy between proprioceptively
estimated features, F

p
1−6, and exteroceptively estimated

features, Fe1−6. In our previous work, O’Keeffe et al.
(2017b), we demonstrated that this could be used
as a simple fault detection mechanism, as it ensures
that faults are represented in the set of BFVs that are
analyzed during diagnosis. Faults are detected according to
Equation 7

fault detected at time t = true if

T
∑

t=T−W

d(t) ≥ ρW for T > W

(7)
Where T indicates the time elapsed since a robot started being
observed by a neighbor. The binary value d is set according
to Equation 8, where d = 0 if there is agreement between
exteroceptively and proprioceptively estimated robot features. A
robot will makeW observations of its neighbor, once per control-
step, at discrete times, t, before a fault can be detected, where t
indicates the time elapsed since the start of an experiment. The
value of ρ indicates what proportion of theW observations must

prompt the value of d to be equal to 1 in order for a fault to be
detected.

d(t) =

{

0 if F
p
i (t) = Fei (t) for i = 1, .., 6

1 otherwise
(8)

This approach to BFV-based fault detection, whilst far simpler
than that presented by Tarapore et al. (2017), shares the benefit of
not needing an a priorimodel of faulty behavior.

When a fault is detected in a robot by another member
of the swarm, the set of BFVs, comprising the faulty robot’s
proprioceptively estimated features and the detecting robot’s
exteroceptively estimated features for the faulty robot, which
prompted the fault to be detected, can be used as the BFV
signature for that particular fault.

3.2.2. Fault Diagnosis

BFVs are an effective medium for comparing fault signatures
where there is a known reference for each type of fault. However,
constructing a priori models of faulty robot behavior negates
the advantages of BFV-based fault detection, as described by
Tarapore et al. (2017). To retain these advantages, there needs to
be a way of associating fault categories with their respective BFV
signatures online.

As the types of fault that may occur in robots can be
anticipated using techniques such as Failure Mode and Effect
Analysis (FMEA) (Dailey, 2004) and Fault Tree Analysis (FTA)
(Ericson and Ll, 1999), it is a realistic possibility to design a series
of tests that can isolate the root cause of the fault. These tests are
assessed in real-time by another robot in the swarm, in a similar
fashion to the diagnostic maneuvres used by Kutzer et al. (2008),
which declares itself as the assessing robot once a fault has been
detected. These tests are designed in sympathy with a type of fault
such that a robot will only be able to pass if it is not affected by that
type of fault. A robot performs every test in sequence—a brute-
force approach to diagnosis—until it passes them all or it fails
one, which indicates the presence of an associated fault. In this
manner, different categories of fault can be identified and thus
associated with their BFV signatures in the first instance.

When an assessing robot initiates a diagnostic test routine, it
approaches the faulty robot and instructs it to stopmoving so that
it can begin its assessment. Whilst it is performing its diagnostic
routine, the assessing robot will also act as a beacon, instructing
other approaching robots in the swarm to turn away so as not to
interfere.

The diagnostic tests are arranged in order such that the faults
which most severely inhibit robot behavior are tested for first, as
some faults could obscure the test results for others. For example,
a robot suffering power failure would also fail motor and sensor
tests. The diagnostic tests we use, and the respective faults they
test for, are as follows:

• Software hang (T1): This occurs immediately after the
assessing robot moves into testing range. In order for the
faulty robot to perform later diagnostic tests, it must be able
to communicate with the assessing robot. To establish this
communication, the assessing robot first pings the faulty robot
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and instructs it to stop moving. If the faulty robot is suffering
from software hang, it will disregard this request. If the faulty
robot is persistently unreachable and ignores the assessing
robot’s stop request, it will be diagnosed as having software
hang. This relies on the assumption that communication
between normally operating robots is reliable.

• Power failure (T2): Almost identical to T1, however in cases
where the robot is suffering from power failure it will also
stop moving. The assessing robot therefore diagnoses power
failure in instances where the faulty robot is unreachable but
stationary. It is acknowledged that this would only work for
normal behaviors where robots should always be in motion.
For a swarm exhibiting behavior that necessitated periods
where the robot was stationary, the relationship between T1

and T2 would have to be revised.
• Complete Sensor failure (T3): Once the faulty robot has been

established as responsive to the assessing robot, the two robots
should have settled within range of each other—something
that will be reflected in their BFV. A complete sensor failure
is diagnosed if the faulty robot’s feature F

p
1 returns a value of 0.

