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In positive human-human relationships, people frequently mirror or mimic each other’s

behavior. This mimicry, also called entrainment, is associated with rapport and smoother

social interaction. Because rapport in learning scenarios has been shown to lead to

improved learning outcomes, we examined whether enabling a social robotic learning

companion to perform rapport-building behaviors could improve children’s learning

and engagement during a storytelling activity. We enabled the social robot to perform

two specific rapport and relationship-building behaviors: speech entrainment and

self-disclosure (shared personal information in the form of a backstory about the robot’s

poor speech and hearing abilities). We recruited 86 children aged 3–8 years to interact

with the robot in a 2× 2 between-subjects experimental study testing the effects of robot

entrainment Entrainment vs. No entrainment and backstory about abilities Backstory

vs. No Backstory. The robot engaged the children one-on-one in conversation, told a

story embedded with key vocabulary words, and asked children to retell the story. We

measured children’s recall of the key words and their emotions during the interaction,

examined their story retellings, and asked children questions about their relationship

with the robot. We found that the robot’s entrainment led children to show more positive

emotions and fewer negative emotions. Children who heard the robot’s backstory were

more likely to accept the robot’s poor hearing abilities. Entrainment paired with backstory

led children to use more of the key words and match more of the robot’s phrases in

their story retells. Furthermore, these children were more likely to consider the robot

more human-like and were more likely to comply with one of the robot’s requests.

These results suggest that the robot’s speech entrainment and backstory increased

children’s engagement and enjoyment in the interaction, improved their perception of

the relationship, and contributed to children’s success at retelling the story.

Keywords: children, entrainment, language development, peer modeling, rapport, relationship, robotics,

storytelling
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1. INTRODUCTION

Social robots have been designed as peers, tutors, and teachers to
help children learn a variety of subjects (Belpaeme et al., 2018),
including math (Clabaugh et al., 2015; Kennedy et al., 2015),
language (Movellan et al., 2009; Kory and Breazeal, 2014; Gordon
et al., 2016; Kory Westlund et al., 2017a,b; Vogt et al., 2017;
Rintjema et al., 2018), reading (Gordon and Breazeal, 2015),
handwriting (Hood et al., 2015), social skills (Robins et al., 2005;
Scassellati et al., 2018), curiosity (Gordon et al., 2015), and a
growth mindset (Park et al., 2017b). Prior work has explored
how social robots can best engage children in learning activities
and improve learning outcomes, using, e.g., personalization of
behavior or curriculum (Gordon and Breazeal, 2015; Hood
et al., 2015; Gordon et al., 2016; Baxter et al., 2017; Scassellati
et al., 2018), appealing appearance and personality (Kory and
Breazeal, 2014), and appropriate nonverbal behaviors (Kennedy
et al., 2015; Kory Westlund et al., 2017a,b). One aspect of
human-human interpersonal interaction that has been linked
to improved learning outcomes in peer tutoring situations is
rapport and positive relationships (Sinha and Cassell, 2015a,b).
Because of this link, we hypothesize that improving a social
robot’s capabilities for building rapport and positive relationships
with children may similarly lead to improved learning outcomes.

Some prior work with adults provides evidence in support of
this hypothesis (Kidd and Breazeal, 2008; Lubold et al., 2016,
2018; Lubold, 2017); however, there is little work yet exploring
a social robot’s rapport and relationship with young children.
Thus, in this paper, we explored whether enabling a social
robot to perform rapport-building behaviors, including speech
and behavior entrainment, and giving the robot an appropriate
backstory regarding its abilities, could help establish rapport
and generate positive interactions with children, which we
hypothesized could improve children’s learning and engagement.

2. BACKGROUND

2.1. Relationships, Rapport, and Learning
We have strong evidence that children’s peer relationships
provide bountiful opportunities for learning via observing peers,
being in conflict with peers, and cooperating with peers (Piaget,
1932; Bandura and Walters, 1963; Bandura, 1971; Vygotsky,
1978; Tudge and Rogoff, 1989; Rubin et al., 1998; De Lisi and
Golbeck, 1999; Whitebread et al., 2007). The research so far
on children’s peer learning discusses how children might learn
from other, but does not yet thoroughly address what precisely
modulates peer learning. That is: Are all peers approximately
equivalent as sources to promote learning, or is there something
about some peers that makes them “better inputs” than others?
In the context of social robots, what is it about a social robot that
could lead children to learn more, or less?

Two possible modulating factors are rapport and a positive
relationship. Some recent work has linked rapport to improved
learning outcomes in older children’s human-human peer
tutoring situations (Sinha and Cassell, 2015a,b). In addition, the
social bonds between children and teachers can predict learner
performance (Wentzel, 1997). Other research has shown that

children may learn math concepts from media characters more
effectively when they have stronger parasocial relationships with
those characters (Gola et al., 2013; Richards and Calvert, 2017).

Many different social and relational factors can increase
rapport, trust, and engagement with virtual agents and
robots. For example, using appropriate social cues (Desteno
et al., 2012; Lee et al., 2013; Breazeal et al., 2016b),
contingent backchanneling (Park et al., 2017a), nonverbal
mirroring (Bailenson et al., 2005; Burleson and Picard, 2007;
Lubold et al., 2018), responsiveness and proactivity (Kim
et al., 2006), increased social presence (Lester et al., 1997), and
matching ethnic communication styles (Cassell et al., 2009) all
have had positive effects.

We chose to implement two rapport- and relationship-
building behaviors in a social robot to explore their effects on
young children’s engagement and learning: speech entrainment
and self-disclosure (shared personal information).

2.2. Speech Entrainment
In positive human-human interpersonal interactions, people
frequently mimic each other’s behavior—such as posture,
affect, speech patterns, gestures, facial expressions, and more—
unconsciously, without awareness or intent (Davis, 1982;
Grammer et al., 1998; Philippot et al., 1999; Provine, 2001; Lakin
et al., 2003; Semin and Cacioppo, 2008; Reitter et al., 2011;
Borrie and Liss, 2014). This mimicry, also called entrainment,
is considered a signal of rapport and has been observed in a
variety of human relationships (Tickle-Degnen and Rosenthal,
1990; Dijksterhuis and Bargh, 2001; Rotenberg et al., 2003;
Dijksterhuis, 2005; Chartrand and van Baaren, 2009; Wiltermuth
and Heath, 2009; Lubold, 2017), as well as with robots and virtual
agents (Breazeal, 2002; Bell et al., 2003; Suzuki and Katagiri,
2007; Levitan et al., 2016). While there is less work exploring
mimicry and rapport in children, there is some showing that
infants and children mimic emotions with humans (Haviland
and Lelwica, 1987; Chisholm and Strayer, 1995; Rotenberg et al.,
2003) and with robots (Gordon et al., 2016). Thus, enabling
a robot to perform entrainment could significantly increase
children’s rapport with it. We chose speech entrainment because
language learning is often a dialogue-heavy activity, and thus,
would perhaps be more noticeable and relevant than entraining
other behaviors. In addition, given the morphology and technical
limitations of the robot platform we had available for this study
(the Tega robot, described below), speech entrainment was one
of the most feasible behaviors to study, though other behaviors
could also be examined in the future (such as posture or affect).

Speech entrainment involves matching the vocal features such
as speaking rate, intensity, pitch, volume, and prosody of one’s
interlocutor. This mimicry tends to happen unconsciously, and
more often when rapport has been established—i.e., when one
feels closer to or more positively about one’s interlocutor (Porzel
et al., 2006; Reitter et al., 2011; Borrie and Liss, 2014). Some
recent work has explored increasing prosodic synchrony in
a speech-controlled child-robot game in order to promote
cooperation and improve enjoyment (Chaspari and Lehman,
2016; Sadoughi et al., 2017). In addition, Lubold and colleagues
developed several social voice-adaptive robots that adjust the
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pitch of the robot’s text-to-speech voice to match that of its
human interlocutor (Lubold et al., 2015, 2016, 2018; Lubold,
2017). This vocal entrainment contributed to increased learning
with undergraduate students as well as middle school students
during math tasks, but did not increase self-reported rapport.
However, our work differs in several ways. We are investigating
the impact of entrainment with younger children in a more
social task—language learning—that may be more affected by
social relationships. Second, these prior studies compared a robot
with a text-to-speech voice to one that had a more expressive
(albeit contingently adapted) voice. They did not control for the
expressivity of the voice. Other recent work found that a robot
with a more expressive voice was more effective as a learning
companion, leading to greater engagement and learning, than
a robot that used a flat voice, similar to a classic text-to-speech
voice (KoryWestlund et al., 2017b). This work raises the question
of whether the effects seen in Lubold et al.’s studies are strictly a
result of the entrainment or a result of the robot’s voice being
more expressive. In the work presented here, we control for the
robot’s expressivity.

2.3. Backstory (Personal Self-Disclosure)
Backstory is the story told by or about an agent, including
personal story (e.g., origin, family, hobbies), capabilities,
limitations, and any other personal information that might be
disclosed. With young children in particular, we expect that
sharing information about an agent in a story context could make
it easier for children to understand.

Prior work has shown that the story told about a robot prior
to interaction can change how people perceive the robot and
interact with it. Telling participants that a robot is a machine vs.
a human-like, animate agent (Stenzel et al., 2012; Klapper et al.,
2014; Kory Westlund et al., 2016b) or giving the robot a name
and a story involving greater agency and experience (Darling
et al., 2015) can manipulate people’s perceptions of the robot
as an animate, social agent as well as their empathy for
the agent. These studies build on extensive work in social
cognition and social psychology literature regarding the idea
that framing or priming can influence subsequent behavior
and perception (Dijksterhuis and Bargh, 2001; Biernat, 2004).
However, it is not only stories told before an interaction, but
also the content of an interaction that affects people’s perceptions
of their interlocutor. For example, one aspect of children’s
friendships and positive relationships is self-disclosure. Children
disclose more information, and more personal information, in
closer relationships (Rotenberg and Mann, 1986; Rotenberg,
1995). The amount of disclosure during conversation reflects
how close two children feel to one another. A robot that
discloses personal information may impact not only relationship
formation and perception, but the story it tells could also impact
how a child perceives how social an agent the robot is.

