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Soft robots have the potential to significantly change the way that robots interact with

the environment and with humans. However, accurately modeling soft robot and soft

actuator dynamics in order to perform model-based control can be extremely difficult.

Deep neural networks are a powerful tool for modeling systems with complex dynamics

such as the pneumatic, continuum joint, six degree-of-freedom robot shown in this paper.

Unfortunately it is also difficult to apply standard model-based control techniques using

a neural net. In this work, we show that the gradients used within a neural net to relate

system states and inputs to outputs can be used to formulate a linearized discrete

state space representation of the system. Using the state space representation, model

predictive control (MPC) was developed with a six degree of freedom pneumatic robot

with compliant plastic joints and rigid links. Using this neural net model, we were able

to achieve an average steady state error across all joints of approximately 1 and 2◦ with

and without integral control respectively. We also implemented a first-principles based

model for MPC and the learned model performed better in terms of steady state error,

rise time, and overshoot. Overall, our results show the potential of combining empirical

modeling approaches with model-based control for soft robots and soft actuators.

Keywords: soft robot control, soft robot actuation, model predictive control, DNN, machine learning

1. INTRODUCTION

Although model-based control can generally result in control that is superior to methods that do
not rely on models, it is often difficult to justify the effort required to perform system identification
or model development for complex systems. A common result is that we identify models that
describe the system dynamics poorly and result in control that is barely (if at all) on par with
basic feedback control methods such as PID control. As an example, soft robots are especially
hard to model accurately for model-based control. The specific platform shown in Figure 1

has three joints that are made of antagonistic blow-molded plastic pneumatic chambers, where
each joint has two degrees of freedom. In past work, Gillespie et al. (2018), we have shown
that for a single degree of freedom soft robot, we could learn a model that performed on par
with a linear model that we derived from first principles and traditional system identification
techniques. However, in the case of the platform in Figure 1, we have all of the same problems
that exist with the previous one degree of freedom platform (e.g., non-linear gas dynamics,
hysteresis in joint behavior, state dependent stiffness and torque output, etc.), in addition to
having to deal with linearizing and discretizing a 24 dimensional non-linear set of ordinary
differential equations to describe the rigid body dynamics of a 3-link, 6-DoF pneumatic robot.
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FIGURE 1 | Series of joint configurations showing how this six degree of freedom pneumatic continuum robot can move.

As a first step toward learningmodels for soft robot control with a
large number of degrees of freedom, we show that we can learn a
discretized, non-linear model of the full robot from a non-linear
simulation which allows us to achieve better control performance
than the linearized model that is based on first principles.
Although we are not advocating ignoring all physical intuition,
we propose in this paper that it is possible to use recent advances
in machine learning to rapidly develop an empirical model that
can handle some of the non-linearities and complexities listed
above for this system, and that can be used for control.

To model the unknown dynamics of our soft robot, we
turn to the tools of deep learning. Deep learning is one of
the most compelling advances in machine learning in recent
memory. It has swept over both industry and academia, crushing
benchmarks and generating impressive progress across fields
as diverse as speech recognition (Dahl et al., 2012; Hinton
et al., 2012; Deng et al., 2013; Abdel-Hamid et al., 2014),
parsing of natural scenes (Lee et al., 2009; Socher et al.,
2011), machine translation (Cho et al., 2014; Sutskever et al.,
2014; Zhang and Zong, 2015), robotics (Eitel et al., 2015;
Wulfmeier et al., 2015; Zhang et al., 2015; Levine et al., 2016),
machine vision (Krizhevsky et al., 2012; Schmidhuber, 2012;
Szegedy et al., 2015; Zeng et al., 2015), and even the game of
Go (Silver et al., 2016).

