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An Adaptive Iterative Learning Based
Impedance Control for Robot-Aided
Upper-Limb Passive Rehabilitation
Wang Ting* and Song Aiguo
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In this paper, an anthropomorphic arm is introduced and used to the upper-limb passive

rehabilitation therapy. The anthropomorphic arm is constructed via pneumatic artificial

muscles so that it may assist patients suffering upper-limb diseases to achieve mild

therapeutic exercises. Due to the uncertain dynamic environment, external disturbances

and model uncertainties, a combined control is proposed to stabilize and to enhance

the adaptivity of the system. In the combined control, an iterative learning control is

used to realize accurate position tracking. Meanwhile, an adaptive iterative learning

based impedance control is proposed to execute the appropriate contact force during

the therapy of the upper-limb. The advantage of the combined control is that it

doesn’t depend on the accurate model of systems and it may deal with highly

nonlinear system which has strong coupling and redundancies. The convergence of the

proposed control is analyzed in detail. Numerical simulations are performed to verify the

proposed control method. In addition, real experiments are executed on the Southwest

anthropomorphic arm.

Keywords: impedance control, anthropomorphic arm, pneumatic artificial muscles, iterative learning,

rehabilitation

1. INTRODUCTION

China ranks the first in the incidence of the stroke in the world, accounting for one third of the
world’s 30 million stroke patients. According to the report on cardiovascular diseases in China
2018, at present, there are more than 13 million stroke patients in China (Shengshou et al., 2019).
If further rehabilitation measures are not taken, there will be 31 million stroke patients all over
the country till 2030. About 75% of the stroke survivors have different degrees of disabilities and
most of stroke patients are unable to take care of themselves. Therefore, stroke patients need to
execute rehabilitation exercises in order to adapt to activities of daily living (ADL) by themselves
(Morales et al., 2011). In early time, many upper-limb therapies are developed to help stroke
patients recovering their motion skills, such as constraint-induced movement therapy (Taub and
Uswatte, 2006), bilateral training (Tijs and Matyas, 2006) and so on. However, these therapies
always rely on the skills and experiences of physiotherapists, which are usually expensive and time
consuming. In recent years, robot-aided therapies for upper-limb rehabilitation are rising up due to
the low price and the high efficiency (Papageorgiou et al., 2006; Ball et al., 2007, 2009; Mehdi, 2012).

Comparing with electric drives, pneumatic actuators have advantages of the light weight, the
high strength, the compliance, and the low impedance. Specially, they have a high power-to-weight
ratio, the low inherent impedance, and forces are controllable (Maciejasz et al., 2014). Therefore,
researchers are interested in introducing the pneumatic actuators to robot-aided upper-limb
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rehabilitation therapies. The university of Leeds designs the iPam
system for sitting therapies, consisting of two symmetric arms
and each arm has 3 DOF (Degrees of freedom) (Jackson A. E.
et al., 2007). An admittance control is used to achieve patients’
arm movements. The system is equipped with force sensors,
a motion capture software and infrared cameras. To prevent
suffering serious damage, a cooperative control is integrated to
make positions of two robotic arms restricted to the kinematics
of the human arm (Jackson A. et al., 2007). The university of
California develops a PNEU-WREX system, using pneumatic
actuators for upper-limb rehabilitation therapies. The system
has 5 DOF, immersing in a virtual environment (Wolbrecht
et al., 2010). Applied pneumatic cylinders, every active DOF
uses corresponding valves to implement the low pressure control
loop so as to exert the Kalman filter and the force control
for the nonlinear system. Low-friction cylinders are used to
solve the friction among pneumatic cylinders and the system is
performed by a passive gravity compensation of the patients’ arm
weights. The system is equipped with pressure sensors, cameras,
MEMs interferometers and the XPC type data acquisition
card (DAQ). Some results demonstrate that the T-WREX may
attenuate moderate to severe upper extremity hemiparesis of
stroke patients through repetitive motor training (Housman
et al., 2007). The University of Salford fabricates a 7 DOF
multi-joint gravity compensated upper-limb exoskeleton device,
called Salford rehabilitation exoskeleton (SRE). The device takes
pneumatic muscles to emulate agonist-antagonist muscles of
the human arm. Every joint has three mode of operations,
totally assistedmode, partial assistancemode and none assistance
mode, all of which are accomplished by the position control,
the torque control or the impedance control. The device is
used to assist rehabilitation exercises of the patients’ upper-limb
(Kousidou et al., 2007).