Backstory can also increase engagement with an agent. For
example, in one study, giving a robot receptionist a scripted
backstory during a long-term deployment increased engagement,
since the story added interesting variation and history to the
interactions people had with it (Gockley et al., 2005). However,

no research as yet has examined the impact a backstory can have
on young children’s learning.

Part of our goal in giving the robot a backstory was to
promote amore positive relationship. Thus, we examined specific
interventions regarding the acceptance of peers and how these
interventions might play into the story told about the robot.
Favazza and colleagues explored how to promote the acceptance
of peers with disabilities in children’s kindergarten classrooms,
as well as how to measure that acceptance (Favazza and Odom,
1996; Favazza et al., 2000). One component of the intervention
they used involved telling stories with guided discussion
about children with disabilities; a second component involved
structured play with the peers who had disabilities. We combined
the idea of telling a story about one of the robot’s relevant
difficulties that could be perceived as a disability—namely, its
hearing and listening abilities—with the idea of self-disclosure
as a component of children’s friendships; and followed this
story/disclosure with several structured activities with the robot.

There are ethical concerns regarding deception when giving
robots stories that may elicit empathy, trust, or acceptance. In
this study, the backstory we chose to use was fairly reflective
of the actual limitations and capabilities of social robots. It
pertained to the robot’s difficulties with hearing and listening
and was thus fairly realistic and not particularly deceptive,
given general difficulties in social robotics with automatic speech
recognition and natural language understanding. The remainder
of the backstory discussed the robot’s interest in storytelling and
conversation, which was deceptive in that robots do not really
have interests, but served to present the robot as a character with
interests in these subjects in order to promote engagement in
learning activities.

3. METHODOLOGY

3.1. Research Questions
We wanted to explore whether a social robot that entrained
its speech and behavior to individual children and provided
an appropriate backstory about its abilities could increase
children’s rapport, positive relationship, acceptance, engagement,
and learning with the robot during a single session.

3.2. Design
The experiment included two between-subjects conditions:
Robot entrainment (Entrainment vs. No entrainment) and
Backstory about abilities (Backstory vs. No Backstory). We
abbreviate the four conditions as E-B, E-NB, NE-B, and NE-
NB. In the Entrainment (E) condition, the robot’s speech was
entrained based on each child’s speaking rate, pitch, and volume,
and exuberance. In the Backstory (B) condition, the experimenter
explained that the robot was not so good at hearing and needed
practice; this backstory was reinforced by the robot later.

3.3. Participants
We recruited 95 children aged 3–8 years (47 female, 48 male)
from the general Boston area to participate in the study. We
recruited a wide age range in order to recruit a sufficient number
of participants and also because we were interested in seeing
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TABLE 1 | Demographic information about the participants by condition.

Condition Mean age (SD) Girls Boys Monolingual Bilingual

E-B 5.40 (1.54) 11 9 12 8

E-NB 5.21 (1.34) 7 9 9 7

NE-B 5.44 (1.67) 13 15 18 10

NE-NB 5.27 (1.35) 13 9 11 11

whether older children (e.g., 6–8 years) or younger children
(e.g., 3–5 years) might relate differently to the robot’s relational
behavior, since children may develop relationships differently as
they grow older (Hartup et al., 1988; Rubin et al., 1998).

Nine children were removed from analysis because they
did not complete the study1. The children in the final sample
included 86 children aged 3–8 (44 female, 42 male), with a mean
age of 5.31 years (SD = 1.43). Of these, 3 were 3-year-olds, 30 were
4-year-olds, 19 were 5-year-olds, 15 were 6-year-olds, and 9 were
7-year-olds, and 10 were 8-year-olds. Forty-nine children spoke
English only; 37 children were bilingual.

We used random counterbalanced assignment to assign
children to conditions. There were 20 in the E-B condition, 16
in the E-NB condition; 28 children in the NE-B condition; and
22 in the NE-NB condition. The imbalance was a result of the
children who did not complete the study.Table 1 lists age, gender,
and bilingual status by condition. Age did not significantly differ
by condition. We asked parents to rate their children’s social
behavior on a variety of dimensions; these ratings also did not
significantly differ by condition.

Children’s parents gave written informed consent prior to the
start of the study, and all children assented to participate. The
protocol was approved by the MIT Committee on the Use of
Humans as Experimental Subjects.

3.4. Hypotheses
We expected that the robot’s entrainment and backstory might
affect both children’s rapport and social behavior, as well as
learning and retention, during a single session with the robot.
Accordingly, we used a variety of measures to explore the effects
of the robot’s entrainment and backstory.We tentatively expected
the following results:

Learning

• H1: In all conditions, children would learn the target
vocabulary words presented in the robot’s story. In prior
studies, we have seen children learn new words from stories
told by robots (Kory, 2014; Kory Westlund et al., 2017b;
Park et al., 2019). However, we expected that children
would learn more as a result of the robot’s entrainment or

1The children who failed to complete the study were primarily younger children

(one 3-year-old, five 4-year-olds, one 5-year-old, and two six-year-olds). Most were

very distracted during the session and did not want to play with the robot for the

full duration of the session. One 4-year-old and the 3-year-old appeared scared of

the robot and did not want to interact at all, even with parental prompting. One

of the 6-year-olds had accidentally signed up for the study twice, and this was not

noticed until after we began the session.

from an increased relationship, i.e., the most in the E-B
condition, followed by the E-NB and NE-B conditions, and
the least in the NE-NB condition.

• H2: Children who learned the target vocabulary words
would also use them in their story retells. We have
previously seen children mirror a robot’s vocabulary words
in their own stories (Brennan, 1996; Iio et al., 2015;
Kory Westlund et al., 2017b).

• H3: Because of the expected connection between the
robot’s entrainment and backstory to children’s rapport
and relationship, as well as prior work showing that
the story told about a computer’s limitations influenced
participants’ lexical entrainment (Pearson et al., 2006), we
expected the entrainment and backstory would lead to
differences in children’s mirroring of the robot’s story in
their retells. Children in the E-B condition would produce
more vocabulary, longer stories, and phrase mirroring
because of more rapport and a closer relationship.

Rapport, Relationship, and Social Behavior

• H4: A robot with an appropriate backstory about its
abilities (E-B and NE-B conditions) would lead to greater
acceptance by children of the robot and more helping
behaviors.

• H5: Both entrainment and backstory would lead children to
treat the robot as a greater social other, such as laughing and
smiling more (Provine, 2001; Smidl, 2006), and affording
the robot courtesies such as saying goodbye or considering
its preferences (Reeves and Nass, 1996). We expected to see
this more in the E-B than the other conditions; and least in
the NE-NB condition.

• H6: Children would show greater rapport, entrainment,
mirroring, and helping behaviors with a robot that
entrained to them (E-B and E-NB conditions). We
also expected that a robot with both an appropriate
backstory and entrainment (E-B) would promote a
stronger relationship, and as a result, greater attention,
engagement, rapport, and mirroring than in the E-NB
condition. Furthermore, children’s attention, engagement,
and positive emotions would increase—or at least decrease
less—over the course of the session than in the other
conditions.

• H7: Children who reported a closer relationship to the
robot would also show more mirroring behaviors, more
helping behaviors, greater rapport, greater engagement,
and more learning. We expected a connection between
children’s relationship and their learning because of prior
work showing that rapport can facilitate learning in peer
tutoring scenarios (Sinha and Cassell, 2015a,b).

3.5. Procedure
Five different experimenters (three female adults and two male
adults) ran the study in pairs in a quiet room in the lab. The
study setup is shown in Figure 1. One experimenter interacted
with the child. The second experimenter was present in the room,
but sat back behind a laptop and did not interact directly with
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FIGURE 1 | (A) The robot was placed on a table. The tablet was set upright to the left (when facing the robot), and the camera behind the robot and to the right. (B) A

child discusses holidays with the robot in the picture conversation task. Written informed consent was obtained to use this image.

the child; their role was to teleoperate the robot and manage the
other equipment. Some children wished their parents to stay with
them (e.g., if they were particularly shy); in these cases children’s
parents were instructed to watch only and let their children do as
much as possible by themselves.

For each child, the interaction with the robot lasted about
20 min, followed by 5–10min for the posttests. The interaction
script, full interaction procedure, and other study materials
are available for download from figshare at: https://doi.org/10.
6084/m9.figshare.7175273; they are available for download as
Supplementary Materials.

The experimenter introduced the sleeping robot, Tega, to
the child and explained that it liked looking at pictures and
telling stories. If the child was in the Backstory condition, the
experimenter also explained that Tega sometimes had trouble
hearing: “Do you see Tega’s ears? Tega’s ears are hiding under
all the fur, so sometimes Tega’s ears don’t work very well. Tega
sometimes has a lot of trouble hearing. You should talk to
Tega in a loud and clear voice so Tega can hear you. Try to be
understanding if Tega needs to hear something again.” Then, in
all conditions, the experimenter invited the child to help wake
up the robot.

The robot interaction had four main sections: A brief
introductory conversation (providing context for sharing the
backstory, 2–3min), a conversation about pictures (providing
opportunities for speech entrainment and a helping/compliance
request, 5–6min), a sticker task (a sharing/compliance request,
1min), a storytelling activity (providing opportunities to learn
words and mirror the robot’s speech, 10–12min), and a brief
closing conversation (1–2min).