• Complete Motor failure (T4): The faulty robot is asked
to spin on its right and left wheels. If the faulty robot
receives and processes this request but is unable to perform
one or both of the turns, it is decided that the robot is
suffering from complete motor failure. This is ascertained
by monitoring the faulty robot’s feature Fe4, where a
returned value of 0 indicates the robot has failed the
test.

• Partial Motor failure (T5): Having established that both of
its motors are responsive, the faulty robot is then asked to
demonstrate that both motors work together as they should.
The faulty robot is asked to move forward in a straight line.
If the faulty robot is observed to move in an arc or otherwise
deviate from moving in a straight line, it is decided that the
faulty robot is suffering from partial motor failure. This is
achieved by monitoring the faulty robot’s feature Fe5, where a
returned value of 1 indicates that the robot has failed the test.

• Partial Sensor failure (T6): To test for partial sensor failure,
the faulty robot performs a 360◦ turn whilst acknowledging
the presence of the assessing robot. If the faulty robot fails to
acknowledge the assessing robot for any period of this turn,
the robot is decided to be suffering from partial sensor failure.

The use of a finite number of pre-written diagnostic tests will
only allow for the diagnosis of a finite number of distinct
categories—something that could be considered inflexible.
However, we counter that there is an equivalence between
this approach and our understanding of the vertebrate
immune system. The vertebrate immune system is reliant
on an exceedingly large lymphocyte repertoire that has
the ability to bind to an exceedingly large number of
potential pathogens (Owen et al., 2013). This property of
the natural immune system is the product of cross-generational
evolution rather than something learned in the lifespan of
a single host body (although the specific composition and
distribution of the repertoire does change during host life
span).

For a swarm robotic system with finite functionality, there
will, at a high level, be a finite number of discrete fault types a
robot can be affected by, such as actuator failure, sensor failure
or power failure. Each of these faults can theoretically then be
identified by a corresponding diagnostic test. We propose that
the resulting repertoire of diagnostic tests that resolve these
fault types can be considered analogous to the lymphocyte
repertoires observed in the natural immune system—and the
use of techniques like FMEA to identify a series of fault types
analogous to natural evolutions spurring of the production
of lymphocyte repertoires in individual host bodies (albeit an
accelerated version). In the event that a fault occurred in a
robot that did not fall into one of the identifiable categories,
or for any reason was not recognizable as such, the effect
would be the same as when the natural immune system
is unable to recognize or remove harmful pathogens; the
problem persists and, if the host is not tolerant, it eventually
perishes.

3.2.3. Fault Recovery

When a fault is diagnosed, the system must be able to ascertain
whether or not the diagnosis was appropriate. This is done
by carrying out a corresponding recovery action and then
subsequently observing the faulty robot to check whether the
fault persists. We propose that all six fault types described in
section Experimental Setup can be resolved by one of three
recovery actions:

• Power Cycle (R1): It is assumed for this work that, when a
robot has its power cycled, it is turned back on with a new
or replenished power source. This recovery action resolves
software hang (H1) and power failure (H2) faults.

• Sensor Replacement (R2): Replacement of robot sensors
resolves complete and partial sensor failures (H3 and H6,
respectively).

• Motor Replacement (R3): Replacement of robot motors
resolves complete and partial motor failures (H4 and H5,
respectively).

We acknowledge that carrying out these proposed recovery
actions autonomously with the marXbot platform is not
realistic at the time of writing, and all recovery actions
are simulated for this work. However, we anticipate that
future swarm robotic platforms will possess the ability
to perform similar actions and, as with the selection of
faults, the diagnosis system presented here is designed with
intention of being implemented on such a platform in the
future.

When a recovery action is executed, the faulty robot continues
to be observed by the assessing robot. If the faulty robot’s
exteroceptively and proprioceptively estimated BFVs match after
a recovery action has been performed, the fault is considered to
be resolved.

In the event that a robot’s fault persists after having attempted
diagnostic tests T1−6, the faulty robot is declared to be a lost cause
and shut down. The faulty robot will now be, for all intents and
purposes, an inanimate object in the arena.
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If, on the other hand, a robot is subjected to diagnostic
tests and passes them all, the faulty robot is treated as a false-
positive and is allowed to continue operating normally. The fault
signature is considered void in this case and not used for any
subsequent comparison.