A system like the robot described in this work, with severe
hysteresis and unknown state interactions, is difficult to model
even with explicit non-linear dynamics. These difficult-to-
model dynamics are a perfect candidate for universal function
approximation with deep neural networks, or DNNs. The only
requirements for the approach proposed in this paper are that
we must define the state variables and inputs based on our
physical intuition about the problem. Additionally, we must be
able to record data at each time step for our current states and
randomized control inputs. Then we can train a deep neural net
to approximate the non-linear, discretized dynamics and then
linearize that model at each time step for control.

Our specific contributions include the following:

• Development of a non-linear neural network (NN)
architecture for dynamic modeling of a 6 DoF pneumatic
robot with soft actuators based on data from a full non-linear
model.

• Development of a model predictive controller that can use
the partial derivatives of the NN at every time step in order
to remain tractable for low-level, high-bandwidth control
while modeling joint configurations, joint velocities, and
joint pressures.

• Development of a first-principles-based model and a model
predictive controller for a 6 DoF continuum pneumatic robot
with soft actuators.

• Identification of specific open questions relative to learning
more accurate dynamic models for future model-based soft
robot control.

• Validation and benchmarking of the non-linear NN model for
model-based control against the first principles model for a
large number of degrees of freedom.

The last contribution is especially interesting as we expect this
approach to generalize to other difficult-to-model actuators or
robot systems where model-based control would be expected to
improve low-level control performance but system identification
or even model development is particularly difficult.

The rest of this paper is organized as follows, we first describe
related work in section 2.1. In section 2.2, we describe our robot
platform. Section 2.3 describes the modeling and control of the
robot. Our results are presented in section 3 and we discuss the
results in section 4.

2. MATERIALS AND METHODS

2.1. Related Work
Past research that is related to the work we present in this paper
can be divided into two main areas. The first is using neural
networks either as a model for model-based control or as a
controller itself. The second area is other parametric models that
are used to produce optimal control policies. After discussing
these areas, we also briefly address related work on controlling
soft robots. More background on research usingmodel predictive
control in robotics can be found in Jain (2013) and Best et al.
(2016). However, it is important to note that model predictive
control solves a finite horizon optimal control problem at each
time step subject to the model dynamics as an equality constraint
along with any other defined constraints on the states and inputs.

2.1.1. Other Learned Models for Model-Based

Control
Although traditional robotics modeling has focused on system
identification of traditional physics-based models (see Swevers
et al., 1997; Park et al., 2011), the last 20 years has seen a
significant increase in the number of empirical models and
methods that have been developed (see Nguyen-Tuong and
Peters, 2011). One common approach is to use Gaussian
Processes (GP) to model the dynamic system and this seems to
have first been done in the chemical processing industry (see

Frontiers in Robotics and AI | www.frontiersin.org 2 April 2019 | Volume 6 | Article 22

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hyatt et al. Model-Based Control of Soft Actuators

Kocijan et al., 2004 for example). Currently in robotics, GP has
been used to develop a policy search algorithm for a robot arm
with imprecise actuators and cheap sensors (Deisenroth et al.,
2011), or for more general purpose control policy development
(Deisenroth et al., 2015). Other researchers have used Gaussian
Mixture Models such as in Calinon et al. (2007). We make
no direct comparison to these other modeling methods in this
paper, but expect that this would be a worthwhile comparison in
future work.

Although there exists a large number of other learning
methods that we could have used or compared against (e.g.,
Gaussian Processes, or support vector machines), we have chosen
DNNs for their unique properties that make them an ideal
choice for this application. Specifically, both GPs and SVMs
require fixed-size data sets, but our vision is to extend this
work to on-line scenarios where system identification happens
concurrently with control. In addition, an important aspect of
using DNNs is differentiability. Part of the appeal of using
DNNs is the fact that many off-the-shelf frameworks for deep
learning (Tensorflow, MXNet, pytorch) all support automatic
differentiation. This makes it easy to compute the gradients of
dynamics with respect to control inputs, which is needed for
MPC. In contrast, we are not aware of any existing GP/SVM
packages that have similar capabilities.

