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Research on artificial development, reinforcement learning, and intrinsic motivations

like curiosity could profit from the recently developed framework of multi-objective

reinforcement learning. The combination of these ideas may lead to more realistic artificial

models for life-long learning and goal directed behavior in animals and humans.
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INTRODUCTION

Reinforcement learning (RL) is a well-established learning paradigm, first consolidated in the book
of Sutton and Barto (1998) after the early years of artificial neural networks and machine learning,
with strong roots in the mathematics of dynamical programming (Bellman, 1957) and in the early
behavioral psychology of Pavlovian conditioning and learning (Rescorla and Wagner, 1972).

In recent years, plausible neural mechanisms for all essential components of RL have been found
in the brain, in particular in the basal ganglia, but also in frontal cortical areas, perhaps involved in
different versions of RL (Wiering and van Otterlo, 2012), which have been developed not only from
a technical, but also from a neuroscientific motivation; overviews are given in Farries and Fairhall
(2007), Botvinick et al. (2009), Chater (2009), Maia (2009), Joiner et al. (2017), and Wikenheiser
and Schoenbaum (2016).

Also in recent developments of robotics, artificial agents, or artificial life, in particular when
the focus is on learning interesting “cognitive” abilities or behaviors or on child-like “artificial
development” (Oudeyer et al., 2007), the framework of RL is often used. If it is understood to
include its continuous version, actor critic design (Bertsekas and Tsitsiklis, 1996; Prokhorov and
Wunsch, 1997) reinforcement learning is a very general approach encompassing applications from
Go-playing (Silver et al., 2016) to motor control (Miller et al., 1995; Kretchmara et al., 2001;
Todorov, 2004; Schaal and Schweighofer, 2005; Lendaris, 2009; Riedmiller et al., 2009; Wong and
Lee, 2010; Little and Sommer, 2011).

Here we are considering RL in the context of robotics or rather of artificial agents that learn to
act appropriately in a simulated or real environment. Most often this involves continuous state and
action spaces which cannot simply be discretized (Lillicrap et al., 2015). So usually the RL paradigm
is combined with a neural network approach to represent the reward predicting function (Sutton
and Barto, 1998; Oubbati et al., 2012, 2014; Faußer and Schwenker, 2015).

In this context there are a number of issues that this framework cannot easily accommodate:

1. the learning of several partially incompatible behaviors,
2. the balance between exploration and exploitation,
3. the development and integration of “meta-heurictics” like “curiosity” or “cautiousness,”
4. the problem of finding a “state space” and its partial observability,
5. the simulation of apparently changing strategies in animal behavior.
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In reaction to the first issue one might argue that RL is just
for one particular behavior, not for the combination of several
behaviors; for this one would need to combine several instances
of RL. Of course, one could also argue that each animal has
just one behavior which maximizes its chance of survival and
apparent particular behaviors or motives driving it must be
subordinate to this ultimate goal, similarly in economic decision
making the ultimate goal is financial utility (money) and it would
be irrational to follow other rewards from time to time (as in
the fairy tale of Hans im Gück). All this has been debated at
length (e.g., Simon, 1955, 1991; Tisdell, 1996; Gigerenzer and
Selten, 2002; Kahneman, 2003; Dayan and Niv, 2008; Dayan and
Seymour, 2009; Glimcher et al., 2009; Chiew and Braver, 2011)
leading to considerable doubts in a simple utilitarian view in
economy and practically to various approaches extending basic
RL, often in a hierarchical fashion (Barto et al., 2004; Botvinick
et al., 2009). Even a human or robot Go-player has not only to
consider Go strategies, but also (on a lower level) to control his
arm movements when taking and placing a piece.

The balance between exploration and exploitation has been
widely discussed in classical RL and even before that (e.g.,
Feldbaum, 1965). It has lead to various, often stochastic,
amendments to the original basic method (Wiering and van
Otterlo, 2012) without a convincing general solution that works
well in most applications. This problem has also inspired more
general approaches in more complex scenarios which add special
“meta-objectives” like “curiosity” or “cautiousness” to the RL
scheme (perhaps first by Schmidhuber, 1991), which again points
toward a multi-objective approach. Recently these ideas are
discussed in particular in the context of autonomous “cognitive”
agents and their “artificial development” (Weng et al., 2001;
Lungarella et al., 2003; Barto et al., 2004; Oudeyer et al., 2007).