3.2.4. Fault Memory

Each time a fault is successfully resolved, the BFV signature for
that fault and the respective diagnosis are stored in the assessing
robot’s memory, which is then shared with other members
of the swarm via local communication. When subsequent
faults occur, the BFV representations of those faults can be
checked for similarity against the BFV representation of previous
faults.

Similarity between two faults is established by finding the
Pearson correlation coefficient (Benesty et al., 2009) between
their BFV signatures (Equation 9):

r =

∑

m

∑

n(Fmn − F)(F0mn − F0)
√

(
∑

m

∑

n Fmn − F)2(
∑

m

∑

n F0mn − F0)2
(9)

Where r is the correlation coefficient between a current and
previous fault signature, F and F0, respectively, where F and F0
are two dimensional binary data sets. F and F0 are the mean
values of sets F and F0, respectively, and m and n indicate
positional index within the 2D binary data set (the specific
orientation ofm and n is arbitrary for this equation).

When attempting to diagnose a fault from memory, the
previously stored fault which produces the greatest r-value
(Equation 9) is considered the most likely fault type and recovery
is initiated in sympathy with that fault. The minimum r-value
required for two faults to be considered similar, and thus eligible
for this process, is investigated in this work.

The system we propose here is adaptive; we discussed in
O’Keeffe et al. (2017a) and O’Keeffe et al. (2017b) how individual
fault types could affect robots in different ways, according to
the robot’s circumstances. This is similar to the evolution of
pathogens which makes it harder for the vertebrate immune
system to detect and destroy them. In our system, as long as a
fault is detectable and diagnosable by our defined tests, its BFV
representation will be committed to memory. In this way our
system’s representation of each fault type is dynamic and can
evolve in real time, as the vertebrate immune system is able to
adapt to evolving pathogens (Floreano and Mattiussi, 2008). We
would therefore argue that our system, at a high level, mirrors
the desirable characteristics of the vertebrate immune system
described in the previous section.

3.3. Experimental Setup
All experiments for this work were conducted using Autonomous
Robots Go Swarming (ARGoS) (Pinciroli et al., 2011), a physics
based, discrete-time, multi-robot simulator that supports a
variety of swarm robotics platforms exhibiting user-defined
behaviors. The use of a simulator is temporary and intended as
a proof-of-principle for the proposed system before beginning
work with hardware platforms. We use simulated models of
marXbots for all experiments, as we consider this a representative

swarm robotic platform. Features are updated at every control-
cycle (10ms).

For all experiments we apply Gaussian noise to the raw linear
and angular velocity readings obtained by robot’s RAB sensors
and its compass. This is because these are the only sensor-
obtained values that our system uses to estimate robot BFVs,
and thus relies on for overall performance. We acknowledge
that system noise in hardware will not necessarily correspond to
noise added in simulation. What we are trying to demonstrate
by implementing noise in this manner is that our system is
able to retain performance with imperfect information on robot
states. The noise applied to robot RAB sensor readings during
our experiments (with the exception of those in section Noise
Sensitivity) is as follows:

• Linear velocity, simulated Gaussian noise (µ = 0, σ = 5%
dmax)

• Angular velocity, simulated Gaussian noise (µ = 0, σ = 5%
ωmax)

Where dmax is the maximum distance that a robot can travel
in a single control step (approximately 0.5cm) and ωmax is the
maximum angular distance a robot can travel in a single control-
step (approximately 2.4◦).

The system parameters used in these experiments are as
follows:

• The length of observation period, o, during which the assessing
robot decides post-diagnosis whether or not the associated
recovery action is successful in resolving faulty behavior. o =

29.
• The similarity threshold, s. When two faults produce an

r-value using Equation 9 that is greater than s they are
considered similar for the purpose of diagnosis from memory.
s = 0.56

• The detection window, W. The positive integer W represents
the number of control-steps over which a faulty robot must
be observed to be producing mismatched BFVs before it is
declared faulty. This is the accumulation of the data the system
has with which to characterize a given fault and attribute to it
a signature.W = 29

• The proportion of BFVs in W, ρ which must be mismatched
before a fault is declared. ρ = 0.88

Details of how we arrive at these parameter values can be found
in the Supplementary Material for this paper.

Fault memory is written to a circular buffer. In this work
we use a buffer with capacity for 18 discrete fault signatures,
or three times the number of discrete fault types. 18 places
typically ensures that each type of fault has at least one BFV
representation in system memory (assuming all fault types have
been encountered). Our system is comfortably able to handle
memory buffers of this size, and there is no obvious advantage
to decreasing the size.