In the introductory conversation, the robot introduced itself,
shared personal information about its favorite color and an
activity it liked doing, and prompted the child for disclosure in
return. Then, in the Backstory condition, the robot reinforced the
backstory provided by the experimenter earlier, telling the child,
“Sometimes I have trouble hearing and I can’t always understand
what people tell me. I try really hard, but sometimes I just don’t
hear things right. I need help and practice to get better!”

The picture conversation took approximately 5 min and was
designed to provide many conversation turns for the child, and
thus provide the robot with opportunities to entrain its speech to

the child’s. The experimenter placed photos one at a time in front
of the robot and child (e.g., a collage of holidays or pictures from
children’s movies). For each picture, the robot introduced the
picture content, expressed something it liked about the picture,
asked the child a question, responded with generic listening
responses (e.g., “Can you tell me more?,” “Oh, cool!,” “Keep
going!”), shared another fact relevant to the picture, and asked
another question. At two points during this activity, there were
scripted moments where the robot had difficulty hearing (saying,
e.g., “I didn’t hear that, can you say it again?”), to reinforce its
backstory. The experimenter explained that the robot and child
had to do at least three pictures, but they could do one more
if they wanted—this set up a later compliance/helping task after
the third picture, in which the robot asked if the child would do a
fourth picture with it to help it practice extra. If the child declined
the fourth picture, the experimenter moved on.

The sticker task was used to see how likely the child was to
agree to a request by the robot to share a favorite object. The child
was allowed to pick out a sticker from a small selection. The robot
stated that it wanted the child’s sticker and asked for it. The child
could spontaneously speak or give their sticker to the robot, or
decline. If the child gave their sticker, the experimenter would
conveniently find a duplicate sticker in their pocket to replace it,
so that the child would not have to forgo their favorite sticker.

The storytelling activity was modeled after the story retelling
task used in Kory Westlund et al. (2017b). The robot told a story
consisting of a 22-page subset of the wordless picture book “Frog,
Where Are you?” by Mercer Mayer. The pages of the book were
shown one at a time on the tablet screen. On each page, the robot
said 1–2 sentences of the story. Every few pages, the robot asked
a dialogic reading comprehension question about the events in
the story, e.g., “Where is the deer taking the boy?,” ‘and “How
do you think the boy feels now?” (3 questions total, decreased
from the 11 questions in the prior study to decrease the length
of the story activity). As in the prior study, the robot responded
to children’s answers with encouraging, non-committal phrases
such as “Mmhm,” “Good thought,” and “You may be right.”

We embedded six target vocabulary words (all nouns) into
the story. As in the prior study, we did not test children on
their knowledge of these words prior to the storytelling activity
because we did not want to prime children to pay attention to
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these words, since that could bias our results regarding whether
or not children would learn or use the words after hearing them
in the context of the robot’s story. We used the six key nouns
identified in the original story in Kory Westlund et al. (2017b),
which were replaced with the target words “gopher”(original
word: animal), “crag” (rock),“lilypad” (log), “hollow” (hole),
“antlers” (deer), and “cliff” (hill).

After the robot told the story, the robot prompted children to
retell the story. Children could use the tablet while retelling the
story to go through the story pages, so they could see the pictures
to help them remember the story. Twice during the retell, the
robot had difficulty hearing (“What? Can you say that again?”),
which reinforced the backstory. Children’s retellings were used as
a measure of their story recall, mirroring of the robot’s speech,
and expressive use of the vocabulary words.

As part of the closing conversation, we included a goodbye gift
task. The experimenter brought out a tray with several objects on
it: a small toy frog (because the frog was present in the robot’s
story), a small book (because the robot expressed great interest
in stories), a sticker of the robot’s favorite color (blue), and an
orange sticker. The child could pick an object to give to the robot,
and the experimenter followed up by asking why the child had
picked that gift.

After the robot interaction, the experimenter administered a
receptive vocabulary test of the six target words in the story.
For each word, four pictures taken from the story’s illustrations
were shown to the child. The child was asked to point to the
picture matching the target word. We examined both children’s
receptive knowledge of the words as well as children’s expressive
or productive abilities during the story retelling, since children
who can recognize a word may or may not be able to produce
it themselves.

This was followed by the Inclusion of Other in Self task,
adapted for children as described in Kory-Westlund et al. (2018).
In this task, children are shown seven pairs of circles that proceed
from not overlapping at all to overlapping almost entirely. They
are asked to point to the circles showing how close they feel to
five different entities: their best friend, their parent, a bad guy they
saw in amovie, their pet (or if they have no pet, their favorite toy),
and the robot. These five entities were included because we were
curious how children might rate the robot compared to other
people and things they might feel close to.

Then the experimenter asked several questions taken from
the Social Acceptance Scale for Kindergarten Children (Favazza
and Odom, 1996; Favazza et al., 2000) regarding how accepting
children might be of the robot and its hearing difficulties, as
well as of other children who might have hearing difficulties,
as described in Kory-Westlund and Breazeal (2019). Finally,
children performed a Picture Sorting Task (Kory-Westlund and
Breazeal, 2019), in which they were asked to arrange a set of eight
entities along a line. The entities included a baby, a frog, a cat, a
teddy bear, a computer, a mechanical robot arm, a robot from a
movie (e.g., Baymax, WALL-e, or R2D2, depending on which the
child was familiar with), and Tega. The line was anchored at one
end with a picture of an adult human female and at the other with
a picture of a table. We wanted to see where children placed the
robot in relation to the other entities.

3.6. Materials
Weused the Tega robot, a colorful, fluffy squash and stretch robot
designed for interactions with young children (Kory Westlund
et al., 2016a) (see Figure 1). The robot is covered in red fur with
blue stripes and uses an Android phone to display an animated
face and run control software. The face has blue oval eyes and
a white mouth, both of which can change shape to display
different facial expressions and mouth movements (visemes)
during speech. The robot can move up and down, tilt sideways,
rotate from side to side, and lean forward and backward. The
experimenters referred to the robot by name (not with pronouns)
in a non-gendered way throughout the study.

Speech was recorded by a human adult female and shifted
to a higher pitch to sound more child-like. All robot speech
was sent through the automated audio entrainment module and
streamed to the robot. For the Entrainment conditions, all speech
was entrained; for the No Entrainment conditions, processing
still occurred, but the speech simply passed through and was
not changed. The reason for this was to incur the same delay
(generally a latency of less than 1–2 s) that results from entraining
and streaming speech in both conditions. More details regarding
entrainment are provided below.

We used a Google Nexus 9 8.9-inch tablet to display the story.
Touchscreen tablets have effectively engaged children and social
robots in shared tasks (Park et al., 2014), including storytelling
activities (Kory and Breazeal, 2014; Kory Westlund et al., 2017b).
We used the same custom software on the tablet to display the
story pages as in KoryWestlund et al. (2017b), which allowed the
teleoperator to turn the pages at appropriate times. This software
is open-source and available online under the MIT License at
https://github.com/mitmedialab/SAR-opal-base/.

3.7. Teleoperation
As in the prior study (Kory Westlund et al., 2017b), we
used custom teleoperation software to control the robot and
digital storybook. The teleoperation software is open-source and
available online under the MIT License at https://github.com/
mitmedialab/tega_teleop/. The experimenters were all trained to
control the robot by an expert teleoperator.

Using teleoperation allowed the robot to appear autonomous
while removing technical barriers, primarily natural language
understanding, since the teleoperator could be in the loop
to parse language. The teleoperator triggered when the robot
began each sequence of actions (speech, physical motions, and
gaze), and when the storybook should turn the page. Thus,
the teleoperator had to attend to timing in order to trigger
action sequences at the right times. The timing of actions within
sequences was automatic and thus consistent across children.
There were also several occasions when the teleoperator had to
listen to children’s speech and choose the most appropriate of a
small set of different action sequence options to trigger, namely
during the picture conversation task.

The teleoperator performed one of two actions if the child
asked an unexpected question or said something unusual. During
the conversation portion of the interaction, the teleoperator
could trigger one of the generic responses (e.g., “Mmhm!,”
“Hm, I don’t know!”) in reply. During the remainder of the
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interaction, the teleoperator had to continue in accordance
with the interaction script, which essentially ignored unexpected
behaviors. While this is not ideal from an interaction standpoint,
it was necessary to ensure reasonably consistent behavior on the
part of the robot across children.

3.8. Entrainment
In the Entrainment condition, the speaking rate and pitch of the
robot’s voice were automatically adjusted to be more similar to
the child. In addition, the robot’s volume and exuberance were
manually adapted by the teleoperator.

For speaking rate and pitch entrainment, the child’s speech
was automatically collected via the robot’s microphone when it
was the child’s turn to speak in the conversation. Using automatic
software scripts with Praat (audio analysis software), various
features of the children’s speech were extracted and used to
modify the robot’s recorded speech files. These modified audio
files were then streamed to the robot for playback.

For speaking rate, the robot’s speech was sped up or slowed
down to match the child’s speaking rate. Thus, if a child spoke
slowly, the robot slowed down its speech as well. We included
ceiling and floor values such that the robot’s speech would only
ever be sped up or slowed down by amaximum amount, ensuring
that the speech stayed within a reasonable set of speeds. We used
the Praat script for speaking rate detection from de Jong and
Wempe (2009). The code for our entrainment module is open-
source and available online under a GNU General Public License
v3.0 at https://github.com/mitmedialab/rr_audio_entrainer/.