In the robot-aided upper-limb rehabilitation exercises, the
safety is the most important issue for both the rehabilitation
device and patients. Therefore, the accomplishment of the
compliant control system is the key point in the rehabilitation
robot design. The impedance control is the simple and efficient
approach to provide the safe and compliant contact force, via
adjusting the dynamic relation between robot’s end-effector and
the patients (Kiguchi et al., 2003; Xu and Fang, 2004; Ju et al.,
2005; Kooij et al., 2006; Nakamura et al., 2008; Ball et al., 2009;
Kang et al., 2010; Xu and Song, 2010; Mehdi, 2012). During the
motion, using constant parameters may result ineffectiveness of
the impedance control since the impedance model parameters
of the environment are time-varying. To solve the problem,
Xu and his colleagues study the force-position hybrid fuzzy
control of a rehabilitation robot with uncertain dynamic system
(Xu and Fang, 2004). kiguchi and his colleagues combine the
fuzzy logic with the neural network to the proposed impedance
controller in order to solve the nonlinearities and uncertainties
of the system (Kiguchi et al., 2003). Even more, some researchers
propose an adaptive impedance control algorithm based on
Dynamic Recurrent Fuzzy Neural Network (DRFNN) aiming
to execute rehabilitation program more effectively. Impedance
model parameters of impaired limb’s are identified in real time,
and desired impedance control parameters are learned by the

DRFNN at the same time. The effectiveness of the method
is verified by simulation experiments (Xu and Song, 2010).
Due to highly nonlinear and time varying characteristics, it is
difficult to drive PAM actuators in the precise control. Therefore,
Zhang and his colleagues investigate the force control of a
pneumatic artificial muscle (PAM) drives ankle rehabilitation
robot, incorporating a position control in inner loop and an
impedance control in outer loop so as to ensure the accuracy
and the satisfactory of the ankle rehabilitation (Zhang et al.,
2017). Anh and his colleagues develop the novel adaptive neural
network (ADNN) compliant force/position control to make a
serial PAM robot follow arbitrary linear and circular trajectories.
Through experiments and the comparison with optimal PID
control, they prove that the proposed method may improve the
compliant force/position output performance (Anh et al., 2017).
Although researchers already study various methods, it is still
a tough problem and an active topic how to make a balance
between the accurate motion control and the appropriate contact
force during rehabilitation therapies.

In this paper, we firstly introduce the 2 DOF pneumatic
drives anthropomorphic arm in our lab. The anthropomorphic
arm forms by 6 PAMs, and equipped with 3 dimension force
sensor and other sensors. To realize the accurate motion

FIGURE 1 | The name of anthropomorphic arm is Southwest, located in the

School of Instrument Science and Engineering, Southeast University, China.
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control, an iterative learning control (ILC) is applied to
make the anthropomorphic arm follow arbitrary trajectories.
Simultaneously, an adaptive iterative learning based impedance
force control is proposed to maintain the stability of the
anthropomorphic arm and to acquire the appropriate contact
force during the motion. Rest of the paper is organized as follows.
The pneumatic anthropomorphic arm and its dynamic model
are presented in section 2. The adaptive iterative learning based
impedance force control is detailed explained and analyzed in
section 3. Results of numerical simulations and real experiments
are discussed in section 4. Conclusion and the future work are
given in the conclusion part.