When a fault type and its associated BFVs are stored in
the assessing robot’s memory, the assessing then passes the
information to any other robots it comes within range of, these
robots then do likewise and so on. This simulates the swarm of
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FIGURE 1 | (A) ARGoS simulation of 10 marXbot robots performing obstacle avoidance in an empty arena (O’Keeffe et al., 2017a), (B) ARGoS simulation of 10

marXbot robots performing obstacle avoidance in a cluttered arena, and (C) ARGoS simulation of 10 marXbot robots performing collective photo-taxis in an arena

with a beacon in the north-west corner.

robots sharing and updating fault memory via an ad-hoc network.
To avoid thrashing, particularly as swarm size increases, robots
will record which neighbors they have shared memory with and
will not attempt to do so again until at least 1000 control-steps
have passed.

4. EXPERIMENTS

The criteria we examine to characterize our system’s performance
during our experiments (with the exception of those performing
collective photo-taxis) are as follows:

• P1: The total number of faults the system is able to detect
• P2: The proportion of faults the system is able to diagnose from

memory
• P3: The proportion of attempts to diagnose a fault from

memory that fail or are unrecognized by the system
• P4: The total number of faulty robots the system is unable to

resolve and are shut down in an hour of simulated time
• P5: The average r-value between faults, using Equation 9, when

diagnosing from memory
• P6: The average time (in control-steps) it takes the system to

detect a fault

For all experiments 100 replicates are performed, from which a
median is taken for P1−6. We selected this number of replicates
after performing consistency analysis Read et al. (2012) to find the
point at which performing additional replicates does not alter the
median value of the entire set. We did this using the SPARTAN
package (Alden et al., 2013) on P2, as we consider this the most
indicative measure of overall system performance.

4.1. Scalability and Flexibility
To investigate the scalability and flexibility of our system, a
swarm of simulated marXbots collectively perform flocking,
aggregation or obstacle avoidance behavior in a proportionally
scaled enclosed square arena. We set the ratio of robots to square
meters at 1 : 1.6 (see Figure 1A).

These experiments run for 1 h of simulated time (36,000
control-steps). The swarm’s normal behavior is updated

TABLE 1 | Performance of system for swarms of varying sizes.

Swarm size P2 P3 P4 P5 P6 (control-steps)

10 0.68 0.04 0 0.87 444

40 0.76 0.03 0 0.91 572

90 0.76 0.04 0 0.90 474

160 0.74 0.05 1 0.90 592

Results are taken from the median values of 100 experimental replicates.

TABLE 2 | Performance of system for robot swarms in different environments.

Arena type P1 P2 P3 P4 P5 P6 (control-steps)

No obstacles 30 0.68 0.04 0 0.87 444

Obstacles 30 0.68 0.04 0 0.87 403

Obstacles (imported memory) 30 0.93 0.03 0 0.91 413

Results are taken from the median values of 100 experimental replicates.

randomly between flocking, aggregation or dispersion at 5,000
control step intervals. Each robot has a 0.1% probability of having
a random fault injected at each control-step. A maximum of 50%
of the robots in a swarm can be faulty at one time, so that there
were never more faulty robots than the swarm could provide
assessors for. Our approach here means that every time a test is
run, the swarm exhibits a variety of behaviors and is subjected to
a variety of faults—usually exhausting all possible combinations.
For this reason it is proposed that the results obtained satisfy the
conditions for swarm flexibility (Şahin, 2004).

4.1.1. Results and Discussion

The performance of our diagnosis system on robot swarms of
different sizes is displayed in Table 1. The total number of faults
detected, P1, is removed from the table as this will increase
proportionally as swarm size increases, and thus is not an
indicator of the system’s scalability.

Table 2 shows how the performance of our swarm varies
when obstacles are added to the arena, and when fault memory
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gathered from the swarm in an empty arena is imported into a
swarm in an arena with obstacles (see Figure 1B). The purpose
of the latter is to demonstrate that our proposed system is flexible
to varying or dynamic environments.