The mean pitch of the robot’s speech was shifted up or down.
In doing this, the robot matches two features: (1) the child’s
age, (2) the child’s current mean pitch. In general, people speak
at a particular fundamental frequency, but there is variation
within an individual (pitch sigma). Thus, we provided a table of
mean fundamental frequencies for different age children based
on the values computed in prior work (Weinberg and Zlatin,
1970; Bennett, 1983; Sorenson, 1989; Hacki andHeitmüller, 1999;
Baker et al., 2008; Gelfer and Denor, 2014). For a given child,
all of the robot’s speech was first shifted to have the mean pitch
for children of that age. Then, since an individual may vary
their pitch in each utterance, the pitch of each utterance was
also shifted up or down slightly based on whether the child’s
most recent utterance was higher or lower. Unlike Lubold and
colleagues (Lubold et al., 2016, 2018), we did not adapt the
pitch contour of the robot’s speech. Because the base sounds for
the robot’s speech were recorded by a human (not flat text-to-
speech as in Lubold et al.’s work), the sounds had their own
pitch contours. Pilot tests showed that morphing or replacing
this contour led to speech that sounded unnatural (e.g., placing
emphasis on the wrong syllables).

We also manually adapted the robot’s volume and exuberance.
During the introduction and first picture in the picture task,
the teleoperator observed the child’s behavior and personality:
were they shy, passive, reserved, or quiet (less exuberant/quiet
children)? Or were they loud, extroverted, active, smiley,
or expressive (more exuberant/loud children)? Based on this
binary division, the teleoperator adjusted the robot’s audio
playback volume twice, at two specific points during the

interaction, to either be slightly quieter (for less exuberant/quiet
children) or slightly louder (for more exuberant/louder children).
Furthermore, the teleoperator triggered different animations
to be played on the robot at six different points during the
interaction—more excited and bigger animations for more
exuberant/louder children; quieter, slower, animations for less
exuberant/quieter children.

3.9. Data
We recorded audio and video of each interaction session using
a camera set up on a tripod behind the robot, facing the
child. All audio was transcribed by human transcriptionists
for later language analyses. Children’s responses to the posttest
assessments were recorded on paper and later transferred
to a spreadsheet.

3.10. Data Analysis
For the analysis of children’s story retellings, we excluded the
three 3-year-olds because one did not retell the story, and the
other two needed extra prompting by the experimenter and were
very brief in their responses. Of the remaining 83 children, one
child’s transcript could not be obtained due to missing audio
data. Fifteen children did not retell the story (the number from
each condition who did not retell the story was not significantly
different). Thus, in total, we obtained story retell transcripts for
67 children (15 E-B; 9 E-NB; 22 NE-B; 21 NE-NB).

We analyzed children’s transcribed story retells in terms of
story length (word count), overall word usage, usage of target
vocabulary words, and similarity of each child’s story to the
robot’s original story. We created an automatic tool to obtain
similarity scores for each child’s story as compared to the
robot’s story, using a phrase and word matching algorithm. The
algorithm proceeded as follows: First, take both stories (the
original story and the child’s story) and remove stopwords (i.e.,
words with no significant information such as “the,” “uh,” and
“an”). Second, stem words—i.e., convert words to their original
form. For example, “jumping” would be converted to “jump.”
Third, find all N-grams in each story, where an N-gram is a
continuous sequence of N words from both texts. Fourth, remove
duplicate N-grams from one text. Fifth, count how many N-
grams are the same in both texts. The number of matches is
the similarity score. This algorithm produces a score reflecting
the number of exact matching phrases in both stories—i.e.,
words used in the same order by both the child and robot. It
also produces a higher match score for texts that have both
more matching phrases and longer matching phrases. We also
implemented an algorithm for counting similar matches that are
close to each other, but not exactly the same. This algorithm was
the same as the above, where the fifth step (counting matching
N-grams) used a fuzzy string matching algorithm to determine if
the N-grams matched.

When running the algorithm to match stories, we used N =

3 for computing exact match scores because a smaller N may
not retain enough information to be considered actual phrase
matching, while a larger N may encompass more information
than would constitute a single phrase. For determining similar
match scores, we used N = 4, so that when phrases differed by
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one word, or used a different word in the middle of a similar
phrase, they might still match, as would be expected for similar
phrases. We combined the exact and similar match scores to get
a single overall similarity score for each child’s story that reflected
the child’s overall use of exact and similar matching phrases.

For example, the robot’s story included the sentences, “The
baby frog liked the boy and wanted to be his new pet. The boy and
the dog were happy to have a new pet frog to take home.” After
stopword removal and stemming, this was converted to: “baby
frog like boy want be new pet boy dog happy new pet frog take
home.” One child’s story included the similar section, “Then he
hopped on his hand and hewanted to be his pet. And then the dog
and the boy was happy to have a new pet,” which was converted
to: “hop hand want be pet dog boy happy new pet.” There were
several exactly matching phrases, e.g., “happy new pet.” There
were also several similar matching phrases, e.g., (robot) “be pet
boy dog”/(child) “be pet dog boy.”

We obtained children’s facial expressions from the recorded
videos using Affdex, emotion measurement software from
Affectiva, Inc., Boston, MA, USA (McDuff et al., 2016). Affdex
can detect 15 facial expressions, which are used to detect whether
the face is displaying nine different affective states. Affdex only
recognizes outward expressions of affect (i.e., facial configuration
patterns), which does not imply detecting any underlying feelings
or inferring deep internal states (though they are believed to
be correlated). For each frame of a video, Affdex attempts to
detect a face. If a face is detected, Affdex scores each affective
state as well as the presence of each expression in the range
0 (no expression/affective state detected) to 100 (expression or
state fully present); middle values represent an expression or
state that is partially present. However, these values are relative
and Affdex does not specify what the exact difference between
scores means. For more detail on the algorithms used for facial
affect classification, see Senechal et al. (2015). We analyzed affect
data for 74 children (16 E-B; 11 E-NB; 26 NE-B; 21 NE-NB). For
the remaining 12 children, little or no affect data were collected
as a result of system failures, such as children’s faces not being
recognized by Affdex.

We focused our analysis on the following affective states
and facial expressions: joy, fear, sadness, surprise, concentration,
disappointment, relaxation, engagement, valence, attention,
laughter, and smiles. We included valence in addition to
specific emotions such as joy because Affdex uses different
sets of facial expressions to detect the likelihood that a face
is showing each affective state. Thus, valence is not detected
from, e.g., the emotions joy or sadness; instead, it is calculated
from a set of facial expressions that is somewhat different
than, though overlapping with, the set of expressions used
to calculate other emotions. The expression “concentration”
was called “contempt” by Affectiva. Affectiva has no label
for concentration or thinking expressions. Affectiva uses brow
furrows and smirks to classify contempt; prior work has found
that brow furrowing and various lipmovements present in smirks
such as mouth dimpling and lip tightens are also associated with
concentration (Oster, 1978; Rozin and Cohen, 2003; Littlewort
et al., 2011). Furthermore, contempt is generally defined as
“the feeling that a person or thing is worthless or beneath

consideration,” which, as in Kory Westlund et al. (2017b), did
not make sense in this context; children’s expressions were more
indicative of concentration.

We coded children’s responses to the Social Acceptance Scale
questions on a 3-point scale, with “no” as 0, “maybe” as 1, and
“yes” as 2. We labeled children’s placement of the entities in the
Picture Sorting Task, with the anchor on one end (the human) at
position 1 and the anchor at the other (the table) at position 10.
Thus, a lower rank indicated that children placed the entity closer
to the adult woman. We counted positions to determine what
rank was held by each picture.We also computed scores for Tega’s
rank relative to the other entities. For example, we subtracted the
human baby’s rank from Tega’s rank to get Tega’s rank relative
to the human baby and human adult. Because Tega’s position
among the entities was dependent on where children placed the
other entities in the task, we examined where children placed all
the different entities.

We coded whether children agreed to do the fourth picture
and whether they gave the robot their sticker with “no” as 0
and “yes” as 1. We coded children’s selections in the goodbye
gift task as follows: frog as 4, book as 3, blue sticker as 2, and
orange sticker as 1. We also coded the comments children made
regarding why they selected a particular gift with the following
rubric: 2 if they referenced the robot or the robot’s feelings (e.g.,
“Tega would like it because frog jumped out in story,” “Tega
likes books,” “Because he wanted a sticker”); 1 for a somewhat
relevant comment, mentioning the interaction (e.g., “It was in
the story”); 0 for no explanation, reference to themselves, or
an irrelevant comment (e.g., “It is swamp week at camp,” “I
don’t know”).

4. RESULTS

Our results are divided below into two parts, each reflecting
one of our hypothesis areas: (1) Learning: We asked whether
the robot’s entrainment and backstory would increase children’s
learning with the robot and emulation of the robot’s story;
and (2) Rapport, relationship, and social behavior: We asked
whether children would show greater rapport, acceptance,
positive emotion, engagement, and closeness to the robot as a
result of its entrainment and backstory.

4.1. Learning (H1, H2, H3)
For all learning-related analyses of variance, we included Age as a
covariate because we expected that children’s age would be related
to their language ability and thus to their vocabulary scores and
the complexity and/or length of their stories.

4.1.1. Target Vocabulary Word Identification (H1)
We performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB) with Age as
a covariate. We found a significant effect of Age on the total
vocabulary words identified correctly, F(5, 77) = 2.76, p = 0.024,
η
2
p = 0.15. Eight-year-olds correctly identified the most words,

while 3-year-olds correctly identified the least (Figure 2A). We
also found a significant effect of Entrainment on children’s
identification of the target words, F(1, 77) = 5.47, p = 0.022, η

2
p
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FIGURE 2 | (A) The number of words correctly identified by children of each age group. (B) The number of words correctly identified by entrainment condition.

*p < 0.05.

FIGURE 3 | Children in the E,B condition used more target words in their story

retells than children in the other conditions. ***p < 0.001.

= 0.07. Contrary to our hypotheses, children in theNE condition
correctly identified more words than children in the E condition;
however, in both conditions, there appeared to be a ceiling effect
(Figure 2B). Older children were more likely to correctly identify
words than younger children, rs(85) = 0.367, p < 0.001.