2. PNEUMATIC DRIVES
ANTHROPOMORPHIC ARM AND ITS
DYNAMIC EQUATION

The anthropomorphic arm (called Southwest) in the State Key
Laboratory of Bioelectronics has the shoulder joint, the elbow

joint and the end-effector, as shown in Figure 1. Both of the
elbow joint and the end-effector has 1 rotational DOF and
the Southwest together has 2 rotational DOF. All of joints
are realized by roundels embedded with cardan valves and
connected with PAMs. The upper-limb is actuated by the muscle
synergies of 4 PAMs and the forearm is actuated by another
2 PAMs. In the upper-limb, 4 PAMs form 2 pairs agonist-
antagonist muscles as similar as the human arm. The end-
effector is equipped with the 3 dimension force sensor (designed
and manufactured by State Key Laboratory of Bioelectronics,

and showed in Figure 2A) and the IMU sensor, used to

measure the forces, positions, angles and angular velocities.
Every pneumatic artificial muscle may execute the extension

or the flexion via inflating or deflating gases of corresponding

SMC pneumatic proportional valve. FESTO SDE1 pneumatic
pressure sensors are equipped to measure increments of gases.

Through the synergism of toques generated by all PAMs, the

end-effector of the anthropomorphic arm may achieve mild
reaching movements.

FIGURE 2 | The anthropomorphic arm model and the 3 dimension force sensor in State Key Laboratory of Bioelectronics, Jiangsu Key Lab of Remote Measurement

and Control, School of Instrument Science and Engineering, Southeast University, 210096 P.R.China. (A) The anthropomorphic arm model, (B) 3 dimension force

sensor.

FIGURE 3 | The platform of the robot-aided upper-limb rehabilitation system.
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The kinematic model of the human arm is illustrated in Figure 2,
and the dynamic equation of the Southwest anthropomorphic
arm is written as

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ − τd. (1)

In Equation (1), M represents the inertia term. C indicates the
Coriolis and centrifugal effects term. G(q) is the gravitational
item. τ is the joint torque generated by the synergism of PAMs

acting on the elbow joint and the end-effector. τd represents

disturbances and perturbations. q = [q1, q2]
T = [θ1, θ2]

T ,

τ = [τ1, τ2]
T . The specific forms of M and C are, respectively

FIGURE 4 | The diagram of iterative learning based impedance control.

FIGURE 5 | Trajectory errors of the upper-limb and the forearm after 5 iterations.
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FIGURE 6 | The convergency process of the trajectory tracking in 5 iterations.

FIGURE 7 | Angular velocity errors of the upper-limb and the forearm after 5 iterations.
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defined as:

M =

[

J1 + J2 +m2d
2
1 + 2m2d1c2 cos q2 J2 +m2d1c2 cos q2

J2 +m2d1c2 cos q2 J2

]

,

C =

[

−2m2d1c2q̇2 sin q2 −m2d1c2 sin q2(q̇1 + q̇2)
m2d1c2q̇1 sin q2 0

]

,

G =

[

g(m1c1 +m2d1) cos q1 + gm2c2 cos(q1 + q2)
gm2c2 cos(q1 + q2)

]

. (2)

In Equation (2b),m1 andm2 aremasses of the upper-limb and the
forearm. g is the gravitational coefficient. d1 and d2 are lengths of
the upper-limb and the forearm. di is the distance from the i-th
joint to the center of mass of the i-th link. Ii represents the inertia
moment of the i-th link, and the inertia matrix Ji calculates as
Ji = mid

2
i + Ii.

The schematic diagram of the robot-aided upper-limb
rehabilitation system is displayed in Figure 3. All of SMC
proportional valves, pneumatic sensors and force sensors are
connected with PCI 6289 data acquisition cards (DAQs). The
control executes by the labView written in an external computer.
The Southwest adopts pure pneumatic drives supplied by the air
source. The IMU sensors may obtain the actual positions, angles,
and angular velocities of the end-effector and the elbow. Once
the desired angle is given, the Southwest may follow the desired
trajectory through the motion control. Assuming each PAM has

the same contraction rate, gas variations of inflation or deflation
have the following relation of the contraction rate ζ and forces Fi.

Fi = −296+ 2000Piζ |4bar,ζ=0.08, i = 1, ..., 6,

τ1 =

4
∑

i=1

Fili,

τ2 =

6
∑

i=5

Fili, (3)

where Pi is the air pressure amount. li represents the arm of i-th
PAM, li = 0.45m. Forces of antagonist muscles are both set to
0. Agonist muscles are supposed to have the same amounts of
initial pressures. Therefore, the problem is simplified to calculate
gas variations of agonist muscles via the control, depending on
the position tracking errors between actual angles and desired
angles. The classical PID based iterative learning control is used
to implement the motion control, and it is omitted.