Table 1 shows the proportion of faults successfully diagnosed
from memory, P2, increases slightly between swarm size 10 and
40. P2 then stabilizes between swarm sizes of 40 and 90, in
which no significant trend is observed. Performing a Wilcoxon
rank-sum test Haynes (2013) on the data distributions of P2
for swarm sizes of 40 and 90 produced a value p = 0.98,
where p > 0.05 indicates that two data distributions are
statistically similar. The small drop in P2 for swarm sizes of 160
is discussed later in this section. The reason for the increase
in P2 between swarm sizes of 10 and 40 is because of the
tendency to diagnose from memory more frequently as each
experiment run goes on. In each experiment the system reaches
a point of familiarity with the faults it can be subjected to,
after which it can diagnose subsequent faults from memory in
a majority of cases. We previously demonstrated in O’Keeffe
et al. (2017b) that the majority of diagnoses occur in the latter
two thirds of the hour-long experiments for a swarm with
10 robots—this is approximately where the system reaches its
point of familiarity. The rate at which the system is able reach
this point will be affected by how often the system encounters
faults and how quickly it can resolve them. Reaching the point
of familiarity will be accelerated as swarm size increases (as
this will inherently increase the frequency of faults occurring)
and, combined with the increased overall amount of faults
encountered by the system, contributes to the increase in P2
observed between swarm sizes 10 and 40. This would suggest
that the saturation point of the system reaching the point of
familiarity with respect to increasing swarm size lies between 10
and 40.

Table 1 does not display a clear trend between swarm size and
the proportion of unsuccessful attempts to diagnose faults from
memory, P3. The distribution of P3 does not change significantly
for swarm sizes of 10 and 90, performing a Wilcoxon rank-sum
test on these distributions produces a value p = 0.152. P3 is at its
highest for a swarm size of 160. We would attribute this, coupled
with the slight drop in the proportion of faults successfully
diagnosed from memory, P2, to the increased probability that a
faulty robot will find itself near the center of a robot cluster at
the time it is being observed by an assessing robot. If the robots
neighboring the faulty robot are unable to disperse or otherwise
move out of the faulty robot’s path it may disrupt the assessment
process.

The total number of faults that are unresolvable, P4, is 0
between swarm sizes of 10 and 90. P4 increases from 0 to 1 for
swarm size 160, which we would attribute to the vastly increased
swarm size increasing the probability of the circumstances in
which a faulty robot is unresolvable occurring within 1 h. The
average r-value between faults, P5, and the average time taken
to detect faults, P6, do not display a clear trend with increasing
swarm size.

Table 1 reveals slight fluctuation in performance with varying
swarm size. These fluctuations are observed over an order
of magnitude, whilst P2, the most indicative measure of

performance, remains within approximately 90% of its observed
maximum. Based on this, we would argue our system to be
stable—and thus scalable—for practical swarms of between 10
and 160 robots.

Table 2 shows that the only difference in median average
performance between a swarm in an empty arena and a swarm in
a cluttered arena is a reduction in the average time taken to detect
faults, P6, of approximately 9%. For swarms in an arena with
and without obstacles, there is no significant difference between
the distributions of performance criteria P1−4 when subjected
to a Wilcoxon rank-sum test (p-values 0.33, 0.33, 0.31, 0.81, 0.55,
respectively). When fault memory from the swarm in an empty
arena is imported to a swarm in an arena with obstacles, there
is a large improvement in the proportion of faults successfully
diagnosed from memory, (P2), approximately +37%, and the
proportion of attempts to diagnose faults from memory that
were unsuccessful, P3, approximately −25%. This is because the
system begins the experiment already at the point of familiarity
with the faults that will be injected and so is able to diagnose
a greater proportion from memory—even though the system’s
gathered memory originates from the empty arena. This suggests
that there is little difference between the fault data gathered from
robots performing in empty arenas and those in cluttered arenas.
The data in Table 2 suggests that our system is flexible and robust
to environments with varying degrees of complexity, so long as
they do not inhibit the swarm from performing normally.

4.2. Noise Sensitivity
These experiments again use an identical setup to that described
in the flexibility and scalability experiments, with the exception
that noise applied to the system is varied.

We use Latin Hypercube Analysis to test our systems
performance for varying levels of noise on the linear and
angular velocity readings obtained by robot RAB sensors. This
is a statistical technique for sampling multi-dimensional data
distributions, two dimensional in this instance. We use the
SPARTAN R package Alden et al. (2013) to perform the sampling
for Latin Hypercube Analysis, which allows us to randomly
generate 500 parameter sets, where each parameter value is
unique in the set, in the following ranges:

• RAB sensor linear velocity reading, simulated Gaussian noise
(µ = 0, 0 < σ < dmax)

• RAB sensor angular velocity reading, simulated Gaussian
noise (µ = 0, 0 < σ < ωmax)

Again, we perform 100 replicates for each parameter set and take
the median value for performance criteria P1−6.