4.1.2. Target Vocabulary Word Use (H2, H3)
A 2×2 between-subjects analyses of variance with Entrainment
(E vs. NE) and Backstory (B vs. NB) with Age as a covariate
revealed a significant interaction between Entrainment and
Backstory regarding children’s use of the target vocabulary words
in the story, F(1,59) = 9.45, p = 0.003, η2p = 0.14. Children in the
E,B condition used significantly more of the target words than
children in all three other conditions (Figure 3).

Overall, we saw no correlation between children’s recognition
of words on the vocabulary test and their subsequent use of those
words in their retells, rs(67) = 0.047. However, there were trends
showing that this did vary by condition, though none of the
correlations were significant. If the robot entrained, childrenwere
more likely to use the words themselves if they had identified the
words correct on the test, E-B rs(15) = 0.253; E-NB rs(10) = 0.254;
children who did not receive entrainment were less likely to do
so, NE-B rs(23) =−0.077; NE-NB rs(21) = 0.024.

In summary, given that children’s scores on the vocabulary
identification test were not significantly different by condition,
these results suggest that the robot’s entrainment and backstory
did not impact children’s initial encoding of the words, but did
affect children’s expressive use of the words in their retelling.

4.1.3. Story Length (H3)
The robot’s story was 435 words long, including the dialogic
questions. The mean length of children’s retells was 304 words
(SD = 110.9). After stopword removal, the robot’s story was 185
words, of which 99 were unique, non-overlapping words. The
mean length of children’s stories after stopword removal was 113
(SD= 41.7), with a mean of 63.1 unique words (SD= 19.0).

We performed 2×2 between-subjects analyses of variance
with Entrainment (E vs. NE) and Backstory (B vs. NB) with Age
as a covariate, which revealed a significant effect of Age on the
length of children’s stories after stopword removal, F(4, 59) =

3.77, p = 0.008, η2p = 0.20, and on the number of unique words

children used, F(4, 59) = 3.19, p= 0.019, η2p = 0.17. Post-hoc tests
revealed that 6- and 7-year-old children told longer stories than
4-year-old children, and 7-year-old children used more unique
words than 4-year-old children (Figures 4A,B). The length of
children’s stories before stopword removal followed the same
pattern, but was not statistically significant. This suggests that the
primary difference between older (6–7 years) and younger (4–5
years) children’s stories was their use of significant content words
vs. stopwords.
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FIGURE 4 | (A) Older children told longer stories than younger children. (B) Older children used more unique words than younger children. *p < 0.05.

FIGURE 5 | The number of overlapping words children used by entrainment condition (A) and by age (B). *p < 0.05; **p < 0.01.

4.1.4. Mirroring the Robot’s Story (H2, H3)
Children used a mean of 37.7 unique words (SD = 12.3) in their
retells of the 99 unique words that the robot had used in its story.
A 2×2 between-subjects analyses of variance with Entrainment
(E vs. NE) and Backstory (B vs. NB) with Age as a covariate
revealed that the number of overlapping unique words used was
significantly different by Age, F(4, 60) = 6.12, p < 0.001, η

2
p =

0.29. We also observed a significant interaction of Entrainment
with Backstory, F(1, 60) = 6.42, p = 0.013, η

2
p = 0.10. Post-hoc

tests showed that older children overlapped more than younger
children (Figure 5A). Children in the E-NB condition (M = 31.2,
SD = 10.9) overlapped less than children in the E-B and NE-NB
conditions (E-B: M = 41.3, SD = 13.2; NE-B: M = 36.2, SD =

10.6; NE-NB: M = 39.8, SD= 13.3) (Figure 5B).
Children’s stories received mean scores of 41.3 (SD = 36.2)

for their use of exact and similar phrases that mirrored the
robot’s phrases. However, we observed no significant differences

between conditions in children’s use of exact and similar
matching phrases.

4.2. Rapport, Relationship, and Social
Behavior (H4, H5, H6, H7)
4.2.1. Acceptance of the Robot (H4)
We performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB) for the
questions asked about children’s social acceptance of the robot
and of other children. We found a significant main effect of
Backstory of children’s responses to the question “Would you
like to be good friends with a robot who can’t hear well,” F(1, 82)
= 7.55, p = 0.007, η

2
p = 0.08. Children who heard the robot’s

backstory were more likely to respond positively than children
who did not hear the robot’s backstory. Children who heard the
backstory were also somewhat more likely to respond positively
to the question, “Would you like to be good friends with a
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FIGURE 6 | Children’s responses to the question, “Would you like to be good friends with a robot who can’t hear well?” and the question, “Would you like to be good

friends with a handicapped or disabled kid?” by condition. *p < 0.05.

TABLE 2 | Analysis of facial expressions during the interaction by condition.

Expression Overall E-B E-NB NE-B NE-NB

Engagement 30.8 (11.7) 33.3 (13.3) 30.5 (12.0) 29.6 (11.2) 30.5 (11.4)

Attention 68.9 (13.4) 62.2 (21.1) 67.8 (15.2) 71.9 (5.56) 72.0 (9.51)

Valence −0.738 (9.11) 3.51 (8.81) 5.75 (13.72) −4.13 (5.20) −2.72 (8.47)

Joy 7.13 (8.04) 9.13 (8.81) 12.1 (12.5) 5.48 (5.02) 5.61 (7.26)

Smiles 8.98 (8.82) 10.9 (9.35) 14.6 (13.4) 7.16 (5.65) 7.52 (8.31)

Laughter 0.13 (0.22) 0.23 (0.31) 0.28 (0.36) 0.08 (0.09) 0.07 (0.11)

Relaxation 3.53 (5.31) 4.13 (5.38) 6.63 (9.61) 2.49 (2.42) 3.06 (5.03)

Surprise 7.21 (6.96) 8.47 (9.22) 4.53 (4.63) 7.40 (5.32) 7.43 (7.84)

Disappointment 4.98 (3.98) 2.58 (2.01) 3.58 (3.03) 6.58 (4.37) 5.72 (4.05)

Fear 1.48 (2.06) 1.00 (1.40) 0.38 (0.66) 1.87 (2.04) 1.93 (2.72)

Concentration 2.92 (2.48) 2.02 (1.79) 2.11 (1.87) 3.20 (2.45) 3.72 (3.03)

Sadness 0.27 (0.46) 0.22 (0.34) 0.49 (0.54) 0.32 (0.59) 0.17 (0.24)

Values can range from 0 (no expression present) to 100 (expression fully present), except

Valence, which can range from −100 to 100. Each column lists mean and standard

deviation.

handicapped or disabled kid,” though it was not statistically
significant (Figure 6).

4.2.2. Children’s Expressivity and Positive Emotion

(H5, H6)
Overall, children were highly attentive and engaged, and
displayed surprise and other emotions during the story
(see Table 2). To evaluate whether children showed greater
engagement or positive emotion with the robot that entrained,
we performed 2×2 between-subjects analyses of variance with
Entrainment (E vs. NE) and Backstory (B vs. NB).

We found a significant main effect of Entrainment on
children’s expressions of joy, F(1, 69) = 6.25, p= 0.015, η2p = 0.070;

fear, F(1, 69) = 5.31, p = 0.024, η2p = 0.074; concentration, F(1, 69)

= 5.09, p = 0.027, η2p = 0.074; disappointment, F(1, 69) = 12.7, p

< 0.001, η2p = 0.17; attention, F(1, 69) = 5.66, p= 0.02, η2p = 0.091;

laughter, F(1, 69) = 12.02, p < 0.001, η2p = 0.13; smiles, F(1, 69) =

5.82, p = 0.019, η
2
p = 0.064; and valence, F(1, 69) = 14.7, p = <

0.001, η
2
p = 0.16. Post-hoc tests showed that children expressed

less fear, concentration, disappointment, and attention in the E
condition than in the NE condition (Figure 7). Children showed
higher mean joy, laughter, valence (i.e., showedmore affect with a
positive valence), and more smiles in the E condition than in the
NE condition (Figure 8). There were no significant differences in
sadness, surprise, relaxation, or engagement; however, there was
a trend for children in the E condition to show more relaxation
than in the NE condition, which could have contributed to the
higher valence seen in the E condition.

Next, we asked whether children’s affect changed during the
session. We split the affect data into the first half of the session
and the second half of the session, using the data timestamps to
determine the halfway point. We ran a 2×2×2 mixed ANOVA
with time (within: first half vs. second half) × Entrainment
(between: E vs. NE) × Backstory (between: B vs. NB). Although
we hypothesized several changes in children’s affect over time as
a result of condition, we corrected for multiple comparisons here
and only considered results significant when p < 0.004.

Like before, we found a significant main effect of Entrainment
on disappointment, F(1, 70) = 14.7, p < 0.001; laughter, F(1, 70) =
8.94, p= 0.004; and valence, F(1, 70) = 14.6, p < 0.001. There were
trends for a main effect of Entrainment on joy, F(1, 70) = 4.25, p=
0.043; fear, F(1, 70) = 5.88, p = 0.018; attention, F(1, 70) = 4.37, p
= 0.040; and smiles, F(1, 70) = 3.99, p= 0.0497. Children showed
fewer expressions of fear and disappointment in the E than in
the NE condition (Figure 9). Children showed more joy, more
smiles, and higher valence in the E than the NE condition.

We found a significant main effect of time on joy, F(1, 67) =
34.6, p < 0.001; valence, F(1, 67) = 17.7, p < 0.001; engagement,
F(1, 67) = 10.3, p = 0.002; smiles, F(1, 67) = 40.5, p < 0.001;
relaxation, F(1, 67) = 27.2, p < 0.001; laughter, F(1, 67) = 11.9, p
= 0.001. All of these decreased from the first half to the second
half of the session.