3. ADAPTIVE ITERATIVE LEARNING
BASED IMPEDANCE CONTROL

In the robot-aided upper-limb rehabilitation training process, it
is essential to design the contact force between the end-effector
of the anthropomorphic arm and the upper-limb of the patient.
If the interaction force is not properly controlled, it is not only
fail to achieve the training effect, but also may lead to secondary
injury of the patient’s part. In actual rehabilitation exercises,

FIGURE 8 | The convergency process of the angular velocity tracking in 5 iterations.
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it is very important to select appropriate parameters of the
environment’s impedance model. Generally, the parameters may
be acquired by adaptive methods, or the neural network learning
methods or from teaching data. In this paper, we propose to use
iterative learning to obtain the parameters. The target impedance
model used in this paper is expressed as

Mdq̈k(t)+ Cdq̇k(t)+ Sdqk(t) = Fdk(t)− Fk(t), (4)

FIGURE 9 | Angle errors of the upper-limb and the forearm in the real

experiment.

FIGURE 10 | Angular velocity errors of the upper-limb and the forearm in the

real experiment.

where k indicates the number of the circulation period and
qk(t), q̇k(t), q̈k(t) are actual joint angles, angular velocities and
accelerations of the Southwest in the k-th circulation period.
Relatively, qd(t), q̇d(t), q̈d(t) are the desired position vector,
the desired velocity vector and the desired acceleration vector
of the desired motion. Md, Cd and Sd are the variable matrix
parameters of the environment’s impedance model. Fk(t) is
the actual contact force of the Southwest measured by the 3
dimension force sensor. Fdk(t) is the force vector imposed by the
time-varying environment.

Assume that parameters of Equation (4) are unknown
and the impedance model Equation (4) satisfies the
following assumptions

(1) For ∀t ∈ [0,T], qd(t), q̇t , q̈t and Fdk(t) are all bounded.
(2) The initial value satisfies q̇d(0)− q̇k(t) = qd(0)− qk(0) = 0.
(3) Md(qk) ∈ Rn×n is a symmetric positive definite matrix and

is bounded.
(4) Ṁd−2Cd is a symmetric matrix and xT(Ṁd−2Cd)x = 0,∀x ∈

Rn.
(5) Sdqd(t) + Cdq̇d(t) = ψ(qk, q̇k)ξ

T(t), where ψ(qk, q̇k) ∈

Rn×(m−1) is a given matrix and ξT(t) ∈ Rm−1 is an
unknown vector.

(6) ‖Cd(qk, q̇k)‖ ≤ kc‖q̇k‖, ‖Sdqk‖ ≤ kg‖qk‖, ∀t ∈ [0,T], where
kc and kg are positive real numbers.

If the impedance control law is designed as

τk(t) = KPq̃k(t)+ KD
˙̃qk(t)+ ϕ(qk, q̇k, ˙̃qk(t))θ̂k

θ̂k(t) = ŴϕT(qk, q̇k, ˙̃qk(t)) ˙̃qk(t), (5)

FIGURE 11 | Contact forces of the Southwest anthropomorphic arm along

axis-X and axis-Y.
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then q̃k(t), ˙̃qk(t) are both bounded, and lim
k→∞

q̃k(t) =

lim
k→∞

˙̃qk(t) = 0, ∀t ∈ [0,T]. In Equation (5), θ̂−1(t) = 0,

q̃k(t) = qd(t) − qk(t), ˙̃qk(t) = q̇d(t) − q̇k(t), ϕ(qk, q̇k, ˙̃qk(t)) ∈

Rn×n, and ϕT(qk, q̇k, ˙̃qk(t))
def
= [9(qk, q̇k)sgn( ˙̃qk)]. Matrices

Kp ∈ Rn×n, KD ∈ Rn×n and Ŵ ∈ Rm×m are positive definite
symmetric matrices.
The the convergence proof of the proposed impedance control is
explained as follows.