4.2.1. Results and Discussion

Again, we only plot the results of these experiments where there
is a correlation to be observed between the standard deviation of
applied Gaussian noise and the performance criteria (P1−6). This
is displayed in Figures 2, 3.

We did not observe a visible correlation between the standard
deviation of Gaussian noise applied to RAB sensor readings and
the average time taken to detect faults, P6, as we would expect.
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FIGURE 2 | (A) The effects of noise on RAB sensed linear velocity on median r-values between diagnoses, and (B) the effects of noise on RAB sensed linear velocity

measurements on the proportion of faults successfully diagnosed from memory.

The average r-value between faults, P5, was noticeably affected
by noise applied to linear velocity estimations obtained from
RAB sensors (see Figure 2A), although this is observed over a
comparatively small scale. Interestingly, there was no observable
correlation between P5 and the noise applied to RAB estimated
angular velocity. The reason for this observed robustness is that

angular velocity is only able to affect a single robot feature Fe5.
The maximum effect that noise can have on a feature is setting it
to an incorrect state. Because our features are set by thresholds,
in order for the true state to be altered by system noise, the noise
needs to be of a significantmagnitude and of the appropriate sign.
As the simulated noise we generate on our sensors is normally
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FIGURE 3 | The effects of noise on RAB sensed linear velocity measurements on the proportion of unsuccessful attempts to diagnose faults from memory.

distributed, this means that the probability that a feature state is
correct will always be greater than that of it being incorrect, no
matter how large we set the standard deviation of noise to be.
These factors combined mean that the overall change in robot
BFVs is comparatively small.

We observe the same trend for proportion of faults
successfully diagnosed from memory, P2, and proportion of
attempts to diagnose faults from memory that are unsuccessful,
P3. Noise applied to RAB sensed linear velocity has a
clear correlation with system performance (see Figures 2B, 3,
respectively) whilst noise applied to RAB sensed angular velocity
was not observed to have any noticeable effect by comparison.

The total number of unresolvable faults, P4, was unaffected
by noise applied to sensor readings. This is primarily because
a robot is only declared faulty when it is consistently unable
to pass diagnostic tests T1 − T6. Of these diagnostic tests, the
only tests reliant on feature observations that could be disrupted
by sensor noise are T4 and T5 (constituting a third of all faults
encountered by the system on average) and, even with maximum
sensor noise applied, we have already discussed how there is a
greater probability that features will remain in the correct state
at any given point in time. Although increasing sensor noise
will increase the probability that diagnostic tests need to be run
((Figures 2B, 3), there is still only a slim increase in overall
probability that a faulty robot will be deemed unresolvable.

We have not examined how sensor noise would impact
fault detection in this work. Based on the effects of noise on
RAB sensor readings, (Figure 3), we can predict that increasing
sensor noise (at least on the virtual range sensors) would
drastically increase the amount of false-positives encountered
by the system in a scenario where fault detection was more

realistically implemented. Although our results demonstrate
that the system would generally be capable of resolving these
scenarios, the amount of time spent with one or more robots
performing diagnostic routines would increase in sympathy—
which may cause problems in time-critical scenarios or where a
certain number of functioning robots are required.

4.3. Collective Photo-Taxis
In these experiments we again consider a swarm of simulated
marXbots, this time performing collective photo-taxis behavior.
Our implementation of this behavior is similar to that used
by Bjerknes and Winfield (2013) whereby robots in the swarm
will attempt to aggregate whilst avoiding collisions with one
another.Robots who are closer to a beacon will avoid neighboring
robots at greater distances than those who are furthest away
(robots usually turn to avoid collision at distances <0.3m, for
these experiments the robots closest to the beacon will turn away
from neighbors at distances <0.35m). The emergent effect of this
behavior is that the swarm gravitates toward the beacon.

Here we compare the performance of a normally functioning
swarm, a faulty swarm without active fault tolerance and a faulty
swarm with active fault tolerance. Our experiments use a swarm
of 10 marXbots in an enclosed arena (6m x 6m), where robots
begin in the south-east corner of the arena and are drawn to a
light source at the north-west corner (see Figure 1C).