In biology and human psychology or sociology it is clear that
the state space (i.e., the total relevant state of the world) is far
from being observable by the senses of the individual animal
or human. It might even be doubted whether there is such a
state at all. At least it is often asking too much to assume that
the individual possesses a representation of the set or space of
all possible states. Such scenarios are even outside the usual
relatively broad POMDP (partially observable Markov decision
process, see Kaelbling et al., 1996) formalism, so biologically
motivated realizations of RL often rest on relatively simple
versions of RL that don’t require knowledge of a “state” in the
sense of physics, but just rely on sensory and reward input.

Also the last issue is clearly at variance with the basic model of
classical RL. However, when we consider the creation of artificial
autonomous agents or artificial animals an obvious potential
answer to all of these issues comes to mind: Such an agent or
animal usually has several different, sometimes conflicting goals
or motivations (e.g., food, drink, and sex) which cannot simply be
combined linearly to form one general objective (Liu et al., 2015).

It therefore seems natural to use different instances of RL
on different simplified state spaces, which contain incomplete
information on different aspects of the physical state of the world,
with different objectives or reward functions in different contexts
or situations and somehow select the most important ones to
determine the agent’s behavior in each concrete situation. This

means that one has to consider multiple objectives and their
interaction in decision making. This problem is studied by a
growing research community under the heading of “multiple
objective reinforcement learning” (MORL).

The framework of MORL can be used to address and alleviate
the 5 problems mentioned above. In fact, it is directly motivated
from problems 1 and 5. The dilemma between exploration
and exploitation (problem 2) is greatly alleviated by the simple
observation that behavior guided by exploitation of one objective
usually can be considered as exploration for all other objectives.
The development of meta-heuristics or “intrinsic motivations”
(issue 3) can be very useful also in technical applications; for
the MORL framework advocated here the point is simply to put
intrinsic motivations like curiosity or cautiousness side-by-side
with the basic “extrinsic” motivation(s). Concerning the state-
space (problem 4), in many practical applications a real “state-
space” is unknown or at best partially observable. In this case
the best one can do is to obtain a sufficiently rich approximate
representation for it based on sensory data and reinforcement
signals, and more such signals are certainly better than less for
this purpose.

REPRESENTING THE STATE SPACE

In order to obtain an approximate state representation by
learning from experience, one can use a neural network, typically
a multilayer perceptron (MLP) or “deep network” or methods
of reservoir computing (Maass et al., 2002; Jaeger and Haas,
2004) for continuous temporal dynamics, or a combination of
both. In complex control problems (Koprinkova-Hristova and
Palm, 2010) such a representation is often called a “forward
model.” So the agent (biological or artificial) tries to learn a “state
representation network,” i.e., a (typically recurrent) network that
predicts the next state from a representation of the current state,
which integrates sensory input information over time and can
be used as input to the evaluation or critic network in the
usual situation where the current sensory input is insufficient to
determine the “state” of the environment; see for example (Sutton
and Barto, 1981; Schmidhuber, 1991; Dayan and Sejnowski, 1996;
Herrmann et al., 2000; Gläscher et al., 2010). Such a network can
be used as the basis for a second network representing the quality
or value function in reinforcement learning or actor-critic design.

The use of neural networks or parameterized approximators
as estimators of the state-value or state-action-value function
is a way to deal with large or continuous action and state
spaces. The approximating function may be a linear or nonlinear
function of their parameters, but linear approximators show
limitations in their expressive power, while convergence of
learning is quaranteed. Nonlinear approximators, typically
neural networks, are universal approximators (Cybenko, 1989),
but often show instable behavior during learning. During the
last years increasingly complex networks are used in RL for
large and continuous state spaces; in addition to classical
multilayer perceptrons or radial basis function networks, also
trainable recurrent neural networks (Hagenbuchner et al., 2017)
or echo-state-networks (Scherer et al., 2008; Oubbati et al.,
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2012, 2013, 2014; Koprinkova-Hristova et al., 2013) are used,
and particular methods have been developed to improve the
stability of learning (Hafner and Riedmiller, 2011; Silver et al.,
2014; Faußer and Schwenker, 2015; Lillicrap et al., 2015;
Parisi et al., 2017). Recently, deep neural networks such as
autoencoders and convolutional neural networks have been
applied for representation learning and used in combination
with RL methods to learn complex decision task from raw data
(Lillicrap et al., 2015; Mnih et al., 2015; Mossalam et al., 2016;
Srinivasan et al., 2018).