2.1.2. Neural Nets
The approach of using neural networks (similarly to model
predictive control), appears to have come from the chemical
processing industry and work that is most relevant to our
approach for robotics was found in Psichogios and Ungar (1991),
Piche et al. (1999), and Draeger et al. (1995) and is still an active
area of research (Patan, 2015).

Early work using neural networks for modeling robots was
done in Kiguchi et al. (1999), but it was not used for control. In
Tan et al. (2007) they use neural networks to learn disturbance
models online while controlling, while in Huang et al. (2000) and
Huang et al. (2002) radial basis functions are used to learn friction
effects modeled in an adaptive control scheme. These adaptive
control ideas could be particularly applicable to our platform in
future work as the air bladders in our soft robot tend to wear or
shift over time, which then changes the dynamic model. In Yan
and Wang (2011) Yan and Wang use a recursive neural net to
represent the higher order error terms that result from a Taylor
series linearization. While in Yan and Wang (2014) they use a
minimax optimization and learn a neural net model for part of
their unknown dynamics. In both cases, the only results shown
are in simulation.

More recent work has focused on learning controllers or
models for high-level tasks. In Lenz et al. (2015) for example,
they use a recurrent neural net to learn features of specific
classes of fruits and other foods in order to more efficiently
slice the food. The formulation is application specific but uses
the neural network gradients similarly to our approach. For the
work in Zhang et al. (2016), they used a DNN to learn a MPC
control policy for UAVs. Levine and Abbeel do policy search
using locally linear dynamics models to learn neural network
controllers for different robot tasks (e.g., swimming, insertion)

in Levine and Abbeel (2014). Finally, Fu et al. (2015) use neural
networks to generate and adapt models online that can be used
for model-based reinforcement learning to learn a control policy
that makes use of iterative LQR. Although the output is a low-
level torque for each joint, this approach does not generalize to
more basic capabilities such as force or position control. Low-
level control is our current interest given the inherent non-
linearity and complexity of our platform even without interacting
with complicated environments.

In general, using neural nets for system identification is a
well-known method (Narendra and Parthasarathy, 1990), but the
novelty of our paper is that we apply the method to control soft
robot platforms by combining neural nets with MPC for low-
level control. There is an inherent trade-off for controllers when
using these types of black box modeling. The trade-off is that we
can either develop controllers that can be used for multiple tasks
when the tasks can be decomposed into specific and explicit force
or position requirements or we can develop controllers for tasks
where even the desired force and position profiles are uncertain
with respect to the robot hardware. In the second case, learning
the task rather than (or in addition to) the robot dynamics is
necessary but is a next step to the work we present here for
low-level control of soft robots.

2.1.3. Soft Robot Control
A significant portion of soft robot research described in
the survey (Rus and Tolley, 2015) was focused on design
methodologies instead of closed-loop control performance and
so most robots were controlled with open-loop strategies such as
in Shepherd et al. (2011) and Tolley et al. (2014). Research that
is most related to ours in terms of trying to control a robot to
a specific configuration includes the use of inflatable links with
cable tendons (Sanan et al., 2009, 2011), fluid drive elastomer
(Marchese et al., 2014a,b; Marchese and Rus, 2015), or rotary
elastic chamber actuators such as in Ivlev (2009) and Gaiser et al.
(2014). However, in addition to other differences with past soft
robot control work that we outline more specifically in Best et al.
(2016), as far as we know they have not developed control for
these robots based on learned empirical models like those that
we present in this paper. This is true except for work in Thuruthel
et al. (2017) where they learn dynamic models similar to what we
present. However, they use those models in an open-loop control
scheme which may be problematic in the case of model error,
change over time, or any kind of disturbance. A recent survey
that explains the state of the field for soft and continuum robot
control can be found in George Thuruthel et al. (2018).