Our diagnosis system is implemented in the same manner
as previously. Robots that are engaged in the diagnostic process
are unable to participate in collective photo-taxis, however the
assessing robot will still repel nearby neighbors, preventing the
diagnostic process from anchoring the swarm. Faults are injected
into between 1 and 5 robots after the first 500 control-steps of
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TABLE 3 | Normally functioning swarm performance of collective photo-taxis.

Time (control-steps) Avg. dist. from beacon (meters)

1st Robot 24,388 1.4275

Half Robots 25,548 0.8517

All Robots 26,909 0.4746

Results are taken from the median values of 100 experimental replicates.

each experiment, as this was found to be the point at which swarm
behavior had typically stabilized (in flocking or aggregation
behavior, for example, one or more robot clusters will have
formed after 500 control-steps have passed).

The performance criteria we examine in these experiments are
the times taken for the first member of the swarm to reach the
beacon, the time taken for half themembers of swarm to reach the
beacon, and the time taken for all members of the swarm to reach
the beacon, and the average distance of all members of the swarm
at these times, respectively. An individual robot is considered to
have reached the beacon when the distance between the two is
<0.8m.

We use the performance of a normally functioning swarm as
a point of reference, which is displayed in Table 3.

We examine the performance of a swarm where 1 − 5 robots
are faulty as a proportion of the performance of a normally
functioning swarm, where we obtain our value for proportional
performance using Equation (10).

Proportional Performance =
1

3

3
∑

i=1

dti0 − dti

dti0
(10)

Where dt1−30 and dt1−3 are the average distances between the
normally functioning swarm and the beacon and the average
distances between a faulty swarm and the beacon after 24388,
25548 and 26909 control-steps, respectively (these values are
taken from Table 3).

We compare the proportional performance of robot swarms
with and without our proposed diagnosis system.

4.3.1. Results and Discussion

Figure 4A displays the proportional performance of the robot
swarm performing the ω-algorithm with up to 5 faulty robots
where we do not implement our diagnosis system. Figure 4B
displays the proportional performance of the same swarm in
the same conditions where we have implemented our diagnosis
system.

Where the output of Equation (10) is <0 indicates the faulty
swarm has not performed as well as the normal swarm. Where
the output is equal to 0 indicates an equivalence in performance
between faulty and normal swarms. Where the output is >0
indicates that the faulty swarm has performed better than the
normal swarm. In some cases, the faulty swarm outperforms
the normal swarm by such a large margin that comparing
the distances at the times of interest listed in Table 3 loses
applicability. In this case the value of some or all parts of
dt1−3 go to 0, returning a proportional performance value of

1. As proportional performance should only ever approach 1
asymptotically, performance in these instances is labeled as n/a
in Figure 4 for clarity.

With the exception of some cases of partial sensor failure, H6,
the performance of the swarmwith any number of faulty robots is
worse than for a normally functioning swarm, which corresponds
with the findings of Winfield and Nembrini (2006).

Interestingly, Figure 4A shows that the presence of some
faults, most notably partial sensor failure, actually improves
overall performance from that of a normally functioning system.
The reason for this is that robots afflicted with partial sensor
failure will not be inclined to aggregate toward the center of a
swarm if the center of mass is behind them. This means that the
faulty robots will press ahead, whilst normally functioning robots
are consequently able to move toward the beacon at a faster rate.

We can now compare the performance of the swarm under
the same conditions when we apply our diagnostic system. The
results are shown in Figure 4B.

Figure 4B shows that, again with exception of some cases
of partial sensor failure, P6, the presence of our diagnosis
mechanism results in a large improvement in overall system
performance where faulty robots are present. Additionally, in a
number of cases overall performance is again better than that of a
normally functioning swarm. This is because when two robots are
involved in a diagnostic routine, they will repel other normally
functioning robots in the swarm, allowing them to continue
toward the beacon unhindered and at a faster rate brought about
by a smaller local swarm size (this is only true for local swarm
sizes with 3 or more robots, however this is most likely the case in
these experiments given that all robots start experiments within
local sensing range of each other Figure 1C).

We propose that Figure 4 validates our system in the context
of the original proposal for active fault tolerance in swarms by
Winfield and Nembrini (2006). Our results demonstrate a clear
improvement in swarm performance in most cases where active
fault tolerance mechanisms are present.