We saw trends for interactions of Entrainment with time:
concentration, F(1, 67) = 6.79, p = 0.011; attention, F(1, 67) =
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FIGURE 7 | Children’s overall negative affect varied by entrainment condition. (A) shows attention; (B) shows concentration; (C) shows fear; (D) shows

disappointment. *p < 0.05; ***p < 0.001.

5.47, p = 0.022; and laughter, F(1, 67) = 7.82, p = 0.007. Children
showed more concentration during the first half in the NE than
in the E condition. Children showed more attention during the
first half for NE vs. E, but they did not differ during the second
half. Children laughed more in the first half in the E condition
than in the NE condition, and decreased to the second half,
while in the NE condition the amount of laughter did not change
over time.

We also saw trends for interactions of time with Backstory for
fear, F(1, 67) = 8.55, p = 0.005; sadness, F(1, 67) = 7.01, p= 0.010;
disappointment, F(1, 67) = 7.70, p = 0.007; attention, F(1, 67) =
4.88, p= 0.031; and valence, F(1, 67) = 8.12, p= 0.006 (Figure 10).
Children expressed less fear in the second half of the session
when they did not hear the backstory, but expressed somewhat
more fear in the second half if they had heard the backstory.
They expressed less sadness in the second half in NB condition,
but did not change in B condition. Children’s expressions of
disappointment increased slightly in the B condition from first
to second half, but not for the NB condition. Children’s attention
was higher initially in the NB condition and decreased slightly,
while children’s attention started lower in the B condition and

increased slightly. Children showed decreased valence in the
B condition from first half to second half, but not in the
NB condition.

4.2.3. Closeness to the Robot (H5, H6)
We performed a 2×2×5 mixed ANOVA with Entrainment (E
vs. NE) × Backstory (B vs. NB) × IOS agent (within: Friend,
Parent, Tega, Pet/Toy, Bad guy). We found a significant effect
of agent, F(4, 302) = 61.9, p < 0.001. Post-hoc Tukey’s HSD tests
showed that the bad guy was rated significantly lower than all
other agents. In addition, the robot was rated significantly lower
than the friend, but was not significantly different from the parent
or pet/toy (Figure 11A). Older children were more likely to rate
Tega as closer, rs(86) = 0.410, p < 0.001 (Figure 13A).

Regarding the Picture Sorting Task, overall, Tega was placed
at a mean position of 4.78 (SD= 1.80) (Figure 11B). Figure 12A
shows results by condition for Tega’s distance to the human, and
Figure 12B shows the relative distance of each entity from the
Tega robot by condition.

We performed a mixed ANOVA with Entrainment (between:
E vs. NE) × Backstory (between: B vs. NB) × Entity (within:
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FIGURE 8 | Children’s overall postive affect varied by entrainment condition. (A) shows valence; (B) shows joy; (C) shows smiles; (D) shows laughter. *p < 0.05;

***p < 0.001.

Tega robot, baby, cat, frog, teddy bear, movie robot, robot arm,
computer) for the entity positions, as well as for the entity
positions relative to the Tega robot. For entity positions, we
observed a significant main effect of Entity, F(7, 574) = 71.7, p
< 0.001. We also observed a significant interaction of Entity
with Entrainment, F(7, 574) = 2.15, p = 0.037; and a significant
interaction of Entity with Backstory, F(7, 574) = 2.35, p= 0.022.

Post-hoc tests revealed that the baby was placed significantly
closer to the human adult than all other entities. The cat was
placed significantly closer to the human adult than all entities
except for the Tega robot in the E condition, and closer to the
human than all entities except Tega and the frog in the NB
condition. In both the NE and B conditions, the cat was not
placed significantly differently from Tega, the frog, movie robot,
or teddy bear.

In the E condition, the Tega robot was significantly closer to
the human adult than the robot arm, computer, movie robot, and
teddy bear. It was farther from the human adult than the baby and
was not placed in a significantly different position from the cat
or frog. In the NE condition, Tega was only placed significantly
closer to the human adult than the robot arm and computer; it

was not placed significantly differently from the cat, frog, movie
robot, or teddy bear. Tega was not placed in a significantly
different position from the movie robot in the B condition, but
was placed significantly farther from it (closer to the human) in
the NB condition.

The frog was placed significantly closer to the human adult
than the robot arm and computer, and significantly farther from
the human adult than the baby, but otherwise its position did
not differ significantly from any other entities, except in the NB
condition, where it was placed closer than the movie robot.

In the NE condition, the robot arm was placed closer to the
table than the frog and movie robot, but in the E condition, the
robot arm was not placed significantly differently from the frog
or movie robot. By Backstory, children in the B condition placed
the robot arm closer to the table than all other entities except the
computer and teddy bear, while in the NB condition the robot
arm’s position was also not signficantly different from the movie
robot’s. Finally, in the NE and B conditions, the computer was
placed closer to the table than all entities except the robot arm,
while in the E and NB conditions, the computer was also not
significantly different from the movie robot.
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FIGURE 9 | Children’s affect during the first half and the second half of the interaction varied by entrainment condition. (A) shows attention; (B) shows concentration;

(C) shows laughter; (D) shows valence; (E) shows joy; (F) shows smiles; (G) shows engagement; (H) shows relaxation; (I) shows surprise; (J) shows sadness; (K)

shows fear; (L) shows disappointment. ***p < 0.001.
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FIGURE 10 | Children’s affect during the first half and the second half of the interaction varied by backstory. (A) shows attention; (B) shows concentration; (C) shows

laughter; (D) shows valence; (E) shows joy; (F) shows smiles; (G) shows engagement; (H) shows relaxation; (I) shows surprise; (J) shows sadness; (K) shows fear;

(L) shows disappointment. *p < 0.05; **p < 0.01.
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FIGURE 11 | (A) Children’s IOS ratings for each agent. (B) The mean position

where children placed each entity in the Picture Sorting Task by condition.

*p < 0.05; ***p < 0.001.

Regarding the distance of each entity relative to the Tega
robot, we observed a significant main effect of Entity, F(6, 492)
= 71.8, p < 0.001. We also observed a significant interaction of
Entity with Entrainment, F(6, 492) = 2.13, p = 0.049; and a trend
toward an interaction of Entity with Backstory, F(6, 492) = 2.11, p
= 0.051. Post-hoc tests revealed that the baby was placed farther
from Tega, and closer to the human adult than Tega was, than all
other entities. There was a trend for children to place the Tega
robot closer to the baby (and the baby closer to the human adult
than Tega) in the B condition (mean difference = 1.83, SD =

2.55) than in the NB condition (M = 2.92, SD= 2.01).
The cat was placed closer to Tega than most other entities. It

was not placed significantly differently than the teddy bear in the
E condition; from the frog, movie robot, or teddy bear in the NE
and B conditions; and from the frog in the NB condition.

The computer was placed farther from Tega than all entities
except the robot arm and, in the E and NB conditions, the movie
robot. The robot arm, in turn, was placed farther from Tega than
all entities except the computer and teddy bear. In theNB andNE
conditions, the robot arm was also not different than the movie

FIGURE 12 | (A) Tega’s mean distance from the human adult in the Picture

Sorting Task by condition. (B) The distance of each entity from the Tega robot

in the Picture Sorting Task by condition. There were trends for the Tega robot

to be placed closer to the baby in the B condition than in the NB condition,

closer to the movie robot in the E condition than in the NE condition, and

closer to the frog in the E-B condition than in the other conditions.

robot; and in the E condition, the robot armwas also not different
from the movie robot or frog. There was a trend for children to
place Tega farther from the movie robot, and closer to the human
than the movie robot was, in the E condition (M = −1.94, SD =

2.40) than in the NE condition (M =−0.80, SD= 2.69).
Finally, we also observed trends for Tega to be placed farther

from the frog, and also closer to the human adult than the frog
was, in the E (E: M = −1.31, SD = 2.77, NE: M = −0.16, SD
= 2.62) and B conditions (B: M = −1.11, SD = 2.76, NB: M =

−0.05, SD= 2.60).
We observed no significant differences between conditions

regarding whether children were more likely to agree to do the
fourth picture with the robot, give the robot their sticker in the
sticker task, or give the robot a bigger goodbye gift (in terms of
how meaningful the robot might think it to be). About half the
children in each condition chose to do the fourth picture; we did
not see any effects of the number of picture conversations (i.e.,
the three required vs. the optional fourth one) on the results. If
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we looked at children’s likelihood to perform all three activities
(adding up the fourth picture, the sticker, and the goodbye gift,
rather than any one individually), we saw a trend for children
in the E-B condition to be slightly more likely to do all three
activities, though this was not statistically significant.

4.2.4. Children’s Mirroring, Learning, and

Relationship (H7)
We found that children who gave Tega a closer score on the IOS
task were also more likely to use the target words in their stories,
rs(67) = 0.359, p = 0.003 (Figure 13C). They were also more
likely to emulate the robot’s stories as reflected by the number of
exact and similar phrases used in their retells, rs(67) = 0.273, p =
0.025 (Figure 13B). Given that age also correlated with children’s
ratings of Tega on the IOS task, we might suspect that age is more
relevant than how close children felt to the robot. However, age
did not correlate with children’s use of exact and similar phrases,
which suggests a deeper story.

In addition, children who placed Tega closer to the human
in the Picture Sorting Task were also more likely to use phrases
similar to the robot’s, rs(67) = −0.299, p = 0.014 (Figure 13D).
There was a trend for children who placed Tega closer to the
human to also rate Tega more closely on the IOS task, rs(86) =
−0.197, p= 0.069.

We did not observe any significant correlations of children’s
vocabulary scores with their phrase mirroring or any of the
relationship assessments.

5. DISCUSSION

We asked whether a social robot that entrained its speech and
behavior to individual children and provided an appropriate
backstory about its abilities could increase children’s rapport,
positive relationship, acceptance, engagement, and learning with
the robot. Below, we discuss the main findings and then discuss
the implications of these findings.