2.2. Robot Platform Description
The platform used for this research was a compliant, continuum
robot with six actuated degrees of freedom (see Figure 1). Each
joint consists of four pneumatic chambers made of blow-molded
plastic. The top and bottom sections of the actuator are connected
with a cable putting the bellow actuators in compression to some
degree. By filling or venting each chamber, we can get motion
about two different axes of rotation as shown in Figure 2. The
platform was developed and built by Pneubotics, an affiliate
of Otherlab. In our previous work, we applied the methods
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FIGURE 2 | Kinematic frames and model used for blow-molded continuum

joint.

presented in this paper on a one degree of freedom, fabric-
based, soft robot joint. In this paper, the platform we use still
has soft joints and is pneumatic. However, rigid components
are used to connect the soft joints. The motivation for using
learning is however unchanged since the joints exhibit very non-
linear behavior including the gas dynamics, hysteresis, non-linear
stiffness, and other non-linearities.

Because each joint is a continuum with two degrees of
freedom, it is necessary to describe its configuration with two
joint variables. We represent rotation at the joint using a vector
constrained to be in the plane of the base of the joint as seen in
Figure 2. Because it is constrained to a plane, the vector only
has two components which we name u and v. These are our
joint configuration variables. The magnitude of this vector (φ) is
the rotation angle about a single axis, while the vector describes
that rotation axis. Joint configuration estimation is accomplished
in real-time using software supplied by the manufacturer. This
software uses data from IMUs mounted on the rigid links to
estimate u, v, u̇, and v̇.

Joints are actuated by controlling pressure separately in each
of the 4 chambers in each joint (12 pressures total for the arm).
While the bottom joint has 8 chambers, these are controlled in
pairs of two, so it is effectively a larger version of the 4 chamber
joints. For this work, supply pressure was maintained at 70 PSI
while pressures in the chambers were limited between 18 and
55 PSI by the controller. These pressure limits were enforced to
ensure the robot did not damage itself.

We use the Robot Operation System (ROS) to access state
estimates as well as to send pressure commands. Our MPC
controller code is operating in non-realtime on an Ubuntu
workstation, while the state estimation and low level pressure
control is being executed at 1,000 Hz on a PC with a real-time
linux kernel.

2.3. Development of Dynamic Models
2.3.1. First Principles Dynamics Model
A model of the evolution of system states was derived from
first principles based on material properties, lengths, and masses
provided by the manufacturer of the robot. Because commanded
pressures were not achieved instantaneously, it was deemed
necessary to model the dynamics of pressures and the high rate
pressure controller. The entire state of our system is therefore
x = [p, q̇, q]T where p is the vector of the pressures in the
12 chambers (4 per joint), q̇ is the vector of 6 joint velocities
([u̇1, v̇1, u̇2, v̇2, u̇3, v̇3]), and q is the vector of 6 joint positions
([u1, v1, u2, v2, u3, v3]). The inputs to our system are u = [pref ]
where pref is a column vector of commanded pressures sent to
the high rate PID pressure controller.

The pressure dynamics were modeled as first order according
to the differential equation

ṗ = α(pref − p) (1)

where α is a diagonal matrix of constant coefficients which
represent the speed of filling or venting a chamber.

The dynamics of the links were modeled using the equation

M(q)q̈+ C(q̇, q)q̇ = Kdq̇+ Kspringq+ τgrav + Kprsp (2)

where M(q) is the joint space inertia matrix, C(q̇, q) is the joint
space Coriolis matrix, Kspring and Kd are spring and viscous
damping terms which are significant in our elastic continuum
joints, τgrav is a vector of the torques caused by gravity, Kprs is
a matrix which maps the pressures in the chambers to torques
at the joints. While this model could benefit greatly from further
system identification, we report results using this model and leave
model improvement for future work.