5. LIMITATIONS

We acknowledge that our system is heavily dependent on reliable
communication between robots. For our system, robots will need
to communicate their own BFV states with each other, as well
as sharing their memory of previous fault characterizations. If
this data is lost, delayed, sent or received in the wrong order or
otherwise not as it should be, this will affect system performance.
When robots communicate their BFV states it must be done in
real time with as little delay as possible. If this is hindered, we can
predict two possible outcomes; a robot will be unable to make
a comparison of proprioceptively and exteroceptively estimated
BFVs at that point in time, in which case any active diagnostic
processes will have to pause until up-to-date BFV information
becomes available again; or, robots will have to use the most
recent BFV data irrespective of whether or not it accurately
describes a robot’s present state—which is tantamount to system
noise in this case, the effects of which we have already shown to be
detrimental to overall performance. Similarly, if memory data is
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FIGURE 4 | (A) The performance of a robot swarm with no active fault tolerance exhibiting the collective photo-taxis when a varying proportion of robots are subjected

to a variety of faults, and (B) The results of the same experiment with active fault tolerance. x = 0 indicates a performance equivalent with a normally functioning

swarm. Results are taken from the median values of 100 experimental replicates. The dashed line at x = n/a indicates that proportional performance is not applicable

because the entire swarm reached the beacon in <24,388 time-steps, meaning that median average distances at t ≥ 24, 388 control-steps could not be taken.

lost or corrupted, the system will either have non-representative
fault characterizations—which will lead to an increase in failed
diagnosis attempts—or it will simply have no representation at
all in these scenarios, in which case it will require the time-
consuming diagnostic tests to be run more frequently.

We also acknowledge that the work presented in this paper
only considers individual robot faults that can be considered
orthogonal to each other. In real world scenarios it is probable
that multiple faults may occur at once or in sequence, or that
the effects of one type of fault may be indistinguishable from the
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effects of a different type of fault by their BFV signatures—we
observed this in our earlier work (O’Keeffe et al., 2017a), however
it might not always be possible to get around these problems with
the addition of new features. Additional problems may occur if
faults do not explicitly manifest in robot software/hardware, but
in the interaction space between robots. Although it is beyond
the scope of the work, as AIS in robots develop, it is probable
that Trusted Autonomy (Abbass et al., 2016) will become an
increasingly prevalent consideration for fault tolerant systems.
The system described in this work is not equipped to examine or
address this problem space, and to modify it do so would require
an additional dimension of FDDR to be integrated.

In the wider context of achieving fault tolerant swarms,
another limitation of our system, and possibly of the process
of fault diagnosis in general, is the dependence on reliable
fault detection. This is indicated by the results of our noise
sensitivity analysis, and in the parameter sensitivity analysis
in the Supplementary Material. Without a reliable means of
autonomous fault detection, our system is impaired in its
ability to demonstrate learning and memory functionality as we
would like. Furthermore, fault recovery at a finer scale than the
replacement of an entire robot is a problem that is beyond the
capabilities of any swarm robotic platforms known to the authors
at time of writing. Until the functionality of swarm robotic
hardware increases such that basic recovery actions—such as
those described in this work or similar—are possible, the path to
achieving fault tolerant swarms will be confined to the realm of
concept.

6. CONCLUSIONS AND FUTURE WORK

In this work we have presented a novel approach toward
autonomous fault diagnosis in robot swarms. We demonstrated
our systemwith specifically chosen parameter values to be flexible
and scalable, being able to diagnose faults from memory in 68–
76% of cases on average, depending on the size of the robot
swarm. Our system also displayed a low rate of misclassification
(3–5% on average) and a general tolerance to imperfect robot
state information.

We were able to demonstrate a clear improvement in
performance when our diagnosis system was implemented on
a swarm performing collective photo-taxis and subjected to
partial faults. This improvement supports the case for active
fault tolerance proposed by Bjerknes and Winfield (2013) and
also represents a viable solution for artificial immunity in robot
swarms, as our method for autonomous fault diagnosis should be
compatible with existingmethods for autonomous fault detection
and, eventually, autonomous fault recovery.

We acknowledge that truly optimal system parameters, and
the extent of some system limitations—such as dependence on
reliable communication—cannot be known until fully integrated
FDDR is implemented in a hardware robot swarm. Our future
work will be toward addressing this problem by implementing
our diagnosis system as faithfully as possible on a swarm robotic
platform in hardware.
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