a. The boundedness proof of1Wk.
The Lyapunov function is designed as

Wk( ˙̃qk(t), q̃k(t), θ̃k(t)) = Vk(q̇t , q̃k(t))+
1

2

∫ t

0
θ̃k(t)Ŵ

−1θ̃k(t)dτ , (6)

where θ̃k(t) = θ(t) − θ̂k(t), θ(t) = [ξT(t),β]T . θ̂k(t) =

[ξ̂T
k
(t), β̂k(t)]

T is the estimated value of θ(t) and ‖Mdq̈d −

Fdk(t)‖ ≤ β . The Vk( ˙̃qt , q̃k(t)) is set as

Vk( ˙̃qk(t), q̃k(t)) =
1

2
˙̃qTkMd

˙̃qk +
1

2
q̃TkKPq̃k. (7)

Due to θ̄k = −θ + θ̂k − θ̃k−1 + θ = θ̃k−1 − θ̃k, we have
θ̃k−1 = θ̄k + θ̃k and

θ̃Tk Ŵ
−1θ̃k − θ̃

T
k−1Ŵ

−1θ̃k−1 = θ̃Tk Ŵ
−1θ̃k − (θ̄k + θ̃

T
k )θ̃

T
k−1Ŵ

−1(θ̄k + θ̃k)

= −θ̄Tk Ŵ
−1θ̄k − θ̄

T
k Ŵ

−1θ̃k − θ̃
T
k Ŵ

−1θ̄k = −θ̄Tk Ŵ
−1θ̄k − 2θ̄Tk Ŵ

−1θ̃k.

Then

1Wk = Wk −Wk−1 = Vk − Vk−1

+
1

2

∫ t

0
(θ̃Tk Ŵ

−1θ̃k − θ̃
T
k−1Ŵ

−1θ̃k−1)dτ

= Vk − Vk−1 −
1

2

∫ t

0
(θ̄Tk Ŵ

−1θ̄Tk + 2θ̄Tk Ŵ
−1θ̃k)dτ . (8)

Due to
∫ t
0 V̇k(t)dτ = Vk(t) − Vk(0), and V̇k(t) = 1

2
˙̃qT
k
Md

¨̃qk +
1
2
˙̃qT
k
Ṁd

˙̃qk + ˙̃qT
k
KPq̃k, we have

Vk( ˙̃qk(t), q̃k(t)) = Vk( ˙̃qk(0), q̃k(0))

+

∫ t

0
( ˙̃qTkMd

¨̃qk +
1

2
˙̃qTk Ṁd

˙̃qk + ˙̃qTkKpq̃k)dτ (9)

According to Equation (4) and assumptions, we have

˙̃qTkMd
¨̃qk = ˙̃qTkMd(q̈d − q̈k) = ˙̃qTkMdq̈d

− ˙̃qTk (−Cdq̇k − Sdqk + τk + Fdk)

1

2
˙̃qTk Ṁd

˙̃qk = ˙̃qTk Cdq̇d − ˙̃qTk Cdq̇k

˙̃qTk (Mdq̈d − Fdk) ≤ ‖˙̃qTk ‖β = ˙̃qTk βsgn(
˙̃qk)

9(qk, q̇k)ξ
T + βsgn( ˙̃qk) = [9(qk, q̇k), sgn( ˙̃qk)][ξ

T ,β]

= ϕ(qk, q̇k, ˙̃qk)θ .