Placing all of the state variables and derivatives into state space
form we can write

ẋ = Ax+ Bu+ w (3)

where

A =





−α 0 0
M−1Kprs M−1(Kd − C) M−1Kspring

0 1 0



 (4)

B =





α

0
0



 (5)

w =





0
τgrav
0



 (6)

By writing the model in this way, we are assuming that the state
dependent matrices in A change slowly over the time horizon
in our controller [similar to our models in past work Killpack
et al. (2016) for rigid robots with compliance at the joints]. The
discretization of the continuous time state space matrices is done
using the matrix exponential, which gives

xk+1 = Adxk + Bdu+ wd. (7)
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FIGURE 3 | DNN architecture implemented to predict future velocities.

where

Ad = eA1t (8)

Bd = A−1(Ad − I)B (9)

wd = w1t (10)

2.3.2. Deep Neural Net Architecture and Model
A Deep Neural Net (DNN) of the form shown in Figure 3

was trained as a discrete-time dynamic model for the velocity
states of our system. Because we have fairly accurate and simple
representations for pressure and position, we represent those
using first principles methods. The entire model consisted of
about 3.4 million nodes in an architecture similar to the Unet
architecture used for image processing (Ronneberger et al., 2015),
except our architecture uses fully connected layers with ReLU
activations instead of convolutions. The model used for this work
was trained for less than 1 h on a NVIDIA Titan X GPU. The
DNN can be described as finding the change in velocity between
time steps k and k + 1 taking as inputs the entire state and
inputs at time k. Assuming our system is a first order Markov
system, this approach should be very reasonable. The DNN can
be represented as a function of the form

q̇k+1 = f (xk, uk). (11)

As a method of collecting a large amount of data very quickly
and without wear or danger to the actual robot, we used the non-
linear first principles model outlined above (before discretization
and linearization) to train the DNN. Non-linear simulation
was accomplished by integrating the state space equations at a
discretization of 0.001 s. In order to train the DNN to predict
q̇k+1 at a discretization of 0.05 s, the non-linear simulation was
carried out for 50 integration steps. Because pk, qk, and pref all
have definite bounds, these were sampled uniformly within their
bounds. However, q̇k is not bounded, so samples were drawn
from a mean zero normal distribution. In an attempt to scale
the input space equally, p and pref were scaled and offset to be

mean zero values between –1 and 1. Using units of radians q was
bounded by +- 2π

3 .
It should be noted that a method to learn new features while

maintaining old ones could be used to improve this model
(Rusu et al., 2016), however our control results demonstrated
acceptable performance without this step. An example of open
loop prediction of joint positions using the DNN compared to the
first principles model and measured data can be seen in Figure 4.
The error statistics for both position and velocity are reported
in Table 1.

Using a non-linear optimization, this non-linear model could
be used for MPC, however in order to ensure that we solve at
fast enough rates for real-time control we choose to linearize
this DNN model using the Taylor Series expansion. The Taylor
expansion of our DNN model (Equation 11) linearized about
x0, u0 is

q̇k+1 =
∂f

∂xk

∣

∣

∣

∣

x0 ,u0

(xk − x0)+
∂f

∂uk

∣

∣

∣

∣

x0 ,u0

(uk − u0)+ f (x0,u0) (12)

where the partial derivatives are of the DNN’s outputs with respect
to its inputs. While these partial derivatives of the entire non-
linear DNN may be too long and complex to write by hand, they
are easily obtained using the automatic differentiation library
already included as part of the DNN training library.

Because the DNN only predicts the velocities at the next time
step (q̇k+1), we must supply a discrete model for pressures (pk+1)
and positions (qk+1). For positions we use a simple numerical
integration using the trapezoidal rule:

qk+1 = qk +
1t

2
(q̇k + q̇k+1) (13)

while for pressures we use the simple discretization of Equation 1

pk+1 = α1t(pref )+ (I − α1t)pk (14)

The discrete-time state space equation for this system is given by

xk+1 = Ad(xk − xk)+ Bd(uk − uk)+ wd (15)
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FIGURE 4 | Simulations using the same initial states and a 30 s input trajectory are rolled out using the DNN model and the first principles model. For most of the

trajectory, these lines are indistinguishable.

TABLE 1 | Error statistics for a 30 s rollout of arm dynamics.

Non-linear DNN prediction error

Max Mean Std. Dev.