In any case it is practically important for MORL to use one
and the same network as a basis to create a sufficiently rich
representation in order to train all different objectives (critics and
actors) as outputs of the last layer (Mossalam et al., 2016).

Based on the sensory input alone, but also on such an
approximate state representation, it often will not be possible to
predict the expected reward or the next state with certainty. In
a neural network for classification, for example, this uncertainty
will be expressed by submaximal activation of several output
neurons and these activations may be interpreted as a posteriori
probabilities of the various outcomes (states or values); the
uncertainty in estimating the expected reward is often measured
by its variance. Beyond variance, there are various formalisms
for calculating measures of certainty or uncertainty from these
probabilities, often in terms of information theory (Palm, 2012),
and several approaches to incorporate measures of uncertainty,
or of “novelty” or “surprise” into the choice of appropriate
actions in reinforcement learning (e.g., MacKay, 1992; Sporns
and Pegors, 2003; Little and Sommer, 2011; Tishby and Polani,
2011; Sledge and Príncipe, 2017); much of this is reviewed
and discussed by Schmidhuber (1997) or Schmidhuber (2003)
also in relation to the exploration-exploitation dilemma (Dayan
and Sejnowski, 1996; Auer, 2002; Tokic and Palm, 2012; Tokic
et al., 2013). Again these practically important considerations
point toward MORL, for example in the direction of additional
“meta-objectives” like curiosity or cautiousness (Wiering and
Schmidhuber, 1998; Uchibe and Doya, 2008; Oubbati et al.,
2013). It is often useful to consider at least two versions of the
primary objective, namely its expected value and an estimate of
the value that can at least be obtained with a reasonably high
probability (e.g., the 5-percentile).

The MORL idea transforms the original problem of
learning one behavior that is useful in all circumstances
into a problem of designing an appropriate architecture for
learning and decision making that combines several (probably
hierarchically organized) instances or stages of classical RL
and possibly other methods of learning or decision making
(Oubbati and Palm, 2010).

MULTI-OBJECTIVE REINFORCEMENT

LEARNING

A framework for studying these problems in the restricted realm
of reinforcement learning, which has recently gained increasing
popularity, is called MORL (see Roijers et al., 2013; Liu et al.,
2015). We would like to propose to use this framework as a

starting point to tackle the broader architectural problem in some
concrete scenarios, which occur quite naturally in many technical
optimization and control problems and have been elaborated
in the MORL community, some examples (Deep Sea Treasure,
Bonas World, Cart Pole, Water Reservoir, Resource Gathering,
Predator Prey) are described in Drugan et al. (2017) and the
literature cited therein; see also Vamplew et al. (2011).

The difference of MORL to classical RL is quite simple: If

we think in terms of actor-critic design, where essentially an

evaluation of the agent’s actions is learned in a POMDP and

where this evaluation function may be learned by a neural

network, now we just have a vector of evaluations instead of

a single value (in the output layer of the network). Similarly

there is now an actor for each component of the evaluation

vector suggesting an appropriate action for that particular value,

objective, or motive. This model clearly leads to the problem how
to combine the different objectives and suggested actions in order
to decide on the next action. This problem has been discussed
thoroughly in the MORL community; for an overview see Liu
et al. (2015) and Drugan et al. (2017) and we will contribute a
few ideas on this issue in terms of the computational architecture.
The most common idea is to combine the different reward values
into a weighted sum and take the best action for this combination.
More complex methods consider the so-called pareto-front, well-
known from classical multi-objective optimization. In fact, much
of the discussion on optimal decision making for multiple
objectives and methods for finding the pareto-optimal solutions
(Das and Dennis, 1998; Miettinen, 1999; Mueller-Gritschneder
et al., 2009; Motta et al., 2012) can be useful for MORL
(see Van Moffaert and Nowé, 2014; Pirotta et al., 2015;
Vamplew et al., 2017).