Then, we have

Vk(
˙̃qk(t), q̃k(t)) = Vk(

˙̃qk(0), q̃k(0))+

∫ t

0

˙̃qTk (Md q̈d − Fdk

+ Cd q̇d + Sdqd + KP q̃k − τk)

≤ Vk(
˙̃qk(0), q̃k(0))+

∫ t

0

˙̃qTk (9(qk , q̇k)ξ + KP q̃k + βsgn(
˙̃qk)− τk)dτ

≤ Vk(
˙̃qk(0), q̃k(0))+

∫ t

0

˙̃qTk (ϕ(qk , q̇k ,
˙̃qk)θ + KP q̃k − τk)dτ . (10)

Substituting θ̄k(t) = (ŴϕT ˙̃qk)
T = ˙̃qT

k
ϕŴ and the control law into

Equation (10), we have

Vk( ˙̃qk(t), q̃k(t)) ≤ Vk( ˙̃qk(0), q̃k(0))

+

∫ t

0

˙̃qTk (ϕ(qk, q̇k,
˙̃qk)θ̃k − KD

˙̃qk)dτ , (11)

and

θ̄Tk Ŵ
−1θ̄k = ˙̃qTk ϕŴŴ

−1ŴϕT ˙̃qk = ˙̃qTk ϕŴϕ
T ˙̃qk

2θ̄Tk Ŵ
−1θ̃k = 2 ˙̃qTk ϕŴŴ

−1θ̃k = 2 ˙̃qTk ϕθ̃k. (12)

Substituting Vk( ˙̃qk(0), q̃k(0)) = 0 and Equation (12) into
Equation (8), we have

1Wk = −Vk−1 + Vk −
1

2

∫ t

0
(θ̄Tk Ŵ

−1θ̄k + 2θ̄Tk Ŵ
−1θ̃k)dτ

≤ −Vk−1 +

∫ t

0

˙̃qTk (ϕθ̃k − KD
˙̃qk)dτ

−
1

2

∫ t

0
( ˙̃qTk ϕŴϕ

T ˙̃qk + 2 ˙̃qTk ϕθ̃k)dτ

≤ −Vk−1 −
1

2

∫ t

0

˙̃qTk (ϕŴϕ
T + 2KD) ˙̃qkdτ ≤ 0. (13)

Through the above proof, it may conclude that Wk is a non-
incremental sequence.
b. The proof of the continuity and boundedness ofW0(t)

Due to θ̂−1(t) = 0, we have θ̂0(t) = ŴϕT(q0, q̇0, ˙̃q0) ˙̃q0(t), and

Ẇ0 ≤ ˙̃qT0 (ϕ(q0, q̇0,
˙̃q0)θ̃0 − KD

˙̃q0)+
1

2
θ̃T0 Ŵ

−1θ̃0

≤ −˙̃qT0KD
˙̃q0 + (θ̂T0 +

1

2
θ̃T0 )Ŵ

−1θ̃0

= −˙̃qT0KD
˙̃q0 −

1

2
θ̃T0 Ŵ

−1θ̃0 + θ
TŴ−1θ̃0. (14)

Due to a2+b2 ≥ 2ab, we have θTŴ−1θ̃ ≤ K‖Ŵ−1θ̃0‖
2+ 1

4K ‖θ‖
2.

The Equation (14) may be rewritten as Ẇ0 ≤ −ρ1‖˙̃q0‖
2 −

ρ2‖θ̃0‖
2 + 1

4K ‖θ‖
2, where K > 0, ρ1 = λmin(KD),

ρ2 = 1
2λmin(Ŵ

−1) − Kλ2max(Ŵ
−1), and K ≤ λmin(Ŵ

−1)
2λ2max(Ŵ

−1)
.

λmin(·) and λmax(·) are respectively the minimum and the

maximum eigenvalues of (·). It is obvious that Ẇ0(t) ≤
θ2max
4K , that
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FIGURE 12 | Snapshots of the real experiment. (A) Initial state, (B,C) Snapshot of the process, (D) Final state.

is,W0(t) is continuous and bounded.

c. The proof of continuity and boundedness ofWk(t)

Wk = W0 +

k
∑

j=1

1Wj

≤ W0 −

k
∑

j=1

Vj−1

≤ W0 −
1

2

k
∑

j=1

q̃Tj−1KPq̃j−1 −
1

2

k
∑

j−1

˙̃qTj−1Md
˙̃qj−1. (15)

Then,
∑k

j=1
˙̃qTj−1KPq̃j−1 +

∑T
j−1

˙̃qTj−1Md
˙̃qj−1 ≤ 2(W0 − Wk) ≤

2W0, and it proves that Wk is bounded. Through the analysis
of a, b and c, it can be concluded that limk→∞ q̃k(t) =

limk→∞
˙̃qk(t) = 0,∀t ∈ [0,T]. The impedance control combined

with the trajectory control form the closed control system of the
anthropomorphic arm as shown in Figure 4.