Velocity error (rad/s) 1.0721 −0.000003 0.0237

Position error (rad) 0.3736 −0.0012 0.0223

Error is reported as the difference between the non-linear DNN model prediction and the

non-linear simulation used to train the arm.

where

Ad =







(I − α1t) 0 0
∂f
∂pk

∂f
∂ q̇k

∂f
∂qk

∂f
∂pk

1t
2 (

∂f
∂ q̇k

+ I)1t
2

∂f
∂qk

1t
2 + I






(16)

Bd =







α1t
∂f

∂pref ,k

0






(17)

wd =





p0
f (x0, u0)

1t
2 q̇0 + q0



 (18)

2.4. Model Predictive Control Development
The linear discrete-time state space models (Equations 7, 15) are
used as constraints in an MPC controller that is run at 20 Hz.
A flow chart for the control process can be seen in Figure 5.
The outputs from the model predictive controller are reference

pressures that are sent to a low level PID pressure controller
running at 1,000Hz.

Feedback for the MPC controller is given by a state estimator
supplied by themanufacturer. This state estimator uses IMUs and
pressure sensors mounted on the arm to estimate p, q̇, and q. This
data is updated at a rate of 1,000 Hz.

The solver that we used for MPC was generated using
CVXGEN (see Mattingley and Boyd, 2012 for more details about
the optimization and constraint handling), a web-based tool for
developing convex optimization solvers, with a horizon of 4 time
steps. The cost function minimized across the horizon T is

minimize

T
∑

k=1

‖qgoal − qk‖
2
Q + ‖pref ,k − pref ,k−1‖

2
R (19)

subject to the system model as constraints, as defined in
Equations (7, 15) (the first principles and DNN dynamic models
respectively), as well as the following additional constraints:

qmin ≤ qk ≤ qmax ∀ k (20)

pmin ≤ pref ,k ≤ pmax ∀ k (21)

where Q and R are scalar weights manually tuned for
performance, qmin and qmax are the joint limits, and pmin and
pmax are minimum and maximum pressures. It is important
to note that the weights in the cost function for MPC are
what will determine the performance of the control to a large
degree in terms of traditional metrics like rise time, steady state
error, and overshoot. Also note that the weighting matrix R
penalizes change in pressure from one step to another. This
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FIGURE 5 | Control loop diagram showing the MPC controller sending pressure commands (pref ) to a low level PID pressure controller.

term discourages very fast motions and eliminates the need for
velocity constraints.

We used the exact same weights and constraints for all
controller comparisons. We instead varied only the model (either
based on first principles or the DNN learned model) and whether
or not an integrator was used. When an integrator was used, the
following equation was used to handle steady state error with
integral action:

qgoal,k+1 = qgoal,k + ki(qgoal,k − qk) (22)

When the integrator was used, it was only ever active when the
combined error in joint angles versus their commanded angles
was less than 0.4 radians to help with overshoot. Although step
inputs are notorious for exciting overshoot and oscillation in
underdamped systems, as opposed to trajectories smoothed with
sinusoids or polynomials, we wanted to test the performance
of our models and controllers and therefore we sent direct step
inputs to each joint. In the future, these same commands could
be smoothed to likely achieve better performance. However, the
same could be argued if our models continue to improve and our
model predictive controllers are able to make use of methods to
predict further into the future (see more discussion in section 4).

3. RESULTS

In each trial for our experiments, the same set of commanded
joint angles (u and v for each joint) were sent to the controller
with 20 s intervals between commands. The commanded angles
are found in Table 2 and were selected in order to force the
arm to move through most of its workspace. Step commands
are not traditionally used in robotics due to the fact that they
can induce unwanted dynamics or oscillation, even in traditional
rigid robots. However, in this case, we want to test our controller’s
ability to use the model to mitigate unwanted behavior, similar to
some of our past work (see Rupert et al., 2015; Terry et al., 2017).
The results for the same model predictive controller using the
two different linearized models (first-principles and DNN), and
with and without integral action, are found in Figure 6. A video
showing the robot moving through the same joint configurations
as those found in Table 2 and shown in Figure 1 can be seen at
https://youtu.be/ddA0g0yKjOc. The controller used in the video

TABLE 2 | This set of joint angle commands move the continuum robot arm

throughout the workspace and are used to evaluate performance.