5.1. Learning
Children learned the target vocabulary words in the robot’s
story and were generally attentive and engaged with the robot
regardless of the experimental condition. They showed a variety
of emotional expressions throughout the interaction. Children
remembered the robot’s story as evidenced by their ability to
retell the story and their identification of target words on the
vocabulary test. These results are in line with the prior study
using this story activity (Kory Westlund et al., 2017b), which
found significant learning gains.

We did see differences in children’s learning by condition.
Contrary to our hypotheses (H1), children in theNo Entrainment
condition correctly identified more target words than children
in the Entrainment condition (Figure 2B). This could be for
several reasons. A prior study found that a robot tutor that
employed social adaptive behaviors led to lower learning gains
than a robot that did not act as socially (Kennedy et al., 2015).
Thus, perhaps the entraining robot was perceived more socially,
which was detrimental in learning. This is contrary to our
hypotheses regarding the importance of social behavior, rapport,
and relationship in language learning with peers. However, in the

prior study, children performed a math task with the robot tutor.
The authors hypothesized that perhaps children were paying
attention to the robot’s social behavior as opposed to the lessons
it was providing, or, alternatively, that the social behavior placed
greater cognitive load on children thus inhibiting their ability
to perform in the math task. Performance on a math task in
a tutoring format may indeed benefit less from a robot’s social
behaviors than performance in a language-based story activity in
a peer-learning format.

A second explanation pertains to the learning results we
observed. There was a ceiling effect and little variance in
children’s responses, with 43% of children correctly identifying
all six target words, and 41% correctly identifying 5 of the
target words. If a significant number of children were already
familiar with the target words, then the vocabulary tests would
not reflect their learning during the task with the robot; the
difference between conditions may not reflect children’s learning
in the task. Furthermore, given that children’s receptive language
abilities may precede their expressive abilities (Bloom, 1974;
Ingram, 1974; Sénéchal, 1997), we would expect that children
who correctly identified more words to also use more of
them in their stories (H2), reflecting greater understanding and
deeper encoding of the words (this was also seen in the prior
study, Kory Westlund et al., 2017b). However, we did not see
this correlation: children’s use of the target words was not
significantly correlated with correct identification of the words.
In fact, children’s use of the target words was significantly greater
in the E-B condition than all others, in line with our hypotheses
(H3) (Figure 3). Additionally, while the patterns were not
significant, children weremoderatelymore likely to use the words
if they had identified them correctly in the Entrainment condition
than in the No Entrainment condition. These results suggest that
the robot’s rapport- and relationship-building behaviors affected
either or both of (a) children’s learning and deeper understanding
of the words such that they were more able to expressively use
the words, or (b) children’s mirroring of the robot’s speech such
that they used more of these target words, both of which would
be in line with prior work linking rapport to learning (Sinha
and Cassell, 2015a,b). This was also a short-term encounter.
Given the positive aspects we see here regarding word use and
mirroring, we expect that over multiple sessions, we would see
greater differences in word learning.

When we examined children’s mirroring of the robot’s speech,
we saw that children did mirror the robot (H2, Figures 3, 5),
in line with past work suggesting that children may mirror
adults’ syntax and speech (Huttenlocher et al., 2004) and earlier
work in human-computer interaction showing that adults will
entrain to computers and robots (e.g., Pearson et al., 2006;
Lubold et al., 2018). However, we saw no significant differences
in children’s emulation of the robot’s phrases, and in fact, less
overlap in the number of unique words used by children that
mirrored the words the robot used in the E-NB condition, and
little difference among the other conditions (contrary to H3).
This suggests that perhaps entrainment did not affect children’s
mirroring of the words the robot used somuch as their expressive
ability to use the key words present in the story. Prior work
has shown that social robots can be successful at prompting
children to demonstrate expressive vocabulary skills in both
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FIGURE 13 | (A) Older children rated the robot as closer in the IOS task. Children who rated the robot as closer were more likely to (B) use the target words in their

stories and (C) emulate the robot’s phrases. (D) Children who placed the robot closer to the human in the Picture Sorting Task were also more likely to emulate the

robot.

vocabulary test and storytelling contexts (e.g., Kory and Breazeal,
2014; Kory Westlund et al., 2017b; Wallbridge et al., 2018). The
present study suggests that the robot’s entrainment may influence
expressive ability.

The lack of difference in phrase mirroring was counter to
our hypotheses (H3). Perhaps children did not feel sufficiently
more rapport with the entraining robot for this to affect their
storytelling. Indeed, in all conditions, the robot was a friendly,
expressive character, which children generally said they felt
close to—as close as to pet or parent, though less close than
to a best friend. The entrainment only affected the robot’s
speech and some animations (which were played primarily in
accompaniment with speech). In particular, if a child was very
shy and rarely spoke, then the robot had fewer opportunities
to adapt and entrain to that child. Perhaps greater difference
would be seen if the robot also entrained other behaviors, such
as posture, gesture, or word use. Another explanation is that
perhaps language mirroring is not as closely linked to rapport as

we expected; there is limited research so far suggesting this link,
and more is needed.

5.2. Rapport, Relationship, and Social
Behavior
The robot’s entrainment and backstory also affected children’s
displays of positive emotions during the interaction. All
children were engaged, but children in the E-B condition
showed more positive emotions (e.g., joy, laughter, smiles, and
positive valence), as well as fewer negative emotions (e.g.,
disappointment, fear) (supporting H5 andH6; see Figures 7–10).
Laughter and smiling are social behaviors (Provine, 2001; Smidl,
2006; Manson et al., 2013). We also saw trends for children to
be more helpful and accommodating in the E-B condition, as
one might expect with a more social agent (Reeves and Nass,
1996), as evidenced by their behavior with fourth picture, the
sticker task, and the goodbye gift. This is evidence that the robot’s
entrainment and backstory improved children’s enjoyment of the
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interaction and may have perceived it as more of a social agent,
perhaps a result of increased rapport (supporting H5 and H6).

Children in the E-B condition also showed fewer attentive
expressions, though only during the first half of the interaction
(they did not differ later on). This could mean that these children
were in fact less attentive initially, or it could mean that they were
showing more positive attentive expressions that were coded by
the affect recognition software as engagement and joy. If they
were less attentive, we might expect this to be reflected in their
vocabulary scores and story retellings—perhaps this is why these
children did not identify as many words correctly. However,
children in the E-B condition showed just as many expressions
of engagement as children in the other conditions, were just as
likely to retell the story, and as noted earlier, there were few
significant differences by condition in children’s story retellings
beyond more use of the target words by children in the E-B
condition. An alternative explanation is that perhaps children’s
attentive looks were related to how much cognitive effort was
involved in performing the task. The robot’s entrainment and
backstory could have improved rapport and made the interaction
more fluent, easier, and smoother, thus requiring less intense
attention by children. This would be especially apparent earlier
in the interaction, immediately following the robot’s backstory
disclosure and during the picture conversation task, when the
robot was entraining more frequently due to the increased
number of conversational turns during that task.

Related to this, we saw that children’s attention increased over
time in the B condition, but decreased in the NB condition, while
multiple negative emotions (fear, disappointment, sadness) were
displayed more frequently over time in the B condition than in
the NB condition. For all other affective states measured, the
change over time was not significant, though there were patterns
for decreases in positive affect (e.g., joy, smiles, etc.) over time
for all children. If children’s attentive expressions were related
to cognitive effort, this could indicate that in the B condition,
children felt that over time, they had to attend more carefully to
the robot (putting in more effort) in order to help it and deal with
its hearing limitations. This could, perhaps, have led to increased
feelings of difficulty interacting with the robot over time, which
could have led to the increased displays of negative emotions that
we observed in the B condition.

Regarding the decrease in attention in the NB condition, it
may be that these children became less attentive because they
were growing bored or were not as invested in the interaction.
Indeed, while not statistically significant, children’s engagement
did decrease slightly more over time in the NB condition than
in the B condition. There were also no affective states for which
children in the NB condition increased their expression over
time, suggesting that they became less expressive overall, which
may be indicative of boredom or less emotional investment in
the interaction.

We observed that children showed greater acceptance of
the robot when they had heard the robot’s backstory, as we
expected (H4; Figure 6). Children’s increased negative affect seen
in the B condition may also reflect increased sympathy for
the robot. Regardless, it seems that the robot’s story influenced
children’s perceptions of it, in line with prior work showing

that a robot’s story does influence how people understand and
react to it (Stenzel et al., 2012; Klapper et al., 2014; Darling
et al., 2015; Kory Westlund et al., 2016b). Interestingly, this
effect seemed to carry over to children’s ideas about being friends
with other children. While only a trend, it suggests room for
future interventions using robots to help children understand
and accept others different from themselves.

As noted above, children generally felt as close to the robot
as they did to a pet, favorite toy, or parent, though not quite so
close as to their best friend (Figure 11A). They generally placed
Tega closer to the human adult than the table in the Picture
Sorting Task, and frequently close to the human baby and to
the cat (Figures 11B, 12). These results present an intriguing
picture regarding children’s perceptions of the robot as a peer- or
friend-like, non-human, animate entity. Children did not confuse
the robot with a human; they knew it was different. Children
seemed to clearly find companionship in the robot and to place
it in a category between friend, pet, and authority figure. It
was not merely a machine or computer; it was seen as more
animate and alive—but not in the same category as a human. This
jibes with prior work suggesting that children may categorize
robots as in-between entities, with attributes of both living beings
and mechanical artifacts (Kahn et al., 2002, 2012; Severson and
Carlson, 2010). Perhaps children observed that some of the things
that are messy about human relationships, such as the kinds of
conflict that arise and the emotions that others display, are not
the same in robot relationships—perhaps they are more like pet
relationships. In this case, the robot did not get overly upset
when it did not receive the sticker it wanted in the sticker task; it
was generally cheerful throughout the interaction, which perhaps
would not have been the case with another child. It is also likely
that the robot’s morphology influenced children’s perceptions,
since the robot we used was fluffy, colorful, and moved more like
an animated character or sidekick than a humanoid being.