4. NUMERICAL SIMULATIONS AND REAL
EXPERIMENTS

Parameters of Southwest in the simulation are set asm1 = m2 =

1kg, c1 = c2 = 0.5m, d1 = d2 = 0.25m, I1 = I2 = 0.1kg · m2,
g = 9.8, li = 0.58m, i = 1, 2. The position command signals
of two joints are respectively sin(2π t) and cos(2π t). The initial
state of the Southwest is set as [q, q̇] = [0, 2π , 1, 0]T . Parameters
of the impedance controller set as Kp = Kd = diag[8, 8] and
Ŵ = diag[15, 15, 15, 15, 15].

Results of numerical simulations are displayed from
Figures 5–8. Angles’ errors of the upper-limb and the forearm
are illustrated in Figure 5. Desired angles of the upper-limb and
the forearm are marked with solid lines while actual angles of
the upper-limb and the forearm are marked with dotted lines.
The convergent process of the trajectory tracking is showed
in Figure 6. Angular velocity errors of the upper-limb and the
forearm are illustrated in Figure 7. Desired angular velocity
of the upper-limb and the forearm are marked with dotted
lines while actual angles of the upper-limb and the forearm are
marked with solid lines. The convergent process of the angle
tracking is showed in Figure 8. From the results, it can be
seen that the process is convergent. After 5 iterations, both of
trajectory tracking errors and angular velocity tracking errors
are greatly reduced, and the adaptivity of the combined control
is improved.

Real experiments are demonstrated from Figures 9–12.
Angles’ errors of the upper-limb and the forearm in the real
experiment are displayed in Figure 9. Angular velocity errors
of the upper-limb and the forearm in the real experiment

are exhibited in Figure 10. Through the adaptive iterative

learning based impedance control, the contact forces along axis-
X and axis-Y are illustrated in Figure 11. Figures 12A-D are
respectively the initial and final state of the real experiment.

Snapshots of the real motion process are showed from
Figures 12A-D. From the results, based on the combined
control, the Southwest may accurately follow the desired
trajectory as well as supply appropriate contact forces to
the patient.

From the results of numerical simulations and real
experiments, via the proposed control, the end-effecter of
the Southeast anthropomorphic arm may acquire appropriate
forces to assist impaired upper-limb accomplishing reaching
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movements. The motion control based on the iterative learning
may lead the impaired upper-limb to track the desired trajectory.
Simultaneously, the impedance control based on the adaptive
iterative learning may adjust the contact force between the
end-effecter and the upper-limb so that the upper-limb may well
track the trajectory as well as supply the safe contact forces. It
can be concluded that the adaptivity of the process is enhanced.

5. CONCLUSION

The paper studies the combined control of the anthropomorphic
arm for the purpose of the robot-aided upper-limb rehabilitation
therapy exercises. The combined control incorporates the
iterative learning motion control and the adaptive iterative based
learning impedance control. On one hand, the iterative control
aims to control the system accurately follow the desired trajectory
through the position sensors. On the other hand, the adaptive
iterative learning based control make the system stabilize in the
rehabilitation and be compliant to time-varying environment
through adjusting contact forces by adaptive parameters of
the impedance model. The actual trajectories are adjusted by
learning errors and force feedback errors corresponding to the
periodic loop and the force loop, so that the actual motion

can adapt to the changes of the variant environment. At the
same time, the learning database is fine-tuned according to the
change of position parameters, which may reduce the influence
of disturbances caused by mechanical equipment during the
motion. Thus, it minimizes the tracking error and the contact
force error, and it may improve the entire force control effect.
Through results of numerical simulations and real experiments
of the Southwest anthropomorphic arm rehabilitation device, it is
proved that the proposed control method has high performances
of the robustness and the adaptivity. Future work will focus on
applying the proposed control to the real rehabilitation exercises.
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