Joint angle commands

Initial Step1 Step2 Step3 Final

u1 0.0 0.5 0.707 −0.354 0.0

v1 0.0 0.25 0.707 0.354 0.0

u2 −0.4 −0.707 0.707 0.0 −0.4

v2 −0.4 0.2 −0.2 0.0 −0.4

u3 0.0 0.707 −0.5 0.2 0.0

v3 0.0 0.354 0.707 0.354 0.0

is the DNN MPC controller with no integral action. The video
also shows the compliance of the soft actuators when perturbed
by an external disturbance.

In addition, the median steady state error, rise time, and
overshoot for each joint and each controller is included in
Table 3. We also included an average across all the joints for
each controller and the controller that performed the best is
shown in bold. Where C1 refers to the first principles MPC
without integral control, C2 refers to the first principles MPC
with integral control, C3 refers to the DNNMPCwithout integral
control, and C4 refers to DNN MPC with integral control. In
all cases, the controller that performed the best was one of the
neural network model predictive controllers (C3 and C4, without
or with integral control).

Although it may be desirable to track sinusoids or other
trajectories for different applications, step inputs are the most
difficult input for underdamped systems. In this case, if the soft,
underdamped robot gives good control performance without
having to slew the control input, we have evidence that the
learned model is effective.

4. DISCUSSION OF RESULTS, FUTURE
WORK, AND CONCLUSIONS

One of the most interesting results is that the both models
make full use of the multi-input system by driving pressures in
opposing chambers in opposite directions in order to get a joint
to move more quickly. This is something that we expect to see in

Frontiers in Robotics and AI | www.frontiersin.org 7 April 2019 | Volume 6 | Article 22

https://youtu.be/ddA0g0yKjOc
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hyatt et al. Model-Based Control of Soft Actuators

FIGURE 6 | Each plot shows a comparison of different time responses for a single joint in a single direction of actuation (where each joint has a degree of freedom in

the u and v directions as shown in Figure 2). For each joint, the time response for four different conditions is shown–(1)MPC with a deep neural net (DNN) model,

(2)MPC with a DNN model and an integrator, (3)MPC with a first principles (FP) model, (4)MPC with a first principles (FP) model and integrator.

TABLE 3 | The average steady state error, 90% rise time, and percent overshoot are all reported for each joint and controller.

Steady state error (rad) (10–90%) Rise time (s) % Overshoot

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

u1 0.029 0.032 0.030 0.030 5.04 4.38 2.38 2.19 5.50 6.29 4.48 4.91

v1 0.046 0.046 0.020 0.020 10.2 7.22 3.60 3.41 36.4 35.8 32.1 34.9

u2 0.157 0.112 0.079 0.019 3.77 3.83 2.21 2.11 17.5 14.7 13.9 11.5

v2 0.124 0.074 0.047 0.012 11.5 9.94 7.00 5.68 18.7 22.8 6.11 10.4

u3 0.048 0.006 0.024 0.010 6.61 4.19 1.77 1.82 12.1 12.8 11.2 8.22

v3 0.086 0.033 0.038 0.019 7.61 4.84 0.71 0.55 29.8 28.1 33.0 31.3

Total Average 0.0816 0.051 0.040 0.018 7.46 5.74 2.94 2.63 20.0 20.1 16.8 16.9

In cases where 90% of steady state was not reached, a full 20 s was counted for that step. In cases where there was not overshoot, it was counted as 0% for that step.

the first principles when we explicitly model torque as a function
of the two actuation pressures. However, in the DNN model, the
behavior of the system was learned automatically by the DNN
and exploited by the model predictive controller.