In support of our hypotheses regarding the connection
between children’s feelings of closeness, rapport, and relationship
with learning and mirroring the robot (H7), we observed that
children who rated the robot as closer to themselves also used
the target words more often and emulated the robot’s story more
(Figure 13). This is in line with earlier work linking rapport to
learning (Sinha and Cassell, 2015a,b). However, we also saw that
age correlated with children’s ratings of Tega on the IOS task.
Older children rated the robot as closer; younger children as less
closer. Perhaps younger children were less sure of the robot and
needed more time to become comfortable with it. Given these
correlations, we might suspect that age was more relevant to
children’s use of the target words and emulation of the robot’s
story than children’s closeness ratings. However, children’s age
did not correlate with children’s emulation of the robot’s phrases
at all, which suggests that this emulation was in fact related to
children’s feelings of closeness.

Finally, we also observed a few age differences. The length of
children’s story retellings differed with respect to their age, but
did not vary by condition (Figure 4). Notably, the stories told by
6- and 7-year-old children were longest. The stories of 8-year-old
children were not quite so long, which may have been because
they were less interested in the story, rather than less capable. The
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story and activity were designed with 4–7-year-olds in mind. The
story may have been a little on the difficult side for the younger
children, and on the easy side (and thus perhaps a little boring)
for the oldest. However, even the children outside the target age
range for the activity were receptive to the social robot, showing
engagement, learning, and emulation.

Taken together, these results show that the robot’s rapport
and relationship-building behaviors do matter in interactions
with young children. A robot that deliberately emulates a child’s
speech in a way similar to how people mirror each other can elicit
more positive emotion and greater emulation of key words in
a language learning activity. Children’s feelings of closeness are
related to their emulation of the robot’s words in their stories.

5.3. Relation to Related Work
Our results also mirror, to an extent, the results in the
prior study that explored a robot’s use of expressive vs. flat
speech (Kory Westlund et al., 2017b). In both studies, the
robot’s entrainment, backstory, and expressivity reflected the
sensitivity the robot showed to the interaction. This sensitivity
influenced children’s engagement and learning. This is in
line with work examining nonverbal behaviors in human-
human learning interactions, in particular, nonverbal immediacy.
Nonverbal immediacy refers to the perceptual availability of one’s
interaction partner, i.e., the use of nonverbal behaviors including
gaze, gesture, posture, facial expressions, and vocal qualities such
as prosody to signal general responsiveness and attentiveness.
In human-human learning interactions, nonverbal immediacy
has been linked to increased learning gains (Mehrabian, 1968;
Christophel, 1990; Witt et al., 2004). When we examine prior
child-robot interaction studies, we see that they have found
a similar pattern of results to these human-human studies:
The use of nonverbal immediacy behaviors including socially
contingent behavior, appropriate gaze and posture, and vocal
expressivity increased children’s learning, engagement, and trust
in a learning companion (Breazeal et al., 2016a; Kennedy et al.,
2017; Kory Westlund et al., 2017a,b). Thus, it may be that the
entrainment behaviors used by the robot increased its perceived
immediacy and perceived sensitivity to the interaction.

However, in other work on language learning with social
robots, the robot’s social interactive capabilities have been found
to influence children’s relationships and social acceptance of
the robot, but not their learning (e.g., Kanda et al., 2004,
2007, 2012). Indeed, some work has shown no significant
differences in children’s word learning from a social robot (with
numerous embodied social capabilities) than from a tablet (e.g.,
Kory Westlund et al., 2015; Vogt et al., 2019). Arguably, these
studies suggest a contrary story in which the robot’s social
capabilities may not affect children’s learning that much.

These studies, however, have generally included learning
tasks that did not require a robot or much social behavior
for learning to proceed. For example, the second language
learning activities used by Vogt et al. (2019) involved educational
games presented on a tablet, for which the robot provided
instructions, feedback, and support, but in which—as the authors
acknowledge—the robot appeared to be non-critical for the
learning interaction. The robot’s social behaviormaymatter more
for conversation and storytelling-based activities than for tablet

games or simpler word learning tasks. Thus, we suspect that
the robot’s social capabilities (such as nonverbal immediacy)
can influence children’s learning—as we have seen here and in
multiple other studies discussed earlier—but that the influence
of social behavior is moderated by other factors, such as the
extent to which the robot’s sociality is necessary for the learning
activity to proceed smoothly (as in the case of conversation and
storytelling-based activities), and the extent to which the robot’s
social behavior helps build rapport.

This hypothesis is supported by Lubold and colleagues’ recent
work with middle school children and adults, in which a
social robot with vocal entrainment contributed to increased
learning on math tasks, though not increases in self-reported
rapport (Lubold et al., 2016, 2018; Lubold, 2017). Because the
vocal entrainment served not only to match pitch and other vocal
features, but also made the robot’s text-to-speech voice much
more expressive, these studies could not disentangle the effects
of expressivity from entrainment—however, both expressivity
and entrain increase the robot’s social capabilities. Our results
here are similar to Lubold et al.’s, in that we also found that
the robot’s vocal entrainment was related to learning, but unlike
Lubold’s work, we also found connections between the robot’s
entrainment and aspects of children’s relationship and rapport,
including increased positive emotion and language emulation.
This difference could be for numerous reasons, including the
different age groups studied, the different learning matter (math
vs. language), and the additional social and expressive capabilities
of our robot.

Our results also extend prior work showing that children
learn through storytelling with peer-like robot companions
in ways that are significantly different from how children
learn and engage with other technologies. We are seeing a
peer learning dynamic similar to that seen in child-child
interactions. Children socially model and emulate the behavior
of the robots, like they do with other children. For example,
children are more emotionally expressive when the robot is
more expressive (Spaulding et al., 2016), show more curiosity
in response to a robot’s increased curiosity (Gordon et al.,
2015), teach new tasks to robot peers (Park and Howard, 2015),
and emulate linguistic phrases and vocabulary (Kory Westlund
et al., 2017b). This study extends these previous works to
explore not only whether children will learn with and emulate
a robot peer, but the mechanisms by which robots can influence
peer learning. Rapport and relationship appear to be two
such mechanisms.

5.4. Limitations
This study had several limitations. First, we did not control
for children’s individual differences, particularly with regards to
learning ability, language ability, or socio-economic status, all
of which may affect individual children’s social interactions and
learning with the robot. Furthermore, we did not obtain an equal
number of children at each age group to participate in the study.
Future work should examine amore homogeneous sample as well
as explore the stability of results across individual differences and
across ages as children grow older.

We also lacked complete story retelling data and affect data
for all children. Some children did not retell the story and in
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a few cases, we had issues regarding the audio quality of the
recorded stories. Some children’s faces were not recognized
by the Affdex software, and a few videos were missing or
insufficiently captured a full frontal view of the children’s faces,
which was necessary for affect recognition. As a result, the
analyses reported are underpowered. Future work should take
greater effort to obtain quality audio and video recordings for all
children during the study.

As mentioned in Kory Westlund et al. (2017b), the target
vocabulary words were uncommon, but some children still
may have known them. In particular, older children may have
been familiar with some of the words, given the correlation
we observed between children’s age and the number of words
identified correctly. The words’ uncommonness may have cued
children to pay attention to them; as such, future work should
consider using nonce words or include a vocabulary pretest.
Including a vocabulary pretest would also help ensure that
children’s language abilites did not differ by condition.

The robot’s automated entrainment was limited to its speaking
rate and pitch, so if a child was very quiet or spoke rarely, the
robot would not have been able to entrain to that child. Because
volume and exuberance were teleoperated, these occurred for all
children. Future work could explore ways of encouraging shy
children to speak up, or explore othermodalities for entrainment,
such as posture, gesture, facial expressions, and word use.

It is also unclear how generalizable the results are to robots
with different embodiments or morphologies. The Tega robot
that we used appears much like a fluffy stuffed animal, and
thus is morphology could be seen as more familiar to children
than a robot such as the Aldebaran NAO, which is humanoid.
Childrenmay feel a different level of comfort or uncanniness with
a humanoid robot than with the Tega robot.

Finally, this study explored only a single one-on-one
interaction with the robot. As such, any overall effects could
be related to the novelty of the robot. However, children had
the same amount of exposure to the robot in all conditions,
so novelty cannot explain the differences we observed between
conditions regarding the effects of entrainment and backstory.

Because learning tends to happen over time, as does the
development of relationships, future work should explore
longitudinal interactions to help us better understand the
relationship between learning and rapport. Furthermore,
children are frequently accompanied by friends and siblings in
educational contexts. We do not know how multiple encounters
with the robot or how interacting in groups might affect
children’s development of a relationship and rapport with
the robot. Exploring group interactions that include multiple
children, or children in concert with parents and teachers, could
help us learn how to integrate robots into broader educational
contexts and connect learning with peers to learning in school
and at home.

6. CONCLUSION

In this work, we explored the impact of a robot’s entrainment and
backstory on children’s engagement, rapport, relationship, and
learning during a conversation and story activity. We found that
the robot’s rapport- and relationship-building behaviors affected
children’s emulation of the robot’s words in their own stories,
their displays of positive emotion, and their acceptance of the
robot, and their perception of the robot as a social agent. This
study adds to a growing body of work suggesting that the robot’s
social design impacts children’s behavior and learning. The
robot’s story, use of relationship behaviors, nonverbal immediacy
and rapport behaviors, social contingency, and expressivity are all
important factors in a robot’s social design.
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