Once the most appropriate action has been determined
and carried out, each of the actors and critics is able to
learn something from its outcome leading to a modification
of the corresponding neural networks, usually through
backpropagation of the expected reward update or
temporal difference.

From introspection, but also from behavioral animal
experiments one gets the impression that each of these motives
enters the final evaluation and decision with its own weight or
“urgency” that may vary with time, depending on the agent’s
needs, which implies that there is no fixed “trading relation”
between the different motives and their corresponding reward
values, so they cannot be reduced to just one value. Modeling
artificial agents in this wider framework entails some new
problems and tasks, which may also lead to new interesting
research projects and interactions with behavioral biologists
and psychologists.

Here we describe the basic theoretical framework for
this approach:

1. Given n motives, n current predicted values (v1, . . . , vn),
and n “urgency weights” (w1, . . . ,wn) for them, how do we
combine them to one value that should be maximized by
the next action? There are different more or less obvious
ideas for this (see e.g., Boutilier, 2002; Castelletti et al., 2002;
Natarajan and Tadepalli, 2005; Wiering and De Jong, 2007)
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also motivated by modeling animal behavior, or reflecting
the introspective difference between positive and negative
rewards, or between goal seeking and pain avoidance, themost
obvious and simple being the weighted sum v =

∑
i wivi. At

the opposite extreme we would follow the one objective that
has maximal wivi, or we could consider a minimal value for
some objectives as a constraint in maximizing the weighted
sum of the others. Here the “higher” motives like curiosity are
put side-by-side with “lower” ones like “hunger,” whichmay be
psychologically somewhat unsettling, but might actually work.
We first encountered this idea in the work of Dörner (2001),
see also Bach (2009) and Bach (2012).

2. For each of the motives, in addition to defining the
corresponding rewards ri we have to model their “urgency
function” wi(t). This may involve a dynamical system model
of the agent’s body and as such may be considered as part of
the world model. In particular, it will use the corresponding
rewards ri(t) as inputs. In extreme cases wi may even be
constant or it may simply integrate the incoming rewards as

ẇi(t) = a− bri(t) or τ ẇi(t) = −wi(t)− bri(t)+ a

but much more is easily conceivable, for instance involving
thresholds at which the urgency changes drastically. The
development of such dynamical models of urgency may be an
interesting line of research also in modeling animal behavior.
Actually, the simple integration model was probably first
introduced informally by Lorenz (1978).

3. It is now possible to introduce some more “cognitive” motives
like “curiosity” (see also Pisula, 2009), for which we have to
define ri(t) and wi(t). For example for curiosity it is natural to
define surprising events as rewarding, where surprise may be
defined as − log p relative to a probabilistic world model that
the agent may have learnt (Palm, 2012). More concretely, if in
world state x the agent receives the observation o(x), or the

state description d(x) (Palm, 2012), which has the probability
p(x) = p(d(x)) in his current model, then his surprise is
− log p(x). Then again wi(t) can be defined for example by an
integration model.

4. Finally we have to decide for the optimal action. Given our
estimates for the temporal rewards and urgencies of the
different motives and also our momentary combined reward,
we can usemethods ofmulti-objective or of plain optimization
to find the optimal action. As a starting point we can use
the actor outputs for the individual motives and perhaps try
their combinations. Practical methods for finding a reasonable
solution to the optimization problem in short time are also
discussed in the literature on RL and MORL (Handa, 2009;
Kooijman et al., 2015; Brys et al., 2017; Parisi et al., 2017;
Vamplew et al., 2017).

This leads to an extended RL-architecture, which may be
biologically more realistic. Such amore complex architecture also
offers interesting additional possibilities for improving behaviors
by learning: The existence of more objectives compared to just
one, generates a richer representation of (the value of) the
current situation, which can be used also to improve the sensory-
based world model. It also gives a new perspective on the
exploration-exploitation dilemma, since following exploitation
of one objective may serve as exploration of the others. We
have presented a basic layout of such a multi-objective agent
architecture and started some preliminary experiments on it
(Oubbati et al., 2013, 2014), but we believe that much more can
and should be done in this direction.
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