Both approaches have strengths and weaknesses with respect
to ease of implementation. Given decent model parameters, a
first principles model can be derived and verified with real data.
This allows you to see the predictive power of your model
and to reason about where errors are being introduced (e.g.,
underestimating mass causes velocities to be higher). While

training a DNN model on data is theoretically much simpler and
requires less system and theoretical knowledge, in practice it can
be difficult to obtain large quantities of high quality data with
which to train, especially on real robots. Moreover, if the DNN
model does not predict well, it is difficult to discern if the problem
is with the architecture, the training method, the data, or simply
the quantity of the data.

Once both methods are implemented, it is again theoretically
much simpler to update the DNN model given new data. This
could be useful for slow system changes due to phenomenon
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such as creep or possibly even for quick system changes such
as when an object is grasped in a robotic end effector. The
equivalent process with a first principles model is adaptive
control, which is still an active area of research. Whether
one of these is simpler in practice remains for exploration in
future work.

As can be seen in Figure 6 and Table 3, the DNN MPC was
able to control to positions with lower rise time, overshoot,
and steady state error, than the first principles MPC. This is
interesting especially because the DNNwas trained exclusively on
data produced by the non-linear first principlesmodel.We expect
that this performance increase is in part due to how the DNN
model is linearized (using the Taylor series expansion) as opposed
to how the first principles model is linearized (maintaining A

and B constant). This is supported in the findings of Terry et al.
(2017). However, this ends up being one of the benefits of the
learned model. It handles, the discretization and linearization
in a more straight forward way than the when dealing with the
non-linear first principles model, while still giving comparable or
better performance.

It should be noted that in the DNNmodel, only velocities were
predicted using the DNN, while pressures and positions were
found using first principles models and discretization techniques.
This was done because it proved to be much more difficult
to train a DNN capable of predicting the entire state vector,
as opposed to just velocities. While predicting the entire state
was successfully accomplished in Gillespie et al. (2018), this
was for a one degree of freedom system. We suspect that in
order to extend this directly to many degrees of freedom, the
DNN model would need to be much larger and be trained on
much more data, or the DNN architecture would need to be
changed to constrain the model to be more physically realistic.
Since larger models require more data and would require more
time to calculate gradients for control, smaller DNNs can be
more useful in practice. We pose to the community as an
open problem the correct architecture for discrete-time model
prediction of dynamic states, since this will have a great impact
on model and controller performance as well as training time
and the amount of data required. Another open question is
how to most safely and effectively collect data for learning the
dynamics of a system such as a real robot, without damaging
the robot.

Additionally, it is important to keep in mind that in this
paper we are using a simple first-order Markov, feed-forward
NN which cannot capture hysteresis. However, in future work,
our same approach could be applied with more advanced DNN
versions that can model hysteresis and other similar physical

phenomenon. For example, it is possible to use k-th order
Markov inputs, or train DNNs with state (e.g., LSTMs or GRUs)
to remember inflection points.

We have shown that using a DNN with no initial knowledge
about a complicated non-linear dynamical system except for
assumed state variables and inputs, we can develop a high-
performingmodel-based controller. Additionally, we have shown
that our method which was first presented in Gillespie et al.
(2018) is extensible to a more complex and large degree of
freedom robot with soft actuators. In preliminary testing, the

model predictive controller using a learned model performed
better in terms of both overshoot and steady state error than a
model predictive controller using a simplified linearized model
based on first principles. Despite this success, we also note that it
will be important in future work to extend our methods in two
main ways. First we expect that constraining or parameterizing
the model appropriately to cause a learned model to predict
better after being trained on real data (as opposed to a non-linear
simulation) will be essential to further improving performance.
Additionally, in order to further improve dynamic response
(such as rise time, overshoot, and settling time) we expect that
using more tractable MPC methods with longer horizons and
higher control rates (such as the method in Hyatt and Killpack,
2017 which make use of a GPU) will allow us to better control
underdamped, difficult to model, soft robot actuators.
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